OPERATIONS AND THE PROPERTIES ON NON-FIRST-NORMAL-FORM
RELATIONAL DATABASES

Hiroshi Arisawa Kunihiko Moriya

Yokohama National University

Yokohama, JAPAN

ABSTRACT

In this paper, non first normal form
relations (or NFRs) are discussed. First the
authors define composition of tuples to
introduce NFR and discuss some properties. Then
canonical forms of NFRs are defined using "nest"
operations. This is optimal in the sense that
every 1INF relation can be always transformed
into canonical ones and canonical forms have the
desired properties to some extent. Also we
shall consider data dependency and its effect to
NFRs. Finally we consider some algorithms for
updating tuples in NFRs with their complexity.

1. INTRODUCTION

Most of the recent works concerned with
database systems assume theoretical background
of relational data model [1]. One of the
reasons is due to its mathematical foundation by
which we can logically construct and manipulate
information without paying attention to physical
representation. However, several problems have
been pointed out by some researchers. Among
them, the reasonableness of the first normal
form (or INF) is sometimes discussed because it
excludes compound value sets from domains [5].
In advanced application processing, we could
take more complicated value sets. Basically
compound-value problems come from "data
semantics"™, it should be observed from data-
model views.

In this paper,
problem but extend

we will not pursuit this
relational model wusing

197

Takao Miura

Mitsui Engineering & Shipbuilding

Co., Ltd. Tokyo, JAPAN

compound value domains because of simplicity and
of mathematical treatment. Also we shall
consider the properties including data
dependency. Historically some investigations
have discussed about non first normal form
relations (or NFRs) [61,[7],(8]. But [6]
contains ambiguous definitions of NFRs and fails
to take advantages of NFRs. [7] considers NFRs
as nested relations which are precisely defined
on 1NF. We extend this idea to some "normal"
form concept like irreducible form and canonical
form. Also we describe their properties and
algorithms for updating NFR databases with the

complexity. By all these discussion we shall
show that NFRs have the potential for
usefulness.

2. CONSIDERATIONS ON COMPOUND VALUES DOMAINS

When we consider compound value domains, a
variety of "compoundness" could be discussed.
Let us consider a relation that can contain a
set of simple values in each field. Even in
this simple case some ambiguity exists. For
example, suppose SC[Student, Course] relation
which represents a student takes a course. When
SC contains a tuple (s, {cy, cp}), this says
that student s takes courses cq and c¢p, or
precisely, two tuples (s, cq1) and (s, cp) are in
SC. In this case the {cy, cp} has no special
meaning.

On the other hand, suppose that CP[Course,
Prerequisite] relation describes a course has
prerequisite courses, and that CP contains (cg,
{cq, c2}). In this case, CP can contain (cg,
{ct, 03}) for another prerequisite condition of
cog. As Prerequisite is defined on power set of
Coursey, we can not split those tuples like
above. Moreover, we may have (cg, {{cy, cpl,
{eq, e31b).

Other examples of compoundness are ordered
lists, sentences and even relation-valued
domains [81].

All the examples make us consider more
precise treatement to NFRs. In subsequents, we
start with the first pattern, that is, the case
the relation is defined on simple domains,
because this is the natural extension of
relational model and is useful for practical

purpose.
Even in such simple notion, the data in NFR

has to be manipulated carefully. Lets show
following example.

Let Rq, Ro be NFRs, defined on {Student,
Course, Club} and {Student, Course, Semester}
respectively (Fig. 1).

Ry »
Student Course Club
81 c1, €2, €3 (b1, b2
Sz ¢1, C2, €3 b2
83 c1, C2, C3 b1
Rz
Student Course Semester
81, 82, 83} ¢1, C2 t1
81, 383 c3 £
s c3 t2
Fig. 1 Example of NFRs
R
Student Course Club
S4 €2, €3 by, b2
sp c1, €2, C3 b2
83 c1, C2, €3 b1
R2
Student Course Semester
32, 83 C1, C2 t1
89 c2 £
81, 83 c3 tq
s2 c3 t2
Fig. 2 Updated NFRs

Ry contains tuple (s, ¢, b) when a student "s"
takes a course "c¢" and belongs to a club "db".
R, contains tuple (s, ¢, t) when a student "s"
takes a course "c" in the semester "t". Here,
assume a student "s¢4" stops taking a course
"cq". We want to drop the tuples like (sq, e1,
*) from both Ry and Rp. This corresponds to
removing the value cq of the first tuple in Ry,
and to removing the first tuple in Ry and adding
({sp, 33}, {cq, cp}, tq) and (s, c2, t9) to Rp
(see Fig. 2). The reasons why these complicated

198

operations broke out in R» are that we have a
Multivalued Dependency (MVD) [2]
Student =->-> Course | Club
in Ry, but no MVD in Rp.

From the viewpoint of data modelling, it
may be explained that each tuple in Ry
represents a student entity, and "course" and
"elub" are its attributes. Therefore Ry

represents an entity relation [3]. On the other
hand, Ry shows the relationship relation between
student's entities and course's entities. We
believe there 1is no distinction between two
types of relations taking NFRs into
consideration. That is, when we consider
compound value domains, we should not assume
some dependencies already exist.

Although NFRs have rather complicated
structure than 1NFs like the above discussion,
the authors claim that the NFR has some "better"
properties compared with 1NF., One is the fact
that NFRs are much more powerful not only as
user view but also as internal view. In
practice, the reduction of the number of tuples
will contribute to the reduction of logical
search space. We call this level of view as
realization view.

NFR may have much less tuples than 1NF by
putting a group of tuples into one by means of
composition. Also NFR may throw away UNF
concept, or it may take advantages of FDs as [7]
says.

‘'On the other hand, compound value domains
bring some problems into designing. That is,
how can we obtain "good" NFRs, how can we Kkeep
desired properties at updating NFRs and so on.
Subsequently, we'll show the general way to get
NFR from iNF and make clear the properties on
NFRs in more detail.

3. PROPERTIES OF NON FIRST NORMAL FORM
’ RELATIONS

3.1 Basic notation

First we define NFR. We use basically the
notation in [4], but we denote a "tuple" in a
different way. Given a set of simple domains
D¢, Dp, an orderd set (ey, ..., ep) such
that each e; is in Dj was called an "n-tuple" in
the n-ary relation. We denote this tuple as

[D1(e1) ... Dpleq)].

Now let us extend the "relation" concept to
NFR. Given a set of simple domains (or sets of
atomic elements) Dip, Dp, R is said to be
non first normal form relation (or ygg) over D,
sesy Dp if and only if R is a set of tuples

seey

(Dy(e11, ++vy emy) ... Dplent, ..., enm,,)]
where ejy belongs to Dj. By expanding each
tuple component Dj(ej) to D(eiy, ..., eym.),
each NFR tuple can represent: all the tupies
whose domain values are taken from the specified
set of values. That is, the above NFR tuple
means the set of tuples

{[Dy(e1) ... Dplen)] | ejeleqy ... ejmy}}.

For example, [A(a;, ap) B(by)] means the set of
two tuples ‘[A(ay) B(by)] and [A(ap) B(by)]-.

Hereafter we denote a relation R as anNFR
unless otherwise stated.

3.2 Composition of Tuples and Irreducible Forms

Let us define composition and decomposition
of tuples for the purpose of getting NFRs.
Basic idea of the composing rule was firstly
proposed in [12], and some remarkable extentions
have been done by Jaeschke and Schek [7].

Definition 1
Let r and s be tuples in a relation R such that

r = (Ey(e1y, ...
and
s = [Eq(dq1,

» e1pq) ... Eplent, «.v, enrn)]

ces d131) .« Eqldpts «ves dnsn)].

If, for each i =1, ..., n, (ey1, ..., €4p,) is
set-theoretically equivalent to (djq, ..., éisi)
except i=c, then the operation to create a néw
tuple
[E1(er1, ooy e1r1) . Eoleers «ves ecrys
dats +ees dcsc) .. Eplent,y ooey enry)]

Is called a composition of r and s over E,.
This is denoted by vEc(r, s).

For example, the result of vg operation on
two tuples
ty = [A(aq, ap) B(by, bp) Clcq)l
and
to = [A(a1, ap) B(b3) C(cq)]
is
t3 = [A(ay, ap) B(by, bp, b3) C(eq)].

Composition corresponds to the trans-
formation from 1tNF to NFR, because it cannot
lose or add any information. That is, this is

the syntactical rule by which we have the same
amount of information and less tuples,

As composition preserve equivalence between
1NF and NFR, we can define a decomposition which
is the reverse operation of composition.
However, the result of decompositions depends on
the sequence of spliting domain values on E,.
We define it in a more restricted way.

Definition 2
Let t be a tuple in a relation R

[E1(eq1, +ees e1t1) oo Eglegry ovey edty> ey)
En(ents +ees entn)J'

The operation getting two tuples
tp = [E1(eq1y «ovs e1t1) eoo Eglegrs voey

edtd) «oo En(ents oves entn)] and

199

te = [Er(eqq, vvey e1t1) ... Eqley)

Ep(ents «ees entn)]

is called a decomposition on E4(ey), denoted by
UEq(ey) (t).

Using the above example, we have ty and to
by uB(b3)(t3), and we also have other two tuples

[A(a) B(by, bz, b3) C(ey)]
and

(A(ap) B(bq, by, b3) C(cq)]
by uA(a1)(t3).

Both
defined

composition
syntactically
tuples. In this paper,
NFR which can be derived
composition and decomposion.
Given NFR R we denote 1its original INF
relation as R*. Of course R¥ has no duplicate
tuple and so has R.

and decomposition are
depending upon only
we restrict ourself to
from 1NF using

Theorem 1
Given NFR R, there exists one and only one R¥.
(proof) by definition 1 and 2. [

On the other hand, as a 1NF can have
several NFRs, we try to find minimal ones in
some sense.

Definition 3

Let us define irreducible relation. After
applying a sequence of compositions, if no more
composition is possible without decomposing and
re-composing, then the result relation is called
an irreducible form relation or Just
irreducible,

Example 1
Thinking about a relation R over A, B, let

ri = [A(ay) B(bq)]

ro = [A(ap) B(bq)]

ry = [A(ap) B(bp)]

ry = [A(az) B(bp)]
be tuples in R.
Applying compositions over A, i.e. va(ry, rp)
and va(r3, ry), we get an Iirreducible form
relation Ry which contains two tuples

(A(ay, ap), B(by)] and

[A(ap, a3z) B(bz)l.
Also we can obtain another Iirreducible form
relation Ry containing three tuples

[A{ay) B(bq)],

[(A(ap) B(by, b2)] and

[A(a3z) b(bp)]
by vg(ry, r3). O

Above example shows that there could be
more than one irreducible form relations derived
from INF. Clearly, in an irreducible form, the
number of tuples is minimal in a sense though it
may not be minimum,

3.3 Nest Operation and Canonical Forms

Here let us introduce canonical forms of
irreducible NFRs using nest operations. [7]
discusses the nest operation and its properties.

Definition 4

Let R be a relation on domains Eq, ..., Ep.

Nest operation on Ej, denoted by Vg, is the
successive compositions over E;i as "many as
possible. The result relation is called a
nested relation over Ej;, denoted by VEi(RL
VEi(VEj(R)) is abbreviated by VEiEJ(R)-

We define canonical forms using the ™"nest"
concept. .

Definition 5

Let P be a permutation on Eq, ..., E,, that
is, the sequence E{ ... E, is replaced by P(E{)
... P(Ey) after applying the permutaion P. The
successive nest operations

VP(E{) ... P(Ey)(R)

is denoted by Vp(R). Then it is easy to show
that Vp(R) s irreducible. Note that we
transformed R into Vp(R) syntactically and it's
always possible. Vp(R) 1is said to be in a
canonical form. We have n! permutations and so
do canonical forms.

There can exist an irreducible form
relation which 1is not canonical but has fewer
tuples than any canonical form relation as
following example.

Example 2
When a relation R3 over A, B, C has 6 tuples
like
= [A(aq)
= [A(aq)
(ACay)
[Aap)
[Aap)
[A(ap)
Considering
irreducible
three tuples

[A(ay) B(bq, b3) C(ep)],

[A(ap) B(bq) C(eq, ¢2)] and

[A(ay, ap) B{(by) C(cq)].
But Ry cannot be derived using nest operations.
For example, after applying the operation
Vepa(R3), we have canonical form relation Ry
like

[A(a1, ap) B(bq) C(c2)],

[A(ay, ap) B(bp) C(eq)],

(A(ay) B(bp) C(cp)] and

[A(ap) B(by) Cleq)].
Thinking over the symmetricity of R3, every
canonical form contains 4 tuples.]

B(bqy) C(ep)]

B{bp) C(eq)]

B(bp) C(ep)]

B(bq) C(cq)]

B(by) C(ep)]

B(bp) Cle1)],

tuples carefully, we
form relation Ry which

have an
contains

Nevertheless, canonical form seems to be
"better" than other Iirreducible forms in the
sense that we can syntactically reduce every 1INF
to canonical one and that we have a unique NFR

200

which depends only upon a permutation P as in
Theorem 2.

Theoresm 2

Let R be a relation over U={Ey, ..., Epl}.
let P be a permutation over U.

Then a canonical form relation as a result of Vp
is unique, that is, the final form Iis
independent of the sequence in composition of
tuple-pairs in each VE1 operation.

And

It's easy because each nest operation
the uniqueness property by
The detailed proof is left to the

(proof)
Ve preserves
de%inition y,
reader. [J

3.4 Canonical Form based on FDs and MVDs

Having a canonical form, we have to decide
the permutations P. The "best" permutations may
stand on the properties which have Dbeen
investigating in the relational model.

We discuss the strategy to get canonical
forms in terms of FDs and MVDs. In this
section, we suppose all the relations are in
3NF, which are mechanically obtained [13]. For
this purpose, let us define the basic notations.

Definition 6
Let R be a relation over Eq, ...
For any e in Ej

(1)

, En.

If e appears in at most one tuple and
the tuple has a form [... Ej(e) ...]
then we denote it as Ej:R = 1:1,

(2) in at most one tuple and
Ei(vy €
..] then we denote it as Ej:R =

if e appears
the tuple has a form [...
eee)
n:1,

(3) if e appears in more than one tuples and
the tuples have a form [... Ej(e) ...]
then we denote 1t as Eq:R = 1:n,

(4) if e appears in more than one tuples and
the tuples have a form [... Ey(..., e,
«es) ...] then we denote it as Ej:R =
m:n.

Essentially it says the cardinality corres~
pondence between domain values and tuples.

Next, we define "fixedness" concept corres-~
ponding to "key" notion on NFR.

Definition 7
Let R be a relation over Fy, ..., Fy, Eq,
Ep. 1f, for each fy, ..., fyx where each f; is
in Fj, there exists in R at most one tuple which
contains all of fy, ..., fx as a part, then it's
sald that R is fixed on Fq, Fi.

In Example 1, R is not fixed on any domain.
However, Ry 1s fixed on A and Ry on B.

Now let us consider FD and MVD with respect
to NFR.

Theorea 3

Let R be a relation over a set of domains U.
Assume FD Fy, ..., Fy -> Ey, ..., Ep holds where
each Fy, E4 is in U. Then any irreducible form
relation R' derived from R is fixed on Fy, ...,
Fy and E{:R' = 1:n for each i=1, ..., m.

(proof) Clearly the FD also holds in R¥, and R"
is fixed on F4q, Fk. Applying all the
possible compositions to have the irreducible
form, it's sufficlent to show the NFR is st{ll
fixed on Fq, ..., Fx. Assume otherwise. Then
there should exist the composition which was
applied to two tuples whose values on Some
attribute Ey are different. But it contradicts
the property of fixedness on Fy, ..., F. O

Theorea 4

Let R be same in theorem 3. Assume MVD
Fi, vevy Fx == E1| e IEm

exists.

Then there exists an irreducible form relation
R' which is fixed on Fy, ..., Fy and E{:R' = m:n
for each i=1, , M.

(proof) Similar to theorem 3,
reader. [

and left to the

Note theorem 4 shows that there may exist
an irreducible form which 1s not fixed on Fq,
Fx in the case of MVD, as the following
example says.

Example 3
A relation Rg over A, B, C has 4 tuples and MVD
A ->-> B|C is assumed.
ri = [A(a7) B(by) C(eq)]
[A(ay) B(bp) C(eq)]
[A(ap) B(by) C{ecq)]
[A(ap) B(by) C(ep)]
an irreducible form relation Rq which

We have
contains
(A(ay) B(bq,bz) C(cq)] and
[A(ap) B(by) C(eq, cp)].
Also we can obtain an irreducible form relation
Rg which contains
[A(aq, ap) B(by) Cley)],
(A(ay) B(bp) C(cq)] and
[A(az) B(by) C(ep)].
Ry is fixed on A, however Rg is not so. (]

Moreover, we can show the following
theorem.
Theorem 5
Let P be a permutaion of U =~ Eq, ..., Ep on
which 1NF relation R is defined. Then there

exists a fixed canonical form relation where the
fixedness is established on at most n-1 domains.

(proof) We will outline the proof and leave the
detail to reader. Let R be the NFR and Eq, ...,
E, be the nesting sequence. When R is already

irreducible, R is fixed on U-E4y for each i. If
not, Vg (R) is fixed on U-Ey for each 1.
Applying” the successive nest operations, the

result NFR still holds the fixedness which has
been previously established. [J

201

In short, in NFR R, given FD Fq, ..., Fgx =>
..oy Ey or given MVD Fq, ..., Fgx ->=> Eq|
|Em,» there can exist P by which Vp(R) 1is
canonical and fixed on Fq, ..., Fy where P is a
permutation of Fq, ..., Fx. That is, nesting on
leftside attributes of FDs or MVDs allows us to
get to "better'" NFR. The relationships among
canonical, fixed and {irreducible NFRs are
summarized as shown in Fig. 3.
We will show further discussion elsewhere.

Eqy,

canonical irreducible
NFR NFR
fixed NFR

Fig. 3 Relationships among canonical,
fixed and irreducible NFRs

4. INSERTION AND DELETION OF TUPLES
ON NON FIRST NORMAL FORM RELATIONS

As we said, possibly NFR-based database
scheme has much less number of relations, in
which the number of tuples in each NFR is also
drastically reduced. It's certainly one of
advantages of NFR compared with 1NF, On the
contrary, there are some problems about NFR.
First, there might be more than one NFR to
represent the amount of information, though 1NF
relations give us just one way to do that. Also
it's hard to find the "minimum" NFR.
Neverthless, theorem 5 shows us there exists one
and only one canonical form relation using nest
operations.

Another problem is the update of NFR. In
TNF relations update could be applied on a tuple
itself, but not in NFR because several tuples
may be combined together into one.

Therefore, update operations get more
complicated and some might say actual updates
happen all over the database. We will show it
is not true. When we have the efficient
algorithms, NFRs could become useful not only in
conceptual level but also in physical
representation. Let us move on to the update
problem. Remember that R is generally in NFR
and R* its corresponding 1NF relation,

4.1 Update Problem on Non First Normal Form
Relations

The wupdate problem asks whether there
exists an algorithm which is applied to not r*
but R when insertiqg or deleting a tuple t on R
corresponding to R". Moreover, it's essential

that the compexity of the algorithm does not
depend on the number of tuples in R but the
order of at most el where n is the degree.

Now, we show the solution of this problem.
(Note in Appendix we describe the theoretical
background and the complexity about it.)

Let us define basic concept and functions
which are used in the algorithm.

. 1I'(Y‘, Ek)
r.

: gives the Ey-component of tuple

unnest(Ej(es), t, te, tp) : gives tuple tg¢
and tp which are obtained by the
decomposition UEJ(eJ)(t) according to Def.
2.

compo(x, t, w) gives tuple w which is
obtained by the composition with tuple X
and t.

+ candt(t, to, m) gives a candidate tuple
te and the minimum value m -for given tuple
t.

searcht(t, q) gives a tuple q in NFR
which contains a simple tuple t to be
added.
- deletet(q) : delete a tuple q.
candidate tuples given tuple t, a tuple
s in R is called the candidate tuple of t
if and only if one of original simple
tuples of s in R* can be composed with t
on Ej and no other tuple in R does not
hold this property on EJ for any j«<i.
Note there exists at most one candidate
tuple of t in R (lemma A-1).

4.2 Strategy of Insertion Algorithm

Let r={E1(ey), ..., En(en)] be a tuple to be
added, and P be EnEn—q...Eq, a permutation.

In order to obtain the same relation of
VP(R*+r) finally, we have to find the candidate
tuple in R of r which is composed with r. Then
the candidate tuple may be decomposed, and we have
new tuples. After that, we may apply the same
operations about new tuples. Moreover so are the
tuples which are obtained by composition with
tuples to be added (or obtained).

‘ Now we show procedure "insertion" for adding
a new tuple to R.

Procedure insertion

procedure insertion
var t:tuple /¥ for insert tuple */

begin t :=r ;
recons(t)
end.

Essentially the main operation is the procedure
"recons". The procedure "recons" plays role as
follows:

Given tuple t, it selects the candidate tuple p by
"candt" Then it executes "unnest" until t
becomes composable with the new tuple related to
p. Lemma A-2 says this is always possible. But
as we have the remaining tuples which are not
related to the composition with t, "recons" is
invoked recursively to them. After composing t,
the composed tuple t' could be composable with
other tuples. So "recons" is called again. Note
1f there exist candidate tuples with respect to
t', they are always composable (lemma A-3).

Procedure recons

procedure recons (t : tuple)
var p:tuple /¥ candidate tuple ¥/
var pg:tuple /* tuple to be composed with t */
var pp:tuple /* new tuple of decomposing p */
var w:tuple /* composed tuple with t and p */
var j:integer /* index for decomposing order */
var m:integer /* attrib. number of cand. tuple */
begin
candt(t, q, m) ;
if p <> null then
begin
Ji=n;
while j > m do
begin
unnest(Ej(es), p, Pe, Pr) ;
if py <> null then recons(pp) ;
P = De i
Joi=3 -1
end
compo(p, t, W) ;
recons(w)
end
end.

4.3 Deletion Algorithm

Assume the same notation in 4.2, Let us
show deletion algorithm. First we have to find
a tuple q in R which contains in r by searcht(t,
Q). Second we apply the operation
"unnest(Ej(ej), 4, Qe, Qp)" for i=n to 1 until
r=qe. Again, we may have new tuples for each 1.
For this purpose, the relation should be
reconstructed using the algorithm of "recons" in
4,2. Finally, when r=qe, tuple r can be deleted
by "deletet".

Now we show the procedure "deletion".

Procedure deletion

procedure deletion
var i:integer /* index for decomposing order */
var q:tuple /* tuple contains simple tuple t */
var gg:tuple /* obtained by unnest of q */
var qp:tuple /¥ obtained by unnest of q */
begin i := n ; searcht(r, q) ;
while g <> r do
begin
unnest(Ej(ey), q, Qes GQr)
recons(qp) ;
q := Qg
i=4i -1
end

deletet(q)
end.
5. CONCLUSION
We proposed NFR and discussed its
properties and the update algorithms on it. We

didn't address the data manipulation language
which we will show elsewhere. NFR allows
database users to take away such decompositions
of schema that are forced to occur MVDs, and to
discard join operations which originate from the
decomposition. In the implementation, it gives
us the theoretical foundation enough to reduce
the search space in databases.

Although the update algorithms seem to be
more complicated than 1INF, the number of
composition to keep NFR canonical doesn't depend
on the number of tuples. We didn't mean to
optimize the algorithm, but the optimization
strategy is another problem.

In order to take advantages of NFR, it's
necessary to discuss "relations"™ or predicates
in the mathematical meaning that we can find in
the recent development of universal relations
[10]. That 1is, NFR stems from the deep
consideration of data model itself. It will be
necessary to find more fundamental objects of
databases.

References

A Relational model of data for
CACM 13-6, pp.

[1] E.F. Codd
large shared databanks,
337-387 (1970).

Fagin Multivalued

new normal form

databases, ACM-TODS, Vol.

262-278 (1977).

P.P. Chen The Entity-Relationship model -

toward a unified view of data, ACM-TODS,

Vol. 1, No. 1, pp. 9-36 (1976).

Ullmann Priciples of database systems,

Computer Science Press (1980).

Kobayashi An overview of the database

management technology, tech. report

TRCS 4-1, Sanno College (1980).

Makinouchi A consideration on normal

form of not-necessarilly-normal data

model, 37d VLDB, pp. H47-453. (1977).

Jaeschke, H.-J. Schek Remarks on the

algebra of non first normal form

relations, Proc. 1st Principles of

Database Systems, ACM, pp. 124-138

(1982).

H.~-J. Schek, P. Pistor Data structure for
an integrated data base management and
information retrieval system, 8th VLDB,
(1982).

[9] H. Arisawa, K. Moriya, T. Miura : Uniformity

of data description and query formula,
submitted elsewhere.

dependencies and a
for relational
2, No. 3, pp.

rel

£31]

(4]

(5

(6]

7]

(8]

2C3

[10] C. Beeri, P. Bernstein, N. Goodman : A
sophisticate's introduction to database
normalization theory, Uuith VLDB, pp. 113-
124 (1978).
Arisawa

undate probl

wpLlave pie

f11] H. On the complexity of the

ems on non first normal form
relations, Bulletin of the faculty of
engineering, Vol.33, Yokohama national
university (1983).

Arisawa A conceptual design of a
database machine based on a new data
model, Proc. of international conference
on Entity-Relationship approach to
system analysis and design, P. Chen
(ed.), pp. 597-614 (1979).

Bernstein Synthesizing third normal
form relations from functional
dependencies, ACM-TODS, Vol. 1, No. &,
pp. 277-298 (1976).

[12] H.

(131 p.

APPENDIX

We show the theoretical background and the
complexity about Update Algorithms in section 4
without proof. We discussed the complexity of
the update problems in the sense of the number
of compositions, but not of time complexity
because the latter depends heavily on physical
representation of NFRs.

Lemma A-1
There exists at most one candidate tuple of
a given tuple t for each Ej.

Lemma A-2
Let te, tp be tuples which are obtained by
UE;(e;)(t) operation according to Def. 2.

If there exists the candidate tuple t, in R
of tg, then
W(tr, Ek)

m(te, Ey) for each k=1, ..., i.

Lemma A-3

Let r, be the candidate tuple in R of a
given tuple r, and w be a tuple which is
composed with r and r, (or decomposing rg if
necessary).

If there exists the candidate tuple w, in
R-r,, then

m(w, Ep) n(Wy, Eg) for each k=1, ...,
All these details and proofs are in [11].

i.

Theorem A-Y
Insertion and deletion algorithm in section U4
have the complexity of at most O(em) where n is
a degree of NFR. Note the complexity means the
number of compositions.
(proof)

We show the sketch and the complete proof

is in {11]. We focus on deletion (the case of
insertion is similar).
Let r = [Eq(e1), ..., Ep(eyn)] be the tuple

in NFR R which contains t
deleted tuple,

(1, ..., tp), the
where ej; is a set of values on

Bi. Also let e'y be ej-{ty}, ry = [Ei(e1), ...,
Ej(e*;), Ej+1(tje1), ..., Ep(tp)] be a tuple
deducible from r, and RJ be R if j = n+1,
Vzn...E1(Rl+1‘[E1(e1). cees Ej-q1(ey-1), EJ(tJ)»
En(tnli) 1if §j s n.

Then, for each j, no tuple in RJ” except
(Eqy(ey), Ey-1(ey-1), Eg(ty), ..., En(ty)]
is composable on E5 with rj.

Therefore r 8 not composable any longer
on Ej Our goal is to show that, by composing
O(e"'J”) times on RJ+1U{rJ}, we have Rj where J
< n, since J = 1 means the end of deletion.

We show above by induction.

In the case of j = n, there exists at most
one tuple in Rp which is composable with rp-1.
In the case of j < n, there exists at most one
tuple which is composable with ry on EJ+1 in
Ry+1 (Essentially this is lemma A-1).

Let s = [E1(e1), ceey 3-1(3 -1) EJ(B'J).
E +'|(a)p E +2(tJ¢2. +2)' vevy Ej(tn. bn)] be
the tuple. Note a ® {jq. bj ty for j*2 s 1 §

204

n. The tuple s can be composed with ry on EJH
and we have to pick out [Ei(ey), ..., Ej-1(ey-

1)s (e’s), 1(‘), Eyep(t +2)' ey En(in)]

go J ;\a [Ef(&]] cees Ej- 1(04..1),
Ej(e'y), r-3+1\a). +2{tys2, bje2), ..., Egldy),
Ej+1(E541)s «.o, E,{Ztn)] for j+2 s i1 $ n. Call
those tuples SJ*Z. S,,. Also we have

ee oy

(E1(e1), ..., Ei:q (e .-1). e Ey+1(a),
Ejs2(tj+2)s ..o Ep(ty)l. s composable
with ry in Rye+1, and let S, be the result.

So cannot be composable on EJ+1. When
composing Sq on E“;, we can use inductive
assumption. That is, we have at most f£(1)+1
compositions where j+2 S 1 S n.

And, in total, the maximum composition count is
£(j+2) + ... + £(n) + (n-k-1).

'By the above consideration we can summarize

£(J) = (n-k)+2 x (£(j*+2)+ ... +£(n)) in maximum,
f(n) = 0 and f(n-1) = 1. Calculating them we
have the result. [J

