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ABSTRACT 

In this paper, non first normal form 
relations (or NFRa) are discussed. First the 
authors define compoai t ion of tuplea to 
introduce NFR and discuss some properties. Then 
canonical forma of NFRa are defined using Vest” 
operations. This is optimal in the sense that 
every 1NF relation can be always transformed 
into canonical ones and canonical forma have the 
desired properties to some extent. Also we 
shall consider data dependency and its effect to 
NFRa. Finally we consider some algorithms for 
updating tuplea in NFRa with their complexity. 

1. INTRODDCTION 

Moat of the recent works concerned with 
database systems aaaume theoretical background 
of relational data model Cl 1. One of the 
reasons is due to its mathematical foundation by 
which we can logically construct and manipulate 
information without paying attention to physical 
representation. However, several problems have 
been pointed out by aome researchers. Among 
them, the reasonableness of the first normal 
form (or 1NF) is sometimes discussed because it 
excludes compound value aeta from domains [5]. 
In advanced application processing, we could 
take more complicated value sets. Basically 
compound-value problems come from “data 
semantics”, it should be observed from data- 
model views. 

In this paper, we will not pursuit this 
problem but extend relational model using 
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compound value domains because of simplicity and 
of mathematical treatment. Also we shall 
consider the properties including data 
dependency. Historically some investigations 
have discussed about non first normal form 
relations (or NFRs) C6l,C7l,C81. But [63 
contains ambiguous definitions of NFRa and fails 
to take advantages of NFRs. [7] considers NFRa 
as nested relations which are precisely defined 
on 1NF. We extend this idea to some “normal” 
form concept like irreducible form and canonical 
form. Also we describe their properties and 
algorithms for updating NFR databases with the 
complexity. By all these discussion we shall 
show that NFRs have the potential for 
usefulness. 

2. CONSIDERATIONS ON tXWODND vALDESIxlm1NS 

When we consider compound value domains, a 
variety of “compoundnessl’ could be discussed. 
Let us consider a relation that can contain a 
set of simple values in each field. Even in 
this simple case aome ambiguity exists. For 
example, suppose SC[Student, Course] relation 
which represents a student takes a course. When 
SC contains a tuple (a, (cl, ~2211, this says 
that student a takes courses cl and cp, or 
precisely, two tuplea (a, cl) and (a, 9) are in 
SC. In this case the {cl, cP} has no special 
meaning. 

On the other hand, suppose that CP[Course, 
Prerequisite] relation describes a course has 
prerequisite coursea, and that CP contains (CO, 
ICI, c2)). In this case, CP can contain (co, 
(Cl. ~31) for another prerequisite condition of 
co* Aa Prerequisite is defined on power set of 
Coursei we can not split those tuples like 
above. Moreover, we may have (co, {{cl, ~21, 
ICI t c311). 

Other examples of compoundnesa are ordered 
lists, sentences and even relation-valued 
domains [81. 

All the examples make us consider more 
precise treatement to NFRa. In subsequents, we 
start with the first pattern, that is, the case 
the relation is defined on simple domains, 
because this is the natural extension of 
relational model and is useful for practical 
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purpose. 
Even in such simple notion, the data in NFR 

has to be manipulated carefully. Lets show 
following example. 

Let Rl, FI2 be NFRs, defined on {Student, 
Course, Club} and {Student, Course, Semester) 
respectively (Fig. 1). 

Rl 
IStudent 1 Course 1 Club 1 

R2 
Student Course 

qps2,s3 citq 

Sl’ 93 c3 
92 C3 

Semester 

t1 

t1 

t2 

Fig. 1 Example of NFRs 

Rl 
Student 

s1 

Course Club 

c2, c3 bl s “2 
1 92 1 cl, c2* c3 1 b2 1 

93 Cl 1 c21 c3 bl 

R2 

Student 

s2, 93 

Course 

Cl, c2 

Semester 

t1 

s1 c2 t1 

91' 93 c3 t1 

92 I C3 I t2 

Fig. 2 Updated NFRs 

R1 contains tuple (s, c, b) when a student “s” 
takes a course “c” and belongs to a club “bn. 
R2 contains tuple (s, c, t) when a student %” 
takes a course flcff in the semester %“. Here, 
assume a student “~1 I1 stops taking a course 
” c 1 ” . We want to drop the tuples like (sl , cl , 
l ) Prom both R1 and R2. This corresponds to 
removing the value cl of the first tuple in RI, 
and to removing the first tuple in R2 and adding 
(ls2, ~31, ICI, ~21, tl) and (~1, ~2, tl) to R2 
(see Fig. 2). The reasons why these complicated 

operations broke out in R2 are that we have a 
Multivalued Dependency (MVD) 121 

Student ->-> Course 1 Club 
in Al, but no MVD in R2. 

From the viewpoint of data modelling, it 
may be explained that each tuple in RI 
represents a student entity, and “course” and 
“club” are its attributes. Therefore RI 
represents an entity relation [31. On the other 
hand, R2 shows the relationship relation between 
student’s entities and course’s entities. We 
believe there is no distinction between two 
types 0P relations taking NFRs into 
consideration. That is, when we consider 
compound value domains, we should not assume 
some dependencies already exist. 

Although NFRs have rather complicated 
structure than 1NFs like the above discussion, 
the authors claim that the NFR has some “better” 
properties compared with 1NF. One is the Pact 
that NFRs are much more powerful not only as 
user view but also as internal view. In 
practice, the reduction of the number of tuples 
will contribute to the reduction of logical 
search space. We call this level of view as 
realization view. 

NFR may have much less tuples than 1NF by 
putting a group of tuples into one by means of 
composition. Also NFR may throw away 4NF 
concept, or it may take advantages of FDs as [71 
says. 

On the other hand, compound value domains 
bring some problems into designing. That is, 
how can we obtain ftgoodll NFRs, how can we keep 
desired properties at updating NFRs and SO on. 
Subsequently, we’ll show the general way to get 
NFR Prom 1NF and make clear the properties on 
NFRs in more detail. 

3. PROPERTIES OF NON FIRST NOW FOR?! 
RELATIONS 

3.1 Basic notation 

First we define NFR. We use basically the 
notation in [41, but we denote a lltuplell in a 
diPPerent way. Given a set of simple domains 
D1, --*s Dns an orderd set (el, . . . . en) such 
that each ei is in Di was called an “n-tuple” in 
the n-ary relation. We denote this tuple as 

CDl(el) . . . Dn(en)I- 
Now let us extend the “relation” concept to 

NFR. Given a set of simple domains (or sets oP 
atomic elements) Dl, . . . , D,, R is said to be 
non first normal form relation (or NFR) over DJ, 
. ..( D, if and only if R is a set oP=ples 

CDl(ell, --as elm11 -.a Dn(enl, . . . . +q,)l 

where eij belongs to Di. By expanding each 
tuple component Di(ei) to D(eil, . . . , eim 1, 
each NFR tuple can represent: all the tup es 1 
whose domain values are taken Prom the specified 
set of values. That is, the above NFR tuple 
means the set of tuples 
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lCDl(el) . . . Dn(en)l 1 eie(eil . . . eimi11. 

For example, CA(al, a2) B(bl)l means the set of 
two tuples ‘[A(al) B(bl )I and CA(a2) B(bl )I . . 

Hereafter we denote a relation R as an NFR 
unless otherwise stated. 

3.2 Composition of Tuples and Irreducible Forms 

Let us define composition and decomposition 
of tuples for the purpose of getting NFRs. 
Basic idea of the composing rule was firstly 
proposed in [121, and some remarkable extentions 
have been done by Jaeschke and Schek [71. 

Definition 1 
Let r and s be tuples in a relation R such that 

r = CEl(ell, ...p elr,) . . . En(enl, . . . . en,,)] 
and 
S = CEl(dllr --*t dlsl) s-s En(dnl, **.p dns,)I- 

If, for each i = 1, . . . . n, (eil, . . . . eir 
a 

) is 
set-theoretically equivalent to (dil , . . . , 
except i=c, 

iq) 
then the operation to create a new 

tuple 

[El(ell, ---. elr,) . . . Ec(ecl, . . . . ecrcs 

is called a composition of r and s over EC. 
This is denoted by vEc(r, s). 

For example, the result of vB operation on 
two tuples 

t1 = CA(al, a2) B(bl, b2) C(c1)l 
and 

t2 = CA(al, a2) B(b3) C(c1)l 
is 

t3 = CA(al, a2) B(bl, b2, b3) C(cl)l. 

Composition corresponds to the trans- 
formation from 1NF to NFR, because it cannot 
lose or add any information. That is, this is 
the syntactical rule by which we have the same 
amount of information and less tuples. 

As composition preserve equivalence between 
1 NF and NFR, we can define a decomposition which 
IS the reverse operation of composition. 
However, the result of decompositions depends on 
the sequence of spliting domain values on EC. 
We define it in a more restricted way. 

Definition 2 
Let t be a tuple in a relation R 

[El Cell, . . . , e,t,) . . . Ed(‘%j,, . . . , edtdp e,) 

. . . En(enl, -.-v ent,)]. 

The operation getting two tuples 
b - CEl(ell, . ..t elt,) . . . Ed(%j,, . . . . 

edtd) . . . En(enl, ..., en++,)] ad 

te a CEl(ell, . . . . elt,) . . . Ed(ex) 

. . . En(enl, .--s ent,)l 

iS called a decomposition on Ed(e,), denoted by 
UE&x)(t)’ 

Using the above example, we have t.1 and t2 
by uB(b3)(t3), and we also have other two tuples 

[ACal 1 B(bl, b2, b3) C(cl)l 
and 

CA(q) B(bl, bp, b3) C(cl)l 
by UA(al)(t3)* 

Both composition and decomposition are 
defined syntactically depending upon only 
tuples. In this paper, we restrict ourself to 
NFR which can be derived from 1NF using 
composition and decomposion. 

Given NFR R we denote its original 1NF 
relation as R’. Of course R* has no duplicate 
tuple and so has R. 

Theorer 1 
Given NFR R, there exists one and only one R’. 
(proof) by definition 1 and 2. 0 

On the other hand, as a 1NF can have 
several NFRs, we try to find minimal ones in 
some sense. 

Definition 3 
Let us define irreducible relation. After 
applying a sequence of compositions, if no more 
composition is possible without decomposing and 
re-composing, then the result relation is called 
an irreducible form relation or just 
irreducible. 

Example 1 
Thinking about a relation R over A, B, let 

rl = CA(al) B(bl)l 
r2 = CA(a2) B(bl )I 
r3 = CA(a2) B(b2)l 
r4 = CA(a3) B(b2)l 

be tuples in R. 
Applying COUIpOSitiOnS over A, i.e. vA(rl, r2) 
and Vp.(r3, r-41, we get an irreducible form 
relation RI which contains two tuples 

CA(al, a2), B(bl)l and 
D(a2, a3) B(b2)l. 

Also we can obtain another irreducible form 
relation R2 containing three tuples 

CA(at) B(bl )I, 
CA(a2) B(bl, b2)l and 
D(a3) b(b2)l 

by VB(r2, r3). 0 

Above example shows that there could be 
more than one irreducible form relations derived 
from 1NF. Clearly, in an irreducible form, the 
number of tuples is minimal in a sense though it 
may not be minimum. 
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3.3 Nest Operation and Canonical Forms 

Here let us introduce canonical forms of 
irreducible NFRs using nest operations. c71 
discusses the nest operation and its properties. 

Der1nition 4 
Let R be a relation on domains El, . . . . En. 
Nest operation on Ei, denoted by VEi is the 
successive compositions over Ei as many as 
possible. The result relation is called a 
nested relation over Ei, denoted by VEi(R). 
VEi(VEJ (R)) is abbreviated by VEiEj (R) . 

We define canonical forms using the %est.” 
concept. 

Definition 5 
Let P be a permutation on El, . . . , En, that 

is, the sequence El . . . En IS replaced by P(E1) 
. . . P(E,) after applying the permutaion P. The 
successive nest operations 

vP(E1) . . . P(En)(R) 

is denoted by VP(R). Then it is easy to show 
that VP(R) is irreducible. Note that we 
transformed R into VP(R) syntactically and it’s 
always possible. VP(R) is said to be in a 
canonical form. We have n! permutations and so 
do canonical forms. 

There can exist an irreducible form 
relation which is not canonical but has fewer 
tuples than any canonical form relation as 
following example. 

Example2 
When a relation R3 over A, B, C has 6 tuples 
like 

Pl = CA(al) B(bl) C(q)1 
r2 = [ACal) B(b2) C(q)1 
r3 = [ACal) B(b2) C(q)1 
r4 - CA(a2) B(bl) C(q)1 
?i - CA(a2) B(bl) C(q)1 
r6 = CA(a2) B(b2) C(q)l. 

Considering tuples carefully, we have an 
irreducible form relation R4 which contains 
three tuples 

CAtal) B(bl, bp) C(c211, 
CA(a2) B(bl) C(cl, ~211 and 
CAlal, a21 B(b2) C(cl)l. 

But R4 cannot be derived using nest operations. 
For example, after applying the operation 
k@3L we have canonical form relation RB 

[ACal, a21 B(bl) C(Q)], 
CAtal, a21 B(b2) C(cl )I, 
CA(al) B(b2) C(c2)l and 
CAta B(bl) Cccl )I. 

Thinking over the symmetricity of R3, every 
canonical form contains 4 tuples. 0 

Nevertheless, canonical form seems to be 
“better” than other irreducible forms in the 
sense that we can syntactically reduce every 1NF 
to canonical one and that we have a unique NFR 

which depends only upon a permutation P as in 
Theorem 2. 

TheoreB2 
Let R be a relation over U={El , . . . , En]. And 
let P be a permutation over U. 
Then a canonical form relation as a result of VP 
1s unique, that is, the final form is 
independent of the sequence in composition of 
tuple-pairs in each VEi operation. 

(proof 1 I t’s easy because each nest operation 
vE preserves 
deiinition 4. 

the uniqueness property by 
The detailed proof is left to the 

reader. 0 

3.4 Canonical Form based on FDs and MVDs 

Having a canonical form, we have to decide 
the permutations P. The “bestl’ permutations may 
stand on the properties which have been 
investigating in the relational model. 

We discuss the strategy to get canonical 
forms in terms of FDs and MVDs. In this 
section, we suppose all the relations are in 
3NF, which are mechanically obtained [13]. For 
this purpose, let us define the basic notations. 

Definition 6 
Let R be a relation over El, . . . . En. 
For any e in Ei 

(1) If e appears in at most one tuple and 
the tuple has a form [ . . . Ei(e) . . . 1 
then we denote it as Ei:R - l:l, 

(2) if e appears in at most one tuple and 
the tuple has a form [ . . . Ei( . . . . e. 
. . . 1 . . . 1 then we denote it as Ei:R = 
n:l, 

(3) if e appears in more than one tuples and 
the tuples have a form I: . . . Ei(e) . . . 1 
then we denote it as Ei:R - l:n, 

(4) if e appears in more than one tuples and 
the tuples have a form [ . . . Ei( . . ., e, 
. . . 1 . . . 1 then we denote it as Ei:R = 
m:n. 

Essentially it says the cardinality corres- 
pondence between domain values and tuples. 

Next, we define ltfixedness’l concept corres- 
ponding to rtkeyrt notion on NFR. 

Definition 7 
Let R be a relation over F1, . . . , Fk, El, . . . , 
Em* If, for each fl, . . . , fk where each fi is 
in Fi, there exists in R at most one tuple which 
contains all of fl , . . . , fk as a part, then it’s 
said that R is fixed on F1, . . . , Fk. 

In Example 1, R is not fixed on any domain. 
However, R1 is fixed on A and A2 on B. 
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NW let ua consider FD and MVD with respect 
to NFA. 

-3 
Let R be a relation over a set of domains U. 
Assume FD F1 , . . . , FR -> El, . . . , Em holds where 
eaoh Fi, E 
relation R 4 

is in U. Then any irreducible form 

Fk and Ei:R’ 
derived from R is fixed on Fl , . . , , 
- 1:n for each i-1, . . . . m. 

(Proof) Clearly the FD also holds in R*, and R* 
is fixed on Fl, . . . . Fk. Applying all the 
possible compositions to have the irreducible 
form, it’s sufficient to show the NFR is still 
fixed on FT. . . . . Fk. Assume otherwise. Then 
there should exist the composition which was 
applied to two tuples whose values on some 
attribute Ei are different. But it contradicts 
the property of fixedness on Fl, . . . . Fk. 0 

Theorm 4 
Let R be same in theorem 3. Assume MVD 

F,r . . . . Fk ->-> El1 . . . IE, 
exists. 

Then there exists an irreducible form relation 
R’ which is fixed On F1, . . . , Fk and Ei:R’ = m:n 
for each i-1, . . . , m. 
(proof) Similar to theorem 3, and left to the 
reader. !J 

Note theorem 4 shows that there may exist 
an irreducible form which is not fixed on F1, 
. ..) Fk in the case of MVD, as the following 
example says. 

Example 3 
A relation Rg over A, B, C has 4 tuples and MVD 
A ->-> B/C is assumed. 

rt = CA(al) B(bl) C(cl)l 
r2 = CA(al) B(b2) C(c~)l 
r3 - CA(a2) B(bl) C(cl )I 
t-4 - CA(a2) B(bl) C(c2)1 

We have an irreducible form relation RT which 
contains 

CA(al) B(bl ,b2) C(q)1 and 
CA(a2) B(bl) C(q, c2)1. 

Also we can obtain an irreducible form relation 
RR which contains 

CA(al, a2) B(bj) C(q)l, 
CA(al) B(b2) C(q)1 and 
CA(a2) B(bl) C(c2)l. 

R7 is fixed on A, however Rg is not so. q 
Moreover, we can show the following 

theorem. 

Theorem 5 
Let P be a permutaion of U - El, . . . , En on 
which 1NF relation R is defined. Then there 
exists a fixed canonical form relation where the 
fixedness is established on at most n-l domains. 
(proof) We will outline the proof and leave the 
detail to reader. Let R be the NFR and El, . . . , 
En be the nesting sequence. When R is already 
irreducible, R is fixed on U-Ei for each 1. If 
not, VEi (R) is fixed on U-Ei for each 1. 
Applying the successive nest operations, the 
result NFR still holds the fixedness which has 
been previously established. 0 

In short, in NFR R, given FD F1, . . . , FR -> 
El, . . . . 

IEm* 
Em or given MVD Fit . . ., FR ->-> El 1 

. . . there can exist P by which VP(R) is 
canonical and fixed on F1, . . . , Fk where P is a 
permutation of Fl, . . . , FR. That is, nesting on 
leftside attributes of FDs or MVDs allows us to 
get to “bettertl NFR. The relationships among 
canonical, fixed and irreducible NFRs are 
summarized as shown in Fig. 3. 

We will show further discussion elsewhere. 

irreducible 
NFR 

fixed NFR 

Fig. 3 Relationships among canonical, 

fixed and irreducible NFRe 

4. IIiEERTLON AED DELg’fION OF TUPLBS 
ON NON FIEST NOIIllllL WI@4 RELATIOB 

As we said, possibly NFR-based database 
scheme has much less number of relations, in 
which the number of tuples in each NFR is also 
drastically reduced. It’s certainly one of 
advantages of NFR compared with 1NF. On the 
contrary, there are some problems about NFR. 
First, there might be more than one NFR to 
represent the amount of information, though 1NF 
relations give us just one way to do that. Also 
it’s hard to find the l’minimumlt NFR. 
Neverthless, theorem 5 shows us there exists one 
and only one canonical form relation using nest 
operations. 

Another problem is the update of NFR. In 
1NF relations update could be applied on a tuple 
itself, but not in NFR because several tuples 
may be combined together into one. 

Therefore, update operations get more 
complicated and some might say actual updates 
happen all over the database. We will show it 
is not true. When we have the efficient 
algorithms, NFRs could become useful not only in 
conceptual level but also in physical 
representation. Let us move on to the update 
problem. Remember that R is generally in NFR 
and R” its corresponding 1NF relation. 

4.1 Update Problem on Non First Normal Form 
Relations 

The update problem asks whether there 
exists an algorithm which is applied to not R* 
but R when inserting or deleting a tuple t on R 
corresponding to R . Moreover, it ‘9 essential 
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that the compexity of the algorithm does not 
depend on the number of tuples in R but the 
order of at most en where n Is the degree. 

NOW, we show the solution of this problem. 
(Note in Appendix we describe the theoretical 
background and the complexity about it.) 

Let us define basic concept and functions 
which are used in the algorithm. 

* T(I’, Ek) : gives the Ek-component of tuple 
r. 

* unnest(Ei(ei), t, t,, t,) : gives tuple te 
and t, which are obtained by the 
decomposition uE (e )(t) according to Def. 
2. J .I 

- compo(x, t, w) : gives tuple w which is 
obtained by the composition with tuple x 
and t. 

* candt(t, t,, m) : gives a candidate tuple 
t, and the minimum value m -for given tuple 
t. 

. searcht(t, q) : gives a tuple q in NFR 
which contains a simple tuple t to be 
added. 

* deletet(q) : delete a tuple q. 

* candidate tuples : given tuple t, a tuple 
s in R is called the candidate tuple of t 
if and only if one of original simple 
tuples of s in R” can be composed with t 
on Ei and no other tuple in R does not 
hold this property on Ej for any j<i. 
Note there exists at most one candidate 
tuple of t in R (lemma A-l ). 

4.2 Strategy of Insertion Algorithm 

Let r=[El(el), . . . . En( be a tuple to be 
added, and P be EnEn-l...El, a permutation. 

In order to obtain the same relation of 
Vp(R*+r) finally, we have to find the candidate 
tuple in R of r which is composed with r. Then 
the candidate tuple may be decomposed, and we have 
new tuples. After that, we may apply the same 
operations about new tuples. Moreover so are the 
tuples which are obtained by composition with 
tuples to be added (or obtained). 

Now we show procedure “insertion” for adding 
a new tuple to R. 

Procedure insertion 

procedure insertion 
var t: tuple /* for insert tuple */ 
begin t := r ; 

recons( t) 
end. 

Essentially the main operation is the procedure 
“recons”. The procedure 9econs” plays role as 
follows: 

Given tuple t, it selects the candidate tuple p by 
“candttl . Then it executes “unnest” until t 
becomes composable with the new tuple related to 
P. Lemma A-2 says this is always possible. But 
as we have the remaining tuples which are not 
related to the composition with t. Veconsn is 
invoked recursively to them. After composing t, 
the composed tuple t’ could be composable with 
other tuples. So Vecons” is called again. Note 
if there exist candidate tuples with respect to 
t’, they are always composable (lemma A-3). 

Procedure recons 

procedure recons (t : tuple) 
var p:tuple /* candidate tuple */ 
var pe:tuple /* tuple to be composed with t */ 
var pr:tuple /* new tuple of decomposing p */ 
var w:tuple /* composed tuple with t and p */ 
var j:integer /* index for decomposing order */ 
var m:integer /* attrib. number of cand. tuple */ 
wm 

candt(t, q, m) ; 
if p <> null then 
begin 

j :=n; 
while j > m do 

begin 
unnest(Ej(e 1, P, pep pr) ; 

f if pr 0 nu 1 then recons(p,) ; 
P :’ Pe ; 
J := j - 1 

end 
compo(p, t, w) ; 
recons(w) 

end 
end. 
4.3 Deletion Algorithm 

Assume the same notation in 4.2. Let us 
show deletion algorithm. First we have to find 
a tuple q in R which contains in r by searcht(t, 
4). Second we apply the operation 
“unnest(Ei(ei), q, qe, qr)” for i=n to 1 until 
r-G- Again, we may have new tuples for each i. 
For this purpose, the relation should be 
reconstructed using the algorithm of “recons” in 
4.2. Finally, when r=q,, tuple r can be deleted 
by “deletet”. 

Now we show the procedure “deletion”. 

Procedure deletion 

procedure deletion 
v~ i:integer /* index for decomposing order ‘1 
vaf q:tuple /* tuple contains simple tuple t ‘1 
var qe:tuple /* obtained by unnest of q */ 
vw.q,:tuple /* obtained by unnest of q “1 
begin i := n ; searcht(r, 9) ; 
while q <> r do 
begin 

unnest(Ei(ei), q, qe, qr) ; 
recons(q,) ; 
q :’ qe ; 
i:=i-1 

end 
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deletet(q) 
end. 

5. collusion 

We proposed NFR and discussed its 
properties and the update algorithms on it. We 
didn’t address the data ~nipUlatiOtI language 
which we will show elsewhere. NFR allows 
database users to take away such decompositions 
of schema that are forced to occur MVDs, and to 
discard join operations which originate from the 
decomposition. In the implementation, it gives 
us the theoretical foundation enough to reduce 
the search space in databases. 

Although the update algorithms seem to be 
more complicated than lNF, the number of 
cornposit ion to keep NFR canonical doesn’t depend 
on the number of tuples. We didn’t mean to 
optimize the algorithm, but the optimization 
strategy is another problem. 

In order to take advantages of NFR, it’s 
necessary to discuss “relationsl’ or predicates 
in the mathematical meaning that we can find in 
the recent development of universal relations 
[lOI. That is, NFR stems from the deep 
consideration of data model itself. It will be 
necessary to find more fundamental objects of 
databases. 
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APPmIx 

We show the theoretical background and the 
complexity about Update Algorithms in section 4 
without proof. We discussed the complexity of 
the update problems in the sense of the number 
of compositions, but not of time complexity 
because the latter depends heavily on physical 
representation of NFRs. 

Lemm A-l 
There exists at most one candidate tuple of 

a given tuple t for each Ei. 

Lemna A-2 
Let t,, tr be tuples which are obtained by 

uEi(ei)(t) operation according to Def. 2. 

If there exists the candidate tuple t, in R 
of t,, then 

n(trs Ek) = dtc, Ek) for each k=l, . . . . i. 

Leera A-3 
Let rc be the candidate tuple in R of a 

given tuple r, and w be a tuple which is 
composed with r and rc (or decomposing rc if 
necessary). 

If there exists the candidate tuple wc in 
R-rc, then 

1I(W, Ek) I lI(Wc, Ek) for each k-l, . . . . i. 
All these details and proofs are in 1111. 

Theorem A-4 
Insertion and deletion algorithm in section 4 
have the complexity of at most O(en) where n is 
a degree of NFR. Note the complexity means the 
number of compositions. 
(proof) 

We show the sketch and the complete proof 
is in Clll. We focus on deletion (the case of 
insertion is similar). 

Let r = [El(el ), . . . . En( be the tuple 
in NFR R which contains t = (tl , . . . , tn) t the 
deleted tuple, where ei is a set of values on 

2C3 



=i* Also let e’i be ei-(ti), ri = CEl(q), l o*s 
Ei(e’i). El+1 (ti+l), . . . . g(t,)l be a tuple 
deducible from r, 
VE 

and Rj be R if j = n+l, 

‘**&&,)3) 
E (R +I-CEl(el), . . . . Ej-l(ej-1). gj(tj), 

. ..I ii j s n. 
TEen'; for each j, no tuple in R++l except 

CEl(el), . . . . Ej-1(8&l), Ejitj)t ..:. ‘En( 
is composable on Eq with rl. 

Therelore r 
2 

1s not zomposable any longer 
is to show that, by composing 

zei’j+l )(?$i?on Rj+lB(rj), 
< n, since j 

we have Rj where j 
- 1 means the end oP deletion. 

We show above by induction. 
In the case oP j - n, there exists at most 

one tuple in R, which is composable with m-l . 
In the case oP j < n, there exists at most one 
tuple which is composable with rj on Ej+l in 
Rj+l (Essentially this is lennna A-l ) . 

Let s - CEl(el), . . . . Ej-l(e -I), Ej(e’j), 
E +1(a), 
i 

4111 be 
t e 

Ej+2(tj+2, br2)s l e-v Ej,(tns 

tuple. Note a ) j+l, bi ) ti Por j+2 d i ;5 

The tuple s can be composed with rj on Ej+l 
iid we have to pick out [El (q 1, . . . , E -1 (ej- 
11, E (e’j). E +1(a), Ej+2(tj+p), 

io we !mve [El(el), . ..*.*“E~!!~$!;), 
~j,~~;~;~,~~+~Ifl~ E +dtj+z, bj+ds 

Q4tn)l Por j+2 d 
Ei bi), 

i”;‘n. Call 
those tuples Sj+2, . . . , S,. Also we have 
CEl(el), . . . . 
E 

1 
+2(tj+p), . . . . 

w th rj in Rj+l, and let So be the result. 
So cannot be composable on Ej+l. When 

composing 
assumption. 

So on EJ+z, we can use inductive 
That is, we have at most P(i)+1 

compositions where j+2 zi I d n. 
And, in total, the maximum composition count is 
i(j+2) + . . . + P(n) + (n-k-l ). 
-By the above consideration we can suvnnarize 
P(j) - (n-k)+2 x (P(j+2)+ . . . +P(n)) in maximum, 
P(n) - 0 and P(n-1) - 1. Calculating them we 
have the result. 0 
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