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ABsTRAcr 

A database design methodology, basedon the 
concept of module, is proposed as a way of 
managing the complexity of database descriptions 
at-& at the same tima,enforcing integrity 
constraints. The design of databases is carried 
out in two levels of abstraction, the specifica- 
tionlevel,whichisindependentof any database 
mnagemantsystem, andtherepresentationlevel, 
that refines the first one into an actual in@e- 
nentation of the database. 

At the specification level, the definition 
of a mdule consists of a high-level description 
of the stru~es and operations of the module, 
aswell as the integrityconstraints.TWomodule 
const.ructors, extension and subsmption, are 
usedto define new modules fmn old ones. 
Extensionis similarto theusual view mch- 
anise. Subsumptionis a newmodule amstructor 
thatpermits adding new structures,operations 
and constraints to those of old rrrzdules, and 
redefining old operations, tiich may be required 
tomaintainintegrity. 

!!3e representation level descriptim of a 
database is carried out using the SQL/DS system, 
which indicates that the mdular database design 
proposed can be used in conjunction with 
present-day systems. 

Finally, the concept of module graL* is 
introduced to capture themodular structure of 
the database. 

1. Introduction 

Database design has been greatly influenced 

by the three-level architecture proposed in 

CAtGIl that suggests dividing the description of 

a database into theintemalsdmna, the concep- 

tual s&emaend~.the external s&emas. 'Iheinter- 

nal schemadescribes the physical organization 

of the database: theconceptual schemadefines 

the logical organizationof the ampletedata- 

base; andtheexternal schemsdescribelogical 

subsetsof thedatabase relevant to different 

classes of users. Consequently, database design 

techniques can be roughly classified as to 

whether they address physical or logical data- 

basedesign [TFI. 

kqical database designmay be carriedout 

by stepwise refinement starting with the early 

stages of requirements analysis and culminating 

ina ameptuals&ema,basedm som adequate 

datancdel.Orthogonal torefinemnts that cross 

levels of abstraction (and precisicm), database 

design methods must also provide for the fact 

that databases tend to belarge, -W= 
objects. One such mthod, view integration, 

tries to beat cxqlexity by synthesizing the 

oonceptual s&~embygraduallycaMning schemas 

that represent the -ledge (or requirements) 

of the various groups of users CTE, CV, NG, Vi& 

WI. 
We explorein this paperan alternative 

stra+-wy, based on the omcept of nodule 

CPa,LZ,ZLTl, as a way of managing the complexity 
of database descriptions. The design mthodol- 

ogy we propose has three basic characteristics. 
First, it is structure in the sense that data- 

base objects and operations are designed g-radu- 

ally, level by level. Second, it provides an 
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obvious way of enforcing integrity constraints, 

through the notion of encapmlatim CLZl..Third, 

the design of a database is carried out in two 

levels of abstractim, the qpacification level 

which uses a high-leveldesignlanguage and is 

independent of any-, and the representation 
level that refines the first one into an actual 
i.r~@emntationof thedatabase. 

kkdular database design is not a new idea, 
but all referencesknownto us CLm,EKw,LmW, 

SFNC, SNF, We1 tend to explore the principles, 
theoretical andothexwise, of themethod. We go 

furtherandshowthat amodulardatabasedesign 
strategy is quite feasible using currently 
existing DBMSS. We substantiate this claim by 
actually showing hclw the strategy can be iqle- 

nented on top of the m/IX system [lB&~ll. 

This pqer is divided as follows. Section 2 
carries our informal discussion on ncdular data- 

base design further. Sectian 3 defines, at the 
specification level, the concept of mdule, the 

mduleconstructors weuse and the conceptof 

module graph. Section 4 indicateshowamdular 
descriptionof adatabase canbein@emmtedon 

top of the SQL/% system. Finally, Section 5 

contains conclusions anddirections for futme 

research. 

2.McdularDatabaseDesign 

We outline in this section a database 
design methcdology based on the concept of 

nodules. Later sectionswilldiscuss indetail 

theconceptsintroducedhere. 

We begin with a brief description of 
modules. At the specification level, the defi- 

nition of a mxkiie consists of a high-level 

description of the objects and aperations of the 

nodule as well as their propzties. We consider 
that the cbjects of amdule are relations 
describedbyrelation schemas, andthatthe set 

of amsiste.nt relations is defined via a list of 

integrity constraints, in the usual way. 

qperations aredefined as procedures called 

by value, using a high level programning 

language, the regular program of CHa,CBl,CB21. 

(Rqularprcgrms aresurveyed i.nAppandix I, 
whichmaybe ski@on a firstreadingwithout 

loss of continuity). This choice is justified 

on the grounds that: (i) regular programs have 
a clean syntax and semntics,withoutdeparting 

too much froncurrently existing m; (ii) 

regdarpmgrm cawequippdwith aprogram- 
ming logic thatpennits investigatingaxrect- 

ness problems that arise in module definitions: 

(iii) our experience CSNFCIiudicates that the 

alternative approach, axicmatic specifications, 

requiresquite omlplexaxicms toexpress even 

sir&e operations. 

We stress thatoperations are an integral 

partof moduledefinitions inthe sensethat, 

although users can freely query the current 

valueof mduleobjects,users can onlymodify 

their current value using mdule operations. 
This discipline guarantees that no integrity 
amstraint is ever violated, if module oper- 
ations are designed so that they provably 
preserve amsistency. 

The representation level description of a 

mduleimkicates howto in+mentthe objects 

and operations contained in the qxxification 

leveldescriptionof themxlule. We shall adopt 

here for the representation level the DDL/DEIL of 

SQLm [IBM21, as mentioned in the Introduction. 
This concludes oux introduction to the 

conceptofmduleandwe ncwturntostructured 

database design. 

At the spxification level, the structure 

imposed on the databaseby thedesigner is 

represented by a module gra@ G=(V,E,r). 
Briefly, G is a labelled directed acyclic gra@ 

whose nodes represent nodules andis such that 

there is anedge from node Mto mdeN iff 
module N is constructed frcxn nodule M using one 
ofthemduleconstructor machanisms;thelabel 

assigned toNby the labelling function rindi- 
c&es whichcrmstructor was used. A precise 
definitionofncdule gra*s willbe given in the 

next section. 
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The mdule graph i3 constructed gradudlly 

byaddingmwnodules to those already existing. 
hbdules may be addedwithoutany CQMectian to 
previously defined rmdulea. In this case, the 
module is calledprimitiw. Buta newmodule 

may also be defined with the help of those 

alreadyexistingusing twonodule constructors, 

extension and subsumption. 

We say that a module MO is created by 

m modules Ml,...,Mn iff Mf, cxmtains only 

relations derived fran those of Ml,...,% (thus, 

therelations of MS are viewsin the usual 

sense) . I@xeover, operations of MS are iqle- 

mented in term of those of Ml,...,Ph. mdules 

Ml,..., Mnare mtalteredand reminavailable 

for further use in module definitions. Thus, 

theextension constructor is nothing mre than 

the usual subschema mechanism. 

We say that a module MS is created by 

subsuming modules Ml,...,yl iff Mg containsnew 

relations and all the relations of Ml,...,%. 

Likewise, MO cantainsnew operation3 (whichmay 

use old operations of Ml,...,yI as 3ubroutines) 

and all operations of Ml,...+. Hmever, we 
also allow MO to define operations of 
Ml,. . . ,I$. 

Thesubsumption constructor is necessary 

because scmetims,when addingnew structures 

andnewconstraintsto thedat&ase,itbeccmss 

necessary to redefineexisting oyzraticm so 

thattheyalso obey them constraints. The 

fur&mental difference between extension 3nd 

subsunption lies in that, after Ml,....,% are 
subsmd by MO, modules Ml,...,% ape M longer 

available to construct new nodules. 

We will inpose restrictions on how exten- 

sion and subsqkion can be used so that all 

primitivenodules and those definedbysubsurq- 

tion form a forest F. Modules defined by exten- 
sion in turn form an acyclic digraph G g-rafted 

in the forest F. Thus, F plays the role of a 

hierarchicallystructuredcon~ptual schemaand 

Gdefines astructured setofextemals&emas, 
usingtheANSI/SPAIC terminology. 

lb smmarize, thedatabasedesignmetbodol- 
cgyoutLinedprovides structureddescriptions of 

thenore traditional notionsof conceptual and 

extd schm. In our specific proposal, 

relation schemas, as well a3 integrity 

constraints,canbeintroduced inastructured, 

orderly fashion that enhances theundezstanda- 

bility of the database design. Rut, what is 

evenmxeimportant, the strategyofencapsulat- 

ing relation3 within a set of operations 

provides an effective method of enforcing integ- 

ritymnstraints. Yet, queries rmain unres- 

trained a3 in the traditional -roach CZi3. 

Thenext sections will explore these 

concepts further . 

3. The Specification level 

This section first gives a precise defi- 

nitionofthe conceptofncdule and thenmoves 

to mduleccnstructors mechanisms andto the 

concept of rmkle gmph, all at the level of 

s~ification. 

3.1. The Concept of ?fkdule 

LetLbe a first-orderlanguage containing 

all ordinary syabols (such as equality) tobe 

usedindatabase design. 

Amcduleis a tripleM= (RS,CN,OP) where 

RS is a set of relation schemas, CN is a set of 

integrity ccnstraints, and OR is a set of oper- 
ations. 

Wsnwdiscusseach of these concepts in 

detail. 

Sincewe adqted the relational ncdel, the 

datastrw&wesofM are relationsdescribedby 

a set RS of relation schemas of the form 

NAl,..., AnI, tiere Ris the relation nane and 

Al,..., An are the attribute3 of the s&ma. 
Foreach relation schema NAl,...,Anl in 

RS,weaddtoLthe synkolRasann-arypredi- 

cate s-1 mdA1,...,s as unaq -p.T?eaicate 
symbols (we assume that none of these syabols is 
already in L). The first-orderlanguage thus 
definedis called the language ofM and is 
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denotedby LM. wealsosaythat IMwascrea~ 
byaddingtherelationsc?xmas i.nRs toL. 

The set CNof integrityccmstraintsof Mis 
just a set of wffs of LM. CN necessarily 
contains, for ea& relatim schema NAl,... ,%I, 
a wff of the fom 

VXl.. . Wn(R(xl,..., xn' * A# E . . . EA$~& 
called a relation scheiaaaxian, thatccnveys the 
idea thatthe interpretatimof R mustbe a 
subset of the cartesianproductoftheinterpre- 
tations of Al,...+. 

Finally, operations are defined by proce- 
dme definitims over IM of the fom 

f(xl,..., x&p (see pppentlix I). 
Wexequixefmnmduledefinitimsthati 

requirementlz each operation in OP must 
preserve consistency with respect to all wffs in 
QJ (see Appendix I for a precise definition). 
l%isrequiremantreflectsthefundmentalpr~ 
cupationthatthedatabaseshouldalwaysbeleft 
in a consistent state CCCFI. 

As amatterof syntacticalcxmvenience,we 
denote M=@S,cN,OP) as follc7&5: 

mduleM 
sches =; 
constraints 07'; 
operations OP; 

endrdule 
where a-7' is CN without the relation schema 
axioms, since theseare ccmpletelyfixedbythe 
sches in Rs. 

We close this section with au example. 
EXAMPLE 3.1: 
We begin in this example the design of a micro 
database that will continue throughout the 

paper. Thedatabase storesinfonnation about 
products,mrehousesand shipmentsofpmducts 
towarehouses. Informticm about products and 
war&ousesis storedandmanipulated via the 
structuresandoperaticmsdefinedirtwoprimi- 
tive nKdules,PFuxmr and WAmmOUSE,defined 
below: 

rmduleP= 
sd-lm 

PFumCP# ,Nm!EI 

constraints 

VpVnVn'(PFCXJ(p,n) E PI1OD(p,n') * n=n') 
operations 
mRJD(p,n) : 

if -3n PROD(p,n) E P#(p) E NAME(n) 
then Pw)D := {(x,y)/PmD(x,y) v (x=p E y=n) 1 

IELplC)D(p) : 
PROD := 1 (x,y)/pT(DD(x,y) E Tx=p) 

erfimdule 
Then, PFCXXCl? is the triple P=(W,CN,OP). The 
language LP of the module then has the follow- 
ingdistinguished symbols: a binarypredicate 
synbol, PEIOD, and two unary predicate syakols, 
P#andNAME. In view of the relation schema 
defined,CN contains,in addition to the wff 
listed after the omstraint clause, the follow- 
ingrelation schemaxiom 

VpVn(PIC)D(p,n) * P#(p) E NAME(n)) 
Ihe set OP consists of the procedure definitions 
listed afteroperations. 
N2dule WAREHOUSE is defined likewise: 
module WIKMOUSE 

schemes 
w?ARExsEcw# ,Klcl 

constraints 
vwvcvc' (- (W,C)E wARmsE(w,c') * c==c') 

operations 
OPEN(w,c) : 
if,*' WARSRSE(w,c') E W#(w) E LCC(C) 
thenwAFEHsE := 

{ (x,y)/bAm.HsE(x,y) v (x=w E y==c) 1 
(ItLosE : 

WAREHSE := I (X,y)/wARmsE(X,y)E -, x=wl 
endmdule 
This concludes the example. 

3.2. mdule Constructors 

Let Lbe again a fixed first-orderlanguage 
containing all oxdinary symbols. Let P4i = 
(Rsi,CNi,OPi), i=l,...,n, be modules. Assm 
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that Mi and Mj have no relation names in ammn. 

Theextension constructor captures the 

usual SubscherM mechanismandm- beused to 

redefine orhide structures as well as oper- 

ations of old nodules. Wedefine anewmdu.leM 

by extension of Ml,...,Mu as follows: 

(1) mdule M extends Ml,...,% with 

schemes q); 
czcrlstraints aJo; 

opations OP. 0' 
using 

vim VW; 
surmgates W; 

endnodule 
Ihis constructoractuall~ has twoparts. Ihe 

triple (RSO,CNo,OPO) defines a new mdule 1% in 

the sense of Section 3.1. We assume that no 

relation name of L% is used in Mi, i=l,...,n. 

!the pair (VW, SRI then couples MO to 

FlI . . ..Mh in the follcwing sense. Let I&l be the 

languagecbtainedbyaddingallrelation schems 

of M@$,...,Mn to L. Let OP be the union of 
Ol?l,...,OP, (i.e., OP containsall prooedures 

defined in Ml,...,!%). VW contains, for each 
scheme WAl,... ,Plnl in PS , a view definition, 0 
whi& is a statement of tie form RCAl,...,Akl:Q, 

where Q is a wff of I.&l with n free variables 

ordered xl,...,xk. We interpret Q as defining R 

i.? terms of the relation schemas of Ml,...,Mn. 

SR contains, for each procedure definition 

f(Y1'..., y,):p in OPo, a surrogate, which is 
again a procedure definition over IM and OP of 

the form f(yl,...,ym):q, ithat is, q is a regu- 
larprcgrml overmthat mayaXlta.in callsto 

the procedures defined in Ml,...,&&). We under- 

stand f(y,,..., y,):q as defining f(yl,...,y,J:p. 
In other words, f(yl,...,ym):p is the operation 

the user believes he is using, but it is 

f(Y1’...’ y,):q that actually modifies the data- 
base. This remark should be kept in mind 
throughout the rest of the paper. 

We require that: 

requiremant2: if f(yl,..., yJ:q is the surro- 
gate of f(yl,..., y,):p then q is VW-equivalent to 

p (see Appendix I for a precise definition); 

requiremnt 3: if f(Y1,...rY&4: is a 

surrogate, thenqcanonly mdify thevaluesof 

scherfe!s in f+.., Mn through calls to the oper- 

aticns defined in Ml,...,M n ; 

requimt4: for ea& wff P in CNo, P' mst 

bea logical aansequen~e 0f clJ,,...,cN,, where 

P' is obtained fran P by replacing each atomic 

formula of the fom R(zl,...,s) by 

QC zl/xl , . . . ,qJx$, where FU$, . . . ,TQ:3 is a 

view definition, and the list of free variables 

of Q is x1,...+. 
Raquimt2 guaranteesthat qcorrectly 

in@ementip. That is, pdefines anoperation 

of themodule as seenby theuserof themodule. 

3owever, since thisoperation is on virtual 

cbjects (theviews), ithas tobe ia@enentedby 

operationson thebaseobjects.This implemnta- 

tionisdesmibed byq.wmnent2 canthen 

be interpreted as saying that p and q must have 

the same effect as seen fmn the user's point of 

view. In otherwords, we avoid the so-called 

vie~u@ate pnsblem [DB,SPlbypassing itback 

to the DB designer. Requirement3 guarantees 
that each surrogate preserves consistency with 

respect to CNl,...,CNn. Requiremnt4guarantees 

thattheintegrity constraints ofM follcm frm 

those of Ml,...,!4n and theview definitions. 

!thus,nolocal constraints canreallybedefined 

in a module created by extension. Finally, we 

&servethatrequirments2,3and 4guarantee 

thateachoperation inOPo preserves consistency 

with lt?spect to MO. 

Further requirements willbe imposed in 

Section 3.3. 

Ex?N?LE 3.2: 

Wedefine anew nodule, DELIVERY,byextending 

the module SHIPMWT of Example 3.3 below as 

follcXvs: 
module JXLIVERYextends SHIPMENIwith 

schemes 

DELVm[P#,W#l; 
constraints 

/* (me) */ 
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operations 

DEL(p,w) : 
DELVRY := f (x,y)/ DELvRY(x,y) E 

v(x=p E -y=w)l 
using 

views 
DELvR?CP~,w#l : * SHIP(p,w,q) 

surrogates 
DEL(p,w) : 

cANsHIp(p,w) 
wdmdule 

This concludes the example. 

-We md turn to the subsur@ioncmstru&x. We 
beginbyobserving that it shouldbeused to add 

new relation schenms andintegritymnstraints, 
and to redefine previous operations (whichma- 
be required to maintain integrity). We indicate 
that anew modulePI is createdby stillminq 
q,..., "In as follcws: 
(2) n-odule M subsumes Ml,...,!+, with 

stiles q); 
constraints cqJ; 
operations OP6; 

using 
replacements RE; 

erdmdule 
We take RSo tobe a setof relationschmas and 

assume that x-0 relation name in RSO occurs in 

Ml1 . . ..rh. 
LetT.24 againbe tielanguage cbtainedby 

adding all relation schemas of Ml,..., 
those in Itso to L. Let OP againbetheuknaZ 
OPl,...,OPn. Then, CNo is a set of wffs over IN 
andOP*is asetof procedure definitions over 
IT1 and OP. 

RE is a possibly mpty set of clauses of 
the form 

g+. .,q is f (Yl'...., Yk) : p 
where g(zl,...,s 1 isaproceduredefinedinMi, 
for some i in Cl,nl, and f(yl,...,yk):p is a 

proceduxe definition overIMandOP. we treat 
f(Yl'...' y,):p as a new procedure definition of 
M, just as those in OPO.After the definition ofM, 
operation q canmt be called directly anymore. 

The mdule Mdefined by the expression in 
(2) is then the triple (RS,CN,OP) where RS isthe 
Union Of R+...,RS,, CNistheunionofCNO, . . . . 
CNn and OP iS the union Of OP{,OPi,...,OPA where 
OF;& OPiwitkmtallprocedure definitionsthat 
were redefined in clauses of PE,for i=l,..,n,and 
OP; is the set of all new procedure definitions 
contained in OPO or in clauses of RE. 

We require that: 
requiremnt5: ea& operation in OP presemes 
consistenc~with respect toCNO; 
requkenmt6: eadoperation in OP canonly 
mdify the values of s&emes in y,...J+& 
through calls to the operations defined in 

'$1 . . . ,r.&; 
requirement7: each operation of Mi, for sme 
i, replaced inaclause of IIEmstmthavebeen 
usedinthesurrogates clause of anypreviously 
definedmdule. PequirementsS and6guarantee 
thateachgerationin OP preserves consistency 
withrespect tocN. Requirement7 guarantees 
that operations redefinitions will not propagate 

to ot!er l.fGdules. 

Further requi rements will be imposed in 

Section 3.3. 
EXAMPLE 3.3: 
We can addarelationshipbekxm PFQDLKXand 
WklZ-lOUSE, called SHIPbm, as follcms: 
mduleSH~MSNTsubsumesPIXXXCI,WAEBiOUSEwith 
sches 
SHIPCP#,W#,czTyI 

ConstraFnts 
m'(SHIP(p,w,q) E SHIP(p,w,q') * q=q') 
Vp(hdq SHIP(p,w,q) * 3n PFOD(p,n)) 
'&(3p+q sHw(p,w,q) * 3c -E(w,c)) 

operations 
PDDSHIp(p,w,q): 
if 3n PIiDD(p,n) E 3c WME-EE(w,c) 

3q' s-m(p,w,q') E QrYkd 
then SHIP:= { (x,y,z)/SHIP(x,y,z) v 

(x=p E y=w E z=q) I; 
C?NSHIP(p,w) : 
SHIP := ((x,y,z)/ SHlP(x,y,z) E -(q E y=w)}; 

-ins 
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replacements 
CLOSE is reL21aced by 

CLCSEl(w) : 

if -3pCtg SHIP(p,w,q) then CIOSE(w); 
DEWIOD is replaced by 

DELPRJDl(p): 

if-m SHIP(p,w,q) then DELPRM)(p); 

endmdule 
Tnis concludes the exaqle. 

We close this section by observing that our 

module constructors are very general mechanisms 

that subsume the database abstractions - aggre- 

gation, generalization and correslxm%ance - of 

L5S,mW,SFNCI. This reflects our pointofview 

that these three abstractions are just a saqle 

of the variety of cxmstructors obtained by 
restricting the wings that can be used to 

build new modules. Hmever, such restrictions 

beam2 interesting when certainpro&wr!zies of 

nodule constructors are sought [IB%U. 

3.3. Milule Gra@s 

As briefly discussed in Section 2, the 

structure irfposedon thedatabasebythedesign- 

eris representedby amdule graph, that is, a 

labelled directed acyclic gralk whose nodes 

represent n-cdules, whose +=s indicate 

relationships between modules and whose label- 

ling function assigns tags to r&es indicating 

how the mdule was created. 

To define module graphs and the new 

requirements, we use tie concept of active 

module. Intuitively, a xmdule M is active in a 

rmdule graph G iff M is either primitive or 

defined by subsuqkion, and in either case M was 

not subsumed by another nodule. 

We capture both the dynamic aspzcts of 

mdule graphs and the new requirements onmdule 

constructors in the following recursive defi- 
nition of mdule graphs: 
DEFINITION 3.1: The set of nrdule graphs, 

together with their sets of active modules, 

is recursively defined as follws: 

(1) the empty gra$is amodule gra$ with an 

(2) 

(3) 

(4) 

enpty active module set; 
Let G=(V,E,r) be a nmdule graph with active 
module set A. LetMbea primitivemdule 

notin Vsuch thatno relat.ioPlnme 0fM 

occurs in a mdule in V. Then G'=W',E',r') 

is a&ule graplwith activemdule setA', 

where: 

V' = V u {Ml; 

E' =E; 

r'(N) =r(N), if Nis inV, 
and r'(M) = 'primitive'; 

A' = A u {Ml. 

Let G=(V,E,r) be a module gra$ with active 

mdule setA. LetMbeamduleobtainedby 

extension frcm~,...,I$ such that M is not 

in V and Ml,...+, are in V, and 170 relation 

nam of M occurs in a mdule of V. 

suppose that: 

requirement8: for each i in [l,n], Mi is 

either defined by extension, or in the 

active set of G. 

Then, G'=(V',E',r') is a module gra& with 

active module set A', where: 

v' = V u {Ml : 
E' = E u {(Mi,M)/i=l,...,n); 

r'(N)=r(N), if N is in V, 

and r'(M)='extension'. 

A' =A; 

Let G=(V,E,r) be a module gra$ with active 

module set A. Let Mbe amduleobtainedby 

subsuming Ml,..., Mn such that M, is rxk in V 

and Ml,...,Mn are in V, and the relation 

names of Mare those of Ml,...,% plus a new 

set of relation names not occurring in any 

module in V. 

Suppose that: 

requiremnt 9: for each i in [l,n], Mi is 

in the active set of G. 
men, G'=(V',E',r') is a module gra$ with 

a&i.ve module set A', where: 

v' = V u {Ml; 
E' = E " {(M.,M)/i=l,...,n); 

r'(N)=r(N), if N is in V, 
and r'(M) = 'submmption'. 
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A' = A u {Ml - {+...,M,). 0 
l%eresultofmdUle c0nstructorsis capturedby 

Ginthesensethatthereisan arcfmNtoM 

iff the definition of M depmds on N. Hence, if 
M is a primitive mdule, it has m ingoing arcs 

and if M exterds or subsumes Ml,...,% then 
there is an arc fran Mi to II, for ea& 
i=l ,...,n. Since definitions must not be circu- 

lar, G has to be acyclic, which can easily be 
proved fran the definition. 

The conceptof a module graflwould be 

complemnted by theconcept of an -ration 

graph representing the calling relationship 

betweenoperation specifications. Such gra$s 

vmuldbeveq similartothe~-graphs of Mel. 

Hcwever, forreasons ofbrevity we cmit its 

definition. 
The following example illustrates the 

constructionoftiule gra*s. 
EXAMPLE 3.4: 

Themdule graph corres~ndingto themdules 

in Fxaqles 3.1 to 3.3 is shown below. The 

following notational convention is used to 

represent the labelling function: an oval, 

rectangle or double rectangle represents a ncde 

labelled 'primitive', 'extensim or 'subsurq~ 

tion', respectively. 

I 

fl I 
Tnis concludes the emnple. fl 

Thermdule gra& captures the ccmplete 

rrodular structureof the database.However, not 

all tiles are visible to users, that is, the 

user cannot queryalltiules in G. Likewise, 
sincescene operations are redefined whereas 
othershave surmgates,notall operationscan 

be called directly tomdify the database,but 

only those that are active. 

DEFINITION 3.2: Let G=(V,E,r) be a module gra@ 

withactivemodule set A. 
(a) the mdulesinA formthe conceptual schema 

azrespondingto G, and theset of all 

tiles in V defined by extension form the 

set of extemal schemsof G.These are the 

mxlules thatarevisibleto theusers. 

(b) 'Ihe set of active operations of G cmsists 

of the set of all operations of active 

mdules of G, plus the set of all suxrcgates 

of modules defined by extension in G. 

Thedefinition above captures themeaning 

of a module graph G=(V,E,r) fran the user's 

point-of-view. Another question kR may ask is 

what istk formlsemantics ofthe database 

described by G. We rxm briefly discuss this 

point. Webeginbyobserving thatwecanasso- 

ciate with G a first-order theory '&(LT,AT) and 

a set of regular progrm Rp over LT, where: 

(i) LT is the first-order language obtained by 

adding all relation schemes in mdules in V 

tothebase first-orderlanguage L; 

(ii) AT is the set of all integrity omstraints 

in modules of G, plus the defining axioms 

for views; 

(iii) FP is the set of procedure definitions 

conta.inedinmduJes i.nV. 

Nawwe &serve that the semanticsof the data- 

basedescribedby Gisfixedonce auniverseU 

for LT (see wdix I) is fixed-We must 
assume that each structure of LT in U satisfies 

all view defining axia~~~so that views can 

indeed be considered as defined sy&ols of T. 

!?Xus,eachstructureinU axreqmndstoadata- 

base state, togetherwith the appropriatevalues 

for views and for the ordinary s@mls. Given LJ, 

the meaning of all operations of modules in V is 

also fixed by definition (see Appendix I). 

The readerisreferredti [cEw,EKWl for an 

alternative formal discussionon mdulardata- 
base specifications. 

Finally, we observe that rqui rxments1,2 

and 5 dependon theuniverseUthat fixes the 

meaning of the database. Hmever, ifU is 

chosen sothatthe mdule gra@ satisfies these 
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requiremats aswell asall others,them all 
active operations indeed preserve consistency. 

-IrmaEM 3.1: Let G=(V,E,r) be a module g-r@. 
Let Ube theuniverse that fixes themeaning 

of thedatabase. Suppose thatx@rementsl 
through 9 were satisfied during the 
amstruction of G (for this choice of 
universe). !then, every activ?operationofG 
preserves consistencywith respect to the set 
of all constraints defined in modules of G. 

Sketch of Proof 
Follows by induction on the nmber of ncdes of 

G, using reguiremnts1through 9 (see [TX]). CJ 

We can also prove that the set of primitive 

mdules and those defined by subsuq+ion fom a 

hierarchy. 

PIDE%ITION 3.2: Let G=(V,E,r) be a nodule 
graph. Let G'=(V',E') be the subgra& of G 
spanned by the set of all nodes of G labelled 

with 'primitive' or 'subsmption'. Then, G' 

is a forest. 

Sketch of Proof 

Follm directly from requirement 9 and Defi- 
nition 3.1. 0 

This concludes our discussion about struc- 
tured database design as far as the specifica- 

tion level goes. The next section explains hew 

to represent these ideas in a concrete environ- 

ment. 

4. The Rspresentation Level 

This SeCti0I-l discusses how to mP 
descriptions of modules fm the specification 
level to the representation level. As already 
mentioned in previous sections, we adopt SQL/DS 

as our target system. We begin with a brief 

description on how S@&S facilities can be used 

to represent module and module constructors. 

Then, w-2 exemplify thediscussionby shcming the 
representation of the SHlpMENT nodule. 

Consider first a primitive mdule M = 

mS,cN,OP). Each relation schem is RS cm be 
defined directly in SQL/B through the 'GREKI'E 

Tw'ccmmnd. 

EXAMPLE 4.1: 
?he s&m of Exa@e 3.3 would be defined as 

follcws: 

CREATE TABLESHIP 

( P# cmm(lO) NOT NULL, 
W# GHAP(lO) Iuur NULL, 

QTY- 1 
IN dbspac=+anE; . n 

Gonstraintsin CXdo notgenerate state- 

mentsinS(;a.Indeed,theroleofconstraintsis 

limited to a declarative definition of the 

semantics of the database, which is procedurally 

implenentedthroughthedefinitionof theoper- 

ations. 

Operations are iqlemented as PL/I proce- 

dureswith e&added= statements. We suggest 

using the following skeleton for the procedures 

(although we do not shm it here for reasons of 

clarity, error routines should also be present 

in the actual in@erfentation of operations): 

PRXRAM-NAME:PFCCCparameter list) 

delcarationof S&/DS variables 

verification of cxmditions that prevent 

violation of integrity constraints 

effect of the operation 

update of the database using IX% primitives 

or 

call to subsumedoperations 

return to the calling program 

Em 

Note thatthereis m CDMITorI state- 

xrents in the above skeleton. In fact, we do not 

define an operation as an SQL/DS wxk unit, 

since it sbould be the user's responsability to 
define which sequences of operations constitute 

a transaction (or work unit). Hence, the user 

is responsible for establishing the initial 

connection with SQTJDS for authorization and for 

concluding his transaction with CCMQT or RclLL 

BACK, depending on the success of his trans- 

action. A prologue and epilogue for these 
purposes could be in@ementea as PL/I IMcros . 
TNs concludes OUT brief discussion about primi- 

tive modules. 
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We represent amdule definedbyextension 

as follcws. The s&mes,constraints, and oper- 
&ion.5 clauses of the nodule definition maybe 

ignored. Each view definition in the views 
clauseis representeddirectly bythe 'CREATE 

m~~'ccmandofSQL/TS. 
ExAMpLE 4.2: 'Ihe IELm view of Exanple 3.2 

would be defined as follows: 

(=REA?EvlEwDELmAs 
.t!smEc P#, w# 

FwrlSHIp; .cf 
operations definedin the surrogates clause are 

inplmted as normal operations, using the 
ability to callpredefinedoperations frcmother 

predefinedoperations providedby SQL/DS, if it 
i.sthecase.Thefact thateachviewupdate is 

acaxpaniedby animplerrwtation (asurrogate) 
interms ofthebase relationshas tmadvan- 
tages.First, the restrictions imposedby SQL/DS 

onview updatesdo not affect ourdiscussion. 

Second, users will still interact with the data- 
baseasiftheywereactuallyu&tingvi~. 

We nclw turn to the subsumption operator. A 
nodule Mdefinedusing the stismptionoperator 

is also straightforward to represent. Eachnew 
schm and each new operation or operation 
redefinition of M is.represented as for primi- 

tive nodules. Theinterestingpoint Q3ncerns 
hmto control access to redefinedoperations, 

sinceusers cannotcallthm directly anymre. 

This restriction is implemnted by simulating a 

CONNECT statement inside a redefinedoperation 

so thatonly the DBA has access toit. (The 
authorization mechanisms of SQL/DS cannot be 

usedforthispuzposebecausethe~state- 

mat is executed bythe user's program and 
remains in effect for the entire execution of 

the transaction. This solution was, in fact, the 

first one adopted and did not mrk out). lb 
simulateam, ea& usermustpass as addi- 
tionalparamsters his IDandpassxxd. menan 

operation p is redefined, its code is altered to 

explicitly test if the user ID and password are 
those of the DBA. If not, then the operation is 

rejected. Ilormver, if the new operation q 

(replacing the old operation p) will call p, 

thenqmstcallpwiththem andpasswordof 

the Ea. This strategy is reflected in the 
ia@amentationof CUXElandDEZP~Dl shumin 

Exarple 4.3 below. 
This concludes our brief discussion on the 

representation of nodules. We close this section 
by exhibiting the cmplete representation of the 

SHMm nodule of Example 3.3. 
EXAMXE 4.3: The SHIPMENT. module of Example 3.3 

is represented as follows: 

a) Representation of the schemes: 
. 

(IRERTE !lXBLESHIP 
( P# CHAR(10) NUT NULL, 

W# CHAR(10) NUT NULL, 
QI'YINIEQXR ) 

IN dbspace-m; 
b) Representationof the operations: 

ADD~HIP:PROC(P~,W#,QTY,@SERID,PZXSSWD,REB.XDE); 
EXECSQLBEGINDECLAPESECTION; 

EL P# cHAR(lO) ; 
Daw cmR(10); 
=QTy FIXED BIN(31); 
IXL couNT0 FIXED BIN(31); 
IXL COUNT1 FIXED BIN(31); 
DCL CCUNT2 FIXED BIN(31); 

EXECSQL END IIECLARESE(II?oN; 
DCL USERID FIXED CHAR(~); 
CCL PASSWD FIXED CHAR(~); 
CCL RETCODE FIXED BIN(31); 

/* 
executionofSQL/X statements 

*/ 
EXEC SQL SELECT COUNT(*) IN'IC :CCUNTO 

FFOMSHIP 
WHERE P% = :P# AND W# = :W#; 

EXEC SQL SELECT COUNT(*) m :amTl 
FFXX'4PRJD 
WHERE P# = :P#; 

ExEcSQLSELEcTamNT(*)INm:Comr2 
FRBIWAREHSE 
WHFm Wb = :W#; 

/* 
update of the database, provided that no 
constraintwill be violated 
(see Exmple 3.3 for cmstraint definition) 

*/ 
IFCCUNTO =0 E 

/* check violation consti. 1 */ 
couNTl'= 0 

/* checkcviolationcxmstr. 2 */ 
CCUNT2-=o 

/* check violation am&r. 3 */ 

m; 
EXECSQL INSERI! 

INIO SHIP VALUES (:P#,:W#,:QIY); 
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/* SQL/DS return code ignored 
BEICDDE = 0; /* indicates normal ret;'*, 

EN& 
ELSE 

PETCDDE = 1; 
/* indicates integrity violation */ 

RFIURN: 
END; 
CANSHIP:P~(F#,W#,UEERTD,PASSWD,~DE); 

EXEC SQLBEGINDECLARE SECTION; 
CCL P# afAR ; 
Lxx W# cHAR(10) ; 

EXEC SQL END DECLARE ,%CTION: 
DtX USERID FIXED CHAR(~): 
ECL PA%WD FIXED CHAR(~); 
DCL REICODE FIXED BIN(31); 

/* 
operation effect 

*/ 
EXFCSQLDELETEFIX3lSHIP 

WHERE P# = :P# AND W# = :W#; 
/* SQL/X return cede ignored */ 

FG?XODE = 0; /* indicates normal return */ 
RETLTRN; 

EM); 
CLlXXE1:PFXX(W#,LJSERID,PXSWD,RSTCODE); 

XL CLOSE ENTRY(CHAR(10),FIXED CHAR(8), 
FIXED CHAH(~),FIXED BIN(31)) m; 

EXEIC SQL BEGIN DFCLAPE SECTION; 
IXTL W# Cm?(lO); 
JXL COUNT FIXED BIN(31); 

EXECSQL END DECLARESECTION; 
!XL USERID FXXED CHAR(~); 
ECT.a PASSWD FIXED CH74~(8!; 
IXL X?ZCODE FIXED BIN'(31); 
DC DBA.ID FIXED CHAR(8); 
ECLDBAPASSWD FTXED CHAR(~); - 

/* 
exemtion of SQL/X statements 

*/ 
EXE'2 SQL SELECT CCUNT(*) INIO :CCUNT 

FRC@l SHIP 
WHERE W# = :wt; 

/* 
execution of the CI.QSE operation under new 
conditions +&t reflect the new constraints. 
(CIQSE is called as if the user were the 
DBA since users should not have access to 
it anymore! 

*/ 
IFCOUNI? =0 THEN 

mx); 
DBAID =I-'; 
DBAmPASSWD= 'XXXXXXX'; 
CALL CLOSE(W#,DBAID,DBA PXSWD,RETMDE); - 

END: 
ELSE 
F@XCODE = 1; 
/* indicates integrity violation */ 

mRN; 
Em 

DELpRoDl:P~(P#,USERID,P'AssI~,~E); 

( Structured identically to CLOSE1 ) 

Tkis concludes the exaqle xx3 this section. 

5. Conclusions and Directions for Future 

Research 

Inthispaper we outlined a nvathod010gy 

thatprovidesmechanisms both to structure the 

logical design of databases, using the concept 
of module, and to enforce consistency preserva- 

tion, through the encapsulation of database 

structures within predefined operations. Unlike 

previous work on n?odular database design, we 

covered inlpleaentation aspects of the niethcdol- 

ogyr rather than concentrating on theoretical 

issues. 
Central to the developnentof the paperwas 

the selection of module constructors that could 

be easily implemented and yet helped structure 

the data&se design. The inplementation of such 

constructors could be carried out further by 

designing a preprocessor that would automat- 
ically do some of the translation frcm nodule 

specifications to SQL/DS statemants outlined in 

Section 4. 

Finally, we observe that nodular database 

design acquires arotier (and considerable) 

significance in the context of database evolu- 

tion, since variations of subsumption could also 

be used to change the database design in 
response to evolutions in the application. 

A-S: The authors are grateful to 
C.J. Date for helpful suggestions and 

discussions. 
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APPEDmx I 

Let Lhe a first-order languagewitha set 
of distinguished ax&ants, called scalar 
program variables, arda setof distin~X 
n-ary predicate symbols, calledn-zprz;E 
prcgrm variables, for each n > 0. 
namzsrsxthechosenfran this special set of 
predicate symbols). A universe U for L is a set 
of structures of L satisfying three conditions: 

(i) any two structures in U differ only on the 
values of the scalar or predicate Program 
variables; 
(ii) for any I in U, any scalar program variable 
xand anyelemanteof the danainof I, there is 
Jin Usuch that1 andJ differ-only onthe 
value of x, which is e in J; 
(iii) for any I in U, my n-w predicate 
program variable R and any n-ary relation r over 
thedcmainof I, there is J inU such that I and 
J differ only on the value of R, which is r in 

These conditions guarantee that, for example, if 
the value of x is changed to e, the resulting 
structure is in U. That is, theuniverse is 
closed under assignmant, so to speak. Note 
that, by (i), all structures in Uhave the same 
d-in. 

The setof regular programsover L, RPCLI, 
is then defined inductively as follows: 

(1) For any scalarprogramvariable xof Land 
any term t of L, x:=t is in RP[Ll and is 
called an assignmant; 

(2) for any n-ary predicate prcgram variahleR 
of Land anywffP OfL with a list 
xl,...,xn of free variables, 

r:=C(xl,..., x,)/P> is in RPCWand is called 

a relational assignment; 
(3) for any wff P of L, P? is in RPCLI and is 

(4) 
calleda%: 
for any p and q in RPLLI, p u q, p ; q and 
p* are in RP[Ll and are called the union of 
pandq, the ccsnpositionof pandqandthe 
iteration of p, respectively. 

For a given structure I of Land a symbolsof 
L let I(s) denote the value of s in I. 
Likewise, let I(t) be the value of a term t of L 
in I. 

semantics : for a fixed universeuof L, the 
meaning of programs in RP[L] is given by a func- 
tion m assigning to each r in RPCLI abinary 
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relation m(r) in U as follows: 
(5) m(x:=t) = {(I,J)/ J is equal to I, except 

that J(x)=I(t)) 
(6) m(R:={(xl,...,xn)/P!) = I(I,J)/ J is equal 

to I, except that J(R) is the n-sty relation 
defined by P in I) 

(7) m(P?) = {(I,I)/ P is valid in I) 
(8) m( pu q) = m(p) u m(q) (union Of both bina- 

ry relations) 
(9) m(p;q) = m(p) 0 m(q) (ccanposition of both 

binary relations) 
(10) m(p*) = (m(p) 1” (reflexive and transitive 

closure of m(r)) 

we proceed by introducing the notion of 
procedures. Let C be a set of procedure decla- 
rations, which are statements of the form 
fTxl.,xm), where f is a new sy&xAnotinL 

and x1,..., xm are scalar or predicate Program 
variables of L. The set of regular proqrams over 
L and C, R.P[L,Cl, is defined as before, with one 
additional rule: 
(11) if f(xl,...,s ) is in C, then f(zl,...,zm) 

is in RP[L,CJ, where zi is a term of L, if 

xi is a scalar program variable of L, or zi 

is of the form I(y,,...,yk)/P}, if zi is a 

k-ary predicate program variable of L; 

Meaning is assigned to programs in RPCL,Cl 
as follows. First, we associate a 
% p with 

. . .,x,1 
each procedu~ 

in C, where p is a program in 

RPCL,Cl. Then, we define a function m as 
before, except that 

by If-t-ion as follcws: = 

(12) m(f(zl,...,zm)) = 

m(xl:=zl ; . . . ; : z - p). m' 
We may also introduce some familiar constructs 

(13) if P then r else s = (P?;r) 12 (-P?;s) 
(14) if P then r = (??;r) u -P? 
(15) while P do r = (P?;r) *;-P? u -P? 

This completes our brief description of regular 
programs. We refer the reader to CCBl,CB21 for 
a fuller discussion. 

We close this appendix with two concepts. Let W 
beasetof wffs. We say that program P 
preserves consistency with respect to W (in a 
given universe U! iff for any (I,J> in m(p), if 
I satisfies all wffs in W, then so does J. 

Let V be a finite set of view definitions, 
Ri[A. A. 11'"" lmi I:Pi, i=l ,...,n. Let r be the 

Program 
(16)Rl:= i%l/Pl} ; . . . ; R := (Zn / Pnj n 
Letpandq betwoproqrams. Wesaythatp is 
V-equivalent to q iff 
(i) if (1,J) is in m(p;r) then there is (I,K) in 

m(r;q) such that the values of Ri in J and K 
are the same, for each i=l,...,n; 

(ii) if (1,K) is in m(r;q) then there is (1,J) 

in m(p;r) SUCh that the MOWS Of Ri in J 
and K are the same, for each i=l,...,n; 

Intuitively, program r constructs all views in V 
frcmthe baserelations. Prog-ramr;q captures 
the idea thatviewu$ate qis applied to the 
views constructed byr fromscme initial state 

Programp;r translates the viewupdate by 
a lying saane update p to the base relations and 
kn constructing theviews usingr. If p is 
V-equivalenttoq, thenw considerthatpisa 
faithful translation of q. This concludes our 
brief sumnary of the definitions concerning 
regularprogramsthatweneedinthebodyofthe 
paper. 
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