
DATABASE DECOMPOSITION INTO FOURTH NORMAL FORM

GGsta Grahne and Kari-Jouko R;iihB:

University of Helsinki, Department of Computer Science

Tukholmankatu 2, SF-00250 Helsinki 25, Finland

Abstract. We present an algorithm that decom-
poses a database scheme when the dependency set
contains functional and multivalued dependencies.
The schemes in the resulting decomposition are in
fourth normal form and have a lossless join. Our
algorithm does not impose restrictions on the
allowed set of dependencies, and it never re-
quires the computation of the full closure of the
dependency set. Furthermore, the algorithm works
in polynomial time for classes of dependencies
that properly contain conflict-free dependency
sets.

1. INTRODUCTION

The structure of a relational database can be

defined by a universal relation scheme U and by

a set of dependencies D. Relations that conform

to the universal scheme may contain much redun-

dant information and have undesirable update

properties [DatBl]. It is therefore customary to

decompose the universal scheme into subschemes
k

Rl,-..,s such that U = 'J R.. The collection
i=l '

$,. . . ,I$> is called the database scheme. Uni-

versal relations can be represented as their pro-

jections onto the relation schemes in the

This work was supported by the Academy of

Finland.

database scheme.

A good decomposition should have several

properties [BBG78]:

(1)

(2)

(3)

Minimal redundancy: the relation schemes

should represent meaningful objects so that,

for instance, they can be updated without

knowing the values for all the attributes in

the universal scheme. This is usually taken

to mean that the relation schemes should be

in one of various normal forms.

Representation: it should be possible to re-

cover the universal relation from the compo-

nent relations, i.e. the decomposition should

have a lossless join.

Separation: when a (projected) relation is

updated, it should be possible to ensure that

the dependencies in the universal relation

still hold after the update without actually

constructing the universal relation. This

condition is satisfied if the decomposition

is dependency preserving, i.e. if the pro-

jected dependencies imply the original set D.

There exists a wide variety of dependency

types, each one giving rise to different sets of

normal forms. The two most common dependency

types are functional dependencies and multivalued

dependencies. The normal forms associated with

functional dependencies are third normal form -~-
(3NF) [Cod721 and Boyce-Codd normal form (BCNF) ~-
[Cod74], whereas fourth normal form (4NF) [Fag771 -~-
is defined for multivalued dependencies. The

186

2. PREVIOUS WORK requirements for these normal forms increase from

3NF to 4NF, i.e. 4NF implies BCNF, which implies

3NF.

Unfortunately, it is not always possible to

find a decomposition having all these desirable

properties. In particular, there exist relation

schemes (or rather dependencies) that do not have

a dependency preserving decomposition into BCNF

or 4NF [BeB79]. The question of what to do when a

good decomposition does not exist is controver-

sial (see e.g. [BBG78]). Especially the validity

of the universal relation assumption has given

rise to much debate (cf. [AtP82,U1182a]).

It is, of course, important to assess how

well each of the three properties meets its in-

tended goals. But this is not enough. Even if it

is possible to decompose a relation scheme into

subschemes that satisfy some set of properties,

the method will be of little use if the decompo-

sition algorithm is prohibitively expensive.

In this paper we will focus our attention on

a problem that is known to be always solvable:

the problem of decomposing a scheme U into a set

of subschemes {R
1”’ 4-J l”..,\ such that R

have a lossless join and each Ri is in normal

form.

The complexity of the problem depends heavily

on the desired normal form. For 3NF a simple

polynomial time synthesis algorithm was presented

in ;BDB79]. Finding a lossless decomposition into

BCSF is more difficult, but an algorithm working

in polynomial time was recently given by Tsou and

Fischer [TsF80]. Their approach does not general-

ize to multivalued dependencies, and the complex-

ity of lossless decomposition into 4b’F is open.

We shall give an algorithm that is more efficient

than existing general algorithms, and that works

in polynomial time for a broader class of depend-

encies than existing polynomial algorithms.

We use the notation and terminology of

[Ull82b].

There is a straightforward way of finding a

lossless decomposition into 4NF. Suppose U has

been replaced by a set of relation schemes

Rl* . . . ,Rk (initially k=l and Rl=U). Suppose fur-

ther that some R.
1 is not in 4NF. This means that

there exists a dependency X-WY in D’ whose pro-

jection onto Ri is nontrivial (i.e. O#XCRi,

YDX=8, and O#YflRi#Ri-X) such that X is not a

key of R.. 1 Then Ri is replaced by XY fl Ri and

XU (Ri-Y). This guarantees the losslessness of

the join [Fag77,ABU79], and the repeated applica-

tion produces a set of schemes in 4NF.

This algorithm has several, efficiency prob-

lems. First, it is known that testing whether a

relation scheme is in BCNF is NP-complete [BeB79].

Therefore testing the 4NF property is also compu-

tationally intractable. In their algorithm for

functional dependencies [TsF80], Tsou and Fischer

have circumvented this problem by testing only a

sufficient BCNF condition, not a sufficient and

necessary one. In other words, if a nontrivial

dependency is found in Ri, then Ri is decomposed

regardless of whether it actually is in BCNF or

not. The same idea can be applied to multivalued

dependencies and 4NF also. (If the set of depend-

encies includes only multivalued dependencies,

the absence of nontrivial dependencies is a suf-

ficient and necessary condition for 4NF.)

The problem then becomes that of finding a

nontrivial dependency in some Ri. Fagin [Fag771

proposed to compute the dependency closure D+

before running the decomposition algorithm. Then

it would be sufficient just to scan through the

precomputed set when searching for some nontriv-

ial dependency X-Y. Unfortunately, the size of

the closure D+ can be exponential [U1182b],

thereby ruining the efficiency of this approach.

Moreover, Lien has shown in lLie81.1 that if such

a precomputed set of dependencies is used in the

decomposition algorithm, then that set must be

the closure D+: if any smaller set is used, the

algorithm may not work correctly.

187

Therefore the nontrivial dependency X-Y

must be found differently. Another approach would

be to avoid computing D+ and to derive the de-

pendencies on demand from the initial set D. In-

deed, if there are any nontrivial dependencies in

R i, then at least one of them can be found effi-

ciently using a result of [HIT791.

But then we are faced with the problem that

the decomposition tree may grow too large. If we

use an arbitrary nontrivial dependency X-Y for

decomposing Ri, neither of the new schemes

(XYflRi and XU(Ri-Y)) is necessarily in 4NF.

Therefore both of them must be decomposed fur-

ther. In each decomposition step the new sub-

schemes must have less attributes than the decom-

posed scheme Ri, but the difference may be only

one attribute. Thus the decomposition tree may

have IUl levels, and in the case of a full binary

tree this means 2 IUI -1 decomposition steps.

This indicates that instead of an arbitrary

nontrivial dependency X++Y, one should find a

dependency that is in a sense as "small" as poss-

ible. That is, the subscheme XYflRi should not

contain any nontrivial dependencies. This would

guarantee that XYflRi is in 4NF, and the decompo-

sition tree would degenerate into a linear tree

with O(llJl> nodes. In the case of functional de-

pendencies, such a "smallest" X+Y can be found

in polynomial time. Tsou and Fischer start with

an arbitrary nontrivial dependency X+Y. Then

they repeatedly test whether some nontrivial de-

pendency X' +Y' still holds in XYflRi; if so,

they throw out the attributes in (XYflR;) -X'Y'.

This is possible, since the properties of func-

tional dependencies imply that X'+Y' also holds

in Ri itself (and not just in XYnRi). In this

way the "smallest" nontrivial X+Y that holds in

Ri is finally obtained, and it can be used to

decompose Ri.

This approach does not work for multivalued

dependencies. If we find some nontrivial X' +Y'

in XYllR;, it does not necessarily hold in Ri it-

self; i.e. X' --HY' may be embedded in XYllRi.

Finding efficiently the smallest nontrivial

multivalued dependency X++Y appears to be a dif-

ficult problem, and it was left open by Tsou and

Fischer. However, solving this problem is essen-

tial for making the decomposition efficient, if

the dependencies are tested on the basis of D

without computing D+.

Our solution is in some sense between the two

extremes. We avoid computing D+, but we do not

use the fixed set D, either. Instead, during the

decomposition process we will add to D members of

D+ in such a way that whenever we wish to find a

nontrivial dependency X-Y, it is sufficient to

examine only the dependencies in the extended de-

pendency set D. This process is dynamic: it is

guided by the decomposition tree. Therefore all

the dependencies in D+ will not be added to D.

There exist some algorithms for performing

the decomposition efficiently, but none of these

algorithms achieves all the desired properties.

Lien's algorithm [Lie821 produces a lossless de-

composition into 4NF schemes in polynomial time,

but it only works for so-called conflict-free de-

pendency sets. Sciore's method [Scidl] works

under the same restriction. Although this is a

practical subclass of multivalued dependencies,

the general case (unrestricted dependencies)

still remains as an intrigueging open question.

Similarly, da Silva's algorithm [daS80] produces a

lossless decomposition into schemes that are in

4NF as far as D is concerned; however, there may

still exist derived dependencies in D+ that viol-

ate the normal form conditions.

3. AN INFORMAL DESCRIPTION OF THE METHOD

We shall, for the sake of brevity, assume in

the sequel that the dependency set D consists of

only multivalued dependencies. If functional de-

pendencies also are present we can either convert

them into multivalued ones (by the axiom X+Y im-

plies X-Y), or start with Tsou and Fischer's

algorithm to produce a lossless set of BCNF

schemes, and then apply our algorithm to this set.

188

Our goal is to maintain a set of left-hand

sides K, such that whenever there is a nontrivial

dependency in a candidate scheme R, then there is

at least one such dependency whose left-hand side

is in K. Initially K equals the set of left-hand

sides in D, denoted by LHS(D).

As an example, consider the set of depend-

encies given in [Lie81,p.611. Here U=ABCEGH and

D = {A-G I BHCE, B-HH 1 AGCE, GH*C 1 E 1 AB}.

(We have augmented the original D by listing the

entire dependency basis on the right-hand side of

each left-hand side of D.) If we let K equal

LHS(D) permanently, then the resulting schemes

may not be in 4NF. For instance, in the decompo-

sition tree

ABCEGH

AB' >HCE

B/ a,,,

which is obtained by using the dependencies A-HG

and B+H, the scheme ABCE is not in 4NF: the de-

pendencies AB++C and AB-HE hold in it. Yet none

of the original dependencies in D contradicts the

4NF property.

If the dependencies are applied in some other

order, the result may in fact be a decomposition

into 4NF schemes. However, Lien [Lie811 gives an-

other example where 4NF schemes are not reached,

no matter what order of dependencies is used in

the decomposition.

The problem with the given decomposition tree

is that when A++G is applied, the left-hand side

GH is split. The corresponding dependencies can-

not be directly applied in the subschemes, al-

though the subschemes may contain some derived

nontrivial dependencies, whose derivation re-

quires the use of GH. A key idea in our algorithm

is that we will in a sense perform one step of

such a derivation simultaneously with the decom-

position step.

For instance, although GH++C 1 E 1 AB cannot

be applied in ABHCE, we can achieve the same

effect by adding to K the left-hand side AH. That

is, if a dependency X-HY is derived using GH,

then we must first derive G. This requires the

application of the dependency A*G. By combining

these two derivation steps we-can directly use

the dependencies AH-C 1 E 1 B in ABCHE.

Similarly, if ABCHE is decomposed using

B-crH, the newly added left-hand side AH is

split. Again, we can fix the situation by adding

to K the left-hand side AB.

In general, if R is the scheme being decom-

posed using a dependency X-WY, and if P is a

left-hand side that is split in the decomposition,

then the element that is added to K is XU (PnY).

It can be shown that this is sufficient for

achieving the desired effect: only left-hand

sides in K need to be considered when searching

for the nontrivial dependencies. We will return

to the correctness issue in Section 5.

4. THE DECOMPOSITION ALGORITHM

We start with some necessary definitions. Let

U={Al,..., A,} be a relation scheme and D =

{x -Y 1 1'"" n X +Yn) be a set of multivalued de-

pendencies. For any XgU, the dependency basis of

X (denoted by DEP(X)) is defined as a partition

of U-X such that D implies X+Y if and only if Y

is a union of some sets in DEP(X) (provided

XflY=@). The dependency basis always exists and

it can be computed efficiently [Bee80,Ga182].

We say that a dependency X-Y is nontrivial

in an attribute set R if XsX(YflR)sR; otherwise

X++Y is trivial in R (if XrR). For brevity, we

will sometimes say that X is nontrivial in R if

X*Y is nontrivial in R for some Y in DEP(X);

otherwise X is said to be trivial in R.

As explained in Section 3, the splitting re-

lation is essential to the decomposition algo-

rithm. We say that X-Y splits an attribute set

P if the following conditions are satisfied:

(i) @#YllP#P, and

(ii) for some QEDEP(P), BfYnQSY-P.

189

Pictorially the splitting situation is the

following.

A slightly stronger form of condition (i),

sometimes referred to as the split key property,

is discussed in e.g. [Lie82,BFM81,BeK83]. Here we

are interested in the splitting of P only if P

could be used to further decompose XY. Therefore

we require also condition (ii), which guarantees

the existence of a suitable Q in DEP(P). The

algorithm would work correctly without condition

(ii), but in this way it is more efficient.

We are now ready to present the decomposition

algorithm.

Algorithm: Decomposition of a relation scheme.

Input: A relation scheme U and a set of de-

pendencies D= {X 1 -HY 1'"" n X *Yn) such that

YiEDEP(Xi), 16ibn.

output: A decomposition n={Rl,...,Rm} of U such
m

that U Ri=U, the decomposition has a lossless
i=l

join, and each Ri is in 4NF.

Method:

K:=LHS(D); n :=(U); {initialization)

(decomposition loop)

while there exist REn, XEK and YEDEP(X) such

that X+Y is nontrivial in R

do begin --
let L=(YIYEDEP(X) and YnR#@);

{prepare for the decomposition using X: add

to K new left sides}

while there exist YEL, VEK, PEK and WE

DEP(V) such that Vc_XYflRsVW

{V-W is trivial in XYllR}

and V*W splits P and V(PnW) @K

do K:=%{V(PnW)};
-

-
TI:= (n-iR}>U U {X(YflR)); (decomposition]

YEL
e&; 0

The following figure illustrates how the

algorithm could work when it is applied to U =

ABCEGH and D=(AaG 1 BCEH, B+H 1 ACEG,

GH++C tE 1 AB).

ABCEGH X=A, L={G,BCEH)
V++W = A+BCEH splits GH

,/ LcEH * K:=(A,B,GH) U(g)

/\
X=B, L={H,ACEG}
V++W=B*ACEG splits

B/ \

GH and AH
19 K:=(A,B,GH,AH) U

(BG@

ABCE

/\

X=AB, L=IC,E)

ABC ABE

The underlined parts indicate the essential facts

that allow the algorithm to decompose the unnor-

malized ABCE further, even though all the members

of LHS(D) are trivial in it.

Note also that the algorithm does not fix any

particular order for considering the elements of

K in the decomposition process. A different

choice of the X-sets would yield a different de-

composition tree.

5. CORRECTNESS OF THE DECOMPOSITION ALGORITHM

We will show that the algorithm works cor-

rectly by using an indirect proof. If S-r-rT is

nontrivial in some Ri belonging to the final de-

composition, we will claim that S is necessarily

added to K in the algorithm. Therefore R. could 1
have been decomposed further using S, contra-

dicting the fact that Ri belongs to the final

output of the algorithm.

To prove that S is added to K it is necessary

to study the properties of splittings. The first

two lemmas prove two essential facts used in the

correctness proof. In both lemmas we assume that

Rc_U and that S++T is nontrivial in R. Further-

more, we assume that S is minimal among such left

sides, i.e. if S' is nontrivial in R then

ISI s IS’).

It is useful to consider how S is related to

LHS(D). We say that the pair

190

({Sl,...,Sk},{Sk+l,...,Sk+t1) is a representation

of S if the following conditions are satisfied:

(i) S. ELHS(D), l<i6k+t.
k

(ii) U S. = 1
U {X/XELHS(D) and XC_S}.

i=l
(iii) O#SiflS#Si, k+l<i<k+t.

k k+t
(iv) S = (U Si) U (U (Sin S)).

i=l i=k+l

Furthermore, we say that ({Sl,...,Sk],{Sk+l,...,

'k+t') - is a minimal representation of S (denoted

by M(S)) if for any other representation

({Tl,...,Tk,},{Tk,+l,...,Tk,+t,}) we have k+t 6

k'+t'. Intuitively, a minimal representation of

is a minimal cover of S using sets in LHS(D),

subject to the condition that if XGS and X E

LHS(D), then X is covered by sets that are com-

S

pletely contained in S. If X*Y is a dependency

in D
+

where X is nonredundant, then a minimal

representation for X always exists, but it need

not be unique.

In the lemmas we assume that M(S) =

({Sl,...,Sk],{Sk+l,...,Sk+t)) and that k+ts2.

From the minimality of S it follows that each Si,

lsibk, is trivial in R; let TiEDEP(Si) such

that RcSiTi.

As a notational convenience, for any collec-

tion of attribute sets {Xl,...,Xn} where each

XiEU, we define U Xi=0 and
iE0

n xi=u.
iE0

Lemma 1. There exists a PELHS(D) such that for

any Is{l,... ,k! and j E{l,...,k]-I, the fol-

lowing hold:

(i) S. ++Tj
3

splits (U Si) U (Pll fl
iE1 iE1

Ti), and

k k+t
(ii) Pn fl Ti E

i=l
u (S;llS).

i=k+l

Proof. Consider the computation of DEP(S) using

Beeri's algorithm [Bee80]. The algorithm starts

with a candidate basis, e.g. {U-S}, but any par-

tition that is not finer than DEP(S) could be

used. Then the basis is refined using the fol-

lowing rule: If T is in the partition and X-++Y

is in D such that X DT =@, then T is replaced by

TnY and T-Y. The algorithm terminates when the

partition cannot be further refined.

By the decomposition rule for multivalued de-
k

pendencies, we may in this case take I(fl T,)-S,

k
is1 L

k
U-S- n Ti) as the candidate basis. Now RE n SiTi

k i=l
k k is1

c n ST.
i=l ki

= SU(f-l T;)
i=l

= SU ((Il Ti)-S); thus
i=l

S++(fl Ti)-S is trivial in R. Since we assumed
i=l

that S is nontrivial in R, there must exist a

P+Q in D such that

and

k
p n ((r-l = 0 (1)

i=l
T;)-S)

k k
@#QfI ((fI

i=l
Ti)-S) # (fl Therefore

i=l
Ti)-S.

@#Qn((I-I
iEI

Ti)-S) # (fl T;)-S (2)
iE1

for any Ic{l,...,k}.

On the other hand, the minimality of S and

M(S) implies that U
iE1

Si is trivial in R for any

ICC1 ,...,k} such that I#{l,...,k+t}. Consider

the computation of DEP(U Si). A candidate basis
iE1

is { fl T. U-(1' U fl
iEI iE1

Si)-(
iE1

Ti)}. Since we just

have shown that Q would partition ll
iE1

Ti, P-Q

cannot be used to refine fl T.. Therefore
iEIi

p n (n TV) + 0.
iE1

(3)

We will show that P has the properties

claimed in the lemma. Let I be an arbitrary

proper subset of il,..., k), and let j be an ar-

bitrary element of (1,. ..,kj-I. We will denote by

V the set (U Si) U (Pn n
iE1 iE1

Ti). To show that

S. ++T. splits V, two conditions must be sat-
J J

isfied:

(a) O#TjnV#V, and

(b) for some WEDEP(V), O#Tj flW#Tj-V.

We will deal with the four inequalities one at a

time.

191

lo 0#T, nv. If IU{j)#{l,...,k+t), (3) implies

that’0fPn (n
iEIlJ(i1

Ti)=Tj" (P" "
iE1

Ti),

which immediately gives the result. If IU{j)

= il,..., k+t}, then t=O, ka2, and I#@; let

hE I. By the minimality of S and M(S), Sh-Sj #

0; and because S
h- - 33

cRcS.T., Sh"Tj #O. The

result follows.

2O Tj "V#V. Suppose to the contrary that Tj "V

= V, i.e. VGT.. In particular, P "
3 k

" T;E
iE1

T . . Let H= {l
3

,...,k)-(j); thus " Ti = " T..
k i=l iEH1

But (1) implies that P" (" Ti) =@, while (3)
i=l

implies that P" ("
iEH

Ti) #a: a contradiction.

3' For some W in DEP(V), Tj "W#O. To find a

suitable W, we will start from the dependency

u si++ n Ti. By shifting those attributes
iE1 iE1
of " Ti that belong to P to the left, we get

iE1

v= (u si) u (p n (n --w
iE1 iE1

TV))

(" T$-(P"(
iE1

" T;))=(
iE1

" Ti)-P.
iE1

Since (("
iE1

Ti)-P) "P=!?J, P++Q can be used to

refine ("
iE1

Ti)-P. Thus V-H((" Ti)-P)"Q=
iE1

(n since Q E
iE1

Ti)"Q-(P"Q) =("
iE1

Ti)"Q,

DEP(P). We will show that condition (b) holds

for (" Ti)"Q; then it obviously holds for
iEI

some W in DEP(V) such that Ws("
iE1

Ti) "Q.

The first part, Tj," ("
iE1

Ti) "Q#O, follows

immediately from (2).

4' Tj " ("
$5 I

Ti) "Q#Tj-V. From (2) we know that

k
Q" ((" Ti)-S) # (" Ti)-S, which implies

k i=l i=l k
(n Ti)-S-Q#0. Let AE (" Ti)-S-Q. Since
i=l i=l

A@Q, AgTj " ("
iE1

Ti) "Q. We will establish

the claim by showing that AETj-V. Since A E
k
" Ti, we immediately have AET.. Moreover,

i=l 3
k

AgS implies A6 U
iE1

Si, and AE(" Ti)-S
i=l

implies AeP (using (1)). Thus Ae

(U
iE1

Si)U(P"(" Ti))=V.
iE1

We have shown that part (i) of the claim holds.

Part (ii) follows directly from (1): since

P"((: T.)-S)=P"((: T;)-((
j,=l ' i=l

: S.)U(kit (Sins))))
i=l l i=k+l

= P"((I! T.)-(ki' (S."S))) =O, we have
i=l l i=k+l '

k k+t
P"(" Ti+ U 0

i=l i=k+l
(S;"S).

Lemma 2. Let V be an attribute set such that
k
U SiGVsS. Then there exist WEDEP(V) and PC

i=l
LHS(D) such that V++W splits P and P"W=S.

Proof. By the minimality of S, V++W is trivial

in R for any WEDEP(V). Let W be the unique set

in DEP(V) such that R=VW.

Consider the computation of DEP(S). A candi-

date basis is {W-S,U-W-S). Since S+T is non-

trivial in R and since REVWGSW=S U(W-S), there

must exist a P*Q in D such that P" (W-S) =d and

O#Q" (W-S)#W-S. Thus clearly P"WzS; we claim

that V++W splits P.

lo

2O

3O

4O

P"W#O. If P"W=O, P*Q could be used in

the computation of DEP(V) to refine V, a con-

tradiction.

P"W#P. If P"W=P, we would have PEW and

PES. By the definition of M(S), P E
k

U{XlXELHS(D) and XcS] = U S.cV, contra-
ill l-

dieting the fact that V"W=O.

Q"W#d. Obvious.

Q"W#W-P. Since Q" (W-S) #W-S, we have W-S-Q

0. Let AEW-S-Q; then A@Q"W. Moreover,

AEW, but A@!P because P" (W-S) =O, implying

AEW-P. 0

Theorem 1. Consider n=(Rl,...,R,) and K at the

beginning of the outer while-loop. Let S be a

minimal set such that S*T isnontrivial in some

Ri for some TEDEP(S). Then SEK.

192

Proof. Let M(S) =(lSl,...,Skl,iSk+l,...,Sk+t)).

By the initialization of K, SiEK for lbibk+t.

If k+t=l, then clearly k=l and t=O, and S=S 1
E K.

Consider then the case k+t)2. The conditions

for Leassa 1 are now satisfied. Let P be the set

in LHS(D) whose existence is implied by Lemma 1.

Taking I =8 and j =l, Lemma 1 (i) gives that

S ++T 1 1 splits P. By the minimality of S, Sl is

trivial in Ri. Therefore S,_CR~=XYDR~S T dur- 11
ing the decomposition step that produced Ri from

R using some dependency X-Y. Since Sl*Tl

splits P, Sl U (PnTl) was added to K (unless it

was there already)..

By Lemma 1 (i), S2*T2 splits Sl U(PflT1).

Repeating the above argument yields that

= U SiU(Prl II Ti) is added to K. Straight-
i=l i=l

forward inductive application of Lemma 1 (i) im-
k k

plies that V= U SiU (Pll n Ti) is added to K
i=l i=l

during decomposition using X*Y. Moreover,
k k+t

Lemma 1 (ii) states PI? f3 T:E u (S, ns); thus

v_cs.

If V=S, the claim follows. If VsS, Lemma 2

implies that there exist WEDEP(V) and P' ELHS(D)

such that V-HW splits P' and P' nWcS. By the

definition of splitting, P' fiW#8, which together

with the minimality of S implies that RisVW. But

then VU(P' flW) is added to K during the same de-

composition step.

We clearly have VSV U(P'llW)rS. If

VU(P' flW)gS, the above argument and Lemma 2 ‘can

be applied inductively, until we end up with S

being added to K. o

Corollary. The decomposition algorithm termin-

ates correctly.

Proof. Termination follows from the finiteness

of U and D and from the fact that only nontrivial

dependencies are used in the decomposition. The

lOSSleSS join property is obvious from the re-

sults in [Fag77,ABU791. To see that the resulting

schemes are in 4NF, suppose to the contrary that

for some Ri belonging to the final decomposition

there exists an SSU such that S is nontrivial in

Ri. Without loss of generality, let S be minimal

among such left sides. By Theorem 1, SEK, con-

tradicting the fact that Ri belongs to the final

decomposition even though it could be decomposed

further using S. o

6. EFFICIENCY OF THE DECOMPOSITION ALGORITHM

Besides the actual decomposition n our algo-

rithm computes the set K, which is a subset of

LHS(D+). Therefore the algorithm is more effi-

cient than the straightforward method where the

entire D
+

is computed. Unfortunately, in the gen-

eral case we have been unable to determine exact-

ly how much smaller K is when compared to LHS(D+).

There exist pathological examples where it ap-

pears difficult to bound the size of K by a

polynomial. Thus the complexity of the algorithm

is still open.

Before looking at the difficult cases, let us

examine how the basic algorithm in Section 4

could be improved. There are two main approaches

that can be used. First, the set K computed by

the algorithm is still too large: there exist

sets in K that do not serve any useful purpose.

Thus we could place additional requirements for a

set to be added to K, and prove that the algo-

rithm still works correctly.

We have actually already met one such re-

quirement: condition (ii) in the definition of

splitting was introduced for the purpose of re-

stricting the size of K. Another requirement can

be added by examining the proof of Theorem 1. We

can observe that whenever the proof refers to an

element in K-LHS(D), the element is of the form

VU(WnP) where either VELHS(D)-or PELHS(D).

Thus we can immediately add the condition

VELHS(D) or PELHS(D) -

193

to the inner while-loop of the algorithm without

violating its correctness.

Another way to enhance the efficiency of the

decomposition algorithm is to choose a decomposi-

tion order that keeps both n and K small. Recall

that the algorithm works correctly independently

of the order in which the sets in K are con-

sidered; thus we are free to choose a convenient

order as we please.

We will require that the sets are chosen from

K in an order that is compatible with the fol-

lowing containment order. Let XEK, X'EK, X$X',

so that both X and X' are nontrivial in some R E

n; then X' is not chosen before X as the left-

hand side to be used in the decomposition. The

same order is used by Lien [Lie82], who calls it

a "p-ordering".

Intuitively, the motivation for using the

containment order is that if X is used for decom-

posing R, then X' is contained in at most one of

the resulting schemes. In the opposite case X

would be contained in alI the sons of R and could

possibly be used to decompose several of them

further. The following theorem establishes this

property formally.

Theorem 2. Consider the sets n and K at the be-

ginning of the outer while-loop. Let ZsREn such

that Z is nontrivial in R. For all T En-{RI, Z&T.

Proof. By induction on Inl.

Basis. n ={U). Obvious.

Inducti.vg step. Suppose that the claim holds for

K and IT, which are replaced by K' and n' =
P

(n-(R)) U U {X(YinR>) during a single execution
i=l

of the outer while-loop. We will show that the

claim holds for K' and n'. Let ZsR' En' such

that Z is nontrivial in R'.

Consider first the case R' En. By the induc-

tive hypothesis, Z&T for any TEn-(R'). In par-

ticular, Z&R, which yields Z&X(YiflR) for all

1. This proves the claim.

Suppose then that R' gn, i.e. R' =X(YinR)

for some i. Clearly Z is nontrivial in R; by the

inductive hypothesis, Z&T for any Ten-(R). Sup-

pose (contrary to the claim) that Zc_X(Yj OR) for

some j #i. But then ZsX. By Theorem 1, there

exists a minimal SEK such that S is nontrivial

in R. By the minimality of S, ScZgX. This con-

tradicts the containment order of decomposition

and proves the claim. o

Theorem 2 shows that each set in K can be

used in the decomposition at most once. We also

know that each basic step of the algorithm can be

carried out efficiently: the main operation re-

quired is the computation of a dependency basis

which can be done in almost linear time [GalSZl.

Thus our algorithm works in polynomial time ex-

actly when IKI is bounded by a polynomial of IDI

and IUI.

For restricted classes of dependencies it is

possible to show that K does not grow excessively.

So-called conflict-free sets of dependencies are

the largest class that can be decomposed effi-

ciently using previous algorithms (e.g. Lien's

algorithm [Lie81,Lie82]). A conflict-free set is

characterized in [BFMBl] as a set that (i) does

not split keys (where a "key" means a left-hand

side of a dependency), and (ii) satisfies one of

several equivalent properties, such as the or-

thogonality property or the intersection property.

Clearly, requirement (ii) is immaterial from

the point of view of our algorithm. As long as

condition (i) is satisfied, no sets are added to

K, and the algorithm terminates in polynomial

time. This trivially defines a class of depend-

encies properly containing conflict-free sets.

The really interesting cases are, of course,

those where there exist splittings among members

of LHS(D) (and thus K). If the splitting relation

is acyclic, it is not difficult to find a decom-

position order (a refinement of the containment

order) that guarantees the efficiency of the

algorithm. This still holds true for dependency

sets containing cyclic splittings in a

194

restricted, regular manner. A definition of such

a class would be technical, with no apparent in-

tuitive interpretation, so we refrain from giving

one.

As mentioned before, there are cases where it

appears difficult to derive a polynomial upper

bound for IKI. We conclude this section with two

simple examples that can be combined and expanded

to produce complicated splittings.

It may not be immediately clear why the inner

loop is required in the decomposition algorithm,

i.e. why do we in a sense perform a group of

"trivial decompositions" simultaneously with the

"real" decomposition based on X. The following

example illustrates this situation. Here U=ABCEF

and D={AB*CE 1 F, C-ABE 1 F, EF++A I BC); U is

illustrated by the following diagram.

Suppose that AB is used first to decompose U,

resulting in the schemes ABCE and ABF. Now AB

does not split either'C or EF; although EF breaks

into two pieces, it does not have a right-hand

side that could partition ABCE-AB-EF=C. There-

fore no sets are added to K because of AB. How-

ever, C becomes trivial during the same decompo-

sition step, and C-ABE does split EF. Therefore

C U (ABE nEF) =CE is added to K, and we can in the

next step use CE++A 1 B I F to further decompose

ABCE into ACE and BCE.

In this case the new set is immediately non-

trivial in some scheme. The next example illus-

trates a situation where we reach a nontrivial

set only through a chain of trivial sets. Let U=

ABCEFGHI and D = {A-HBCEFGH I I, BGH--Ac I E I F I I,

BI-uACGH 1 E I F, CF-wBH 1 AEGI} (see the fol-

lowing diagram).

E F

A t-a G C

I t----------l
I w

Suppose now that decomposition begins by

using BGH, i.e. (ll) is replaced by (ABCGH, BEGH,

BFGH, BGHI). Again, BGH does not split any of the

other left-hand sides, but since also A becomes

trivial in ABCGH and since A splits both BI and

CF, we add AB and AC to K. Computing the depend-

ency bases we find that AB+CGH I E 1 F 1 I and

AC++BEFGH I I are both trivial in ABCGH; there-

fore they are also considered in the role of V

within the inner loop of the algorithm. In par-

ticular, since AB splits CF, the set ABC is added

to K. Now ABC-G 1 H 1 E 1 F 1 I, so ABC can be used

to further decompose ABCGH.

These examples show that, as regards the

inner loop of the algorithm, there may be many

sets in the role of V, and also that it is

necessary to consider the newly added trivial

sets in the role of V. By generalizing these ex-

amples so that they involve many alternatives

instead of only two, it is possible to create

situations where K grows excessively during a de-

composition step.

As stated before, all the sets that are added

to K are not useful. The problem of restricting

the growth of K, either by adding new require-

ments into the algorithm or by refining the de-

composition order, is left for further study.

7. CONCLUDING REMARKS

We have given an algorithm that decomposes a

universal relation scheme into a set of schemes

that are in 4NF and have a lossless join. The

algorithm works for any set of functional and

multivalued dependencies. The key idea was to

195

apply the concept of splittings among the attri-

bute sets in order to avoid the computation of

the entire closure of the dependency set. This is

in contrast with most of the previous methods,

which downright forbid splittings (e.g. [Lie821).

The algorithm works in polynomial time for

classes of dependencies that properly contain

conflict-free dependency sets. It is an open

question whether improvements in the basic algo-

rithm or in the decomposition order can make the

algorithm run in polynomial time in the general

case.

REFERENCES

ABU79

AtP82

BBG78

BeB79

Bee80

BFM81

BeK83

BDB79

A.V. Aho, C. Beeri & J.D. Ullman, The
theory of joins in relational databases.
ACM Transactions on Database Systems 4,3
(Sept. 1979), 297-314.

P. Atzeni & D.S. Parker, Assumptions in
relational database theory. Proc. of the
ACM Symposium on Principles of Database
Systems, March 1982, l-9.

C. Beeri, ?.A. Bernstein & N. Goodman, A
sophisticate's introduction to database
normalisation theory. Proc. of the Fourth
International Conference on Very Large Data
Bases, Sept. 1978, 113-124.

C. Beeri & P.A. Bernstein, Computational
problems related to the design of normal
form relation schemes. ACM Transactions on
Database Systems 4,l (March 1979), 30-59.

C. Beeri, On the membership problem for
functional and multivalued dependencies in
relational databases. ACM Transactions on
Database Systems 5,3 (Sept. 1980), 241-259.

C. Beeri, R. Fagin, D. Maier & M.
Yannakakis, On the desirability of acyclic
database schemes. Research Report RJ3131,
IBM, San Jose, May 1981.

C. Beeri & M. Kifer, Elimination of inter-
section anomalies from database schemes.
Proc. of the Second ACM Symposium on Prin-
ciples of Database Systems, March 1983,
340-351.

J. Biskup, U. Dayal & P.A. Bernstein, Syn-
thesizing independent database schemas.
Proc. ACM SIGMOD 1979 Conference on Manage-
ment of Data, 1979, 143-152.

Cod72 E.F. Codd, Further normalization of the
data base relational model. Data Base Sys-
tems, R. Rustin (ed.), Prentice-Hall,
Englewood Cliffs, N.J., 1972, 33-64.

Cod74

daS80

Data1

Fag77

Gal82

HIT79

Lie81

Lie82

Sci81

TsF80

E.F.Codd, Recent investigations in rela-
tional database systems. Information Pro-
cessing 74, Proc. of IFIP Congress 74, J.L.
Rosenfeld (ed.), North-Holland Publ. Co.,
Amsterdam, 1974, 1017-1021.

A.C. da Silva, The decomposition of rela-
tions based on relational dependencies. Ph.
D. thesis, Univ. of California, Los Angeles,
1980.

C.J. Date, An Introduction to Database Sys-
tems. Addison-Wesley, Reading, Mass., 1981.

R. Fagin, Multivalued dependencies and a
new normal form for relational databases.
ACM Transactions on Database Systems 2,3
(Sept. 1977), 534-544.

Z. Galil, An almost linear-time algorithm
for computing a dependency basis in a rela-
tional database. J. ACM 29,l (Jan. 1982),
96-102.

K. Hagihara, M. Ito, K. Taniguchi & T.
Kasami, Decision problems for multivalued
dependencies in relational databases. SIAM
Journal on Computing 8,2 (May 1979), 247-
264.

Y.E. Lien, Hierarchical schemata for rela-
tional databases. ACM Transactions on Data-
base Systems 6,l (March 1981), 48-69.

Y.E. Lien, On the equivalence of database
models. J. ACM 29,2 (April 1982), 333-362.

E. Sciore, Real-world MVD's. Proc. ACM
SIGMOD 1981 Conference on Management of
Data, April 1981, 121-132.

D.-M. Tsou & P.C. Fischer, Decomposition of
a relation scheme into Boyce-Codd normal
form. Proc. ACM 1980 Annual Conference,
1980, 411-417. Reprinted in ACM SIGACT News
14,3 (1982), 23-29.

U1182a J.D. Ullman, The U.R. strikes back. Proc.
of the ACM Symposium on Principles of Data-
base Systems, March 1982, 10-22.

Ul182b J.D. Ullman, Principles of Database Sys-
tems (Second Edition). Computer Science
Press, Potomac, Md., 1982.

196

