
AFacmalDataYodel
and her Logical Design lkthodology

Robert l?mum

The Database Design Group
966 Jackson Street

MountainView. CA 94943 USA

ABSTRACT

This paper describes the LAURA data model and
its use in the logical design methodology of the
Database Design Group. LAURA provides simple
formal constructs for the design of large data-
bases, including generalization, abstraction, and
categorization primitives, while avoiding limita-
tions of existing formal models.

LAURA is based on functional connections
between data, and has features of functional and
binary data models, and semantic networks. A
consequence of choosing a relatively abstract
level for modeling is that important semantic
information is available for use in ‘normalization’
which can be lost, for example, when schemas
are translated to relational representations. In
particular, use of the relational model inhibits
proper modeling of different types of functions
and abstractional concepts, and clouds the fact
that eliminating inherited zwonertis from a
schema is a main concern 01 normalization
(which is not at all evident when expressed in the
language of functional dependencies).

This paper concentrates first on introducing
LAURA, and second on describing the normaliz-
ing transforms used with the model. The
approach developed here has been automated,
and is being used successfully in the interactive
design of large database systems.

‘Work mxpported by NSF grant JST tB1U10.

D. Stott Pruker, Jr. l

Computer Science Department
University of California

Ias Angeles, California 90024 USA

l.Int.roduction
Currently, the problem of logical design of

large databases is poorly understood, even by
experts. Some formal foundation is needed to
perform the job effectively, since without a for-
mal basis, schemas and data models tend to
degenerate into ambiguous or meaningless scrib-
bles. Unfortunately, existing models can be of
little help to the practicing database designer in
developing formally-based design tools. Some
designers have resorted to their own heuristic
approaches, following intuition. Others have
developed programs &.ich require large clusters
of Functional Deoendencies to be entered. An
alternative forma approach is needed, which is
simple yet offers powerful modeling constructs.

This paper describes the logical data model,
and logical design methodology, of Database
Design Group (DBDG). The methodology in its
entirety progresses through four phases, where
the results of each phase are translated into pro-
gressively more specific models:

Phase 1. Entity Relationship Model
Phase 2. LAURA: ‘Substrate’ Model
Phase 3. Structural Model
Phase 4. DBMS/Physical Model

The Entity-Relationship and Structural Models
are related to LAURA by direct translations.
LAURA is of particular interest, and most of this
paper is devoted to its description and its use in
‘normalizing’ schemas.

In the DBDG methodology, an initial concep-
tual model of the database is obtained itera-
tively. At each step of the reflnement process,
the database designer transcribes his under-
standing of the various user views required by
the enterprise using a dingramming language.
This encoded statement of the enterprise is fed
to a program that produces simplified Entity-
Relationship diagrams. These diagrams are dis-
cussed by the designer and members of the
enterprise to reach improved understanding of
how the database should be structured.

View merging software is then used to
integrate the diagramming language representa-
tions of the views, producing an enterprise
schema. When this schema is complete, it is
changed to a LAURA representation. LAURA is
graph-oriented, and can model entities, func-
tional associations, inclusion relationships &
existence constraints, and permissibility of null
values in fields. All associations are functional in
LmRA.

206

At this point ‘normalizing’ transformsTh~3
be applied to the LAURA schema.
transforms improve the schema, making either
minor corrections to misspeciflcations (e. ., add
existence constraints, merge identic s but
differently named attributes), or changes
preserving logical connections in the schema.

The LAURA model is finally translated to a
structural model that is similar to the relational
model. We feel that significant beneflt comes
from doing ‘normalizing’ transforms on the
LAURA graph’model befo?-e semantic information
is lost in this translation. Much work on normali-
zation in the relational model takes on a new
significance when semantics are considered in
the process, and artifacts imposed by the rela-
tional model are removed.

2. Background
We assume the reader conversant with stan-

dard database terminology. We apologize only
for the use of a few terms. The words ‘object’,
‘association’, and ‘connection’ are used initially
here in an abstract sense. This usage conflicts
with that of a number of workers in the database
theory area.

Also, we use the word attribute here to mean
a symbol in a fixed set

0 = IA,, . . . ,&,I,
while ‘property’ is used to convey the more
abstract notion of a ‘characteristic of an entity’.
As usual, each attribute A has a domain dom (A),
and sequences of attributes S = Al, . . . ,Ri,
have domain df-n(S) =
ohm (4,)x . . X&m&J.

Finally, we assume the reader to have a
basic understanding of abstraction concepts, the
binary model, and semantic networks. We
develop all terminology needed here, but the
reader may wish to review these subjects. Smith
& Smith [SSl,SSZ] give an excellent development
of generalization and aggregation, extending ear-
lier work by Quillian and others on semantic net-
works. Brachman’s survey on semantic networks
[B] is also recommended. Interesting treat-
ments of the binary data model can be found in
[A], [TL]. [HK] provides a good presentation of
the functional model.

2.1. Connections in a Database
Let US begin with an intuitive development of

connections. Suppose we are interested in the
phone number of the manager of the database
project. (The database is not working, say.) The
‘connection’ we use to find this information
might be to find the phone number of the office
whose employee is manager of the project.
Using the abstraction primitives is and has, we
employ

207

PROJECT h.as MGR is EMP has OFFICE has PHONE

Similarly we can express ‘recursive’ connections
such as the salary of a particular employee’s
manager’s manager:

EMP has MGR is EMP has MGR is EMP has SALARY.

We view facts in a database as connections
among data objects. In the terminology above,
connections might be made up of is and has
relationships between objects. Formally, we
model this by saying that if A and B are attri-
butes, a connection -u- between them is a sub-
set of dom(A)xdom(B). This definition extends
to n-ary connections. This definition is purely
extensional, but by considering classes of con-
nections such as these we obtain an intensional
definition.

A recurring concern in both the logical
design and the querying of databases is the com-
bkation of connections. If A,B, C are attri-
butes, and we have the connections o, T

A-o-B-r-C

then their combination (which we may write as
fl~c(ulXl~), n denotin projection) ives a con-
nection between dam A) and dam (C . Generally P ‘j
speaking, any path of connections will define
some connection. However, this combination
may not be ‘meaningful’ (nontrivial). Let

denote the subsets of o!cm(A), darn(B) actually
appearing in this binary relation. Then given the
connections (I, T among A,B,C above, the combi-
nation ulq(lr is meaningful only when o and T
meet the weak existence constrai&

dam(B), n &m(B), f $.
Otherwise the combination is trivial.

Thus, by ‘connections’ we are really refer-
ring to Project-ioin combinations. This is close
to the She d&a model concept of association,
which includes both navigational and existence
semantics. Navigation’is performed by combin-
ing connections. Existence semantics certify
that these combinations are meaningful.

22. Fhmtional Connections
Functions are common types of connections.

They can be used to model more complex con-
neciions, such as many-many relationships and
n-arv relationshios. Let A. B be attributes. For
a g&en functional connection f :A+B, let us
write

dcm (A) C dam (A)
dom(B$ c o!om(B)

is the set on which f is defined
is the image of f

so that

f(dom(A)~) = f Wm(Al) = hm(B)f

Defhition f is a total j’uncbion if &m(A), =
&m(A); otherwise f is apartialfunction.

Definition f is onto if dam(B), = o!om(B).

Definition f is an inclusion. if &m(A)
&m(B) and f is the identity map on dcm (Aj, .

c

If all connections are functional, functional
composition yields a combination of connections.
To determine the set of meaningful composi-
tions, we can require specification, for each pair

of functions A L -) B -g+ C, whether or not
&m(B), n dcm 8)s is empty. A more.typicai (’
way to specify whether compositions are mean&
ingful is to use e&sterrce constiaints. Put . an
existence constraint on a function /: A+B i.e., 7
asserting that whenever a ls in &m(A), there
must exist some b =/(a) in &m(B)) is identical
to asserting that 1 be totad.

Two important facts here are that compos&’
tins 01 total fwrctins tare total, and composi-
tions ol onto functions w-e onto. As a result,
composltlons of total functions are always
‘meaningful’ (nontrivial). This is not to say that
composition of partial functions is not meaning-
ful; composition of partial functions 1s just not
mororrteed to be meaningful.

23. Conncotims, Abstraction, and ‘Ibmaliza-
ti0n’

Abstraction notions are important for
modeling complex role arrangements among
entitles in the database, This is particularly
true, for example, in modeli- recursive rela-
tionships such as PARTS having subPRRTs,
EMPLOYEES having MANAGERS which are in
turn EhiPLOlZEs, etc. Recently there has been
some formal work on these notions. Researchers
have concentrated on eneralizatlon (ISA)
hierarchies [SS], [BI(I, [Sc!J, [HY], a.g regation
and FDs [SS], [HY], and connecUons [WM . 4

The examples in f2.1 sugest that abstrac-
tion notions are im ortant in modeling of con-
nections between o jects in a database. Note !
that is and has lnformation is easily obtained
from Entity-Relationship diagrams, and embo-
dies associations (facts) well, since it
corresponds directly to natural language con-
structs. Moreover, the abstraction primitives 0
and has may be viewed as two important types of
functions: inclusions, and many-to-one functions.

The is and hue abstracUon mechanisms also
play important roles ln design. Recall: The maln
emphasis of logical deslgn is to ellmlnate redun-
dant (or incorrect) connections from a schema,
while preserving other connecUons and keeping
integrity constraints easy to enforce. If all con-
nections are modeled by functfona, then redun-
dancy ls ellmlnated by remo

““i
functions which

duplicate or are compositions o other functions
ln the database.

Thus, if all functions are either lnclunlonn
(4s) or many-to-one relatlonshlpn !ass), then we
must e-ate redundant ! compon tlons of these
functions. We argue below that elimination of
redundant connections ls closely related to ellm-
lnation of proprty hJbwitatnc0 (a term popular
in semantic data models). If R in a nubty e of B
(A 4s B), and B hanrperty C (B ha8 4, then
A bharlts property . A

The connection between A and C is redundant
here, and its elimination from the database
yields an enhcLncod schema. This notion is of
n&ticmce in schema transformation, and will
be discussed at greater length in 85.

9. Hotivation
Ihe LAURAmodal was developedjor the la-

Cal dexlgn o/ large dotabnses. This statement is
important, since many data models are
developed to have a pleasant user interface; and
assumptions made in existing theoretical results
ap ear workable mainly in smaller databases

!!&s like LAURA are needed
We argue in this section wh formal data

$ e encourage
work alon& these lines; the recently developed
Structural model of Wiederhold % El-Masri [WM]
and FORMAT model of Hull & Yap [HyI are wel-
come additions.

In our view, it in undesirable to begin the
Schema Design process with only notions of
dependencies among attributes. Instead, it is
desirable to use a model which can support
abstractional concepts, entities and relation-
ships adequately. Formal means may then used
to an&se an initial rough schema and improve
it tbrouh a sequence of schema Eransjormu-
&ions T: S + S ‘which take a schema S and yield
an ‘improved’ schema S ‘. We cali this process
Schamu EnJumcemsnt. (We avoid the word ‘Nor-
malization’.)

We expand here on the limitations of the
relational model for representing real-world
data. We restrict our attention to the relational
model, since the bulk of formal research has
dwelled on it, and since its limitations reflect the
positive aspects of LAURA well. The Relational
model is extremely powerful ln its generality,
and elegant in its mathematical foundation. It
has provided many fruitful avenues of research
over the past decade and a half. However, we
can summarize three general problems with
usinp the Relational model as a formal data
model for the deslgn of large databases: restric-
Uvd semantic capacity of the model itself, limita-
tions of Functional Dependencies as a data
modehng construct, and problems arising from a
foundation on single-relation semantics.

3.1. Ltmlted remantic capacity of the Rela-
uonalmcdel

Codd has underscored the need for addi-
tional semantic constructs in the Relational
model for accuracy in real data modeling [Cl, as
have other researchers
improve the model by a a

HM], [MS]. Efforts to
ding more constructs

have concentrated on the spots where the model
ls weakest: ad- the notion of entitles, or
objects, and incorporating constructs modeling
oonnectfons, or annoclations, among objects.
More work 1s needed to make de endenclen
proper1 convey entity concepts an

9
t! existence

nemm on.
In addition, the bare Relational model

presents dif?lculUen in large database envlron-
mentn due to its putt-extra semantic weight
on attributes [U2 . The elatlonshp Uniqueness

208

Assumption [AP] forces all connections between
a set of attributes to mean the same thing,
although this is unnatural. The next section
reviews some consequences of this assumption.

The bare Relational model has difficulty in
expressing abstractional notions such as gen-
eralization and aggregation. Abstraction is
essential in large databases, but the Relational
model requires serious changes to accomodate
multiple relationships between entities or roles
of entities. Furthermore, the idea of ‘property
inheritance’ introduced in 62.3 is lost when a
schema is translated into a ‘set of dependencies
and relation schemes.

Finally, Kent points out in [K2] that the Rela-
tional model (and other record-oriented models)
suffers many shortcomings in modeling certain
types of data. It is particularly poor at modeling
entities possessing a number of categories into
which the entity can be classified, each having
somewhat different properties. Kent gives cloth-
ing as an example: There are many types of
clothing, and each type has individual features
not shared by the others. Entities of this nature
do not At well in a uniform record structure, and
are not treated effectively by the Relational
model.

3.2. Limitations of Functional Dependencies
We begin by remarking that Functional

Dependencies (FDs) alone are not sufficient for a
formal notion of ‘facts’. The incongruity between
FDs and facts has been noted by by Smith and
Smith [SS 11, who argue that FDs do not
correspond to facts (‘aggregated objects’) and
that ‘well-defined’ relations should correspond to
one natural language name rather than to a FD.

A related complaint is that FDs may
represent either a constraint or a fact, or both,
or neither. This is an elaboration of the observa-
tion in [FMU,p.347] that FDs can be of either a
‘data structuring’, or ‘incidental’, nature. Con-
straints are ‘structuring’ if they should be taken
into account in deveioping a schema. However,
some constraints are not; they should not
influence the way the database should be laid out
[LPI.

Different ways of interpreting FDs is a major
source of problems in database theory. Many
attempts have been made to extend the elegant
results holding with single relations to work for
the multi-relation case. The Relationship
Uniqueness Assumption (RUA) mentioned in $3.1
is one such attempt, but. leads to counterintui-
tive results in large databases. From the set of
FDs [AP]

EMP#-,OFC$,OFC#+PHONE
EMP#+LAB#,LAB#+PHONE

one infers the FD EMP# +PHONE, implying
surprisingly that an employee has a single
phone.

Further problems arise if one assumes that
all FDs are constraints that must be enforced on
the database (the ‘global consistency’ problem
[LTK], [Sal, [KSl,KS2]). In the example above,
enforcing the global constraint EMP# *PHONE is

not guaranteed by simple enforcement of the
four initial FDs. Naturally it is possible that we
wotid want this FD to hold and be enforced, but
this is not necessary.

Frequently the assumptions made concern-
inn FDs are imnrecise. In the literature it is
co-?mnon to And ihe belief that the FDs

x-r Y, Y-+X
imply a one-to-one map between tHe domains of
X and Y. However. this inference is not correct
a@ori. It requires the RUA (in which case Y-X
represents the inverse function of X+Y), or the
assumption that all FDs are total and onto.

3.3. Foundation on Single-Relation Semantics
The single-relation Relational model is quite

elegant, so it is desirable for researchers to
investigate its general applicability. Research
into Join Dependencies (and Multivalued depen-
dencies) has a number of goals, but certainly one
of them is their reduction of multi-relation data-
bases to a single relation (Universal Relation)
foundation. Unfortunately, these dependencies
have a circular definition [API, and certainly do
not mirror the semantics of large databases. It
is not easy to fathom what Multivalued depen-
dencies and 5th Normal Form actually mean in a
large database.

Research on Universal Relation databases is
still at an early stage [UZ]. However, we see
many practical reasons for avoiding a Join
Dependency or Universal Relation outlook on the
design of large databases. Real designers do not
start out with a s’ le relation. (And do not want
to end up with one! Second, using a single rela- ““i
tion destroys the ability to model inclusions.
Third, various Universal Relation assumptions
force limitations mentioned in $3.1-3.2. Finally,
the UR model introduces problems in the elimi-
nation of ‘redundancy’ in ‘normalization’ and the
treatment of null values. The interested reader
should consult [UZ], [API.

4. LAUIW The DBDG Model
In this section we introduce LAURA. LAURA

is a data model expressly designed to capture
functional associations precisely. It incorporates
concepts from the Binary model and from
Semantic Networks, as well as abstractional con-
cepts in semantic models. In ways, the model is
reminiscent of the Functional Models developed
by Kerschberg and others ([KP,SK,HK], [BF],
[HWY], [Sh]), but emphasizes the notion of con-
nections (94.3) and places weight on applications
in design rather than in, say, query processing.
LAURA’s ties to Semantic Networks here are, to
our knowledge, new.

After describing essential aspects of LAURA
and how they are used in practice, we define con-
nections and show some of the advantages of
working with functional associations.

209

4.1. Formal Definition of LAURA
A LAURA database schema S = (R,F) is a

labelled hypergraph composed of:
(1) A set R of attributes defining the nodes of

the graph. Attributes are of two types:
EztenkmaL, or Intensional. Each node or
attribute A in Cl has a corresponding a
domain, called &m(A).

(2) A set F of connections, which are directed
edges or hyperedges among attributes in n.
Ordering of attributes in hyperedges is
significant, in the sense that in X + Y the
relative ordering of attributes in both X and
Y is meaningful. Both X and Y should thus
be viewed as sequences of attributes. Each
edge/hyperedge is labelled with one of
twelve functional connection types:

--is+ -as-, -gi -&

-b-B -&+ -h= -&g+

-equiv + -&- -eQzlizI-). -a-

AtiMmURA schema also obeys the following rest&c-

Rl Intensional attributes have no outgoing
edges.

R2 Edges or hyperedges may be labelled as
-&-- only if they connect extensional attri-
butes to intensional attributes.

R3 If X+ Y is a hyperedge, then no proper (per-
muted) subseauence of X or Y mav have
outgoing edges to extensional attributes.
However, X and Y may be involved in other
hypered es
attribute . “,

(or edges if X or Y is a single

R4 If X-o-+ Y is a&+peredgLwhere o is one of
-is+, -&a, -is+, or -$z+, then X and Y
must be sequences of equal length.

R5 The set F must be both onto-acyclic and
totalacyclic. (These terms will be deflned
below, in 54.3.)

Each edge or hyperedge X-u+ Y in F represents
a function from &m(X) to dam(Y) to be stored
in the database. (The function may be viewed
alternatively as a constraint.) As mentioned
above, there are twelve function types. We may
describe a type u by a four-tuple of O-l variables

v = < Total, Onto ; Inclusion, One -to -one >.

For example, <l,O;O,l> and <O,l;l,l> are func-
tion types. These variables make four state-
ments about the nature of a function.
Total If Total=l, the funct~~nix~ total

function from to
&m(Y). In other words, for
every element in ohm(X), the
function associates a specific
element in &m(Y). This com-
bines a functional constraint
with an existence constraint,
asserting that a Y exists for each
X.

&&to If Onto=l. the function from
dam (XJ to dom(Y1 is onto. so
each’ element in‘ &m(Y) must
have one or more elements in
&m(X) mapped onto it. This
again combines functional and
existence constraints.

Inclusion If In&&on =l, then the function
represents simply an identity
map on dcm(X)ndcm(Y). (This
can be interpreted as saying that
X and Y are joinable. Related
notions appear in [Kl].) Of
necessity this situation requires
the next variable, Gne -to -one,
alsotobe 1.

one -to -one If One-to-one =l, the function
must be a one-to-one map of
dam(X) into dcm (Y).

Thus, a function type <O,O;O,O> simply charac-
terizes a (possibly many-to-one) function from
&m(X) to dom(Y); and a function type
<O,O;l,O> is not possible, since it implies a
many-to-one inclusion relationship.

We use the following symbols for function
type labels in graphical presentations of LAURA
schemas: if u is the function type

u = <al,a2;a3,a4>

then u has the labeling indicated by the table
below.

U as-4 = 11 asa4=01 a3a4 = 00 1
-I

ala2=00 -is+ -e quiv + -has +

ala2 = 10 -i!z? -equiv-+ -&&&+

ala2 =011 is-r -e quiv + -j-&L

ala2 = 11

Thus ‘is’ edges are inclusions, ‘equiv’ edges are
one-to-one maps, and ‘has’ edges are many-to-
one maps.

By restricting the domain and range of a
function, we can make the function total or onto.
Definition A Simple Qualified Attribute X.Y
(resp. Y:X) in the context of a function f :X+Y
is a symbol in R with an associated domain e ual
to precisely that part of dom (Y) (resp. dcm i” X))
mapped onto by f .
In the notation of $2.2, dom(X Y) = dom(Y), ,
and dcm(Y:X) = dcm (X)

h
. Thus regardless of

the type of function f , t e restricted function
f :X+X.Y is onto, f :Y:X-r Y is total, and
f : Y:X + X Y is total and onto.

Definition A database ikknce of a valid LAURA
schema S= (C&F) is a set of tables
d = i<Ri,rg>) lsism where each Ri is a sub-
set of Q. and ri c dam Specifically,

II& 1 15i5mf = IA I A&R, Ais eztentinal j

u IXuY 1 X-u+Y E Fj,

210

so all non-extensional attributes and all func-
tions in F are embodied in the relation schemes
of the database instance. Furthermore, the set
{rij obeys the functions in F. (Note: ri never
contains ‘null values’.) Thus functional schemes
&=XU Y will have ri obeying X-U+ Y, while
unary schemes Ri = A will have unary tables ri
containing all values of &m(A) appearing in
other functional schemes in the instance.

This definition requires storage of aU func-
tion types, so even inclusions will be explicitly
stored in tables. This is done only for the sake of
simplicity.

As an example of a LAURA schema, in Figure
1 we see a portion of a Bill of Materials database.
Attributes are circled, and edges are marked
with their function types. The example exhibits
the use of recursive relationships (assemblies
and their component parts), weak entities (ven-
dor locations), and potentially null flelds (struc-
ture description, vendor status). These useful
constructs are difficult to capture in some data
models.

4.2. Practical Use of LAURA
In practice, LAURA is used in restricted ways

which model common constructs such as enti-
ties, relationships, keys, foreign keys, etc. We
have chosen to separate this usage from the for-
mal deflnition of the model itself. Below we
enumerate some common restrictions applied in
modeling with LAURA.
(1) Hweredges are used only to TepTesent Tela-

tiomhips involving multiattribute keys and
multiattribute foreign keee find it. help-
ful to equate (using an -eouiv+ edge) a set
of attributes with a single ‘surrogate’ attri-
bute, which then participates in other rela-
tionships. This tends to reduce the complex-
ity of a graphical schema display. Conceiv-
ably hyperedges could also be used in other
abstractional ways, through aggregation of
large sets of attributes.

(2)

Each entity in Figure 1 is represented with
external key/surrogate attribute

ikplayed in capital letters. Thus the mul:
tiattribute
COMPONENT:PART#,AS.SEkWLY:PART#

key

equivalent to the external key STRLKTURL?

AU inclusion edges aTe TequiTed i!o be total.
Furthermore, LAURA requires the is and has
edges to comprise respective ISA and
’ HASA ’ hierarchies (directed acyclic
graphs), much as in [SSl]. Generalization
and abstraction concepts are captured in
this manner. It is rare that these hierar-
chies are more than a few levels deep. The
ISA hierarchy can have perhaps 3 or 4 levels
(Fahlman [Fa,p.39] concurs, noting that
even the entire hierarchy of living creatures
has only 20 levels), while in our experience
HASA is very short, with 2 or 3 levels at
most. Note that in LAURA, intensional attri-
butes represent ‘datatypes’, while exten-
sional attributes are always stored subsets
of the corresponding type.

LocATlclN

P

iz=s s
/

/- _- ---- ‘__
: .:zz% 0

,UNI . ‘1
‘---------4’ 1’

JQure 1. LAURA Schema for Bill of Materials
Database

(3) hiany different cu!tribzlte types are i?‘dTO-
duced. We have found it fruitful to distin-
guish between entities, keys, parts of keys,
foreign keys, category discriminators, pro-
perties, and so forth. This permits enforcing
restrictions on the tvnes of functions that

(4)

(5)

can connect one type of attribute with
another. For example, an -&-- relationship
can connect only two key attributes. The
table and diagram below illustrate the res-
trictions possible between individual attri-
butes or sets of attributes. Existence con-
straints could of course be added to these

pgyggf!pJ

hhnymany relationships are represented
by creating a surrogate attribute (e&zn&
key) and using a mu&attribute -eqwiv+
connect-ion. Similar methods can be used
for n-ary relationships. Other data models
provide more flexibility in modeling such
relationships, but ‘user-friendliness’ is not
the emphasis here.
Possession and roles are expressed with
simple qualified attributes. The attributes

8TLt~m8.Obj8Ct, Tolename:entityname I
such as PART.VENDOR#, and ASSEMBLY:PART#
in Figure 1 serve to incorporate this struc-
turing. Distinct roles of an entity are thus
assigned a unique attribute in 0.

211

4.3. Connections in LAURA

In this section we show how connections may
be defined using the is and has connections of
@l. 1. Generally speaking, a connection in a data-
base might be the result of any computable
query (mapping) on the database. This would not
lead to a useful working deflnition, unfor-
tunately. We restrict our attention here to con-
nections defined by project-join mappings, and
concentrate on connections which define func-
tions.

More formally, let S = (R,F) be a valid
LAURA schema, with the implied relational
schema I& 1 for its database instances.
Definition Let S, T be sequences of attributes
from tl. A connection C: S-T is a finite project-
join map on the relational schema,

deflni
dom(T 7

a relationship between &m(S) and
. Here each Ri is at least binary, and for

all j >O Xi is a sequence of attributes included in
both R$, and in the attributes of Ri,, . . . , R+.

It may be helpful to view a connection as a
hypergraph on attributes, where relation
schemes are represented as hyperedges, and
binary edges connect specific attributes to indi-
cate equijoin of the corresponding columns, The
notion of connections here is related in ways to
the earlier work of Lien, Sagiv, and Kuck & Sagiv
[Ll,L2,L3], [Sal, [KSl,KS2], but differs substan-
tially in that connections are not restricted to a
traversals of the schema (relation schemes Ri
can be used multiple times, or not at all).

We are particularly concerned with func-
tional connections, since they have interesting
inference and redundancy properties.

Definition Let C be a connection for a schema
S = (Q,F). We say C is a fiLnction.al connection
C:S+T if it defines a function from dam(S) to
Qm (T) for all database instances of the
schema. In this case we say F [= C, or F logi-
cdly implies C: S + T.

Recall as in 52 that connections can be
obtained as chains of functional associations.
For example,
1 MGR -is EMP +SOcsEc-DONOR
2 MGR -& EMP -Ires-1 MGR -ia-, EMP -has +

Ii
3 DELIIVERYJ! -is+ TRUCK -ir-r WHICLE
4 PROJECT -iua- MGR -is-- EMP
a~ give functional connections. Quick study of
these examples makes us realize that the follow-
ing connections must hold in each case:

1 MGR -is+ SOCSEWONOR
2 MGR-h.as+SALARY

II
3 DELIl?ERY-yAN# is-, VEHICLE
4 PROJECT -Ias EMP

In other words, a composition of functions is
total if all of the functions involved are total,
onto if they are all onto, and an inclusion if all
the functions are inclusions.

We have found it convenient to introduce a
notation for chains such as the ones here.

Definition A Qua&fled Attribute X,.X,.X,,
in the context of a schema (Q.F) is a sequence of
attributes such that

x,=,x, => * -- =>xn

is a connection. where I’=>” is some function in

butes constructible using F. -

More generally, if S is a sequence of attri-
butes, we would like to And other attributes con-
nected (related functionally) to S. The question
the reader must be asking himself is how one
can find functional connections logically implied
F. We can construct a set of rules which give
sound inferences concerning the implication of
connections.

Below let o,~,p be function types as in $4.1,
where u = <al,a2;as,a4>, and7 = <81$2$3$4>.

Definition reverse (a) is a function t
deflned only if u is one-to-one (a4=l ‘g

e which is
, in which

case

rewrse(c7) = ta2,al;a3,a4>.

For exam&- reverse (-is+) = G, and
reverse (-e) = -q&x-+.

SAL

lletile~~y compose(o,r) is a function type,

compose (u,7) =

<mirr(al,81)1min(a2,82);min(a3,83),min(a4,B4)>.

For example, compose (-&+,-has+) = -has +,
and compose (-s@v-r,-&+) = -squ+v+.

Dt?laniti~n inaplies(u,~) is a predicate which is
true if a function of type (I is also of type T. In
general, a function type u = <a,,a2;a3,a4>
implies all functions types 7 = <@1$2;@3,84>.

where & sai , lsi14 (or, equivalently, & => ai,
Nir4, if we regard O-1 variables as Boolean vari-
ables). implies defines a lattice on function
types:

-

212

With these definitions, we obtain the follow-
ing rules for inferring functions S + T from a set
of connections F. Below let X,Y,Z denote arbi-
trary sequences of attributes.

10.

11.

12.

13.

14.

15.

16.

17.

yJ;tYl
+ .

(Permutation)
if X -CT-, Y, then nl(X) -u-r nz(Y), where
111,ws are permutations. When u is an inclu-
sion, we require wl=ws.
(has-Projection)
if X -u-+ Y, then X -u-r Y’, where o is
many-to-one (has), and Y’ is an arbitrary
subsequence of Y.
(is-Projection)
if X -u+ Y, then X’ -CT-+ Y’, where o is an
inclusion (ti) , and X’ and Y’ are
corresponding subsequences of X and Y.

~~mr$c~ionltia

imp1i&,;,. ’
x -T+ Y, where

(Reversal)
if X --Q+ Y, and reverse (u) is defined, then
Y -T+ X, where r=reverse (u).
(Augmentation)
if X -u-r Y, then X2 -u+ 32.
(Composition)
if X -u-r Y, and Y --7+ Z, then X --pa Z,
where p = compose (0,~).

Definition Let C: S-u+ T be a functional connec-
tion. We say that C is implied by F using the
rules, or F 1 -C, if there is some derivation of
S-u-+T using the functions of F represented by
schemes in C.

It is clear that the rules above are sound. It
would be pleasant if we could prove they are also
complete for deriving functional connections in
general, i.e., prove that

Fl=CiffFi-C.
Unfortunately we ‘cannot: there are many ways to
do equijoins among functions, and rule 17 only
gives one.

For example, suppose we are given two func-
tions A-ha,%+B and B-k+A. The connection
which “joins” these two functions on both A and
B will satisfy A-equiv+B. None of the rules
above covers this situation.

Unfortunately there are quite a number of
ways in which one can join two functions, since
their attribute sequences can intersect in 16
different ways and there are 122 possible func-
tion type combinations. Admittedly, this space
of alternatives is not that vast, but we have not
attempted to derive these rules. However, we

Conjecture If the rule set IO-17 above is aug-
mented to include all rules detailing inferences
following from the join of two functions, then

F I= C if? F 1-C.

We sketch a possible proof line below, once
some important properties of LAURA schemas
are explained.

Definitioar A schema S = (R,F) is onto-a~yc~~
(resp. totalacycLic) if there is no sequence of
distinct edges

xo+Y&xl+Yl,. . . ,X*+Yn

with

Yi n xt+l mod n+l # 6 (Kisn,
which all have onto (resp. total) function types.
Here each edge 4 + Yi either in F, or its rever-
sal is in F, but no edge can occur more than
once is the cycle (in original or in reversed
form).

These acyclicity notions are important since
they let us complete partial counterexample
databases to full counterexample databases,
avoiding the strange problems of [CFP]. Let a
partial instance d of a (valid) LAURA schema
(R,F) be a database instance which does not
violate any function in F. We say d is a complete
iwtance if it also satisfies F.

Lemma Any (flnite) partial instance of a LAURA
schema can be extended to a (finite) complete
instance.

The extension constructed to prove this lemma
is essentially that of the ‘chase’ technique used
in the literature (e.g., [JK]) of repeatedly taking
an unsatisfled constraint and adding new things
to the database instance to help satisfy it, but
the trick here is that the acyclicity required of
LAURA schemas limits the extent of this exten-
sion. When the partial instance is finite, the
chase process terminates after a finite number
of steps, since the onto- and total-acyclicity
guarantee that no symbol added to some table Tj
in a database instance can indirectly cause
another symbol to be added to Tj later on. We
omit the details. 9

The acyclicity conditions avoid problems
noticed by [CFP]. Consider the example with two
relations R&W), RI(CD) FDs A+B, C*D, and
INDs Ro[A] sRl[D], RJC] E Ro[B] as in [CFP].
These dependencies are argued to imply the ine-
qualities
card(A)~ca~d(B)zcmd(C)rcard(D)rcwd(A),

where card(A) gives the number of distinct
entries in the d-column, etc., because the FDs
give many-one constraints and inclusions also
give such inequalities. From these it follows that
all cardinalities are equal, whence Ro[B] c R,[C]
and R,[D] rRo[d]. This conclusion does not fol-
low ordinary inference rules. However, this
Inference relies on four significant assumptions:

1 AL! relations are finite.

i !

2 AL! INDs represent total functions.
3 AU FDs represent total functions.
4 All FDs represent onto jzmctions.

213

These assumptions imply an onto-cycle. The last
two assumptions require that the database have
no null values where FDs exist, and are strong by
practical standards.

A possible proof line for the conjecture follows by
induction on n, the size of the connection
c: s-u+T.

Basis
When n =O the connection has the form

and it is possible to show that the rules 11-M
are all that is needed. There are several
cases, depending on Rio and u, but-in each
case one can construct a table riO which con-
tradicts any S-o+T that does not follow
from the rules. This table can be extended
to a complete database instance because of
the fact that valid LAURA schemes are onto-
ac clic and total-acyclic ($4.1, restriction
R5 . 7
Induction Step
(This step in the proof is not yet complete.)
It is sufficient to show that if a function
S-u-*T holds in a connection, then it results
from either (1) a function on the connection
over I$,,, . . . , Ri,-,, (2) a function on Rk, or
(3) the join of these two functions. Many
cases arise again. Interestingly, this step
will not follow without LAURA restrictions
Rl-R3, because of ‘pullback functions’ [M].
For example, if we join the functions
ABir-,CD and C-has +D, we obtain a con-
nection which satisfies A+ +B, the ‘pull-
back’ of C-has +D. n

5. Schema Enhancement with LAURA
One motivation for investigating functional

data models as we have here is that doing so pro-
vides a formal notion of redundancy. Generally
speaking, we would like to say -a database
schema is redundant if there are two different
computable queries (mappings, connections)
which yield the same result for every database
instance of the schema. Unfortunately this
notion of redundancy is very difficult to make
precise. We content ourselves with redundancy
deflned by functional connections obtained
through composition.

The designer’s job at this point is to remove
as much error and redundancy as possible from
the schema, while simultaneously making sure
that integrity constraints are not difficult to
enforce. (If necessary, redundancy can always
be reintroduced later to improve query process-
ing performance or ease of constraint enforce-
ment.) Unfortunately, there are many ways that
redundancy can creep into a schema, and there
is no best way to detect redundancy automati-
cally or to eliminate it. A sound approach here is
to equip the designer with tools for improving
the schema, and permit him to proceed thusly
armed on his own.

5.1. Schema lkansformations
The schema enhancement process we use

can be thought of as beginning with a LAURA
graph and proceeding through a sequence of
t!mnsfonatiow. Edges or attributes from the
graph are added or deleted so as to either
correct errors in the graph, or eliminate redun-
danc
tions . 3

(such as caused by equivalent connec-
Transformations used by the Database

Design Group consist of adding or deleting an
edge and/or a attribute, and relabelling or
reconnecting edges and attributes as necessary.
We may group the transformations loosely into
two classes:
(1)

(21

Local Enhancement
Transformations that make minor additions
or deletions, producing a schema which is
more accurate (though formally ine-
quivalent) to its predecessor; and
Redundant Connection Elimination
Transformations that delete derivable con-
nections, producing an equivalent schema.
The second class is more interesting

mathematically, but unfortunately the first class
is very necessary. There is always ambiguity and
error in a design after the view merging phase,
and these flaws should not be propagated further
in the design.

-These modifications may be made in such a
way as to minimize some quantity, such as the
number of remaining equivalent connections in
the graph (to make constraint enforcement
easy), or the number of edges in the graph (to
minimize the number of stored associations).

We feel significant beneflts come from
operating on a LAURA schema rather than on a
relational schema in the schema enhancement
process. Critical information such as existence
constraints or entity constructs is either lost or
represented clumsily when stored using relations
and dependencies. We will show below how much
of normalization amounts to a desire to elim-
inate the storage of inherited properties. This
understanding is obscured (for the authors at
least) when expressed in the formalism of FDs.

In the remainder of this section we give a
brief presentation of some redundant connection
elimination methods. Although our explanation
is simplified, we wish to emphasize that deter-
mining when transforms are to be applied is not
simple.

5.2. Redundant Connection Detection & Elimi-
nation

Two general problems must be dealt with
here:
(1) Finding redundancy in the schema.
(2) Eliminating as much of it as possible.

Redundancy is never implied by a schema a
priori. Semantic information is required to
determine equivalence of connections.

Let us define redundancy in the following
way:

214

Definition Let (R,F) be a LAURA schema, and
Cl,&: S+T be connections obtained from F by
rules ID-I?. We say C, is redundant if there
exists a syntactically inequivalent connection Cz
such that C1 and C2 define identical functions for
all database instances of the schema.

The inference rules of $4 may be used to
develop an interactive mechanism for flnding
redundancy. A basic approach is to make vari-
ous assumptions about which connections are
redundant, and use these assumptions to search
for redundancy. These assumptions state that if
connections are syntactically equivalent (under
some definition of syntactic equivalence) then
the connections are assumed to be semantically
equivalent as well. As equivalent connections
are found they are announced and, unless the
designer somehow denies the equivalence, they
are marked to be dealt with.

It is desirable to make the assumptions
explicit. There are many possibilities, including:
(1)

(2)

(3)

(4)

Qualified attributes
If a qualirled attribute is found which is
type-equivalent to an edge in F, the edge is
marked as redundant.
Triangles
If any connection inferrable from F is found
which is syntactically equivalent to an edge
in F, the edge is marked as redundant.
Simple RUA
All connections S+T of the same basic type
(is, has, OT eq?hv - ignoring whether they
are total or onto) are assumed equivalent,
and must be dealt with somehow. If two con-
nections are Simple RUA-equivalent but not
fully type-equivalent, it is possible that some
existence constraints have been forgotten in
the schema.
Deluxe RUA
All connections S+T, ignoring type, are
assumed equivalent.

These assumptions may be used in conjunction;
the DBDG uses a set of heuristic assumptions for
detecting redundancy.

Redundancy is commonly found in ‘trian-
gles’. Suppose that three attributes A,B,C have
connections A -u+ B, B -T+ C, A -p+ C such
that the composition of the flrst two always
equals the third. Thus A -p+ C is redundant,
mdp = compose (0,~). Consider briefly what can
happen when o and r are either is + or -has -*.
If we inspect the table and diagram

we flnd that eliminating the edge A -p-’ C has
different meaning in each of the four cases. The
second case is prohibited under normal LAURA
use. It appears that the only cases where elim-
inating the edge A -p+ C produces a difference
in the corresponding relational schema is when

Q=-~-B and T=-has+, or (I=++ and
r=-has+. In the latter, more prevalent, case,
C is a Mu&ted property of A a~ in $2.3, and
A -p+ C is apullback function as in v.3.

Much of the intent of normalization seems to
lie in elimination of stored inherited attributes.
This concept came as a surprise to the authors.

Generally speaking, however, more forms of
redundancy must be dealt with than just ‘trian-
gles’. Abstractly the redundancy detection pro-
cess should provide us with an ep?Lvalerrce rela-
tion on connections derived from F. The redun-
dancy elimination process must make decisions
on how to remove as much redundancy as possi-
ble. The DBDG again uses a heuristic process,
but many interesting theoretical problems lie
open in this area. For example, if connections
are restricted to be paths in the schema graph,
we arrive at a #meTa.&ed l%ansi&ive Reduction
FVo blem:

Given a (hyper)graph (R,F) and an
equivalence relation between edges and
paths of the graph, flnd a subgraph (R,F ‘)
with as few of the equivalence relation edges
as
Cf. AGU]. 7

ossible, without losing any accessibility.

Other similar problems are easy to formulate.

6. Etx-tensions to LAURA and Future Directions
This paper has tried to convey the basic

aspects of LAURA. We illustrate here additional
avenues along which LAURA may be pushed, con-
centrating especially on the categorization
primitives added to LAURA, which are missing in
some data models. We also list a number of
interesting problems open for further investiga-
tion.

6.1. Categories and Disjoint Disjunctions
We mentioned in

k
3.1 Kent’s argument that

the Relational model and other record-oriented
models) is inadequate in modeling entities hav-
ing a number of categories into which the entity
can be classifled, each having somewhat different
properties. There are several possible ways to
store such entities in a relational database,
including (1) Make the relation scheme contain
aU attributes of all categories; (2) Use ‘code
flelds’, whose values define what the other flelds
in a record mean (The PASCAL variant record);
(3) Decompose the relation ‘horizontally’ into
disjoint subrelations, where each resulting rela-
tion corres onds to one of the original categories
kzzii,[;j, &PI; (4) Use unnormalized (non-1NF)

In LAURA diagrams, category relationships
are indicated using a specially labelled, directed
hyperedge. These hyperedges may be drawn
either as

21.5

for is -b or -e@v + relationships, or as

for -has-r relationships. In both these situa-
tions, CATEGORYDISCRIMINATOR (CD) is a property
of A, and v&us 1, valzle s, . . . , value,, give a (not
necessarily exhaustive) list of the possible values
of the CD. The values of A are partitioned into
different sets according to the value of A 's CD.
The existence semantics are quite strong: the CD
must always be defined.

The two categorization constructs are
equivalent, and one may be transformed to the
other. Property inheritance transforms also are
commonly applicable here. Essentially the
-is + /-equiv + construct corresponds to ‘hor-
izontal decomposition’, alternative (3) at the
beginning of this section, whiie the -has-+ con-
struct corresponds to one of alternatives (1) and
(2).

Unfortunately the notion of connections in
#4 may have to be modified to incorporate
categorization. Difficulties arise in determining
exactly which path one can take without knowing
the value of the CQTEGORYDISCRIMINATOR.
Somehow one must incorporate data from the
database into the deflnition of connections
(incorporate data into metadata). This situation
is common in semantic networks, where schema
information is stored together with the actual
data [B],[Fa].

LAURA requires the category partitions to be
d@@irrt. Requiring disjointness is not essential,
and in fact complicates the model, since is-,
edges between categories can yield invalid
g;f;J;. Currently we place a new type of edges,

-isn’t+
between attributes whose domains must be dis-
joint, and extend the deAnition of compose in
#43 so that

compose (-is +,-isn’t+) =
compose (-isn’t +,4s -b) = -isn’t +.

me schema is taken to be valid a8 long as it is
ys;si,le to find an attnbute A such that

-, .

6.2. l&ectiaPlm for Future Ramsarch
the results presented here leave many

directions open for further investigation. Many
pl~?&Scal and theoretical problems SPrinO to

l Inference rules and their Completeness
Develop inference rules for ‘joins: of functions as
in &S.S, proving them complete if possible. Is the
Completness Conjecture of this section true?

l Categorization
How can the definition of connections be
extended with categorization primitives of 56.17
What sort of inference rules can be developed?

l Generalized Transitive Reduction
Are there fast algorithms for solving the reduc-
tion problem in 85.2, for eliminating as many
edges as possible from a graph without disturb-
ing graph accessibility?

l Qualifled Attributes
The qualified attributes of #4.3 appear to have
many nice properties, both from a practical and
theoretical standpoint. It might be interesting
to develop an algebra of qualified attributes. In
addition, note that Mitchell’s pullback function
p(U,V,B) [hi is equivalent to the qualified attri-
bute U.KB (’ under the RUA). It seems possible
that this close relationship between qualified
attributes and Mitchell’s existentially quantified
attributes can be exploited, possibly through
modification of Mitchell’s rule F13 (Attribute
Introduction), to lead to an algorithm for
(infinite) implication on sets of FDs and INDs.

l Acyclicity
Find fast algorithms for determining whether a
LAURA schema is onto-acyclic or total-acyclic, as
deflned in g4.3.

l Other function types
How can LAURA be extended to include set-
valued functions as in many functional models?
This would permit a natural means of modeling
many-to-many relationships, and would have
interesting inference ramifications, because the
reverse of many-to-one functions can be defined.
Note [HK] also permits list-valued functions. It
may also be interesting to extend LAURA to have
ed es labeled b

fi
function names (role names)

an permit mu tiple edges between a pair of r
attributes. How do the -isn’t * connections of
$6.1 interact with other function types? Infer-
ence rules?

7. concluaiona
We have shown that LAURA has a number of

desirable features as a formal data model:
Simple functional foundation
Powerful abstraction primitives
Categorization primitives

These features are advantageous when compared
with other formal data models.

We feel LAURA exhibits significant advan-
tages as a formal model, both for modeling of
large real-world schema% and for the simple,
formally founded schema transformation pro-
cess it encouragea. LAURA’s functional and
categorization primitives work well with schema
enhancement, and have exposed here the impor-
tance of eliminating inherited properties in
improving a schema.

216

We have encountered a number of interest-
ing problems in developing this model, both
nractical and theoretical. We encourage the
development of new practical formal mod&, and
a increased application in design practice of
design theory.

The authors are indebted to Rick Hull for his
meticulous study of an earlier draft of this
paper; his comments and suggestions improved
the paper considerably. The authors would also
like to thank Kamran Parsaye for his
simplification of some of the arguments here,
and Dennis McLeod for his comments about the
model. Members of the DBDG family have pro-
vided a great deal of helpful feedback and
encouragement which contributed to the com-
pletion of this work. Comments by the referees
also led to a number of improvements.

References

[Al

WJI

Lw

[JW

[BG!

WI

PI

WI

[cm

Abrial, J., “Data Semantics”, in Klimbie
& Koffeman, eds., Data Base Mana9e-
men& North-Holland, 1974.
Aho, A.V., M.R. Garey, J.D. Ullman, ‘The
Transitive Reduction of a Directed
Graph’, SIAM J. Comput. 1:2, 131-137.
Atzeni, P., D.S. Parker, ‘Assumptions in
Relational Database Theory’, Proc. Fbst
ACM SIGACT-SIGMOD Symposium on
Principles of Database Systems, Los
Angeles, CA, March 1982.
Beeri, C., & H.F. Korth, ‘Compatible
Attributes in a Universal Relation’,
Rot. F%d ACM SIGACT-SIGMOD Sym-
posium on F+inciples of Database Sys-
tems, Los Angeles, CA, March 1982.
Bernstein, P., N. Goodman, ‘What does
Bovce-Codd Normal Form Do?‘. Proc.
S&h Intnl. Conf. on Ve7y LaGe -Data
Bases, Montreal, Canada, October 1980.
De Bra, P., & J. Paredaens, ‘Horizontal
decompositions for handling exceptions
to functional dependencies’, hoc.
workshop on Logicd Bases for Data
Bases, Toulouse, France, 14-17
December 1982.
Bra&man, R., ‘On the Epistemological
Status of Semantic Networks’, in
Findler, V. (ed.), Avsocuve Net?imTks
NY: Academic Press, 1979.
Buneman, P., & R.E. Frankel, ‘FQL - A
Functional Query Language’, Proc. ACM
SIGMOD 1979 Intnl. Conf. on Manage-
ment of Data, Boston, MA, May-June
1979, 52-58.
Casanova, MA., R. Fagin, & C. Papadimi-
triou, ‘Inclusion Dependencies and
their interaction with Functional
Dependencies’, (Extended abstract)

[Cl

IDI

PI

[Fml

[Fal

P’KI

D-W

[HKI

[JKI

[KU

[=I

Rot. Fbst ACM SIGACT-SIGMOD Sym-
posium on Principles of Database Sys-
tams, LOS Angeles, CA, March 1982. Full
rack I;Bz Research Report RJ3380,

Codd, E.F., ‘Extending the Data Base
Relational Model to Capture More Mean-
ing’, ACM Pans. Database Systems 4:4,
beember 1979, 397-434.

Date, C., ‘Referential Integrity’, Proc.
Seventh In&& Cbnf. on Very Large
hta Bases, Cannes, France, Sep-
tember 1981.
Fagin, R., ‘A Normal Form for Relational
Databases That is Based on Domains
and Keys’, ACM Pans. Database Sys-
tems 63, September 1981, 387-415.
Fagin, R., A.O. Mendelzon, J.D. Uliman,
‘A Simplified Universal Relation
Assumption and its Properties’, ACM
kns. Database Systems ?3, Sep-
tember 1982, 343-360.
Fahlman, S., NETL: A System for
Representing and Using Real-World
Knowledge, Boston: MIT Press, 1979.
Furtado, A.L., & L. Kerschberg, ‘An
Algebra of Quotient Relations’, Proc.
ACM SIGMOD 1978 Intm!. Conf. on
Management of Data, pp. I-8.
Hammer, M., & D. McLeod, ‘Database
Description with SDM: A Semantic Data-
base Model’, ACM Trans. &&abase Sys-
tems 6:3, September 1981, 351-386.
Hecht, M.Y., & L. Kerschberg, ‘Update
Semantics for the Functional Data
Model’, Database Research Report No.
4. Bell Laboratories. Holmdel. NJ 07733.
January 1981. ’
Housel, B.C., V. Waddle, S.B. Yao, ‘The
Functional Dependency Model for Logi-
cal Database Design’, Z+oc. fifth Intnl.
Conf. on Very Lwge Data Bases, Rio de
Janeiro, Brazil, October 1979.
Hull, R., & C. Yap, ‘The Format Model: A
Theory of Database Organization’, Proc.
P>st ACM SIGACT-SIGMOD Symposium
on Rim*lss of Database Systems, Los
Angeles, CA, March 1982.
Johnson, D.S., & A. Klug, ‘Testing Con-
tainment of Conjunctive Queries Under
Functional and inclusion Dependen-
cies’, Pmt. F'irst ACM SIGACT-SIGMOD
Symposium on Principles of Database
Systems, Los Angeles, CA, March 1982.
Kent, W., ‘The Entity Join’, Proc. fifth
Intnl. Cbnf. on Very Large Data Bases,
gg2”,“,,“aneiro, Brazil, October 1979, pp.

Kent, W., ‘Limitations of Record-Based
Information Models’, ACM iPans. Data-
base Systems 4:1, March 1979, pp. I97-
131.

217

WI

ml

w=l

WI

WI

[Ml

Pal

c34

IshI

Kerschberg, L.. & J.E.S. Pacheco, ‘A
Functional Data Base Model’, Tech
Report, Pontiflca Universidade Catolica
:;78Rio de Janeiro, Brazil, February

Kuck, S., dc Y. Sagiv, ‘A Universal Rela-
tion Database System Implemented via
the Network Model’, Rot. Z%rst ACM
SIGACT-SIGMOD 5&mpotium on Ainci-
pies of Lkxtabuse *stems, Los Angeles,
CA, March 1982.
Kuck, S., & Y. Sagiv, ‘Designing Globally
Consistent Network Schemas’. 13r)c.
ACM SICMOD 1983 Idol. C&f. &
Mrv~aglement of Da& San Jose, CA.
LeDoux, C.H., & D.S, Parker,
‘Reflections on Boyce-Codd Normal
Form’, Rot. li@hth Intd. Conf. on
Vey Large Data Bases, Mexico City,
Mexico, September 1982.
Lien, Y.E., ‘On the Semantics of the
Entity-Relationship Model’, in Encity-
Relationship Approuch to Systems
Analysis and Design (P.P-S. Chen, ed.),
$& il!X-~87. North-Holland, Amster-

Lien: Y.E., ‘Hierarchical Schemata for
Relational Databases’, ACM 7kns. Data-
base Systems 6:1, March 1981.48-89.
Lien, Y.E., ‘On the Equivalence of Data-
base Models’, Jounud of the ACM 29:2,
April 1982, 333-382.
Ling, T.-W., F.W. Tompa, & T. Kameda.
‘An Improved Third Normal Form for
Relational Databases’, ACM 7bn.v. Data-
bprse Systems 6.2, June 1981,329-348.
McLeod. D.. & J.M. Smith, ‘Abstraction
in Databases’, &x. of the Wwkshop on
hta Abstnrction, Ikrtubasss, und Cbn-
cephud Modeling, Pingree Park, CO,
June 23-28,198O.
Mitchell, J.C., ‘Inference Rules for Func-
tional and Inclusion Dependencies’,
ROC . ACM SIGACT-SIWOD S&mposium
on Rinc*iDhs of Ibhb~~e Systems,
Atlanta, GA, March 1983.
Sagiv, Y., ‘A Characterization of Glo-
bally Consistent Databases and their
Correct Access Paths’, preprint, C.S.
Dept., University of Illinois, 1981.
Sciore, E., ‘Improving Semantic
Specincation in a Relational Database’,
Proc. ACM SIGhiOD 1979 Intnl. Cb@ on
Munugoment of Data, Boston, MA, May
30-June 1,1979.
Sciore, E., ‘Inclusion Dependencies and
the Universal Instance’, Apt. Second
ACM SIGKT-SIGMOD S@nposium on
I+imiples of mabase *terns,
Atlanta, GA, March 1983.
Shipman, D.W.. ‘The Functional Data
Model and the Data Language DAPLEX’,
AC.. Z~WLS. Lbtabase Systems 6:1,
March 1981, 140-173.

Ml Sibley, E.H., & L. Kerschberg, ‘Data
Architecture and Data Model Considera-
tions’, Rot AFIPS NCC, Daubs, TX,
June 1977, 8596.

ml Smith, J.M.. D.C.P. Smith, ‘Database
Abstractions: Aggregation’, Cbmmuni-
catihs of the ACM 20:6, June 1977.

rsw Smith, J.M., D.C.P. Smith, ‘Database
Abstractions: Aggregation and Generali-
zation’, ACM Trans. Database *stems
2:Z. June 1971. 105-133.

ml Tsichritzis, D.C., & F.H. Lochovsky, Lhta
MO&~, NY: Prentice-Hall, 1982.

WI Ulhnan, J.D., -s of mabase
*terns, Computer Science Press,
Potomac, MD, 1980.

ml Ullman, J.D., ‘The U.R. Strikes Back’,
Rot. Fisgt ACM SIGACFSIGiiiOD m-
posium on I+incipf!es of Dotabase Sys-
teme, Los Angeles, CA, March 1982.

FM1 Wiederhold, G., & R. El-Masri, ‘A Struc-
tural Model for Database Systems’,
Technical Report STAN-CS-79722, Com-
puter Science Dept., Stanford Univer-
sity, February 1979.

218

