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ABSTRACT 

This paper describes the LAURA data model and 
its use in the logical design methodology of the 
Database Design Group. LAURA provides simple 
formal constructs for the design of large data- 
bases, including generalization, abstraction, and 
categorization primitives, while avoiding limita- 
tions of existing formal models. 

LAURA is based on functional connections 
between data, and has features of functional and 
binary data models, and semantic networks. A 
consequence of choosing a relatively abstract 
level for modeling is that important semantic 
information is available for use in ‘normalization’ 
which can be lost, for example, when schemas 
are translated to relational representations. In 
particular, use of the relational model inhibits 
proper modeling of different types of functions 
and abstractional concepts, and clouds the fact 
that eliminating inherited zwonertis from a 
schema is a main concern 01 normalization 
(which is not at all evident when expressed in the 
language of functional dependencies). 

This paper concentrates first on introducing 
LAURA, and second on describing the normaliz- 
ing transforms used with the model. The 
approach developed here has been automated, 
and is being used successfully in the interactive 
design of large database systems. 
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l.Int.roduction 
Currently, the problem of logical design of 

large databases is poorly understood, even by 
experts. Some formal foundation is needed to 
perform the job effectively, since without a for- 
mal basis, schemas and data models tend to 
degenerate into ambiguous or meaningless scrib- 
bles. Unfortunately, existing models can be of 
little help to the practicing database designer in 
developing formally-based design tools. Some 
designers have resorted to their own heuristic 
approaches, following intuition. Others have 
developed programs &.ich require large clusters 
of Functional Deoendencies to be entered. An 
alternative forma approach is needed, which is 
simple yet offers powerful modeling constructs. 

This paper describes the logical data model, 
and logical design methodology, of Database 
Design Group (DBDG). The methodology in its 
entirety progresses through four phases, where 
the results of each phase are translated into pro- 
gressively more specific models: 

Phase 1. Entity Relationship Model 
Phase 2. LAURA: ‘Substrate’ Model 
Phase 3. Structural Model 
Phase 4. DBMS/Physical Model 

The Entity-Relationship and Structural Models 
are related to LAURA by direct translations. 
LAURA is of particular interest, and most of this 
paper is devoted to its description and its use in 
‘normalizing’ schemas. 

In the DBDG methodology, an initial concep- 
tual model of the database is obtained itera- 
tively. At each step of the reflnement process, 
the database designer transcribes his under- 
standing of the various user views required by 
the enterprise using a dingramming language. 
This encoded statement of the enterprise is fed 
to a program that produces simplified Entity- 
Relationship diagrams. These diagrams are dis- 
cussed by the designer and members of the 
enterprise to reach improved understanding of 
how the database should be structured. 

View merging software is then used to 
integrate the diagramming language representa- 
tions of the views, producing an enterprise 
schema. When this schema is complete, it is 
changed to a LAURA representation. LAURA is 
graph-oriented, and can model entities, func- 
tional associations, inclusion relationships & 
existence constraints, and permissibility of null 
values in fields. All associations are functional in 
LmRA. 
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At this point ‘normalizing’ transformsTh~3 
be applied to the LAURA schema. 
transforms improve the schema, making either 
minor corrections to misspeciflcations (e. ., add 
existence constraints, merge identic s but 
differently named attributes), or changes 
preserving logical connections in the schema. 

The LAURA model is finally translated to a 
structural model that is similar to the relational 
model. We feel that significant beneflt comes 
from doing ‘normalizing’ transforms on the 
LAURA graph’model befo?-e semantic information 
is lost in this translation. Much work on normali- 
zation in the relational model takes on a new 
significance when semantics are considered in 
the process, and artifacts imposed by the rela- 
tional model are removed. 

2. Background 
We assume the reader conversant with stan- 

dard database terminology. We apologize only 
for the use of a few terms. The words ‘object’, 
‘association’, and ‘connection’ are used initially 
here in an abstract sense. This usage conflicts 
with that of a number of workers in the database 
theory area. 

Also, we use the word attribute here to mean 
a symbol in a fixed set 

0 = IA,, . . . ,&,I, 
while ‘property’ is used to convey the more 
abstract notion of a ‘characteristic of an entity’. 
As usual, each attribute A has a domain dom (A), 
and sequences of attributes S = Al, . . . ,Ri, 
have domain df-n(S) = 
ohm (4,)x . . X&m&J. 

Finally, we assume the reader to have a 
basic understanding of abstraction concepts, the 
binary model, and semantic networks. We 
develop all terminology needed here, but the 
reader may wish to review these subjects. Smith 
& Smith [SSl,SSZ] give an excellent development 
of generalization and aggregation, extending ear- 
lier work by Quillian and others on semantic net- 
works. Brachman’s survey on semantic networks 
[B] is also recommended. Interesting treat- 
ments of the binary data model can be found in 
[A], [TL]. [HK] provides a good presentation of 
the functional model. 

2.1. Connections in a Database 
Let US begin with an intuitive development of 

connections. Suppose we are interested in the 
phone number of the manager of the database 
project. (The database is not working, say.) The 
‘connection’ we use to find this information 
might be to find the phone number of the office 
whose employee is manager of the project. 
Using the abstraction primitives is and has, we 
employ 
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PROJECT h.as MGR is EMP has OFFICE has PHONE 

Similarly we can express ‘recursive’ connections 
such as the salary of a particular employee’s 
manager’s manager: 

EMP has MGR is EMP has MGR is EMP has SALARY. 

We view facts in a database as connections 
among data objects. In the terminology above, 
connections might be made up of is and has 
relationships between objects. Formally, we 
model this by saying that if A and B are attri- 
butes, a connection -u- between them is a sub- 
set of dom(A)xdom(B). This definition extends 
to n-ary connections. This definition is purely 
extensional, but by considering classes of con- 
nections such as these we obtain an intensional 
definition. 

A recurring concern in both the logical 
design and the querying of databases is the com- 
bkation of connections. If A,B, C are attri- 
butes, and we have the connections o, T 

A-o-B-r-C 

then their combination (which we may write as 
fl~c(ulXl~), n denotin projection) ives a con- 
nection between dam A) and dam (C . Generally P ‘j 
speaking, any path of connections will define 
some connection. However, this combination 
may not be ‘meaningful’ (nontrivial). Let 

denote the subsets of o!cm(A), darn(B) actually 
appearing in this binary relation. Then given the 
connections (I, T among A,B,C above, the combi- 
nation ulq(lr is meaningful only when o and T 
meet the weak existence constrai& 

dam(B), n &m(B), f $. 
Otherwise the combination is trivial. 

Thus, by ‘connections’ we are really refer- 
ring to Project-ioin combinations. This is close 
to the She d&a model concept of association, 
which includes both navigational and existence 
semantics. Navigation’is performed by combin- 
ing connections. Existence semantics certify 
that these combinations are meaningful. 

22. Fhmtional Connections 
Functions are common types of connections. 

They can be used to model more complex con- 
neciions, such as many-many relationships and 
n-arv relationshios. Let A. B be attributes. For 
a g&en functional connection f :A+B, let us 
write 

dcm (A) C dam (A) 
dom(B$ c o!om(B) 

is the set on which f is defined 
is the image of f 

so that 

f(dom(A)~) = f Wm(Al) = hm(B)f 

Defhition f is a total j’uncbion if &m(A), = 
&m(A); otherwise f is apartialfunction. 

Definition f is onto if dam(B), = o!om(B). 

Definition f is an inclusion. if &m(A) 
&m(B) and f is the identity map on dcm (Aj, . 

c 

If all connections are functional, functional 
composition yields a combination of connections. 
To determine the set of meaningful composi- 
tions, we can require specification, for each pair 



of functions A L -) B -g+ C, whether or not 
&m(B), n dcm 8)s is empty. A more.typicai (’ 
way to specify whether compositions are mean& 
ingful is to use e&sterrce constiaints. Put . an 
existence constraint on a function /: A+B i.e., 7 
asserting that whenever a ls in &m(A), there 
must exist some b =/(a) in &m(B)) is identical 
to asserting that 1 be totad. 

Two important facts here are that compos&’ 
tins 01 total fwrctins tare total, and composi- 
tions ol onto functions w-e onto. As a result, 
composltlons of total functions are always 
‘meaningful’ (nontrivial). This is not to say that 
composition of partial functions is not meaning- 
ful; composition of partial functions 1s just not 
mororrteed to be meaningful. 

23. Conncotims, Abstraction, and ‘Ibmaliza- 
ti0n’ 

Abstraction notions are important for 
modeling complex role arrangements among 
entitles in the database, This is particularly 
true, for example, in modeli- recursive rela- 
tionships such as PARTS having subPRRTs, 
EMPLOYEES having MANAGERS which are in 
turn EhiPLOlZEs, etc. Recently there has been 
some formal work on these notions. Researchers 
have concentrated on eneralizatlon (ISA) 
hierarchies [SS], [BI(I, [Sc!J, [HY], a.g regation 
and FDs [SS], [HY], and connecUons [WM . 4 

The examples in f2.1 sugest that abstrac- 
tion notions are im ortant in modeling of con- 
nections between o jects in a database. Note ! 
that is and has lnformation is easily obtained 
from Entity-Relationship diagrams, and embo- 
dies associations (facts) well, since it 
corresponds directly to natural language con- 
structs. Moreover, the abstraction primitives 0 
and has may be viewed as two important types of 
functions: inclusions, and many-to-one functions. 

The is and hue abstracUon mechanisms also 
play important roles ln design. Recall: The maln 
emphasis of logical deslgn is to ellmlnate redun- 
dant (or incorrect) connections from a schema, 
while preserving other connecUons and keeping 
integrity constraints easy to enforce. If all con- 
nections are modeled by functfona, then redun- 
dancy ls ellmlnated by remo 

““i 
functions which 

duplicate or are compositions o other functions 
ln the database. 

Thus, if all functions are either lnclunlonn 
(4s) or many-to-one relatlonshlpn !ass), then we 
must e-ate redundant ! compon tlons of these 
functions. We argue below that elimination of 
redundant connections ls closely related to ellm- 
lnation of proprty hJbwitatnc0 (a term popular 
in semantic data models). If R in a nubty e of B 
(A 4s B), and B hanrperty C (B ha8 4, then 
A bharlts property . A 

The connection between A and C is redundant 
here, and its elimination from the database 
yields an enhcLncod schema. This notion is of 
n&ticmce in schema transformation, and will 
be discussed at greater length in 85. 

9. Hotivation 
Ihe LAURAmodal was developedjor the la- 

Cal dexlgn o/ large dotabnses. This statement is 
important, since many data models are 
developed to have a pleasant user interface; and 
assumptions made in existing theoretical results 
ap ear workable mainly in smaller databases 

!!&s like LAURA are needed 
We argue in this section wh formal data 

$ e encourage 
work alon& these lines; the recently developed 
Structural model of Wiederhold % El-Masri [WM] 
and FORMAT model of Hull & Yap [HyI are wel- 
come additions. 

In our view, it in undesirable to begin the 
Schema Design process with only notions of 
dependencies among attributes. Instead, it is 
desirable to use a model which can support 
abstractional concepts, entities and relation- 
ships adequately. Formal means may then used 
to an&se an initial rough schema and improve 
it tbrouh a sequence of schema Eransjormu- 
&ions T: S + S ‘which take a schema S and yield 
an ‘improved’ schema S ‘. We cali this process 
Schamu EnJumcemsnt. (We avoid the word ‘Nor- 
malization’.) 

We expand here on the limitations of the 
relational model for representing real-world 
data. We restrict our attention to the relational 
model, since the bulk of formal research has 
dwelled on it, and since its limitations reflect the 
positive aspects of LAURA well. The Relational 
model is extremely powerful ln its generality, 
and elegant in its mathematical foundation. It 
has provided many fruitful avenues of research 
over the past decade and a half. However, we 
can summarize three general problems with 
usinp the Relational model as a formal data 
model for the deslgn of large databases: restric- 
Uvd semantic capacity of the model itself, limita- 
tions of Functional Dependencies as a data 
modehng construct, and problems arising from a 
foundation on single-relation semantics. 

3.1. Ltmlted remantic capacity of the Rela- 
uonalmcdel 

Codd has underscored the need for addi- 
tional semantic constructs in the Relational 
model for accuracy in real data modeling [Cl, as 
have other researchers 
improve the model by a a 

HM], [MS]. Efforts to 
ding more constructs 

have concentrated on the spots where the model 
ls weakest: ad- the notion of entitles, or 
objects, and incorporating constructs modeling 
oonnectfons, or annoclations, among objects. 
More work 1s needed to make de endenclen 
proper1 convey entity concepts an 

9 
t! existence 

nemm on. 
In addition, the bare Relational model 

presents dif?lculUen in large database envlron- 
mentn due to its putt-extra semantic weight 
on attributes [U2 . The elatlonshp Uniqueness 
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Assumption [AP] forces all connections between 
a set of attributes to mean the same thing, 
although this is unnatural. The next section 
reviews some consequences of this assumption. 

The bare Relational model has difficulty in 
expressing abstractional notions such as gen- 
eralization and aggregation. Abstraction is 
essential in large databases, but the Relational 
model requires serious changes to accomodate 
multiple relationships between entities or roles 
of entities. Furthermore, the idea of ‘property 
inheritance’ introduced in 62.3 is lost when a 
schema is translated into a ‘set of dependencies 
and relation schemes. 

Finally, Kent points out in [K2] that the Rela- 
tional model (and other record-oriented models) 
suffers many shortcomings in modeling certain 
types of data. It is particularly poor at modeling 
entities possessing a number of categories into 
which the entity can be classified, each having 
somewhat different properties. Kent gives cloth- 
ing as an example: There are many types of 
clothing, and each type has individual features 
not shared by the others. Entities of this nature 
do not At well in a uniform record structure, and 
are not treated effectively by the Relational 
model. 

3.2. Limitations of Functional Dependencies 
We begin by remarking that Functional 

Dependencies (FDs) alone are not sufficient for a 
formal notion of ‘facts’. The incongruity between 
FDs and facts has been noted by by Smith and 
Smith [SS 11, who argue that FDs do not 
correspond to facts (‘aggregated objects’) and 
that ‘well-defined’ relations should correspond to 
one natural language name rather than to a FD. 

A related complaint is that FDs may 
represent either a constraint or a fact, or both, 
or neither. This is an elaboration of the observa- 
tion in [FMU,p.347] that FDs can be of either a 
‘data structuring’, or ‘incidental’, nature. Con- 
straints are ‘structuring’ if they should be taken 
into account in deveioping a schema. However, 
some constraints are not; they should not 
influence the way the database should be laid out 
[LPI. 

Different ways of interpreting FDs is a major 
source of problems in database theory. Many 
attempts have been made to extend the elegant 
results holding with single relations to work for 
the multi-relation case. The Relationship 
Uniqueness Assumption (RUA) mentioned in $3.1 
is one such attempt, but. leads to counterintui- 
tive results in large databases. From the set of 
FDs [AP] 

EMP#-,OFC$,OFC#+PHONE 
EMP#+LAB#,LAB#+PHONE 

one infers the FD EMP# +PHONE, implying 
surprisingly that an employee has a single 
phone. 

Further problems arise if one assumes that 
all FDs are constraints that must be enforced on 
the database (the ‘global consistency’ problem 
[LTK], [Sal, [KSl,KS2]). In the example above, 
enforcing the global constraint EMP# *PHONE is 

not guaranteed by simple enforcement of the 
four initial FDs. Naturally it is possible that we 
wotid want this FD to hold and be enforced, but 
this is not necessary. 

Frequently the assumptions made concern- 
inn FDs are imnrecise. In the literature it is 
co-?mnon to And ihe belief that the FDs 

x-r Y, Y-+X 
imply a one-to-one map between tHe domains of 
X and Y. However. this inference is not correct 
a@ori. It requires the RUA (in which case Y-X 
represents the inverse function of X+Y), or the 
assumption that all FDs are total and onto. 

3.3. Foundation on Single-Relation Semantics 
The single-relation Relational model is quite 

elegant, so it is desirable for researchers to 
investigate its general applicability. Research 
into Join Dependencies (and Multivalued depen- 
dencies) has a number of goals, but certainly one 
of them is their reduction of multi-relation data- 
bases to a single relation (Universal Relation) 
foundation. Unfortunately, these dependencies 
have a circular definition [API, and certainly do 
not mirror the semantics of large databases. It 
is not easy to fathom what Multivalued depen- 
dencies and 5th Normal Form actually mean in a 
large database. 

Research on Universal Relation databases is 
still at an early stage [UZ]. However, we see 
many practical reasons for avoiding a Join 
Dependency or Universal Relation outlook on the 
design of large databases. Real designers do not 
start out with a s’ le relation. (And do not want 
to end up with one! Second, using a single rela- ““i 
tion destroys the ability to model inclusions. 
Third, various Universal Relation assumptions 
force limitations mentioned in $3.1-3.2. Finally, 
the UR model introduces problems in the elimi- 
nation of ‘redundancy’ in ‘normalization’ and the 
treatment of null values. The interested reader 
should consult [UZ], [API. 

4. LAUIW The DBDG Model 
In this section we introduce LAURA. LAURA 

is a data model expressly designed to capture 
functional associations precisely. It incorporates 
concepts from the Binary model and from 
Semantic Networks, as well as abstractional con- 
cepts in semantic models. In ways, the model is 
reminiscent of the Functional Models developed 
by Kerschberg and others ([KP,SK,HK], [BF], 
[HWY], [Sh]), but emphasizes the notion of con- 
nections (94.3) and places weight on applications 
in design rather than in, say, query processing. 
LAURA’s ties to Semantic Networks here are, to 
our knowledge, new. 

After describing essential aspects of LAURA 
and how they are used in practice, we define con- 
nections and show some of the advantages of 
working with functional associations. 
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4.1. Formal Definition of LAURA 
A LAURA database schema S = (R,F) is a 

labelled hypergraph composed of: 
(1) A set R of attributes defining the nodes of 

the graph. Attributes are of two types: 
EztenkmaL, or Intensional. Each node or 
attribute A in Cl has a corresponding a 
domain, called &m(A). 

(2) A set F of connections, which are directed 
edges or hyperedges among attributes in n. 
Ordering of attributes in hyperedges is 
significant, in the sense that in X + Y the 
relative ordering of attributes in both X and 
Y is meaningful. Both X and Y should thus 
be viewed as sequences of attributes. Each 
edge/hyperedge is labelled with one of 
twelve functional connection types: 

--is+ -as-, -gi -& 

-b-B -&+ -h= -&g+ 

-equiv + -&- -eQzlizI-). -a- 

AtiMmURA schema also obeys the following rest&c- 

Rl Intensional attributes have no outgoing 
edges. 

R2 Edges or hyperedges may be labelled as 
-&-- only if they connect extensional attri- 
butes to intensional attributes. 

R3 If X+ Y is a hyperedge, then no proper (per- 
muted) subseauence of X or Y mav have 
outgoing edges to extensional attributes. 
However, X and Y may be involved in other 
hypered es 
attribute . “, 

(or edges if X or Y is a single 

R4 If X-o-+ Y is a&+peredgLwhere o is one of 
-is+, -&a, -is+, or -$z+, then X and Y 
must be sequences of equal length. 

R5 The set F must be both onto-acyclic and 
totalacyclic. (These terms will be deflned 
below, in 54.3.) 

Each edge or hyperedge X-u+ Y in F represents 
a function from &m(X) to dam(Y) to be stored 
in the database. (The function may be viewed 
alternatively as a constraint.) As mentioned 
above, there are twelve function types. We may 
describe a type u by a four-tuple of O-l variables 

v = < Total, Onto ; Inclusion, One -to -one >. 

For example, <l,O;O,l> and <O,l;l,l> are func- 
tion types. These variables make four state- 
ments about the nature of a function. 
Total If Total=l, the funct~~nix~ total 

function from to 
&m(Y). In other words, for 
every element in ohm(X), the 
function associates a specific 
element in &m(Y). This com- 
bines a functional constraint 
with an existence constraint, 
asserting that a Y exists for each 
X. 

&&to If Onto=l. the function from 
dam (XJ to dom(Y1 is onto. so 
each’ element in‘ &m(Y) must 
have one or more elements in 
&m(X) mapped onto it. This 
again combines functional and 
existence constraints. 

Inclusion If In&&on =l, then the function 
represents simply an identity 
map on dcm(X)ndcm(Y). (This 
can be interpreted as saying that 
X and Y are joinable. Related 
notions appear in [Kl].) Of 
necessity this situation requires 
the next variable, Gne -to -one, 
alsotobe 1. 

one -to -one If One-to-one =l, the function 
must be a one-to-one map of 
dam(X) into dcm (Y). 

Thus, a function type <O,O;O,O> simply charac- 
terizes a (possibly many-to-one) function from 
&m(X) to dom( Y); and a function type 
<O,O;l,O> is not possible, since it implies a 
many-to-one inclusion relationship. 

We use the following symbols for function 
type labels in graphical presentations of LAURA 
schemas: if u is the function type 

u = <al,a2;a3,a4> 

then u has the labeling indicated by the table 
below. 

U as-4 = 11 asa4=01 a3a4 = 00 1 
-I 

ala2=00 -is+ -e quiv + -has + 

ala2 = 10 -i!z? -equiv-+ -&&&+ 

ala2 =011 is-r -e quiv + -j-&L 

ala2 = 11 

Thus ‘is’ edges are inclusions, ‘equiv’ edges are 
one-to-one maps, and ‘has’ edges are many-to- 
one maps. 

By restricting the domain and range of a 
function, we can make the function total or onto. 
Definition A Simple Qualified Attribute X.Y 
(resp. Y:X) in the context of a function f :X+Y 
is a symbol in R with an associated domain e ual 
to precisely that part of dom (Y) (resp. dcm i” X)) 
mapped onto by f . 
In the notation of $2.2, dom(X Y) = dom( Y), , 
and dcm( Y:X) = dcm (X) 

h 
. Thus regardless of 

the type of function f , t e restricted function 
f :X+X.Y is onto, f :Y:X-r Y is total, and 
f : Y:X + X Y is total and onto. 

Definition A database ikknce of a valid LAURA 
schema S= (C&F) is a set of tables 
d = i<Ri,rg> ) lsism where each Ri is a sub- 
set of Q. and ri c dam Specifically, 

II& 1 15i5mf = IA I A&R, Ais eztentinal j 

u IXuY 1 X-u+Y E Fj, 
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so all non-extensional attributes and all func- 
tions in F are embodied in the relation schemes 
of the database instance. Furthermore, the set 
{rij obeys the functions in F. (Note: ri never 
contains ‘null values’.) Thus functional schemes 
&=XU Y will have ri obeying X-U+ Y, while 
unary schemes Ri = A will have unary tables ri 
containing all values of &m(A) appearing in 
other functional schemes in the instance. 

This definition requires storage of aU func- 
tion types, so even inclusions will be explicitly 
stored in tables. This is done only for the sake of 
simplicity. 

As an example of a LAURA schema, in Figure 
1 we see a portion of a Bill of Materials database. 
Attributes are circled, and edges are marked 
with their function types. The example exhibits 
the use of recursive relationships (assemblies 
and their component parts), weak entities (ven- 
dor locations), and potentially null flelds (struc- 
ture description, vendor status). These useful 
constructs are difficult to capture in some data 
models. 

4.2. Practical Use of LAURA 
In practice, LAURA is used in restricted ways 

which model common constructs such as enti- 
ties, relationships, keys, foreign keys, etc. We 
have chosen to separate this usage from the for- 
mal deflnition of the model itself. Below we 
enumerate some common restrictions applied in 
modeling with LAURA. 
(1) Hweredges are used only to TepTesent Tela- 

tiomhips involving multiattribute keys and 
multiattribute foreign keee find it. help- 
ful to equate (using an -eouiv+ edge) a set 
of attributes with a single ‘surrogate’ attri- 
bute, which then participates in other rela- 
tionships. This tends to reduce the complex- 
ity of a graphical schema display. Conceiv- 
ably hyperedges could also be used in other 
abstractional ways, through aggregation of 
large sets of attributes. 

(2) 

Each entity in Figure 1 is represented with 
external key/surrogate attribute 

ikplayed in capital letters. Thus the mul: 
tiattribute 
COMPONENT:PART#,AS.SEkWLY:PART# 

key 

equivalent to the external key STRLKTURL? 

AU inclusion edges aTe TequiTed i!o be total. 
Furthermore, LAURA requires the is and has 
edges to comprise respective ISA and 
’ HASA ’ hierarchies (directed acyclic 
graphs), much as in [SSl]. Generalization 
and abstraction concepts are captured in 
this manner. It is rare that these hierar- 
chies are more than a few levels deep. The 
ISA hierarchy can have perhaps 3 or 4 levels 
(Fahlman [Fa,p.39] concurs, noting that 
even the entire hierarchy of living creatures 
has only 20 levels), while in our experience 
HASA is very short, with 2 or 3 levels at 
most. Note that in LAURA, intensional attri- 
butes represent ‘datatypes’, while exten- 
sional attributes are always stored subsets 
of the corresponding type. 

LocATlclN 

P 

iz=s s 
/ 

/- _- ---- ‘__ 
: .:zz% 0 

,UNI . ‘1 
‘---------4’ 1’ 

JQure 1. LAURA Schema for Bill of Materials 
Database 

(3) hiany different cu!tribzlte types are i?‘dTO- 
duced. We have found it fruitful to distin- 
guish between entities, keys, parts of keys, 
foreign keys, category discriminators, pro- 
perties, and so forth. This permits enforcing 
restrictions on the tvnes of functions that 

(4) 

(5) 

can connect one type of attribute with 
another. For example, an -&-- relationship 
can connect only two key attributes. The 
table and diagram below illustrate the res- 
trictions possible between individual attri- 
butes or sets of attributes. Existence con- 
straints could of course be added to these 

pgyggf!pJ 

hhnymany relationships are represented 
by creating a surrogate attribute (e&zn& 
key) and using a mu&attribute -eqwiv+ 
connect-ion. Similar methods can be used 
for n-ary relationships. Other data models 
provide more flexibility in modeling such 
relationships, but ‘user-friendliness’ is not 
the emphasis here. 
Possession and roles are expressed with 
simple qualified attributes. The attributes 

8TLt~m8.Obj8Ct, Tolename:entityname I 
such as PART.VENDOR#, and ASSEMBLY:PART# 
in Figure 1 serve to incorporate this struc- 
turing. Distinct roles of an entity are thus 
assigned a unique attribute in 0. 
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4.3. Connections in LAURA 

In this section we show how connections may 
be defined using the is and has connections of 
@l. 1. Generally speaking, a connection in a data- 
base might be the result of any computable 
query (mapping) on the database. This would not 
lead to a useful working deflnition, unfor- 
tunately. We restrict our attention here to con- 
nections defined by project-join mappings, and 
concentrate on connections which define func- 
tions. 

More formally, let S = (R,F) be a valid 
LAURA schema, with the implied relational 
schema I& 1 for its database instances. 
Definition Let S, T be sequences of attributes 
from tl. A connection C: S-T is a finite project- 
join map on the relational schema, 

deflni 
dom(T 7 

a relationship between &m(S) and 
. Here each Ri is at least binary, and for 

all j >O Xi is a sequence of attributes included in 
both R$, and in the attributes of Ri,, . . . , R+. 

It may be helpful to view a connection as a 
hypergraph on attributes, where relation 
schemes are represented as hyperedges, and 
binary edges connect specific attributes to indi- 
cate equijoin of the corresponding columns, The 
notion of connections here is related in ways to 
the earlier work of Lien, Sagiv, and Kuck & Sagiv 
[Ll,L2,L3], [Sal, [KSl,KS2], but differs substan- 
tially in that connections are not restricted to a 
traversals of the schema (relation schemes Ri 
can be used multiple times, or not at all). 

We are particularly concerned with func- 
tional connections, since they have interesting 
inference and redundancy properties. 

Definition Let C be a connection for a schema 
S = (Q,F). We say C is a fiLnction.al connection 
C:S+T if it defines a function from dam(S) to 
Qm (T) for all database instances of the 
schema. In this case we say F [ = C, or F logi- 
cdly implies C: S + T. 

Recall as in 52 that connections can be 
obtained as chains of functional associations. 
For example, 
1 MGR -is EMP +SOcsEc-DONOR 
2 MGR -& EMP -Ires-1 MGR -ia-, EMP -has + 

Ii 
3 DELIIVERYJ! -is+ TRUCK -ir-r WHICLE 
4 PROJECT -iua- MGR -is-- EMP 
a~ give functional connections. Quick study of 
these examples makes us realize that the follow- 
ing connections must hold in each case: 

1 MGR -is+ SOCSEWONOR 
2 MGR-h.as+SALARY 

II 
3 DELIl?ERY-yAN# is-, VEHICLE 
4 PROJECT -Ias EMP 

In other words, a composition of functions is 
total if all of the functions involved are total, 
onto if they are all onto, and an inclusion if all 
the functions are inclusions. 

We have found it convenient to introduce a 
notation for chains such as the ones here. 

Definition A Qua&fled Attribute X,.X,. . . . .X,, 
in the context of a schema (Q.F) is a sequence of 
attributes such that 

x,=,x, => * -- =>xn 

is a connection. where I’=>” is some function in 

butes constructible using F. - 

More generally, if S is a sequence of attri- 
butes, we would like to And other attributes con- 
nected (related functionally) to S. The question 
the reader must be asking himself is how one 
can find functional connections logically implied 
F. We can construct a set of rules which give 
sound inferences concerning the implication of 
connections. 

Below let o,~,p be function types as in $4.1, 
where u = <al,a2;as,a4>, and7 = <81$2$3$4>. 

Definition reverse (a) is a function t 
deflned only if u is one-to-one (a4=l ‘g 

e which is 
, in which 

case 

rewrse(c7) = ta2,al;a3,a4>. 

For exam&- reverse (-is+) = G, and 
reverse (-e) = -q&x-+. 

SAL 

lletile~~y compose(o,r) is a function type, 

compose (u,7) = 

<mirr(al,81)1min(a2,82);min(a3,83),min(a4,B4)>. 

For example, compose (-&+,-has+) = -has +, 
and compose (-s@v-r,-&+) = -squ+v+. 

Dt?laniti~n inaplies(u,~) is a predicate which is 
true if a function of type (I is also of type T. In 
general, a function type u = <a,,a2;a3,a4> 
implies all functions types 7 = <@1$2;@3,84>. 

where & sai , lsi14 (or, equivalently, & => ai, 
Nir4, if we regard O-1 variables as Boolean vari- 
ables). implies defines a lattice on function 
types: 

- 
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With these definitions, we obtain the follow- 
ing rules for inferring functions S + T from a set 
of connections F. Below let X,Y,Z denote arbi- 
trary sequences of attributes. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

yJ;tYl 
+ . 

(Permutation) 
if X -CT-, Y, then nl(X) -u-r nz( Y), where 
111,ws are permutations. When u is an inclu- 
sion, we require wl=ws. 
(has-Projection) 
if X -u-+ Y, then X -u-r Y’, where o is 
many-to-one (has), and Y’ is an arbitrary 
subsequence of Y. 
(is-Projection) 
if X -u+ Y, then X’ -CT-+ Y’, where o is an 
inclusion (ti ) , and X’ and Y’ are 
corresponding subsequences of X and Y. 

~~mr$c~ionltia 

imp1i&,;,. ’ 
x -T+ Y, where 

(Reversal) 
if X --Q+ Y, and reverse (u) is defined, then 
Y -T+ X, where r=reverse (u). 
(Augmentation) 
if X -u-r Y, then X2 -u+ 32. 
(Composition) 
if X -u-r Y, and Y --7+ Z, then X --pa Z, 
where p = compose (0,~). 

Definition Let C: S-u+ T be a functional connec- 
tion. We say that C is implied by F using the 
rules, or F 1 -C, if there is some derivation of 
S-u-+T using the functions of F represented by 
schemes in C. 

It is clear that the rules above are sound. It 
would be pleasant if we could prove they are also 
complete for deriving functional connections in 
general, i.e., prove that 

Fl=CiffFi-C. 
Unfortunately we ‘cannot: there are many ways to 
do equijoins among functions, and rule 17 only 
gives one. 

For example, suppose we are given two func- 
tions A-ha,%+B and B-k+A. The connection 
which “joins” these two functions on both A and 
B will satisfy A-equiv+B. None of the rules 
above covers this situation. 

Unfortunately there are quite a number of 
ways in which one can join two functions, since 
their attribute sequences can intersect in 16 
different ways and there are 122 possible func- 
tion type combinations. Admittedly, this space 
of alternatives is not that vast, but we have not 
attempted to derive these rules. However, we 

Conjecture If the rule set IO-17 above is aug- 
mented to include all rules detailing inferences 
following from the join of two functions, then 

F I= C if? F 1-C. 

We sketch a possible proof line below, once 
some important properties of LAURA schemas 
are explained. 

Definitioar A schema S = (R,F) is onto-a~yc~~ 
(resp. totalacycLic) if there is no sequence of 
distinct edges 

xo+Y&xl+Yl,. . . ,X*+Yn 

with 

Yi n xt+l mod n+l # 6 (Kisn, 
which all have onto (resp. total) function types. 
Here each edge 4 + Yi either in F, or its rever- 
sal is in F, but no edge can occur more than 
once is the cycle (in original or in reversed 
form). 

These acyclicity notions are important since 
they let us complete partial counterexample 
databases to full counterexample databases, 
avoiding the strange problems of [CFP]. Let a 
partial instance d of a (valid) LAURA schema 
(R,F) be a database instance which does not 
violate any function in F. We say d is a complete 
iwtance if it also satisfies F. 

Lemma Any (flnite) partial instance of a LAURA 
schema can be extended to a (finite) complete 
instance. 

The extension constructed to prove this lemma 
is essentially that of the ‘chase’ technique used 
in the literature (e.g., [JK]) of repeatedly taking 
an unsatisfled constraint and adding new things 
to the database instance to help satisfy it, but 
the trick here is that the acyclicity required of 
LAURA schemas limits the extent of this exten- 
sion. When the partial instance is finite, the 
chase process terminates after a finite number 
of steps, since the onto- and total-acyclicity 
guarantee that no symbol added to some table Tj 
in a database instance can indirectly cause 
another symbol to be added to Tj later on. We 
omit the details. 9 

The acyclicity conditions avoid problems 
noticed by [CFP]. Consider the example with two 
relations R&W), RI(CD) FDs A+B, C*D, and 
INDs Ro[A] sRl[D], RJC] E Ro[B] as in [CFP]. 
These dependencies are argued to imply the ine- 
qualities 
card(A)~ca~d(B)zcmd(C)rcard(D)rcwd(A), 

where card(A) gives the number of distinct 
entries in the d-column, etc., because the FDs 
give many-one constraints and inclusions also 
give such inequalities. From these it follows that 
all cardinalities are equal, whence Ro[B] c R,[ C] 
and R,[D] rRo[d]. This conclusion does not fol- 
low ordinary inference rules. However, this 
Inference relies on four significant assumptions: 

1 AL! relations are finite. 

i ! 

2 AL! INDs represent total functions. 
3 AU FDs represent total functions. 
4 All FDs represent onto jzmctions. 
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These assumptions imply an onto-cycle. The last 
two assumptions require that the database have 
no null values where FDs exist, and are strong by 
practical standards. 

A possible proof line for the conjecture follows by 
induction on n, the size of the connection 
c: s-u+T. 

Basis 
When n =O the connection has the form 

and it is possible to show that the rules 11-M 
are all that is needed. There are several 
cases, depending on Rio and u, but-in each 
case one can construct a table riO which con- 
tradicts any S-o+T that does not follow 
from the rules. This table can be extended 
to a complete database instance because of 
the fact that valid LAURA schemes are onto- 
ac clic and total-acyclic ($4.1, restriction 
R5 . 7 
Induction Step 
(This step in the proof is not yet complete.) 
It is sufficient to show that if a function 
S-u-*T holds in a connection, then it results 
from either (1) a function on the connection 
over I$,,, . . . , Ri,-,, (2) a function on Rk, or 
(3) the join of these two functions. Many 
cases arise again. Interestingly, this step 
will not follow without LAURA restrictions 
Rl-R3, because of ‘pullback functions’ [M]. 
For example, if we join the functions 
ABir-,CD and C-has +D, we obtain a con- 
nection which satisfies A+ +B, the ‘pull- 
back’ of C-has +D. n 

5. Schema Enhancement with LAURA 
One motivation for investigating functional 

data models as we have here is that doing so pro- 
vides a formal notion of redundancy. Generally 
speaking, we would like to say -a database 
schema is redundant if there are two different 
computable queries (mappings, connections) 
which yield the same result for every database 
instance of the schema. Unfortunately this 
notion of redundancy is very difficult to make 
precise. We content ourselves with redundancy 
deflned by functional connections obtained 
through composition. 

The designer’s job at this point is to remove 
as much error and redundancy as possible from 
the schema, while simultaneously making sure 
that integrity constraints are not difficult to 
enforce. (If necessary, redundancy can always 
be reintroduced later to improve query process- 
ing performance or ease of constraint enforce- 
ment.) Unfortunately, there are many ways that 
redundancy can creep into a schema, and there 
is no best way to detect redundancy automati- 
cally or to eliminate it. A sound approach here is 
to equip the designer with tools for improving 
the schema, and permit him to proceed thusly 
armed on his own. 

5.1. Schema lkansformations 
The schema enhancement process we use 

can be thought of as beginning with a LAURA 
graph and proceeding through a sequence of 
t!mnsfonatiow. Edges or attributes from the 
graph are added or deleted so as to either 
correct errors in the graph, or eliminate redun- 
danc 
tions . 3 

(such as caused by equivalent connec- 
Transformations used by the Database 

Design Group consist of adding or deleting an 
edge and/or a attribute, and relabelling or 
reconnecting edges and attributes as necessary. 
We may group the transformations loosely into 
two classes: 
(1) 

(21 

Local Enhancement 
Transformations that make minor additions 
or deletions, producing a schema which is 
more accurate (though formally ine- 
quivalent) to its predecessor; and 
Redundant Connection Elimination 
Transformations that delete derivable con- 
nections, producing an equivalent schema. 
The second class is more interesting 

mathematically, but unfortunately the first class 
is very necessary. There is always ambiguity and 
error in a design after the view merging phase, 
and these flaws should not be propagated further 
in the design. 

-These modifications may be made in such a 
way as to minimize some quantity, such as the 
number of remaining equivalent connections in 
the graph (to make constraint enforcement 
easy), or the number of edges in the graph (to 
minimize the number of stored associations). 

We feel significant beneflts come from 
operating on a LAURA schema rather than on a 
relational schema in the schema enhancement 
process. Critical information such as existence 
constraints or entity constructs is either lost or 
represented clumsily when stored using relations 
and dependencies. We will show below how much 
of normalization amounts to a desire to elim- 
inate the storage of inherited properties. This 
understanding is obscured (for the authors at 
least) when expressed in the formalism of FDs. 

In the remainder of this section we give a 
brief presentation of some redundant connection 
elimination methods. Although our explanation 
is simplified, we wish to emphasize that deter- 
mining when transforms are to be applied is not 
simple. 

5.2. Redundant Connection Detection & Elimi- 
nation 

Two general problems must be dealt with 
here: 
(1) Finding redundancy in the schema. 
(2) Eliminating as much of it as possible. 

Redundancy is never implied by a schema a 
priori. Semantic information is required to 
determine equivalence of connections. 

Let us define redundancy in the following 
way: 
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Definition Let (R,F) be a LAURA schema, and 
Cl,&: S+T be connections obtained from F by 
rules ID-I?. We say C, is redundant if there 
exists a syntactically inequivalent connection Cz 
such that C1 and C2 define identical functions for 
all database instances of the schema. 

The inference rules of $4 may be used to 
develop an interactive mechanism for flnding 
redundancy. A basic approach is to make vari- 
ous assumptions about which connections are 
redundant, and use these assumptions to search 
for redundancy. These assumptions state that if 
connections are syntactically equivalent (under 
some definition of syntactic equivalence) then 
the connections are assumed to be semantically 
equivalent as well. As equivalent connections 
are found they are announced and, unless the 
designer somehow denies the equivalence, they 
are marked to be dealt with. 

It is desirable to make the assumptions 
explicit. There are many possibilities, including: 
(1) 

(2) 

(3) 

(4) 

Qualified attributes 
If a qualirled attribute is found which is 
type-equivalent to an edge in F, the edge is 
marked as redundant. 
Triangles 
If any connection inferrable from F is found 
which is syntactically equivalent to an edge 
in F, the edge is marked as redundant. 
Simple RUA 
All connections S+T of the same basic type 
( is, has, OT eq?hv - ignoring whether they 
are total or onto) are assumed equivalent, 
and must be dealt with somehow. If two con- 
nections are Simple RUA-equivalent but not 
fully type-equivalent, it is possible that some 
existence constraints have been forgotten in 
the schema. 
Deluxe RUA 
All connections S+T, ignoring type, are 
assumed equivalent. 

These assumptions may be used in conjunction; 
the DBDG uses a set of heuristic assumptions for 
detecting redundancy. 

Redundancy is commonly found in ‘trian- 
gles’. Suppose that three attributes A,B,C have 
connections A -u+ B, B -T+ C, A -p+ C such 
that the composition of the flrst two always 
equals the third. Thus A -p+ C is redundant, 
mdp = compose (0,~). Consider briefly what can 
happen when o and r are either is + or -has -*. 
If we inspect the table and diagram 

we flnd that eliminating the edge A -p-’ C has 
different meaning in each of the four cases. The 
second case is prohibited under normal LAURA 
use. It appears that the only cases where elim- 
inating the edge A -p+ C produces a difference 
in the corresponding relational schema is when 

Q=-~-B and T=-has+, or (I=++ and 
r=-has+. In the latter, more prevalent, case, 
C is a Mu&ted property of A a~ in $2.3, and 
A -p+ C is apullback function as in v.3. 

Much of the intent of normalization seems to 
lie in elimination of stored inherited attributes. 
This concept came as a surprise to the authors. 

Generally speaking, however, more forms of 
redundancy must be dealt with than just ‘trian- 
gles’. Abstractly the redundancy detection pro- 
cess should provide us with an ep?Lvalerrce rela- 
tion on connections derived from F. The redun- 
dancy elimination process must make decisions 
on how to remove as much redundancy as possi- 
ble. The DBDG again uses a heuristic process, 
but many interesting theoretical problems lie 
open in this area. For example, if connections 
are restricted to be paths in the schema graph, 
we arrive at a #meTa.&ed l%ansi&ive Reduction 
FVo blem: 

Given a (hyper)graph (R,F) and an 
equivalence relation between edges and 
paths of the graph, flnd a subgraph (R,F ‘) 
with as few of the equivalence relation edges 
as 
Cf. AGU]. 7 

ossible, without losing any accessibility. 

Other similar problems are easy to formulate. 

6. Etx-tensions to LAURA and Future Directions 
This paper has tried to convey the basic 

aspects of LAURA. We illustrate here additional 
avenues along which LAURA may be pushed, con- 
centrating especially on the categorization 
primitives added to LAURA, which are missing in 
some data models. We also list a number of 
interesting problems open for further investiga- 
tion. 

6.1. Categories and Disjoint Disjunctions 
We mentioned in 

k 
3.1 Kent’s argument that 

the Relational model and other record-oriented 
models) is inadequate in modeling entities hav- 
ing a number of categories into which the entity 
can be classifled, each having somewhat different 
properties. There are several possible ways to 
store such entities in a relational database, 
including (1) Make the relation scheme contain 
aU attributes of all categories; (2) Use ‘code 
flelds’, whose values define what the other flelds 
in a record mean (The PASCAL variant record); 
(3) Decompose the relation ‘horizontally’ into 
disjoint subrelations, where each resulting rela- 
tion corres onds to one of the original categories 
kzzii,[;j, &PI; (4) Use unnormalized (non-1NF) 

In LAURA diagrams, category relationships 
are indicated using a specially labelled, directed 
hyperedge. These hyperedges may be drawn 
either as 
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for is -b or -e@v + relationships, or as 

for -has-r relationships. In both these situa- 
tions, CATEGORYDISCRIMINATOR (CD) is a property 
of A, and v&us 1, valzle s, . . . , value,, give a (not 
necessarily exhaustive) list of the possible values 
of the CD. The values of A are partitioned into 
different sets according to the value of A 's CD. 
The existence semantics are quite strong: the CD 
must always be defined. 

The two categorization constructs are 
equivalent, and one may be transformed to the 
other. Property inheritance transforms also are 
commonly applicable here. Essentially the 
-is + /-equiv + construct corresponds to ‘hor- 
izontal decomposition’, alternative (3) at the 
beginning of this section, whiie the -has-+ con- 
struct corresponds to one of alternatives (1) and 
(2). 

Unfortunately the notion of connections in 
#4 may have to be modified to incorporate 
categorization. Difficulties arise in determining 
exactly which path one can take without knowing 
the value of the CQTEGORYDISCRIMINATOR. 
Somehow one must incorporate data from the 
database into the deflnition of connections 
(incorporate data into metadata). This situation 
is common in semantic networks, where schema 
information is stored together with the actual 
data [B],[Fa]. 

LAURA requires the category partitions to be 
d@@irrt. Requiring disjointness is not essential, 
and in fact complicates the model, since is-, 
edges between categories can yield invalid 
g;f;J;. Currently we place a new type of edges, 

-isn’t+ 
between attributes whose domains must be dis- 
joint, and extend the deAnition of compose in 
#43 so that 

compose (-is +,-isn’t+) = 
compose (-isn’t +,4s -b) = -isn’t +. 

me schema is taken to be valid a8 long as it is 
ys;si,le to find an attnbute A such that 

-, . 

6.2. l&ectiaPlm for Future Ramsarch 
the results presented here leave many 

directions open for further investigation. Many 
pl~?&Scal and theoretical problems SPrinO to 

l Inference rules and their Completeness 
Develop inference rules for ‘joins: of functions as 
in &S.S, proving them complete if possible. Is the 
Completness Conjecture of this section true? 

l Categorization 
How can the definition of connections be 
extended with categorization primitives of 56.17 
What sort of inference rules can be developed? 

l Generalized Transitive Reduction 
Are there fast algorithms for solving the reduc- 
tion problem in 85.2, for eliminating as many 
edges as possible from a graph without disturb- 
ing graph accessibility? 

l Qualifled Attributes 
The qualified attributes of #4.3 appear to have 
many nice properties, both from a practical and 
theoretical standpoint. It might be interesting 
to develop an algebra of qualified attributes. In 
addition, note that Mitchell’s pullback function 
p( U,V,B) [hi is equivalent to the qualified attri- 
bute U.KB (’ under the RUA). It seems possible 
that this close relationship between qualified 
attributes and Mitchell’s existentially quantified 
attributes can be exploited, possibly through 
modification of Mitchell’s rule F13 (Attribute 
Introduction), to lead to an algorithm for 
(infinite) implication on sets of FDs and INDs. 

l Acyclicity 
Find fast algorithms for determining whether a 
LAURA schema is onto-acyclic or total-acyclic, as 
deflned in g4.3. 

l Other function types 
How can LAURA be extended to include set- 
valued functions as in many functional models? 
This would permit a natural means of modeling 
many-to-many relationships, and would have 
interesting inference ramifications, because the 
reverse of many-to-one functions can be defined. 
Note [HK] also permits list-valued functions. It 
may also be interesting to extend LAURA to have 
ed es labeled b 

fi 
function names (role names) 

an permit mu tiple edges between a pair of r 
attributes. How do the -isn’t * connections of 
$6.1 interact with other function types? Infer- 
ence rules? 

7. concluaiona 
We have shown that LAURA has a number of 

desirable features as a formal data model: 
Simple functional foundation 
Powerful abstraction primitives 
Categorization primitives 

These features are advantageous when compared 
with other formal data models. 

We feel LAURA exhibits significant advan- 
tages as a formal model, both for modeling of 
large real-world schema% and for the simple, 
formally founded schema transformation pro- 
cess it encouragea. LAURA’s functional and 
categorization primitives work well with schema 
enhancement, and have exposed here the impor- 
tance of eliminating inherited properties in 
improving a schema. 
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We have encountered a number of interest- 
ing problems in developing this model, both 
nractical and theoretical. We encourage the 
development of new practical formal mod&, and 
a increased application in design practice of 
design theory. 

The authors are indebted to Rick Hull for his 
meticulous study of an earlier draft of this 
paper; his comments and suggestions improved 
the paper considerably. The authors would also 
like to thank Kamran Parsaye for his 
simplification of some of the arguments here, 
and Dennis McLeod for his comments about the 
model. Members of the DBDG family have pro- 
vided a great deal of helpful feedback and 
encouragement which contributed to the com- 
pletion of this work. Comments by the referees 
also led to a number of improvements. 
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