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ABSTRACT

This paper describes the LAURA data model and
its use in the logical design methodology of the
Database Design Group. LAURA provides simple
formal constructs for the design of large data-
bases, including generalization, abstraction, and
categorization primitives, while avoiding limita-
tions of existing formal models.

LAURA i3 based on tfunctional connections
between data, and has features of functional and
binary data models, and semantic networks. A
consequence ©of choosing a relatively abstract
level for modeling is that important semantic
information is available for use in ‘normalization’
which can be lost, for example, when schemas
are translated to relational representations. In
particular, use of the relational model inhibits
proper modeling of different types of functions
and abstractional concepts, and clouds the fact
that eliminating inherited properties from a
schema is a main concern of normalization
(which is not at all evident when expressed in the
language of functional dependencies).

This paper concentrates first on introducing
LAURA, and second on describing the normaliz-
ing transforms used with the model. The
approach developed here has been automated,
and is being used successfully in the interactive
design of large database systems.
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1. Introduction

Currently, the problem of logical design of
large databases is poorly understood, even by
experts. Some formal foundation is needed to
perform the job effectively, since without a for-

basis, schemas and data models tend to
degenerate into ambiguous or meaningless scrib-
bles. Unfortunately, existing models can be of
little help to the practicing database designer in
developing formally-based design tools. Some
designers have resorted to their own heuristic
approaches, following intuition. Others have
developed programs which require large clusters
of Functional Dependencies to be entered. An
alternative formal approach is needed, which is
simple yet offers powerful modeling constructs.

This paper describes the logical data model,
and logical design methodology, of Database
Design Group (DBDG). The methodology in its
entirety progresses through four phases, where
the results of each phase are translated into pro-
gressively more specific models:

Phase 1. Entity Relationship Model
Phase 2. LAURA: ‘Substrate’ Model
Phase 3. Structural Model

Phase 4. DBMS/Physical Model

The Entity-Relationship and Structural Models
are related to LAURA by direct translations.
LAURA is of particular interest, and most of this
paper is devoted to its description and its use in
‘normalizing’ schemas.

In the DBDG methodology, an initial concep-
tual model of the database is obtained itera-
tively. At each step of the reflnement process,
the database designer transcribes his under-
standing of the various user views required by
the enterprise using a diagramming language.
This encoded statement of the enterprise is fed
to a program that produces simplified Entity-
Relationship diegrams. These diagrams are dis-
cussed by the designer and members of the
enterprise to reach improved understanding of
how the database should be structured.

View merging software is then used to
integrate the diagramming language representa-
tions of the views, producing an enterprise
schema. When this schema is complete, it is
changed to a LAURA representation. LAURA is
graph-oriented, and can model entities, func-
tional associations, inclusion relationships &
existence constraints, and permissibility of null
values in fields. All associations are functional in

LAURA.



At this point ‘normalizing’ transforms may
be applied to the LAURA schema. These
transforms improve the schema, making either
minor corrections to misspecifications (e.g., add
existence constraints, merge identic but
differently named attributes), or changes
preserving logical connections in the schema.

The LAURA model is finally translated to a
structural model that is similar to the relational
model. We feel that significant benefit comes
from doing ‘normalizing’ transforms on the
LAURA graph model before semantic information
is lost in this translation. Much work on normali-
zation in the relational model takes on a new
significance when semantics are considered in
the process, and artifacts imposed by the rela-
tional model are removed.

2. Background

We assume the reader conversant with stan-
dard database terminology. We apologize only
for the use of a few terms. The words ‘object’,
‘association’, and '‘connection’ are used initially
here in an abstract sense. This usage conflicts
with that of a number of workers in the database
theory area.

Also, we use the word altribute here to mean
a symbol in a fixed set

Q= EAI,...,A.’L;,

while ‘property’ is used to convey the more
abstract notion of a ‘characteristic of an entity’.
As usual, each attribute A has a domain dom (4),
and sequences of attributes S =4;,...,4;
have domain dom (S) =

domn (4; )% - - - xdomn (4; ).

Finally, we assume the reader to have a
basic understanding of abstraction concepts, the
binary model, and semantic networks. We
develop all terminology needed here, bui the
reader may wish to review these subjects. Smith
& Smith [SS1,S52] give an excellent development
of generalization and aggregation, extending ear-
lier work by Quillian and others on semantic net-
works. Brachman’'s survey on semantic networks
[B] is also recommended. Interesting treat-
ments of the binary data model can be found in
[A%, [TL]. [HK] provides a good presentation of
the functional model.

2.1. Connections in a Database

Let us begin with an intuitive development of
connections. Suppose we are interested in the
phone number of the manager of the database
project. (The database is not working, say.) The
‘connection’ we use to find this information
might be to find the phone number of the office
whose employee is manager of the project.
Using the abstraction primitives is and has, we
employ

PROJECT has MGR is EMP has OFFICE has PHONE

Similarly we can express ‘recursive’ connections
such as the salary of a particular employee's
manager's Imanager:

EMP hos MGR is EMP has MGR is EMP has SALARY.
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dom.(4)
dom(Bj; ¢ dom(B) is the image of f

We view facts in a database as connections
among data objects. In the terminology above,
connections might be made up of is and has
relationships between objects. Formally, we
model this by saying that if 4 and B are attri-
butes, a connection —o— between them is a sub-
set of dom (4)xdom (B). This deflnition extends
to n-ary connections. This definition is purely
extensional, but by considering classes of con-
nections such as these we obtain an intensional
definition.

A recurring concern in both the logical
design and the querying of databases is the com-
bination of connections. If A4,B,C are attri-
butes, and we have the connections o, T

A-0-B —1-C

then their combination (which we may write as
mac{oX7), m denoting projection) gives a con-
nection between dom (4) and dom (C). Generally
speaking, any path of connections will define
some connection. However, this combination
may not be ‘meaningful’ (nontrivial). Let

dom (A)cr dorn (B)v

denote the subsets of dom (4), dom (B) actually
appearing in this binary relation. Then given the
connections o, 7 among 4,B,C above, the combi-
nation o]X|T is meaningful only when ¢ and T
meet the weak existence constraint

dom(B), n dom(B), # ¢.
Otherwise the combination is trivial.

Thus, by ‘connections’ we are really refer-
ring to project-join combinations. This is close
to the Binary data model concept of association,
which includes both navigational and existence
semantics. Navigation'is performed by combin-
ing connections. Existence semantics certify
that these combinations are meaningful.

2.2. Functional Connections

Functions are common types of connections.
They can be used to model more complex con-
nections, such as many-many relationships and
n-ary relationships. Let 4, B be attributes. For
a given functional connection f:4-B, let us
write

¢ dom(4) isthe set on which f is defined

so that
f(dom(4);) = f(dom(4)) = dom(B),

Definition f is a fofal function if dom(4), =
dom (4); otherwise f is a partial function.

Definition f is onto if dom(B), = dom(B).

Definition f is an inclusion if dom(4), C
dom (B) and f is the identity map on dom (4),.

If all connections are functional, functional
composition yields a combination of connections.
To determine the set of meaningful composi-
tions, we can require specification, for each pair



of functions A~f-+B—-g-+C, whether or not
dom(B)y n dam.(B), is empty. A more typical
way to specily whether compositions are mean+
ingful is to use existence constrainis, Putting an
existence constraint on a function f:4-F (ie.,

asserting that whenever a is in dom(4), there

must exist some b = f (a) in dom (B)) is identical

to asserting that f be total.

ot AL B_ _L_ Lo ____ iA%L _4 (J !
1WO 1mporualit 1acils fiere are unsL composi-

tions of tofal functions are tofal, and composi-
fions of onto funclions are onfo. As a result,
compositions of total functions are always
‘meaningful’ (nontrivial). This is not to say that
composition of partial functions is not meaning-
ful; composition of partial functions is just not
guaranteed to be meaningful.

%3. Connections, Abstraction, and ‘Normaliza-
on’

Abstraction notions are important Ior
modeling complex role arrangements among
entities in the databaese. This is particularly
true, for example, in modeling recursive rela-
tionships such as PARTs having SubPARTS,
EMPLOYEEs having MANAGERs which are in
turn EMPLOYEE's, etc. Recently there has been
some formal work on these notions. Researchers
have concentrated on generalization (ISA)
hierarchies [SS], [BK], [Sel], [HY], aggregation
and FDs [SS], [HY], and connections [WM].

The examples in §2.1 suggest that abstrac-
tion notions are important in modeling of con-
nections between objects in a database. Note
that is and has information is easily obtained
from Entity-Relationship dimgreams, and embo-
dies associations (lacts) well, since it
corresponds directly to natural language con-
structs. Moreover, the abstraction primitives is
and has may be viewed as two important types of
tunctions: inclusions, and many-to-one functions.

The is and has abstraction mechanisms also
play important roles in design. Recall: The main
emphasis of logical design is to eliminate redun-
dant (or incorrect) connections from a schema,
while preserving other connections and keeping
integrity constraints easy to enforce. II all con-
nections are modeled by functions, then redun-
dancy is eliminated by remo tunctions which
duplicate or are compositions of other functions
in the database.

Thus, i all functions are either inclusions
(is) or many-to-one relationships (has), then we
must eliminate redundant compositions of these
functions. We argue below that elimination of
redundant connections is closely related to elim-
ination of property inheritance (a term popular

in semantic data models). If A is a lubt;ge of B
(A iz B), and B hncproperty C (B has C), then

o

A inhsrils property C.

is m. >
O
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The connection between 4 and € is redundant

here, and its elimination from the database
yields an enhanced schema. This notion is of
significance in schema transformation, and will
be discussed at greater length in §5.

3. Motivation

The LAURA model was developed for the logi-
cal design of large databases. This statement is
important, since many data models are
developed to have a pleasant user interface; and
assumptions made in existing theoretical results
a&gear workable mainly in smaller databases
[AP]. We argue in this section wh%' formal data
models like LAURA are needed. We encourage
work along these lines; the recently developed
Structural model of Wiederhold & El-Masri [WM]
and FORMAT model of Hull & Yap [HY] are wel-
come additions.

In our view, it is undesirable to begin the
Scheme Design process with only notions of
dependencies among attributes. Instead, it is
desirable to use a model which can support
abstractional concepts, entities and relation-
ships adequately. Formal means may then used
to analyze an initial rough schema and improve
it through a sequence of schema transforma-
tions T: S - S 'which take a schema S and yield
an ‘improved’ schema S ' We call this process
Schema Enhancement. (We avoid the word 'Nor-
malization'.)

We expand here on the limitations of the
relational model for representing real-world
data. We restrict our attention to the relational
model, since the bulk of formal research has
dwelled on it, and since its limitations reflect the
positive aspects of LAURA well. The Relational
model is extremely powerful in its generality,
and elegant in its mathematical foundation. It
has provided many fruitful avenues of research
over the past decade and a helf, However, we
can summarize three general problems with
using the Relational model as a formal data
model for the design of large databases: restric-
tive semantic capacity of the model itself, limita-
tions of Functional Dependencies as a data
modeling construct, and problems arising from a
foundation on single-relation semantics.

3.1. Limited semantic capacity of the Rela-
tional model

Codd has underscored the need for addi-
tional semantic constructs in the Relational
model for accuracy in real data modeling [C], as
have other researchers [HM], [MS]. Efforts to
improve the model by adding more constructs
have concentrated on the spots where the model
is weakest: adding the notion of entities, or
objects, and incorporating constructs modeling
connections, or associations, among objects.
More work 1s needed to meke dependencies
properly convey entity concepts and existence
semantics.

In addition, the bare Relational model
presents difficulties in large database environ-
ments due to its utu.n%extra semantic weight
on attributes [U2]. The Relationship Uniqueness



Assumption [AP] forces all connections between
a set of attributes to mean the same thing,
although this is unnatural. The next section
reviews some consequences of this assumption.

The bare Relational model has difficulty in
expressing abstractional notions such as gen-
eralization and aggregation. Abstraction is
essential in large databases, but the Relational
model requires serious changes to accomodate
multiple relationships between entities or roles
of entities. Furthermore, the idea of ‘property
inheritance’ introduced in §2.3 is lost when a
schema is translated into a set of dependencies
and relation schemes.

Finally, Kent points out in [K2] that the Rela-
tional model (and other record-oriented models)
suffers many shortcomings in modeling certain
types of data. It is particularly poor at modeling
entities possessing a number of cafegories into
which the entity can be classified, each having
somewhat different properties. Kent gives cloth-
ing as an example: There are many types of
clothing, and each type has individual features
not shared by the others. Entities of this nature
do not fit well in a uniform record structure, and
are not treated eflectively by the Relational
model.

3.2. Limitations of Functional Dependencies

We begin by remarking that Functional
Dependencies (FDs) alone are not sufficient for a
formal notion of 'facts’. The incongruity between
FDs and facts has been noted by by Smith and
Smith [SS1], who argue that FDs do not
correspond to facts (‘aggregated objects’) and
that ‘well-defined’ relations should correspond to
one natural language name rather than to a FD.

A related complaint is that FDs may
represent either a constraint or a fact, or both,
or neither. This is an elaboration of the observa-
tion in {FMU,p.347] that FDs can be of either a
‘data structuring’, or ‘incidental’, nature. Con-
straints are 'structuring’ if they should be taken
into account in developing a schema. However,
some constraints are not; they should not
i[nfh]lence the way the database should be laid out

LP].

Different ways of interpreting FDs is a major
source of problems in database theory. Many
attempts have been made to extend the elegant
results holding with single relations to work for
the multi-relation case. The Relationship
Uniqueness Assumption (RUA) mentioned in §3.1
is one such attempt, bul leads to counterintui-
tive results in large databases. From the set of
FDs [AP]

EMP§-OFC#, OFC#->PHONE
EMP4 +LAB#, LAB# -PHONE

one infers the FD EMP#->PHONE, implying
surprisingly that an employee has a single
phone.

Further problems arise if one assumes that
all FDs are constraints that must be enforced on
the database (the ‘global consistency' problem
[LTK], [Sa), [KS1,KS2)). In the example above,
enforcing the global constraint EMP#-»PHONE is
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not guaranteed by simple enforcement of the
four initial FDs. Naturally it is possible that we
would want this FD to hold and be enforced, but
this is not necessary.

Frequently the assumptions made concern-
ing FDs are imprecise. In the literature it is
common to find the belief that the FDs

X-Y, Y-X

imply a one-to-one map between tlle domains of
X and Y. However, this inference is not correct
a priori. It requires the RUA (in which case Y-»X
represents the inverse function of X+Y), or the
assumption that all FDs are total and onto.

3.3. Foundation on Single-Relation Semantics

The single-relation Relationa! model is quite
elegant, so it is desirable for researchers to
investigate its general applicability. Research
into Join Dependencies (and Multivalued depen-
dencies) has a number of goals, but certainly one
of them is their reduction of multi-relation data-
bases to a single relation (Universal Relation)
foundation. Unfortunately, these dependencies
have a circular definition [AP], and certainly do
not mirror the semantics of large databases. It
is not easy to fathom what Multivalued depen-
dencies and 5th Normal Form actually mean in a
large database.

Research on Universal Relation databases is
still at an early stage [U2]. However, we see
many practical reasons for avoiding a Join
Dependency or Universal Relation outlook on the
design of large databases. Real designers do not
start out with a single relation. (And do not want
to end up with one!) Second, using a single rela-
tion destroys the ability to model inclusions.
Third, various Universal Relation assumptions
force limitations mentioned in §3.1-3.2. Finally,
the UR model introduces problems in the elimi-
nation of ‘redundancy’ in ‘normalization’ and the
treatment of null values. The interested reader
should consult [U2], [AP].

4. LAURA: The DBDG Model

In this section we introduce LAURA. LAURA
is a data model expressly designed to capture
tunctional associations precisely. It incorporates
concepts from the Binary mode! and from
Semantic Networks, as well as abstractional con-
cepls in semantic models. In ways, the model is
reminiscent of the Functional Models developed
by Kerschberg and others ([KP,SKHK], [BF],
[HWY], [Sh]), but emphasizes the notion of con-
nections (§4.3) and places weight on applications
in destgn rather than in, say, query processing.
LAURA’s ties to Semantic Networks here are, to
our knowledge, new.

After describing essential aspects of LAURA
and how they are used in practice, we define con-
nections and show some of the advantages of
working with functional associations.



4.1. Formal Definition of LAURA

A LAURA database schema S=((},F) is a
labelled hypergraph composed of:

(1) A set {1 of attributes defining the nodes of
the graph. Attributes are of two fypes:
Extensional, or Intensional. Each node or
attribute 4 in Q has a corresponding a
domain, called domn (A).

(2) A set F of connections, which are directed
edges or hyperedges among attributes in Q.
Ordering of attributes in hyperedges is
significant, in the sense that in XY the
relative ordering of attributes in both X and
Y is meaningful. Both X and Y should thus
be viewed as sequences of attributes. Each

edge/hyperedge is labelled with one of
twelve functional connection types:
—is » —igo> —is> —is
—has » —has- ~has- —has-
—equiv-> —egQuiy-> —equiv->  —eQuUIV-

A LAURA schema also obeys the following restric-
R1 Intensional attributes have no outgoing
edges.

R2 Edges or hyperedges may be labelled as
—is> only if they connect extensional attri-
butes to intensional attributes.

R3 It X - Y is a hyperedge, then no proper (per-
muted) subsequence of X or Y may have
outgoing edges to extensional attributes.
However, X and Y may be involved in other
hyperedges (or edges if X or Y is a single
attributeg)

R4 If X -0~ Y is a hyperedge, where o is one of
—is >, —is>, —is->, or —ig>, then X and Y
must be sequences of equal length.

R5 The set F must be both onto-uweyclic and
total-acyclic. (These terms will be defined
below, in §4.3.)

Each edge or hyperedge X —o- Y in F represents
a function from dom (X) to dom (Y) to be stored
in the database. (The function may be viewed
alternatively as a constraint.) As mentioned
above, there are twelve function types. We may
describe a type o by a four-tuple of 0-1 variables

o = < Total, Onto ; Inclusion, One —to —one >.

For example, <1,0;0,1> and <0,1;1,1> are func-
tion types. These variables make four state-
ments about the nature of a function.

Total If Totali=1, the function is a total
function from dom(X) to
dom(Y). In other words, for

every element in dom(X), the
function associates a specific
element in dom(Y). This com-
bines a functional constraint
with an existence constraint,
asserting that a Y exists for each
X.
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Onto If Onto=1, the function from
dom(X) to dom(Y) is onto, so
each element in dom(Y) must
have one or more elements in
dom (X) mapped onto it. This
again combines functional and
existence constraints.

It mclusion =1, then the function
represents simply an identity
map on dom (X)Ndom(Y). (This
can be interpreted as saying that
X and Y are joinable. Related
notions appear in [K1]) Of
necessity this situation requires
the next variable, One —to —one,
also to be 1.

If One--to—one=1, the function
must be a one-to-one map of
dom (X) into dom (7).
Thus, a function type <0,0;0,0> simply charac-
terizes a (possibly many-to-one) function from
dom(X) to dom(Y); and a function type
<0,0;1,0> is not possible, since it implies a
many-to-one inclusion relationship.

We use the following symbols for function

type labels in graphical presentations of LAURA
schemas: if o is the function type

Inclusion

One —to —one

0 = <0y,0p;,03,04>

then o has the labeling indicated by the table
below.

c agay =11 agoy =01  agay = 00
ayag = 00 ~1is -» —equiv - —has »
oz = 10 —is —gquiy- ~has-+
oo = 01 —iso —equiv- —has—
oyap = 11 s —equiy-» —bhas-»

Thus ‘is’ edges are inclusions, ‘equiv’ edges are
one-to-one maps, and ‘has’ edges are many-to-
one maps.

By restricting the domain and range of a
function, we can make the function total or onto.
Definition A Simple Qualified Attribule X.Y
(resp. Y:X) in the context of a function f:X-Y
is a symbol in (I with an associated domain equal
to precisely that part of dom(Y) (resp. dom((lX N
mapped onto by f.

In the notation of §2.2, dom(X.Y) = dom(Y),,
and dom(Y:X) = dom(X),. Thus regardless of
the type of function f, the restricted function
f:X»XY is onto, f:Y: X »7Y is total, and
f:Y:X -» XY is total and onto.

Definition A dafabase instance of a valid LAURA
schema S=(F) is a set of tables
d = {<R;r> | 1sismé where each K; is a sub-
set of Q, and ; € dom (R;). Specifically,

{R; | 1=i=m} = {4 | A, Ais extensional }

VIXUY | X—0-Y e F},



so all non-extensional! attributes and all func-
tions in F are embodied in the relation schemes
of the database instance. Furthermore, the set
{r;{ obeys the functions in F. (Note: 7; never
contains 'null values’.) Thus functional schemes
R;=XuY will have 7; obeying X-o-Y, while
unary schemes F; = 4 will have unary tables 7;
containing all values of dom(A4) appearing in
other functional schemes in the instance.

This definition requires storage of all func-
tion types, so even inclusions will be explicitly
stored in tables. This is done only for the sake of
simplicity.

As an example of a LAURA schema, in Figure
1 we see a portion of a Bill of Materials database.
Attributes are circled, and edges are marked
with their function types. The example exhibits
the use of recursive relationships (assemblies
and their component parts), weak entities (ven-
dor locations), and potentially null fields (strue-
ture description, vendor status). These useful
constructs are difficult to capture in some data
models.

4.2. Practical Use of LAURA

In practice, LAURA is used in restricted ways
which model common constructs such as enti-
ties, relationships, keys, foreign keys, etc. We
have chosen to separate this usage from the for-
mal definition of the model itself. Below we
enumerate some common restrictions applied in
modeling with LAURA.

(1) Hyperedges are used only to represent rela-
tionships involving multiattribute keys and
multiattribute foreign keys. We find it help-
ful to equate (using an —eguiv—> edge) a set
of attributes with a single ‘surrogate’ attri-
bute, which then participates in other rela-
tionships. This tends to reduce the complex-
ity of a graphical schema display. Conceiv-
ably hyperedges could also be used in other
abstractional ways, through aggregation of
large sets of attributes.

Each entity in Figure 1 is represented with
an external key/surrogate attribute,
displayed in capital letters. Thus the mul-
tiattribute key
COMPONENT:PARTH# ASSEMBLY :PART# is
equivalent to the external key STRUCTURE.
(R
) Furthermore, LAURA requires the is and has
edges to comprise respective ISA and
‘HASA®  hierarchies (directed acyclic
graphs), much as in [SS1]. Generalization
and abstraction concepts are captured in
this manner. It is rare that these hierar-
chies are more than a {few levels deep. The
IS4 hierarchy can have perhaps 3 or 4 levels
(Fahlman [Fa,p.39] concurs, noting that
even the entire hierarchy of living creatures
has only 20 levels), while in our experience
HASA is very short, with 2 or 3 levels at
most. Note that in LAURA, intensional attri-
butes represent ‘datatypes’, while exten-
siona! attributes are always stored subsets
of the corresponding type.

All inclusion edges are regquired fo be total.
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Figure 1. LAURA Schema for Bill of Materials

Database

(3) Maony different oitribute types are intro-
duced. We have found it fruitful to distin-
guish between entities, keys, parts of keys,
foreign keys, category discriminators, pro-
perties, and so forth. This permits enforcing
restrictions on the types of functions that
can connect one type of attribute with
another. For example, an —is-» relationship
can connect only two key attributes. The
table and diagram below illustrate the res-
trictions possible between individual attri-
butes or sets of attributes. Existence con-
straints could of course be added to these

restrictions. fat
key —is - key .
key —equiv » key @ @
key —has - non-key
non-key  —has- non-key .
non-key —is - key is

equie
Mony-many relationships are represented
by creating o surrogate atiribute (external
key) and using a mulliotiribute —egquiv-
connecltion. Similar methods can be used
for n-ary relationships. Other data models
provide more flexibility in modeling such
relationships, but ‘user-friendliness’ is not
the emphasis here.
Possession and roles are expressed with
simple qualified atiributes. The attributes
entityname.object, rolename entityname
such as PART.VENDOR§, and ASSEMBLY:PART#
in Figure 1 serve to incorporate this struc-
turing. Distinct roles of an entity are thus
assigned a unique attribute in Q.

(4)

()



4.3. Connections in LAURA

In this section we show how connections may
be defined using the s and has connections of
§4.1. Generally speaking, a connection in a data-
base might be the result of any computable
query {mapping) on the database. This would not
lead to a useful working definition, unfor-
tunately. We restrict our attention here to con-
nections defined by project-join mappings, and
concentrate on connections which defilne func-
tions.

More formally, let S=((,F) be a valid
LAURA schema, with the implied relational
schema {R;} for its database instances.

Deflnition Let S, 7 be sequences of attributes
from ). A connection C:S-T is a finite project-
join map on the relational schema,

C = mspl(- - (Ri"X',ﬁ(,R"‘) Xlﬁ(e ) X,.l?-(k',. R;,)

defini a relationship between dom(S) and
dnm(?‘%. Here each K; is at least binary, and for
all 7>0 X; is a sequence of attributes included in
both R, and in the attributes of R, . . . By

It may be helpful to view a connection as a
hypergraph on attributes, where relation
schemes are represented as hyperedges, and
binary edges connect specific attributes to indi-
cate equijoin of the corresponding columns. The
notion of connections here is related in ways to
the earlier work of Lien, Sagiv, and Kuck & Sagiv
(L1,L2,L3], [Sa], [KS1,KS2], but differs substan-~
tially in that connections are not restricted to a
traversals of the schema (relation schemes E;
can be used multiple times, or not at all).

We are particularly concerned with func-
tional connections, since they have interesting
inference and redundancy properties.

Definition Let C be a connection for a schema
S=(Q,F). We say C is a functional connection
C:5-T i it defines a function from dom(S) to
dom(T) for all database instances of the
schema. In this case we say F |=C, or F logi-
cally implies C: S~»T.

Recall as in §2 that connections can be
obtained as chains of functional associations.
For example,

1) MGR —is»> EMP —is»> SOC_SEC_DONOR

2) MGR —is» EMP —bhas-» MGR ~is> EMP —has » SAL

3) DELIVERY.VAN§# —is» TRUCK —is» VEHICLE
4) PROJECT —has» MGR —is>» EMP

all give funciional connections. Quick study of
these examples makes us realize that the follow-
ing connections must hold in each case:

1) MGR —is» SOC_SEC_DONOR

2) MGR —has > SALARY

3) DELIVERY.VAN# —is» VEHICLE
4) PROJECT —hags> EMP

In other words, a composition of functions is
total if all of the functions involved are total,
onto if they are all onto, and an inclusion if all
the functions are inclusions.

We have found it convenient to introduce a
notation for chains such as the ones here.
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Definition A Qualified Attribute X;.Xp - - - .X,
in the context of a schema (Q,F) is a sequence of
attributes such that

Xo=>X;=> -+ =>Xp

is a connection, where "=>" is some function in
F. For example,

PROJECT MGR.EMP.OFFICE PHONE

EMP.MGR. EMP.MGR.EMP.SALARY

are qualified attributes. From the attribute set
(1 we can construct a complete qualified atiri-
bute set consisting of {1 and all qualified attri-
butes constructible using F.

More generally, if S is a sequence of attri-
butes, we would like to find other attributes con-
nected (related functionally) to §. The question
the reader must be asking himself is how one
can find functional connections logically implied
F. We can construct a set of rules which give
sound inferences concerning the implication of
connections.

Below let o,7,0 be function types as in §4.1,
where 0 = <oy,02:03,04>, and T = <F,,82,85.684>.

Definition reverse (o) is a function type which is
defined only if ¢ is one-to-one {a4=1), in which
case

reverse (o) =

For example, reverse(—is») =
reverse (—eQquiu-) = —equiv-.

<ag,al;a3'a4>‘

—is-, and

Definition compose(o,7) is a function type,
defined by

compose (0,7) =

<min (ay,B), min(az,Bz); min(ag,fa), min (ay,84)>.

For example, _compose(—is+,—has-) = —has -,
and compose (—equiy-,—is-) = —gguiv-.

Definition implies(o,7) is a predicate which is
true if a function of type o is also of type 7. In
general, a function type ¢ = <oya5as0,>
implies all functions types 7 = <81,82.84.084>.
where §; <a; , 1<i<4 (or, equivalently, §; => oy,
1=i<4, if we regard 0-1 variables as Boolean vari-
gbles). implies defines a lattice on function
ypes:




With these definitions, we obtain the follow-
ing rules for inferring functions S + 7 from a set
of connections F. Below let X,Y,Z denote arbi-
trary sequences of attributes.

10. (Reflexivity)
X ~is» X.

I1. (Permutation)
if X —o-»Y, them m(X) —o- my(Y), where
m,,7p are permutations. When o is an inclu-
sion, we require my=m,.

I2. (has-Projection)
if X~0»7, then X ~0-» Y', where o is
many-to-one (has), and Y’ is an arbitrary
subsequence of Y.

{ig-Draiantinn)
\13 1 LUJC\—DJULI./

if X —o-» Y, then X' —o-» Y', where o is an

-
[

inclusion (is), and X' and Y' are
corresponding subsequences of X and Y.

14. (Type Implication)
if -0 Y, thenm X -1+ Y, where

implies (0,7).

I5. (Reversal)
if X —g-» Y, and reverse (o) is defined, then
Y —7- X, where r=reverse (o).

16. (Augmentation)
it X —o-» Y, then XZ —o- YZ.

17. (Composition)
if X—-0-»Y, and Y -7+ Z, then X —p-» 7,
where p = compose (0,7).

Definition Let C: S—0-T be a functional connec-
tion. We say that C tis implied by F using the
rules, or F|—C, if there is some derivation of
S—o-7T using the functions of F' represented by
schemes in C.

It is clear that the rules above are sound. It
would be pleasant if we could prove they are also
complete for deriving functional connections in
general, i.e., prove that
Fl=C it F|-C.

Unfortunately we cannot: there are many ways to
do equijoins among functions, and rule I7 only
gives one.

For example, suppose we are given two func-
tions A-has-»FB and B—-has-»A. The connection
which "joins” these two functions on both A and
B will satisfy A—equiv->F. None of the rules
above covers this situation.

Unfortunately there are quite a number of
ways in which one can join two functions, since
their attribute sequences can intersect in 18
different ways and there are 12° possible func-
tion type combinations. Admittedly, this space
of alternatives is not that vast, but we have not
attempted to derive these rules. However, we

Conjecture If the rule set I0-I7 above is aug-

mented to include all rules detailing inferences

following from the join of two functions, then
Fl=Ccit F|-C.
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We sketch a possible proof line below, once
some important properties of LAURA schemas
are explained.

Definition A schema S= (Q,F) is onfo-acyclic
(resp. total-acyclic) if there is no sequence of
distinct edges

Xo-’ YO,XI" Yl, [N an."Yn

with

i N Xivimoane1 # $, O<i=n,
which all have onto (resp. total) function types.
Here each edge X; » Y; either in F, or its rever-
sal is in F, but no edge can occur more than

once is the cycle (in original or in reversed
form).

These acyclicity notions are important since
they let us complete partial counterexample
databases to full counterexample databases,
avoiding the strange problems of [CFP]. Let a

partiol instance d of a (valid) LAURA schema -

((,F) be a database instance which does not
violate any function in F. We say d is a complete
instance if it also satisfies F'.

Lemma Any (finite) partial instance of a LAURA
schema can be extended to a (finite) complete
instance.

The extension constructed to prove this lemma
is essentially that of the ‘chase’ technique used
in the literature (e.g., [JK]) of repeatedly taking
an unsatisfied constraint and adding new things
to the database instance to help satisfy it, but
the trick here is that the acyclicity required of
LAURA schemas limits the extent of this exten-
sion. When the partial instance is finite, the
chase process terminates after a finite number
of steps, since the onto- and total-acyclicity
guarantee that no symbol added to some table r;
in a database instance can indirectly cause
another symbol to be added to 7; later on. We
omit the details. »

The acyclicity conditions avoid problems
noticed by [CFP]. Consider the example with two
relations Ko(4AB), R(CD) FDs A-B, C»D, and
INDs RolA]C Ry[D], Ry C]c Ro[E] as in [CFP].
These dependencies are argued to imply the ine-
qualities
card (A)=card(B)=card (C)2card (D) =card (4),

where card(4) gives the number of distinct
entries in the A-column, etc., because the FDs
give many-one constraints and inclusions also
give such inequalities. From these it follows that
all cardinalities are equal, whence Fy[B]c R,[C]
and R,[D]c RgolA]. This conclusion does not fol-
low ordinary inference rules. However, this
inference relies on four significant assumptions:

1) All relations are finite.

2) Al INDs represent total functions.
3) All FDs represent total functions.
4) All FDs represent onto functions.



These assumptions imply an onto-cycle. The last
two assumptions require that the database have
no null values where FDs exist, and are strong by
practical standards.

A possible proof line for the conjecture follows by
induction on mn, the size of the connection
C:S—o-T.

Basis

When n =0 the connection has the form

C = ngr(R)

and it is possible to show that the rules 11-18
are all that is needed. There are several
cases, depending on R;, and o, but-in each
case one can construct a table r;, which con-

tradicts any S~o-7 that does not follow
from the rules. This table can be extended
to a complete database instance because of
the fact that valid LAURA schemes are onto-
1%% clic and total-acyclic (§4.1, restriction

Induction Step

(This step in the proof is not yet complete.)
It is sufficient to show that if a function
S—0-T7 holds in a connection, then it results
from either (1) a function on the connection
over R, ... ,R; . (?) a function on R, , or
(3) the join of these two functions. Many
cases arise again. Interestingly, this step
will not follow without LAURA restrictions
R1-R3, because of ‘pullback functions’ [M].
For example, if we join the functions
AB—~is»CD and C~has-D, we obtain a con-
nection which satisfies A-is-E, the ‘pull-
back’ of C—-has-+D.»

5. Schema Enhancement with LAURA

One motivation for investigating functional
data models as we have here is that doing so pro-
vides a formal notion of redundancy. Generally
speaking, we would like to say a database
schema is redundant if there are two different
computable queries (mappings, connections)
which yield the same result for every database
instance of the schema. Unfortunately this
notion of redundancy is very difficult to make
precise. We content ourselves with redundancy
defined by functional connections obtained
through composition.

The designer's job at this point is to remove
as much error and redundancy as possible from
the schema, while simultaneously making sure
that integrity constraints are not difficult to
enforce. (If necessary, redundancy can always
be reintroduced later to improve query process-
ing performance or ease of constraint enforce-
ment.) Unfortunately, there are many ways that
redundancy can creep into a schema, and there
is no best way to detect redundancy automati-
cally or to eliminate it. A sound approach here is
to equip the designer with tools for improving
the schema, and permit him to proceed thusly
armed on his own.
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' process.

5.1. Schema Transformations

The schema enhancement process we use
can be thought of as beginning with a LAURA
graph and proceeding through a sequence of
transformafions. Edges or attributes from the
graph are added or deleted so as to either
correct errors in the graph, or eliminate redun-
dancy (such as caused by equivalent connec-
tions{. Transformations used by the Database
Design Group consist of adding or deleting an
edge and/or a attribute, and relabelling or
reconnecting edges and attributes as necessary.
We may group the transformations loosely into
two classes:

(1) Local Enhancementd
Transformations that make minor additions
or deletions, producing a schema which is
more accurate (though formally ine-
quivalent) to its predecessor; and

() Redundent Connection Elimination
Transtormations that delete derivable con-
nections, producing an equivalent schema.

The second class is more interesting
mathematically, but unfortunately the first class
is very necessary. There is always ambiguity and
error in a design after the view merging phase,
and these flaws should not be propagated further
in the design.

--These modifications may be made in such a
way as to minimize some quantity, such as the
number of remaining equivalent connections in
the graph (to make constraint enforcement
easy), or the number of edges in the graph (to
minimize the number of stored associations).

We {feel significant benefits come {from
operating on a LAURA schema rather than on a
relational schema in the schema enhancement
Critical information such as existence
constraints or entity constructs is either lost or
represented clumsily when stored using relations
and dependencies. We will show below how much
of normalization amounts to a desire to elim-
inate the storage of inherited properties. This
understanding is obscured (for the authors at
least) when expressed in the formalism of FDs.

In the remainder of this section we give a
brief presentation of some redundant connection
elimination methods. Although our explanation
is simplified, we wish to emphasize that deter-
mining when transforms are to be applied is not
simple.

5.2. Redundant Connection Detection & Elimi-
nation
Two general problems must be dealt with
here:
(1) Finding redundancy in the schema.
(2) Eliminating as much of it as possible.
Redundancy is never implied by a schema a
priori. Semantic information is required to
determine equivalence of connections.
Let us define redundancy in the following
way:



Definition lLet (Q,F) be a LAURA schema, and
C1,C2: ST be connections obtained from F by
rules 10-I7. We say C; is redundant if there
exists a syntactically inequivalent connection Cz
such that C, and C; define identical functions for
all database instances of the schema.

The inference rules of §4 may be used to
develop an interactive mechanism for finding
redundancy. A basic approach is to make vari-
ous assumptions about which connections are
redundant, and use these assumptions to search
for redundancy. These assumptions state that if
connections are syntactically equivalent (under
some definition of syntactic equivalence) then
the connections are assumed to be semantically
equivalent as well. As equivalent connections
are found they are announced and, unless the
designer somehow denies the equivalence, they
are marked to be dealt with.

It is desirable to make the assumptions
explicit. There are many possibilities, including:

(1) Qualified attributes
If a qualified attribute is found which is
type-equivalent to an edge in F, the edge is
marked as redundant.

(2) Triangles
If any connection inferrable from F is found
which is syntactically equivalent to an edge
in F, the edge is marked as redundant.

(3) Simple RUA
All connections S+ T of the same basic type
( is, has, or equiv — ignoring whether they
are total or onto) are assumed equivalent,
and must be dealt with somehow. If two con-
nections are Simple RUA-equivalent but not
fully type-equivalent, it is possible that some
existence constraints have been forgotten in
the schema.

(4) Deluxe RUA
All connections S-+T, ignoring type, are
assumed equivalent.

These assumptions may be used in conjunction;
the DBDG uses a set of heuristic assumptions for
detecting redundancy.

Redundancy is commonly found in ‘trian-
gles’. Suppose that three attributes 4,8,C have
connections 4 —o» B, B -1+ C, 4 —p~» C such
that the composition of the first two always
equals the third. Thus A —p-+ C is redundant,
and p = compose (o,7). Consider briefly what can
happen when o and T are either —is » or —has .
Ii we inspect the table and diagram

o T P
~has-» . —has- | —has~
~has-»  —is-» | —has-~
—is > —has -+ | —has~
—1s —1S — >

we find that eliminating the edge A —p- C has
different meaning in each of the four cases. The
second case is prohibited under normal LAURA
use. It appears that the only cases where elim-
inating the edge A —p-+ C produces a difference
in the corresponding relational schema is when
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o0=—has» and T=-—has», or ¢=-is> and
r = —has+. In the latter, more prevalent, case,
C is an inherited property of 4 as in §2.3, and
A —p- C is a pullback function as in §4.3.

Much of the intent of normalization seems to
lie in elimination of stored inherited attributes.
This concept came as a surprise to the authors.

Generally speaking, however, more forms of
redundancy rmust be dealt with than just ‘trian-
gles’. Abstractly the redundancy detection pro-
cess should provide us with an equivalence relo-
fion on connections derived from F. The redun-
dancy elimination process must make decisions
on how to remove as much redundancy as possi-
ble. The DBDG again uses a heuristic process,
but many interesting theoretical problems lie
open in this area. For example, if connections
are restricted to be paths in the schema graph,
we arrive at a Generalized Tronsitive Reduction
Problem.;

Given a (hyper)graph ((,F) and an
equivalence relation between edges and
paths of the graph, find a subgraph (Q,F")
with as few of the equivalence relation edges
as possible, without losing any accessibility.
Cti. [AGU].

Other similar problems are easy to formulate.

6. Extensions to LAURA and Future Directions

This paper has tried to convey the basic
aspects of LAURA. We illustrate here additional
avenues along which LAURA may be pushed, con-
centrating especially on the categorization
primitives added to LAURA, which are missing in
some data models. We also list a number of
interesting problems open for further investiga-
tion.

6.1. Categories and Disjoint Disjunctions

We mentioned in §3.1 Kent's argument that
the Relational model (and other record-oriented
models) is inadequate in modeling entities hav-
ing a number of cafegories into which the entity
can be classified, each having somewhat different
properties. There are several possible ways to
store such entities in a relational database,
including (1) Make the relation scheme contain
all attributes of all categories; (2) Use ‘code
flelds’, whose values define what the other fields
in a record mean (The PASCAL variant record);
(3) Decompose the relation ‘horizontally’ into
disjoint subrelations, where each resulting rela-
tion corresponds to one of the original categories
[FK], [F], [BP); (4) Use unnormalized (non-1NF)
relations.

In LAURA diagrams, category relationships
are indicated using a specially labelled, directed .
These hyperedges may be drawn

hyperedge.
either as




for —is » or —eguiv - relationships, or as

(e
Z'.“_
0@

for —has - relationships. In both these situa-
tions, CATEGORY DISCRIMINATOR (CD) is a property
of 4, and value,, valuey, . . . ,value, give a (not
necessarily exhaustive) list of the possible values
of the CD. The values of A are partitioned into
different sets according to the value of A's CD.
The existence semantics are quite strong: the CD
must always be defined.

The two categorization constructs are
equivalent, and one may be transformed to the
other. Property inheritance transforms also are
commonly applicable here. Essentially the
—is +/—equiv -+ construct corresponds to ‘hor-
izontal decomposition’, alternative (3) at the
beginning of this section, while the —has + con-
?;;-uct corresponds to one of alternatives (1) and

Unfortunately the notion of connections in
§4 may have to be modified to incorporate
categorization. Difficulties arise in determining
exactly which path one can take without knowing
the value of the CATEGORY DISCRIMINATOR.
Somehow one must incorporate data from the
database into the definition of connections
(incorporate data into metadata). This situation
is common in semantic networks, where schema
information is stored together with the actual
data [B),[Fa].

.. LAURA requires the category partitions to be
disjoint. Requiring disjointness is not essential,
and in fact complicates the model, since —is-
edges between categories can yield invalid
Egdlelcsl. Currently we place a new type of edges,

ele

-isn't »

bgtween attributes whose domains must be dis-
joint, and extend the definition of compose in
84.3 so that

compose (—is »,—isn't +) =
compose (~isn't +,—is ») = —isn't -,

The schema is taken to be valid as long as it is
not possible to find an attribute 4 such that
A—isn't»A.

6.2. Directions for Future Research

The results presented here leave many
directions open for further investigation. Many
practical and theoretical problems spring to
mind.
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Inference rules and their Completeness

Develop inference rules for ‘joins* of functions as
in §4.3, proving them complete it possible. Is the
Completness Conjecture of this section true?

Categorization

How can the definition of connections be
extended with categorization primitives of §6.17
What sort of inference rules can be developed?

¢ Generalized Transitive Reduction

Are there fast algorithms for solving the reduc-
tion problem in §5.2, for eliminating as many
edges as possible from a graph without disturb-
ing graph accessibility?

Qualified Attributes

The qualified attributes of §4.3 appear to have
many nice properties, both from a practical and
theoretical standpoint. It might be interesting
to develop an algebra of qualified attributes. In
addition, note that Mitchell's pullback function
»(U,V.B) [Mg is equivalent to the qualified attri-
bute U.V.B (under the RUA). It seems possible
that this close relationship between qualified
attributes and Mitchell's existentially quantified
attributes can be exploited, possibly through
modification of Mitchell’s rule FI3 (Attribute
Introduction), to lead ito an algorithm for
(infinite) implication on sets of FDs and INDs.

Acyclicity

Find fast algorithms for determining whether a
LAURA schema is onto-acyclic or total-acyclic, as
defined in §4.3.

Other function types

How can LAURA be extended to include set-
valued functions as in meny functional models?
This would permit a natural means of modeling
many-to-many relationships, and would have
interesting inference ramifications, because the
reverse of many-to-one functions can be defined.
Note [HK] also permits list-valued functions. It
may also be interesting to extend LAURA to have
edges labeled by function names (role names)
and permit multiple edges between a pair of
attributes. How do the —isn't- comnnections of
86.1 interact with other function types? Infer-
ence rules?

7. Conclusions

We have shown that LAURA has a number of
desirable features as a formal data model:

Simple functional foundation
Powerful abstraction primitives
Categorization primitives

These features are advantageous when compared
with other formal data models.

We feel LAURA exhibits significant advan-
tages as a formal model, both for modeling of
large real-world schemas, and for the simple,
formally founded schema transformation pro-
cess it encourages. LAURA's functional and
categorization primitives work well with schema
enhancement, and have exposed here the impor-
tance of eliminating inherited properties in
improving a schema.



We have encountered a number of interest-
ing problems in developing this model, both
practical and theoretical. We encourage the
development of new practical formal models, and
a increased application in design practice of

design theory.
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