
OPERATIONS AND THE PROPERTIES ON NON-FIRST-NORMAL-FORM

RELATIONAL DATABASES

Hiroshi Arisawa Kunihiko Moriya

Yokohama National University

Yokohama, JAPAN

ABSTRACT

In this paper, non first normal form
relations (or NFRa) are discussed. First the
authors define compoai t ion of tuplea to
introduce NFR and discuss some properties. Then
canonical forma of NFRa are defined using Vest”
operations. This is optimal in the sense that
every 1NF relation can be always transformed
into canonical ones and canonical forma have the
desired properties to some extent. Also we
shall consider data dependency and its effect to
NFRa. Finally we consider some algorithms for
updating tuplea in NFRa with their complexity.

1. INTRODDCTION

Moat of the recent works concerned with
database systems aaaume theoretical background
of relational data model Cl 1. One of the
reasons is due to its mathematical foundation by
which we can logically construct and manipulate
information without paying attention to physical
representation. However, several problems have
been pointed out by aome researchers. Among
them, the reasonableness of the first normal
form (or 1NF) is sometimes discussed because it
excludes compound value aeta from domains [5].
In advanced application processing, we could
take more complicated value sets. Basically
compound-value problems come from “data
semantics”, it should be observed from data-
model views.

In this paper, we will not pursuit this
problem but extend relational model using

Takao Miura

Mitsui Engineering & Shipbuilding

Co., Ltd. Tokyo, JAPAN

compound value domains because of simplicity and
of mathematical treatment. Also we shall
consider the properties including data
dependency. Historically some investigations
have discussed about non first normal form
relations (or NFRs) C6l,C7l,C81. But [63
contains ambiguous definitions of NFRa and fails
to take advantages of NFRs. [7] considers NFRa
as nested relations which are precisely defined
on 1NF. We extend this idea to some “normal”
form concept like irreducible form and canonical
form. Also we describe their properties and
algorithms for updating NFR databases with the
complexity. By all these discussion we shall
show that NFRs have the potential for
usefulness.

2. CONSIDERATIONS ON tXWODND vALDESIxlm1NS

When we consider compound value domains, a
variety of “compoundnessl’ could be discussed.
Let us consider a relation that can contain a
set of simple values in each field. Even in
this simple case aome ambiguity exists. For
example, suppose SC[Student, Course] relation
which represents a student takes a course. When
SC contains a tuple (a, (cl, ~2211, this says
that student a takes courses cl and cp, or
precisely, two tuplea (a, cl) and (a, 9) are in
SC. In this case the {cl, cP} has no special
meaning.

On the other hand, suppose that CP[Course,
Prerequisite] relation describes a course has
prerequisite coursea, and that CP contains (CO,
ICI, c2)). In this case, CP can contain (co,
(Cl. ~31) for another prerequisite condition of
co* Aa Prerequisite is defined on power set of
Coursei we can not split those tuples like
above. Moreover, we may have (co, {{cl, ~21,
ICI t c311).

Other examples of compoundnesa are ordered
lists, sentences and even relation-valued
domains [81.

All the examples make us consider more
precise treatement to NFRa. In subsequents, we
start with the first pattern, that is, the case
the relation is defined on simple domains,
because this is the natural extension of
relational model and is useful for practical

197

purpose.
Even in such simple notion, the data in NFR

has to be manipulated carefully. Lets show
following example.

Let Rl, FI2 be NFRs, defined on {Student,
Course, Club} and {Student, Course, Semester)
respectively (Fig. 1).

Rl
IStudent 1 Course 1 Club 1

R2
Student Course

qps2,s3 citq

Sl’ 93 c3
92 C3

Semester

t1

t1

t2

Fig. 1 Example of NFRs

Rl
Student

s1

Course Club

c2, c3 bl s “2
1 92 1 cl, c2* c3 1 b2 1

93 Cl 1 c21 c3 bl

R2

Student

s2, 93

Course

Cl, c2

Semester

t1

s1 c2 t1

91' 93 c3 t1

92 I C3 I t2

Fig. 2 Updated NFRs

R1 contains tuple (s, c, b) when a student “s”
takes a course “c” and belongs to a club “bn.
R2 contains tuple (s, c, t) when a student %”
takes a course flcff in the semester %“. Here,
assume a student “~1 I1 stops taking a course
” c 1 ” . We want to drop the tuples like (sl , cl ,
l) Prom both R1 and R2. This corresponds to
removing the value cl of the first tuple in RI,
and to removing the first tuple in R2 and adding
(ls2, ~31, ICI, ~21, tl) and (~1, ~2, tl) to R2
(see Fig. 2). The reasons why these complicated

operations broke out in R2 are that we have a
Multivalued Dependency (MVD) 121

Student ->-> Course 1 Club
in Al, but no MVD in R2.

From the viewpoint of data modelling, it
may be explained that each tuple in RI
represents a student entity, and “course” and
“club” are its attributes. Therefore RI
represents an entity relation [31. On the other
hand, R2 shows the relationship relation between
student’s entities and course’s entities. We
believe there is no distinction between two
types 0P relations taking NFRs into
consideration. That is, when we consider
compound value domains, we should not assume
some dependencies already exist.

Although NFRs have rather complicated
structure than 1NFs like the above discussion,
the authors claim that the NFR has some “better”
properties compared with 1NF. One is the Pact
that NFRs are much more powerful not only as
user view but also as internal view. In
practice, the reduction of the number of tuples
will contribute to the reduction of logical
search space. We call this level of view as
realization view.

NFR may have much less tuples than 1NF by
putting a group of tuples into one by means of
composition. Also NFR may throw away 4NF
concept, or it may take advantages of FDs as [71
says.

On the other hand, compound value domains
bring some problems into designing. That is,
how can we obtain ftgoodll NFRs, how can we keep
desired properties at updating NFRs and SO on.
Subsequently, we’ll show the general way to get
NFR Prom 1NF and make clear the properties on
NFRs in more detail.

3. PROPERTIES OF NON FIRST NOW FOR?!
RELATIONS

3.1 Basic notation

First we define NFR. We use basically the
notation in [41, but we denote a lltuplell in a
diPPerent way. Given a set of simple domains
D1, --*s Dns an orderd set (el, en) such
that each ei is in Di was called an “n-tuple” in
the n-ary relation. We denote this tuple as

CDl(el) . . . Dn(en)I-
Now let us extend the “relation” concept to

NFR. Given a set of simple domains (or sets oP
atomic elements) Dl, . . . , D,, R is said to be
non first normal form relation (or NFR) over DJ,
. ..(D, if and only if R is a set oP=ples

CDl(ell, --as elm11 -.a Dn(enl, +q,)l

where eij belongs to Di. By expanding each
tuple component Di(ei) to D(eil, . . . , eim 1,
each NFR tuple can represent: all the tup es 1
whose domain values are taken Prom the specified
set of values. That is, the above NFR tuple
means the set of tuples

198

lCDl(el) . . . Dn(en)l 1 eie(eil . . . eimi11.

For example, CA(al, a2) B(bl)l means the set of
two tuples ‘[A(al) B(bl)I and CA(a2) B(bl)I . .

Hereafter we denote a relation R as an NFR
unless otherwise stated.

3.2 Composition of Tuples and Irreducible Forms

Let us define composition and decomposition
of tuples for the purpose of getting NFRs.
Basic idea of the composing rule was firstly
proposed in [121, and some remarkable extentions
have been done by Jaeschke and Schek [71.

Definition 1
Let r and s be tuples in a relation R such that

r = CEl(ell, ...p elr,) . . . En(enl, en,,)]
and
S = CEl(dllr --*t dlsl) s-s En(dnl, **.p dns,)I-

If, for each i = 1, n, (eil, eir
a

) is
set-theoretically equivalent to (dil , . . . ,
except i=c,

iq)
then the operation to create a new

tuple

[El(ell, ---. elr,) . . . Ec(ecl, ecrcs

is called a composition of r and s over EC.
This is denoted by vEc(r, s).

For example, the result of vB operation on
two tuples

t1 = CA(al, a2) B(bl, b2) C(c1)l
and

t2 = CA(al, a2) B(b3) C(c1)l
is

t3 = CA(al, a2) B(bl, b2, b3) C(cl)l.

Composition corresponds to the trans-
formation from 1NF to NFR, because it cannot
lose or add any information. That is, this is
the syntactical rule by which we have the same
amount of information and less tuples.

As composition preserve equivalence between
1 NF and NFR, we can define a decomposition which
IS the reverse operation of composition.
However, the result of decompositions depends on
the sequence of spliting domain values on EC.
We define it in a more restricted way.

Definition 2
Let t be a tuple in a relation R

[El Cell, . . . , e,t,) . . . Ed(‘%j,, . . . , edtdp e,)

. . . En(enl, -.-v ent,)].

The operation getting two tuples
b - CEl(ell, . ..t elt,) . . . Ed(%j,,

edtd) . . . En(enl, ..., en++,)] ad

te a CEl(ell, elt,) . . . Ed(ex)

. . . En(enl, .--s ent,)l

iS called a decomposition on Ed(e,), denoted by
UE&x)(t)’

Using the above example, we have t.1 and t2
by uB(b3)(t3), and we also have other two tuples

[ACal 1 B(bl, b2, b3) C(cl)l
and

CA(q) B(bl, bp, b3) C(cl)l
by UA(al)(t3)*

Both composition and decomposition are
defined syntactically depending upon only
tuples. In this paper, we restrict ourself to
NFR which can be derived from 1NF using
composition and decomposion.

Given NFR R we denote its original 1NF
relation as R’. Of course R* has no duplicate
tuple and so has R.

Theorer 1
Given NFR R, there exists one and only one R’.
(proof) by definition 1 and 2. 0

On the other hand, as a 1NF can have
several NFRs, we try to find minimal ones in
some sense.

Definition 3
Let us define irreducible relation. After
applying a sequence of compositions, if no more
composition is possible without decomposing and
re-composing, then the result relation is called
an irreducible form relation or just
irreducible.

Example 1
Thinking about a relation R over A, B, let

rl = CA(al) B(bl)l
r2 = CA(a2) B(bl)I
r3 = CA(a2) B(b2)l
r4 = CA(a3) B(b2)l

be tuples in R.
Applying COUIpOSitiOnS over A, i.e. vA(rl, r2)
and Vp.(r3, r-41, we get an irreducible form
relation RI which contains two tuples

CA(al, a2), B(bl)l and
D(a2, a3) B(b2)l.

Also we can obtain another irreducible form
relation R2 containing three tuples

CA(at) B(bl)I,
CA(a2) B(bl, b2)l and
D(a3) b(b2)l

by VB(r2, r3). 0

Above example shows that there could be
more than one irreducible form relations derived
from 1NF. Clearly, in an irreducible form, the
number of tuples is minimal in a sense though it
may not be minimum.

199

3.3 Nest Operation and Canonical Forms

Here let us introduce canonical forms of
irreducible NFRs using nest operations. c71
discusses the nest operation and its properties.

Der1nition 4
Let R be a relation on domains El, En.
Nest operation on Ei, denoted by VEi is the
successive compositions over Ei as many as
possible. The result relation is called a
nested relation over Ei, denoted by VEi(R).
VEi(VEJ (R)) is abbreviated by VEiEj (R) .

We define canonical forms using the %est.”
concept.

Definition 5
Let P be a permutation on El, . . . , En, that

is, the sequence El . . . En IS replaced by P(E1)
. . . P(E,) after applying the permutaion P. The
successive nest operations

vP(E1) . . . P(En)(R)

is denoted by VP(R). Then it is easy to show
that VP(R) is irreducible. Note that we
transformed R into VP(R) syntactically and it’s
always possible. VP(R) is said to be in a
canonical form. We have n! permutations and so
do canonical forms.

There can exist an irreducible form
relation which is not canonical but has fewer
tuples than any canonical form relation as
following example.

Example2
When a relation R3 over A, B, C has 6 tuples
like

Pl = CA(al) B(bl) C(q)1
r2 = [ACal) B(b2) C(q)1
r3 = [ACal) B(b2) C(q)1
r4 - CA(a2) B(bl) C(q)1
?i - CA(a2) B(bl) C(q)1
r6 = CA(a2) B(b2) C(q)l.

Considering tuples carefully, we have an
irreducible form relation R4 which contains
three tuples

CAtal) B(bl, bp) C(c211,
CA(a2) B(bl) C(cl, ~211 and
CAlal, a21 B(b2) C(cl)l.

But R4 cannot be derived using nest operations.
For example, after applying the operation
k@3L we have canonical form relation RB

[ACal, a21 B(bl) C(Q)],
CAtal, a21 B(b2) C(cl)I,
CA(al) B(b2) C(c2)l and
CAta B(bl) Cccl)I.

Thinking over the symmetricity of R3, every
canonical form contains 4 tuples. 0

Nevertheless, canonical form seems to be
“better” than other irreducible forms in the
sense that we can syntactically reduce every 1NF
to canonical one and that we have a unique NFR

which depends only upon a permutation P as in
Theorem 2.

TheoreB2
Let R be a relation over U={El , . . . , En]. And
let P be a permutation over U.
Then a canonical form relation as a result of VP
1s unique, that is, the final form is
independent of the sequence in composition of
tuple-pairs in each VEi operation.

(proof 1 I t’s easy because each nest operation
vE preserves
deiinition 4.

the uniqueness property by
The detailed proof is left to the

reader. 0

3.4 Canonical Form based on FDs and MVDs

Having a canonical form, we have to decide
the permutations P. The “bestl’ permutations may
stand on the properties which have been
investigating in the relational model.

We discuss the strategy to get canonical
forms in terms of FDs and MVDs. In this
section, we suppose all the relations are in
3NF, which are mechanically obtained [13]. For
this purpose, let us define the basic notations.

Definition 6
Let R be a relation over El, En.
For any e in Ei

(1) If e appears in at most one tuple and
the tuple has a form [. . . Ei(e) . . . 1
then we denote it as Ei:R - l:l,

(2) if e appears in at most one tuple and
the tuple has a form [. . . Ei(. . . . e.
. . . 1 . . . 1 then we denote it as Ei:R =
n:l,

(3) if e appears in more than one tuples and
the tuples have a form I: . . . Ei(e) . . . 1
then we denote it as Ei:R - l:n,

(4) if e appears in more than one tuples and
the tuples have a form [. . . Ei(. . ., e,
. . . 1 . . . 1 then we denote it as Ei:R =
m:n.

Essentially it says the cardinality corres-
pondence between domain values and tuples.

Next, we define ltfixedness’l concept corres-
ponding to rtkeyrt notion on NFR.

Definition 7
Let R be a relation over F1, . . . , Fk, El, . . . ,
Em* If, for each fl, . . . , fk where each fi is
in Fi, there exists in R at most one tuple which
contains all of fl , . . . , fk as a part, then it’s
said that R is fixed on F1, . . . , Fk.

In Example 1, R is not fixed on any domain.
However, R1 is fixed on A and A2 on B.

200

NW let ua consider FD and MVD with respect
to NFA.

-3
Let R be a relation over a set of domains U.
Assume FD F1 , . . . , FR -> El, . . . , Em holds where
eaoh Fi, E
relation R 4

is in U. Then any irreducible form

Fk and Ei:R’
derived from R is fixed on Fl , . . , ,
- 1:n for each i-1, m.

(Proof) Clearly the FD also holds in R*, and R*
is fixed on Fl, Fk. Applying all the
possible compositions to have the irreducible
form, it’s sufficient to show the NFR is still
fixed on FT. Fk. Assume otherwise. Then
there should exist the composition which was
applied to two tuples whose values on some
attribute Ei are different. But it contradicts
the property of fixedness on Fl, Fk. 0

Theorm 4
Let R be same in theorem 3. Assume MVD

F,r Fk ->-> El1 . . . IE,
exists.

Then there exists an irreducible form relation
R’ which is fixed On F1, . . . , Fk and Ei:R’ = m:n
for each i-1, . . . , m.
(proof) Similar to theorem 3, and left to the
reader. !J

Note theorem 4 shows that there may exist
an irreducible form which is not fixed on F1,
. ..) Fk in the case of MVD, as the following
example says.

Example 3
A relation Rg over A, B, C has 4 tuples and MVD
A ->-> B/C is assumed.

rt = CA(al) B(bl) C(cl)l
r2 = CA(al) B(b2) C(c~)l
r3 - CA(a2) B(bl) C(cl)I
t-4 - CA(a2) B(bl) C(c2)1

We have an irreducible form relation RT which
contains

CA(al) B(bl ,b2) C(q)1 and
CA(a2) B(bl) C(q, c2)1.

Also we can obtain an irreducible form relation
RR which contains

CA(al, a2) B(bj) C(q)l,
CA(al) B(b2) C(q)1 and
CA(a2) B(bl) C(c2)l.

R7 is fixed on A, however Rg is not so. q
Moreover, we can show the following

theorem.

Theorem 5
Let P be a permutaion of U - El, . . . , En on
which 1NF relation R is defined. Then there
exists a fixed canonical form relation where the
fixedness is established on at most n-l domains.
(proof) We will outline the proof and leave the
detail to reader. Let R be the NFR and El, . . . ,
En be the nesting sequence. When R is already
irreducible, R is fixed on U-Ei for each 1. If
not, VEi (R) is fixed on U-Ei for each 1.
Applying the successive nest operations, the
result NFR still holds the fixedness which has
been previously established. 0

In short, in NFR R, given FD F1, . . . , FR ->
El,

IEm*
Em or given MVD Fit . . ., FR ->-> El 1

. . . there can exist P by which VP(R) is
canonical and fixed on F1, . . . , Fk where P is a
permutation of Fl, . . . , FR. That is, nesting on
leftside attributes of FDs or MVDs allows us to
get to “bettertl NFR. The relationships among
canonical, fixed and irreducible NFRs are
summarized as shown in Fig. 3.

We will show further discussion elsewhere.

irreducible
NFR

fixed NFR

Fig. 3 Relationships among canonical,

fixed and irreducible NFRe

4. IIiEERTLON AED DELg’fION OF TUPLBS
ON NON FIEST NOIIllllL WI@4 RELATIOB

As we said, possibly NFR-based database
scheme has much less number of relations, in
which the number of tuples in each NFR is also
drastically reduced. It’s certainly one of
advantages of NFR compared with 1NF. On the
contrary, there are some problems about NFR.
First, there might be more than one NFR to
represent the amount of information, though 1NF
relations give us just one way to do that. Also
it’s hard to find the l’minimumlt NFR.
Neverthless, theorem 5 shows us there exists one
and only one canonical form relation using nest
operations.

Another problem is the update of NFR. In
1NF relations update could be applied on a tuple
itself, but not in NFR because several tuples
may be combined together into one.

Therefore, update operations get more
complicated and some might say actual updates
happen all over the database. We will show it
is not true. When we have the efficient
algorithms, NFRs could become useful not only in
conceptual level but also in physical
representation. Let us move on to the update
problem. Remember that R is generally in NFR
and R” its corresponding 1NF relation.

4.1 Update Problem on Non First Normal Form
Relations

The update problem asks whether there
exists an algorithm which is applied to not R*
but R when inserting or deleting a tuple t on R
corresponding to R . Moreover, it ‘9 essential

201

that the compexity of the algorithm does not
depend on the number of tuples in R but the
order of at most en where n Is the degree.

NOW, we show the solution of this problem.
(Note in Appendix we describe the theoretical
background and the complexity about it.)

Let us define basic concept and functions
which are used in the algorithm.

* T(I’, Ek) : gives the Ek-component of tuple
r.

* unnest(Ei(ei), t, t,, t,) : gives tuple te
and t, which are obtained by the
decomposition uE (e)(t) according to Def.
2. J .I

- compo(x, t, w) : gives tuple w which is
obtained by the composition with tuple x
and t.

* candt(t, t,, m) : gives a candidate tuple
t, and the minimum value m -for given tuple
t.

. searcht(t, q) : gives a tuple q in NFR
which contains a simple tuple t to be
added.

* deletet(q) : delete a tuple q.

* candidate tuples : given tuple t, a tuple
s in R is called the candidate tuple of t
if and only if one of original simple
tuples of s in R” can be composed with t
on Ei and no other tuple in R does not
hold this property on Ej for any j<i.
Note there exists at most one candidate
tuple of t in R (lemma A-l).

4.2 Strategy of Insertion Algorithm

Let r=[El(el), En(be a tuple to be
added, and P be EnEn-l...El, a permutation.

In order to obtain the same relation of
Vp(R*+r) finally, we have to find the candidate
tuple in R of r which is composed with r. Then
the candidate tuple may be decomposed, and we have
new tuples. After that, we may apply the same
operations about new tuples. Moreover so are the
tuples which are obtained by composition with
tuples to be added (or obtained).

Now we show procedure “insertion” for adding
a new tuple to R.

Procedure insertion

procedure insertion
var t: tuple /* for insert tuple */
begin t := r ;

recons(t)
end.

Essentially the main operation is the procedure
“recons”. The procedure 9econs” plays role as
follows:

Given tuple t, it selects the candidate tuple p by
“candttl . Then it executes “unnest” until t
becomes composable with the new tuple related to
P. Lemma A-2 says this is always possible. But
as we have the remaining tuples which are not
related to the composition with t. Veconsn is
invoked recursively to them. After composing t,
the composed tuple t’ could be composable with
other tuples. So Vecons” is called again. Note
if there exist candidate tuples with respect to
t’, they are always composable (lemma A-3).

Procedure recons

procedure recons (t : tuple)
var p:tuple /* candidate tuple */
var pe:tuple /* tuple to be composed with t */
var pr:tuple /* new tuple of decomposing p */
var w:tuple /* composed tuple with t and p */
var j:integer /* index for decomposing order */
var m:integer /* attrib. number of cand. tuple */
wm

candt(t, q, m) ;
if p <> null then
begin

j :=n;
while j > m do

begin
unnest(Ej(e 1, P, pep pr) ;

f if pr 0 nu 1 then recons(p,) ;
P :’ Pe ;
J := j - 1

end
compo(p, t, w) ;
recons(w)

end
end.
4.3 Deletion Algorithm

Assume the same notation in 4.2. Let us
show deletion algorithm. First we have to find
a tuple q in R which contains in r by searcht(t,
4). Second we apply the operation
“unnest(Ei(ei), q, qe, qr)” for i=n to 1 until
r-G- Again, we may have new tuples for each i.
For this purpose, the relation should be
reconstructed using the algorithm of “recons” in
4.2. Finally, when r=q,, tuple r can be deleted
by “deletet”.

Now we show the procedure “deletion”.

Procedure deletion

procedure deletion
v~ i:integer /* index for decomposing order ‘1
vaf q:tuple /* tuple contains simple tuple t ‘1
var qe:tuple /* obtained by unnest of q */
vw.q,:tuple /* obtained by unnest of q “1
begin i := n ; searcht(r, 9) ;
while q <> r do
begin

unnest(Ei(ei), q, qe, qr) ;
recons(q,) ;
q :’ qe ;
i:=i-1

end

202

deletet(q)
end.

5. collusion

We proposed NFR and discussed its
properties and the update algorithms on it. We
didn’t address the data ~nipUlatiOtI language
which we will show elsewhere. NFR allows
database users to take away such decompositions
of schema that are forced to occur MVDs, and to
discard join operations which originate from the
decomposition. In the implementation, it gives
us the theoretical foundation enough to reduce
the search space in databases.

Although the update algorithms seem to be
more complicated than lNF, the number of
cornposit ion to keep NFR canonical doesn’t depend
on the number of tuples. We didn’t mean to
optimize the algorithm, but the optimization
strategy is another problem.

In order to take advantages of NFR, it’s
necessary to discuss “relationsl’ or predicates
in the mathematical meaning that we can find in
the recent development of universal relations
[lOI. That is, NFR stems from the deep
consideration of data model itself. It will be
necessary to find more fundamental objects of
databases.

References

Cl3

rL21

c31

c41

C5!

161

[71

C81

c91

E.F. Codd : A Relational model of data for
large shared databanks, CACM 13-6, pp.
337-387 (1970).

R. Fagin : Multivalued dependencies and a
new normal form for relational
databases, ACM-TODS, Vol. 2, No. 3, pp.
262-278 (1977).

P.P. Chen : The Entity-Relationship model -
toward a unified view of data, ACM-TODS,
vol. 1, No. 1, pp. 9-36 (1976).

J. Ullmann : Pr iciples of database systems,
Computer Science Press (1980).

I. Kobayashi : An overview of the database
management technology, tech. report
TRCS 4-1, Sanno College (1980).

A. Makinouchi : A consideration on normal
form of not-necessarilly-normal data
model, 3rd VLDB, pp. 447-453. (1977).

G. Jaeschke, H.-J. Schek : Remarks on the
algebra of non first normal form
relations, Proc. 1st Principles of
Database Systems, ACM, PP. 124-138

(1982).
H.-J. Schek, P. Pistor : Data structure for

an integrated data base management and
information retrieval system, 8th VLDB,
(1982).

H. Arisawa, K. Moriya, T. Miura : Uniformity
of data description and query POrmUla,

submit ted elsewhere.

[lo] C. Beeri, P. Bernstein, N. Goodman : A
sophisticate’s introduction to database
normalization theory, 4th VLDB, pp. 113-
124 (1978).

Cl11 H. Arisawa : On the complexity of the
update problems on non first normal form
relations, Bulletin of the faculty of
engineering, Vo1.33, Yokohama national
university (1983).

Cl21 H. Arisawa : A conceptual design of a
database machine based on a new data
model, Proc. of international conference
on Entity-Relationship approach to
system analysis and design, P. Chen
(ed.), pp. 597-614 (1979).

Cl31 P. Bernstein : Synthesizing third normal
form relations from functional
dependencies, ACM-TODS, Vol. 1, NO. 4,
pp. 277-298 (1976).

APPmIx

We show the theoretical background and the
complexity about Update Algorithms in section 4
without proof. We discussed the complexity of
the update problems in the sense of the number
of compositions, but not of time complexity
because the latter depends heavily on physical
representation of NFRs.

Lemm A-l
There exists at most one candidate tuple of

a given tuple t for each Ei.

Lemna A-2
Let t,, tr be tuples which are obtained by

uEi(ei)(t) operation according to Def. 2.

If there exists the candidate tuple t, in R
of t,, then

n(trs Ek) = dtc, Ek) for each k=l, i.

Leera A-3
Let rc be the candidate tuple in R of a

given tuple r, and w be a tuple which is
composed with r and rc (or decomposing rc if
necessary).

If there exists the candidate tuple wc in
R-rc, then

1I(W, Ek) I lI(Wc, Ek) for each k-l, i.
All these details and proofs are in 1111.

Theorem A-4
Insertion and deletion algorithm in section 4
have the complexity of at most O(en) where n is
a degree of NFR. Note the complexity means the
number of compositions.
(proof)

We show the sketch and the complete proof
is in Clll. We focus on deletion (the case of
insertion is similar).

Let r = [El(el), En(be the tuple
in NFR R which contains t = (tl , . . . , tn) t the
deleted tuple, where ei is a set of values on

2C3

=i* Also let e’i be ei-(ti), ri = CEl(q), l o*s
Ei(e’i). El+1 (ti+l), g(t,)l be a tuple
deducible from r,
VE

and Rj be R if j = n+l,

‘**&&,)3)
E (R +I-CEl(el), Ej-l(ej-1). gj(tj),

. ..I ii j s n.
TEen'; for each j, no tuple in R++l except

CEl(el), Ej-1(8&l), Ejitj)t ..:. ‘En(
is composable on Eq with rl.

Therelore r
2

1s not zomposable any longer
is to show that, by composing

zei’j+l)(?$i?on Rj+lB(rj),
< n, since j

we have Rj where j
- 1 means the end oP deletion.

We show above by induction.
In the case oP j - n, there exists at most

one tuple in R, which is composable with m-l .
In the case oP j < n, there exists at most one
tuple which is composable with rj on Ej+l in
Rj+l (Essentially this is lennna A-l) .

Let s - CEl(el), Ej-l(e -I), Ej(e’j),
E +1(a),
i

4111 be
t e

Ej+2(tj+2, br2)s l e-v Ej,(tns

tuple. Note a) j+l, bi) ti Por j+2 d i ;5

The tuple s can be composed with rj on Ej+l
iid we have to pick out [El (q 1, . . . , E -1 (ej-
11, E (e’j). E +1(a), Ej+2(tj+p),

io we !mve [El(el), . ..*.*“E~!!~$!;),
~j,~~;~;~,~~+~Ifl~ E +dtj+z, bj+ds

Q4tn)l Por j+2 d
Ei bi),

i”;‘n. Call
those tuples Sj+2, . . . , S,. Also we have
CEl(el),
E

1
+2(tj+p),

w th rj in Rj+l, and let So be the result.
So cannot be composable on Ej+l. When

composing
assumption.

So on EJ+z, we can use inductive
That is, we have at most P(i)+1

compositions where j+2 zi I d n.
And, in total, the maximum composition count is
i(j+2) + . . . + P(n) + (n-k-l).
-By the above consideration we can suvnnarize
P(j) - (n-k)+2 x (P(j+2)+ . . . +P(n)) in maximum,
P(n) - 0 and P(n-1) - 1. Calculating them we
have the result. 0

204

