
DATABASE DECOMPOSITION INTO FOURTH NORMAL FORM 

GGsta Grahne and Kari-Jouko R;iihB: 

University of Helsinki, Department of Computer Science 

Tukholmankatu 2, SF-00250 Helsinki 25, Finland 

Abstract. We present an algorithm that decom- 
poses a database scheme when the dependency set 
contains functional and multivalued dependencies. 
The schemes in the resulting decomposition are in 
fourth normal form and have a lossless join. Our 
algorithm does not impose restrictions on the 
allowed set of dependencies, and it never re- 
quires the computation of the full closure of the 
dependency set. Furthermore, the algorithm works 
in polynomial time for classes of dependencies 
that properly contain conflict-free dependency 
sets. 

1. INTRODUCTION 

The structure of a relational database can be 

defined by a universal relation scheme U and by 

a set of dependencies D. Relations that conform 

to the universal scheme may contain much redun- 

dant information and have undesirable update 

properties [DatBl]. It is therefore customary to 

decompose the universal scheme into subschemes 
k 

Rl,-..,s such that U = 'J R.. The collection 
i=l ' 

$,. . . ,I$> is called the database scheme. Uni- 

versal relations can be represented as their pro- 

jections onto the relation schemes in the 

This work was supported by the Academy of 
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database scheme. 

A good decomposition should have several 

properties [BBG78]: 

(1) 

(2) 

(3) 

Minimal redundancy: the relation schemes 

should represent meaningful objects so that, 

for instance, they can be updated without 

knowing the values for all the attributes in 

the universal scheme. This is usually taken 

to mean that the relation schemes should be 

in one of various normal forms. 

Representation: it should be possible to re- 

cover the universal relation from the compo- 

nent relations, i.e. the decomposition should 

have a lossless join. 

Separation: when a (projected) relation is 

updated, it should be possible to ensure that 

the dependencies in the universal relation 

still hold after the update without actually 

constructing the universal relation. This 

condition is satisfied if the decomposition 

is dependency preserving, i.e. if the pro- 

jected dependencies imply the original set D. 

There exists a wide variety of dependency 

types, each one giving rise to different sets of 

normal forms. The two most common dependency 

types are functional dependencies and multivalued 

dependencies. The normal forms associated with 

functional dependencies are third normal form -~- 
(3NF) [Cod721 and Boyce-Codd normal form (BCNF) ~- 
[Cod74], whereas fourth normal form (4NF) [Fag771 -~- 
is defined for multivalued dependencies. The 
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2. PREVIOUS WORK requirements for these normal forms increase from 

3NF to 4NF, i.e. 4NF implies BCNF, which implies 

3NF. 

Unfortunately, it is not always possible to 

find a decomposition having all these desirable 

properties. In particular, there exist relation 

schemes (or rather dependencies) that do not have 

a dependency preserving decomposition into BCNF 

or 4NF [BeB79]. The question of what to do when a 

good decomposition does not exist is controver- 

sial (see e.g. [BBG78]). Especially the validity 

of the universal relation assumption has given 

rise to much debate (cf. [AtP82,U1182a]). 

It is, of course, important to assess how 

well each of the three properties meets its in- 

tended goals. But this is not enough. Even if it 

is possible to decompose a relation scheme into 

subschemes that satisfy some set of properties, 

the method will be of little use if the decompo- 

sition algorithm is prohibitively expensive. 

In this paper we will focus our attention on 

a problem that is known to be always solvable: 

the problem of decomposing a scheme U into a set 

of subschemes {R 
1”’ 4-J l”..,\ such that R 

have a lossless join and each Ri is in normal 

form. 

The complexity of the problem depends heavily 

on the desired normal form. For 3NF a simple 

polynomial time synthesis algorithm was presented 

in ;BDB79]. Finding a lossless decomposition into 

BCSF is more difficult, but an algorithm working 

in polynomial time was recently given by Tsou and 

Fischer [TsF80]. Their approach does not general- 

ize to multivalued dependencies, and the complex- 

ity of lossless decomposition into 4b’F is open. 

We shall give an algorithm that is more efficient 

than existing general algorithms, and that works 

in polynomial time for a broader class of depend- 

encies than existing polynomial algorithms. 

We use the notation and terminology of 

[Ull82b]. 

There is a straightforward way of finding a 

lossless decomposition into 4NF. Suppose U has 

been replaced by a set of relation schemes 

Rl* . . . ,Rk (initially k=l and Rl=U). Suppose fur- 

ther that some R. 
1 is not in 4NF. This means that 

there exists a dependency X-WY in D’ whose pro- 

jection onto Ri is nontrivial (i.e. O#XCRi, 

YDX=8, and O#YflRi#Ri-X) such that X is not a 

key of R.. 1 Then Ri is replaced by XY fl Ri and 

XU (Ri-Y). This guarantees the losslessness of 

the join [Fag77,ABU79], and the repeated applica- 

tion produces a set of schemes in 4NF. 

This algorithm has several, efficiency prob- 

lems. First, it is known that testing whether a 

relation scheme is in BCNF is NP-complete [BeB79]. 

Therefore testing the 4NF property is also compu- 

tationally intractable. In their algorithm for 

functional dependencies [TsF80], Tsou and Fischer 

have circumvented this problem by testing only a 

sufficient BCNF condition, not a sufficient and 

necessary one. In other words, if a nontrivial 

dependency is found in Ri, then Ri is decomposed 

regardless of whether it actually is in BCNF or 

not. The same idea can be applied to multivalued 

dependencies and 4NF also. (If the set of depend- 

encies includes only multivalued dependencies, 

the absence of nontrivial dependencies is a suf- 

ficient and necessary condition for 4NF.) 

The problem then becomes that of finding a 

nontrivial dependency in some Ri. Fagin [Fag771 

proposed to compute the dependency closure D+ 

before running the decomposition algorithm. Then 

it would be sufficient just to scan through the 

precomputed set when searching for some nontriv- 

ial dependency X-Y. Unfortunately, the size of 

the closure D+ can be exponential [U1182b], 

thereby ruining the efficiency of this approach. 

Moreover, Lien has shown in lLie81.1 that if such 

a precomputed set of dependencies is used in the 

decomposition algorithm, then that set must be 

the closure D+: if any smaller set is used, the 

algorithm may not work correctly. 
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Therefore the nontrivial dependency X-Y 

must be found differently. Another approach would 

be to avoid computing D+ and to derive the de- 

pendencies on demand from the initial set D. In- 

deed, if there are any nontrivial dependencies in 

R i, then at least one of them can be found effi- 

ciently using a result of [HIT791. 

But then we are faced with the problem that 

the decomposition tree may grow too large. If we 

use an arbitrary nontrivial dependency X-Y for 

decomposing Ri, neither of the new schemes 

(XYflRi and XU(Ri-Y)) is necessarily in 4NF. 

Therefore both of them must be decomposed fur- 

ther. In each decomposition step the new sub- 

schemes must have less attributes than the decom- 

posed scheme Ri, but the difference may be only 

one attribute. Thus the decomposition tree may 

have IUl levels, and in the case of a full binary 

tree this means 2 IUI -1 decomposition steps. 

This indicates that instead of an arbitrary 

nontrivial dependency X++Y, one should find a 

dependency that is in a sense as "small" as poss- 

ible. That is, the subscheme XYflRi should not 

contain any nontrivial dependencies. This would 

guarantee that XYflRi is in 4NF, and the decompo- 

sition tree would degenerate into a linear tree 

with O(llJl> nodes. In the case of functional de- 

pendencies, such a "smallest" X+Y can be found 

in polynomial time. Tsou and Fischer start with 

an arbitrary nontrivial dependency X+Y. Then 

they repeatedly test whether some nontrivial de- 

pendency X' +Y' still holds in XYflRi; if so, 

they throw out the attributes in (XYflR;) -X'Y'. 

This is possible, since the properties of func- 

tional dependencies imply that X'+Y' also holds 

in Ri itself (and not just in XYnRi). In this 

way the "smallest" nontrivial X+Y that holds in 

Ri is finally obtained, and it can be used to 

decompose Ri. 

This approach does not work for multivalued 

dependencies. If we find some nontrivial X' +Y' 

in XYllR;, it does not necessarily hold in Ri it- 

self; i.e. X' --HY' may be embedded in XYllRi. 

Finding efficiently the smallest nontrivial 

multivalued dependency X++Y appears to be a dif- 

ficult problem, and it was left open by Tsou and 

Fischer. However, solving this problem is essen- 

tial for making the decomposition efficient, if 

the dependencies are tested on the basis of D 

without computing D+. 

Our solution is in some sense between the two 

extremes. We avoid computing D+, but we do not 

use the fixed set D, either. Instead, during the 

decomposition process we will add to D members of 

D+ in such a way that whenever we wish to find a 

nontrivial dependency X-Y, it is sufficient to 

examine only the dependencies in the extended de- 

pendency set D. This process is dynamic: it is 

guided by the decomposition tree. Therefore all 

the dependencies in D+ will not be added to D. 

There exist some algorithms for performing 

the decomposition efficiently, but none of these 

algorithms achieves all the desired properties. 

Lien's algorithm [Lie821 produces a lossless de- 

composition into 4NF schemes in polynomial time, 

but it only works for so-called conflict-free de- 

pendency sets. Sciore's method [Scidl] works 

under the same restriction. Although this is a 

practical subclass of multivalued dependencies, 

the general case (unrestricted dependencies) 

still remains as an intrigueging open question. 

Similarly, da Silva's algorithm [daS80] produces a 

lossless decomposition into schemes that are in 

4NF as far as D is concerned; however, there may 

still exist derived dependencies in D+ that viol- 

ate the normal form conditions. 

3. AN INFORMAL DESCRIPTION OF THE METHOD 

We shall, for the sake of brevity, assume in 

the sequel that the dependency set D consists of 

only multivalued dependencies. If functional de- 

pendencies also are present we can either convert 

them into multivalued ones (by the axiom X+Y im- 

plies X-Y), or start with Tsou and Fischer's 

algorithm to produce a lossless set of BCNF 

schemes, and then apply our algorithm to this set. 
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Our goal is to maintain a set of left-hand 

sides K, such that whenever there is a nontrivial 

dependency in a candidate scheme R, then there is 

at least one such dependency whose left-hand side 

is in K. Initially K equals the set of left-hand 

sides in D, denoted by LHS(D). 

As an example, consider the set of depend- 

encies given in [Lie81,p.611. Here U=ABCEGH and 

D = {A-G I BHCE, B-HH 1 AGCE, GH*C 1 E 1 AB}. 

(We have augmented the original D by listing the 

entire dependency basis on the right-hand side of 

each left-hand side of D.) If we let K equal 

LHS(D) permanently, then the resulting schemes 

may not be in 4NF. For instance, in the decompo- 

sition tree 

ABCEGH 

AB' >HCE 

B/ a,,, 

which is obtained by using the dependencies A-HG 

and B+H, the scheme ABCE is not in 4NF: the de- 

pendencies AB++C and AB-HE hold in it. Yet none 

of the original dependencies in D contradicts the 

4NF property. 

If the dependencies are applied in some other 

order, the result may in fact be a decomposition 

into 4NF schemes. However, Lien [Lie811 gives an- 

other example where 4NF schemes are not reached, 

no matter what order of dependencies is used in 

the decomposition. 

The problem with the given decomposition tree 

is that when A++G is applied, the left-hand side 

GH is split. The corresponding dependencies can- 

not be directly applied in the subschemes, al- 

though the subschemes may contain some derived 

nontrivial dependencies, whose derivation re- 

quires the use of GH. A key idea in our algorithm 

is that we will in a sense perform one step of 

such a derivation simultaneously with the decom- 

position step. 

For instance, although GH++C 1 E 1 AB cannot 

be applied in ABHCE, we can achieve the same 

effect by adding to K the left-hand side AH. That 

is, if a dependency X-HY is derived using GH, 

then we must first derive G. This requires the 

application of the dependency A*G. By combining 

these two derivation steps we-can directly use 

the dependencies AH-C 1 E 1 B in ABCHE. 

Similarly, if ABCHE is decomposed using 

B-crH, the newly added left-hand side AH is 

split. Again, we can fix the situation by adding 

to K the left-hand side AB. 

In general, if R is the scheme being decom- 

posed using a dependency X-WY, and if P is a 

left-hand side that is split in the decomposition, 

then the element that is added to K is XU (PnY). 

It can be shown that this is sufficient for 

achieving the desired effect: only left-hand 

sides in K need to be considered when searching 

for the nontrivial dependencies. We will return 

to the correctness issue in Section 5. 

4. THE DECOMPOSITION ALGORITHM 

We start with some necessary definitions. Let 

U={Al,..., A,} be a relation scheme and D = 

{x -Y 1 1'"" n X +Yn) be a set of multivalued de- 

pendencies. For any XgU, the dependency basis of 

X (denoted by DEP(X)) is defined as a partition 

of U-X such that D implies X+Y if and only if Y 

is a union of some sets in DEP(X) (provided 

XflY=@). The dependency basis always exists and 

it can be computed efficiently [Bee80,Ga182]. 

We say that a dependency X-Y is nontrivial 

in an attribute set R if XsX(YflR)sR; otherwise 

X++Y is trivial in R (if XrR). For brevity, we 

will sometimes say that X is nontrivial in R if 

X*Y is nontrivial in R for some Y in DEP(X); 

otherwise X is said to be trivial in R. 

As explained in Section 3, the splitting re- 

lation is essential to the decomposition algo- 

rithm. We say that X-Y splits an attribute set 

P if the following conditions are satisfied: 

(i) @#YllP#P, and 

(ii) for some QEDEP(P), BfYnQSY-P. 
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Pictorially the splitting situation is the 

following. 

A slightly stronger form of condition (i), 

sometimes referred to as the split key property, 

is discussed in e.g. [Lie82,BFM81,BeK83]. Here we 

are interested in the splitting of P only if P 

could be used to further decompose XY. Therefore 

we require also condition (ii), which guarantees 

the existence of a suitable Q in DEP(P). The 

algorithm would work correctly without condition 

(ii), but in this way it is more efficient. 

We are now ready to present the decomposition 

algorithm. 

Algorithm: Decomposition of a relation scheme. 

Input: A relation scheme U and a set of de- 

pendencies D= {X 1 -HY 1'"" n X *Yn) such that 

YiEDEP(Xi), 16ibn. 

output: A decomposition n={Rl,...,Rm} of U such 
m 

that U Ri=U, the decomposition has a lossless 
i=l 

join, and each Ri is in 4NF. 

Method: 

K:=LHS(D); n :=(U); {initialization) 

(decomposition loop) 

while there exist REn, XEK and YEDEP(X) such 

that X+Y is nontrivial in R 

do begin -- 
let L=(YIYEDEP(X) and YnR#@); 

{prepare for the decomposition using X: add 

to K new left sides} 

while there exist YEL, VEK, PEK and WE 

DEP(V) such that Vc_XYflRsVW 

{V-W is trivial in XYllR} 

and V*W splits P and V(PnW) @K 

do K:=%{V(PnW)}; 
- 

- 
TI:= (n-iR}>U U {X(YflR)); (decomposition] 

YEL 
e&; 0 

The following figure illustrates how the 

algorithm could work when it is applied to U = 

ABCEGH and D=(AaG 1 BCEH, B+H 1 ACEG, 

GH++C tE 1 AB). 

ABCEGH X=A, L={G,BCEH) 
V++W = A+BCEH splits GH 

,/ LcEH * K:=(A,B,GH) U(g) 

/\ 
X=B, L={H,ACEG} 
V++W=B*ACEG splits 

B/ \ 

GH and AH 
19 K:=(A,B,GH,AH) U 

(BG@ 

ABCE 

/\ 

X=AB, L=IC,E) 

ABC ABE 

The underlined parts indicate the essential facts 

that allow the algorithm to decompose the unnor- 

malized ABCE further, even though all the members 

of LHS(D) are trivial in it. 

Note also that the algorithm does not fix any 

particular order for considering the elements of 

K in the decomposition process. A different 

choice of the X-sets would yield a different de- 

composition tree. 

5. CORRECTNESS OF THE DECOMPOSITION ALGORITHM 

We will show that the algorithm works cor- 

rectly by using an indirect proof. If S-r-rT is 

nontrivial in some Ri belonging to the final de- 

composition, we will claim that S is necessarily 

added to K in the algorithm. Therefore R. could 1 
have been decomposed further using S, contra- 

dicting the fact that Ri belongs to the final 

output of the algorithm. 

To prove that S is added to K it is necessary 

to study the properties of splittings. The first 

two lemmas prove two essential facts used in the 

correctness proof. In both lemmas we assume that 

Rc_U and that S++T is nontrivial in R. Further- 

more, we assume that S is minimal among such left 

sides, i.e. if S' is nontrivial in R then 

ISI s IS’). 

It is useful to consider how S is related to 

LHS(D). We say that the pair 
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({Sl,...,Sk},{Sk+l,...,Sk+t1) is a representation 

of S if the following conditions are satisfied: 

(i) S. ELHS(D), l<i6k+t. 
k 

(ii) U S. = 1 
U {X/XELHS(D) and XC_S}. 

i=l 
(iii) O#SiflS#Si, k+l<i<k+t. 

k k+t 
(iv) S = ( U Si) U ( U (Sin S)). 

i=l i=k+l 

Furthermore, we say that ({Sl,...,Sk],{Sk+l,..., 

'k+t') - is a minimal representation of S (denoted 

by M(S)) if for any other representation 

({Tl,...,Tk,},{Tk,+l,...,Tk,+t,}) we have k+t 6 

k'+t'. Intuitively, a minimal representation of 

is a minimal cover of S using sets in LHS(D), 

subject to the condition that if XGS and X E 

LHS(D), then X is covered by sets that are com- 

S 

pletely contained in S. If X*Y is a dependency 

in D 
+ 

where X is nonredundant, then a minimal 

representation for X always exists, but it need 

not be unique. 

In the lemmas we assume that M(S) = 

({Sl,...,Sk],{Sk+l,...,Sk+t)) and that k+ts2. 

From the minimality of S it follows that each Si, 

lsibk, is trivial in R; let TiEDEP(Si) such 

that RcSiTi. 

As a notational convenience, for any collec- 

tion of attribute sets {Xl,...,Xn} where each 

XiEU, we define U Xi=0 and 
iE0 

n xi=u. 
iE0 

Lemma 1. There exists a PELHS(D) such that for 

any Is{l,... ,k! and j E{l,...,k]-I, the fol- 

lowing hold: 

(i) S. ++Tj 
3 

splits ( U Si) U (Pll fl 
iE1 iE1 

Ti), and 

k k+t 
(ii) Pn fl Ti E 

i=l 
u (S;llS). 

i=k+l 

Proof. Consider the computation of DEP(S) using 

Beeri's algorithm [Bee80]. The algorithm starts 

with a candidate basis, e.g. {U-S}, but any par- 

tition that is not finer than DEP(S) could be 

used. Then the basis is refined using the fol- 

lowing rule: If T is in the partition and X-++Y 

is in D such that X DT =@, then T is replaced by 

TnY and T-Y. The algorithm terminates when the 

partition cannot be further refined. 

By the decomposition rule for multivalued de- 
k 

pendencies, we may in this case take I( fl T,)-S, 

k 
is1 L 

k 
U-S- n Ti) as the candidate basis. Now RE n SiTi 

k i=l 
k k is1 

c n ST. 
i=l ki 

= SU( f-l T;) 
i=l 

= SU (( Il Ti)-S); thus 
i=l 

S++( fl Ti)-S is trivial in R. Since we assumed 
i=l 

that S is nontrivial in R, there must exist a 

P+Q in D such that 

and 

k 
p n (( r-l = 0 (1) 

i=l 
T;)-S) 

k k 
@#QfI (( fI 

i=l 
Ti)-S) # ( fl Therefore 

i=l 
Ti)-S. 

@#Qn(( I-I 
iEI 

Ti)-S) # ( fl T;)-S (2) 
iE1 

for any Ic{l,...,k}. 

On the other hand, the minimality of S and 

M(S) implies that U 
iE1 

Si is trivial in R for any 

ICC1 ,...,k} such that I#{l,...,k+t}. Consider 

the computation of DEP( U Si). A candidate basis 
iE1 

is { fl T. U-( 1' U fl 
iEI iE1 

Si)-( 
iE1 

Ti)}. Since we just 

have shown that Q would partition ll 
iE1 

Ti, P-Q 

cannot be used to refine fl T.. Therefore 
iEIi 

p n ( n TV) + 0. 
iE1 

(3) 

We will show that P has the properties 

claimed in the lemma. Let I be an arbitrary 

proper subset of il,..., k), and let j be an ar- 

bitrary element of (1,. ..,kj-I. We will denote by 

V the set ( U Si) U (Pn n 
iE1 iE1 

Ti). To show that 

S. ++T. splits V, two conditions must be sat- 
J J 

isfied: 

(a) O#TjnV#V, and 

(b) for some WEDEP(V), O#Tj flW#Tj-V. 

We will deal with the four inequalities one at a 

time. 
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lo 0#T, nv. If IU{j)#{l,...,k+t), (3) implies 

that’0fPn ( n 
iEIlJ(i1 

Ti)=Tj" (P" " 
iE1 

Ti), 

which immediately gives the result. If IU{j) 

= il,..., k+t}, then t=O, ka2, and I#@; let 

hE I. By the minimality of S and M(S), Sh-Sj # 

0; and because S 
h- - 33 

cRcS.T., Sh"Tj #O. The 

result follows. 

2O Tj "V#V. Suppose to the contrary that Tj "V 

= V, i.e. VGT.. In particular, P " 
3 k 

" T;E 
iE1 

T . . Let H= {l 
3 

,...,k)-(j); thus " Ti = " T.. 
k i=l iEH1 

But (1) implies that P" ( " Ti) =@, while (3) 
i=l 

implies that P" ( " 
iEH 

Ti) #a: a contradiction. 

3' For some W in DEP(V), Tj "W#O. To find a 

suitable W, we will start from the dependency 

u si++ n Ti. By shifting those attributes 
iE1 iE1 
of " Ti that belong to P to the left, we get 

iE1 

v= ( u si) u (p n ( n --w 
iE1 iE1 

TV)) 

( " T$-(P"( 
iE1 

" T;))=( 
iE1 

" Ti)-P. 
iE1 

Since (( " 
iE1 

Ti)-P) "P=!?J, P++Q can be used to 

refine ( " 
iE1 

Ti)-P. Thus V-H(( " Ti)-P)"Q= 
iE1 

( n since Q E 
iE1 

Ti)"Q-(P"Q) =( " 
iE1 

Ti)"Q, 

DEP(P). We will show that condition (b) holds 

for ( " Ti)"Q; then it obviously holds for 
iEI 

some W in DEP(V) such that Ws( " 
iE1 

Ti) "Q. 

The first part, Tj," ( " 
iE1 

Ti) "Q#O, follows 

immediately from (2). 

4' Tj " ( " 
$5 I 

Ti) "Q#Tj-V. From (2) we know that 

k 
Q" (( " Ti)-S) # ( " Ti)-S, which implies 

k i=l i=l k 
( n Ti)-S-Q#0. Let AE ( " Ti)-S-Q. Since 
i=l i=l 

A@Q, AgTj " ( " 
iE1 

Ti) "Q. We will establish 

the claim by showing that AETj-V. Since A E 
k 
" Ti, we immediately have AET.. Moreover, 

i=l 3 
k 

AgS implies A6 U 
iE1 

Si, and AE( " Ti)-S 
i=l 

implies AeP (using (1)). Thus Ae 

( U 
iE1 

Si)U(P"( " Ti))=V. 
iE1 

We have shown that part (i) of the claim holds. 

Part (ii) follows directly from (1): since 

P"(( : T.)-S)=P"(( : T;)-(( 
j,=l ' i=l 

: S.)U( kit (Sins)))) 
i=l l i=k+l 

= P"(( I! T.)-( ki' (S."S))) =O, we have 
i=l l i=k+l ' 

k k+t 
P"( " Ti+ U 0 

i=l i=k+l 
(S;"S). 

Lemma 2. Let V be an attribute set such that 
k 
U SiGVsS. Then there exist WEDEP(V) and PC 

i=l 
LHS(D) such that V++W splits P and P"W=S. 

Proof. By the minimality of S, V++W is trivial 

in R for any WEDEP(V). Let W be the unique set 

in DEP(V) such that R=VW. 

Consider the computation of DEP(S). A candi- 

date basis is {W-S,U-W-S). Since S+T is non- 

trivial in R and since REVWGSW=S U(W-S), there 

must exist a P*Q in D such that P" (W-S) =d and 

O#Q" (W-S)#W-S. Thus clearly P"WzS; we claim 

that V++W splits P. 

lo 

2O 

3O 

4O 

P"W#O. If P"W=O, P*Q could be used in 

the computation of DEP(V) to refine V, a con- 

tradiction. 

P"W#P. If P"W=P, we would have PEW and 

PES. By the definition of M(S), P E 
k 

U{XlXELHS(D) and XcS] = U S.cV, contra- 
ill l- 

dieting the fact that V"W=O. 

Q"W#d. Obvious. 

Q"W#W-P. Since Q" (W-S) #W-S, we have W-S-Q 

# 0. Let AEW-S-Q; then A@Q"W. Moreover, 

AEW, but A@!P because P" (W-S) =O, implying 

AEW-P. 0 

Theorem 1. Consider n=(Rl,...,R,) and K at the 

beginning of the outer while-loop. Let S be a 

minimal set such that S*T isnontrivial in some 

Ri for some TEDEP(S). Then SEK. 

192 



Proof. Let M(S) =(lSl,...,Skl,iSk+l,...,Sk+t)). 

By the initialization of K, SiEK for lbibk+t. 

If k+t=l, then clearly k=l and t=O, and S=S 1 
E K. 

Consider then the case k+t)2. The conditions 

for Leassa 1 are now satisfied. Let P be the set 

in LHS(D) whose existence is implied by Lemma 1. 

Taking I =8 and j =l, Lemma 1 (i) gives that 

S ++T 1 1 splits P. By the minimality of S, Sl is 

trivial in Ri. Therefore S,_CR~=XYDR~S T dur- 11 
ing the decomposition step that produced Ri from 

R using some dependency X-Y. Since Sl*Tl 

splits P, Sl U (PnTl) was added to K (unless it 

was there already).. 

By Lemma 1 (i), S2*T2 splits Sl U(PflT1). 

Repeating the above argument yields that 

= U SiU(Prl II Ti) is added to K. Straight- 
i=l i=l 

forward inductive application of Lemma 1 (i) im- 
k k 

plies that V= U SiU (Pll n Ti) is added to K 
i=l i=l 

during decomposition using X*Y. Moreover, 
k k+t 

Lemma 1 (ii) states PI? f3 T:E u (S, ns); thus 

v_cs. 

If V=S, the claim follows. If VsS, Lemma 2 

implies that there exist WEDEP(V) and P' ELHS(D) 

such that V-HW splits P' and P' nWcS. By the 

definition of splitting, P' fiW#8, which together 

with the minimality of S implies that RisVW. But 

then VU(P' flW) is added to K during the same de- 

composition step. 

We clearly have VSV U(P'llW)rS. If 

VU(P' flW)gS, the above argument and Lemma 2 ‘can 

be applied inductively, until we end up with S 

being added to K. o 

Corollary. The decomposition algorithm termin- 

ates correctly. 

Proof. Termination follows from the finiteness 

of U and D and from the fact that only nontrivial 

dependencies are used in the decomposition. The 

lOSSleSS join property is obvious from the re- 

sults in [Fag77,ABU791. To see that the resulting 

schemes are in 4NF, suppose to the contrary that 

for some Ri belonging to the final decomposition 

there exists an SSU such that S is nontrivial in 

Ri. Without loss of generality, let S be minimal 

among such left sides. By Theorem 1, SEK, con- 

tradicting the fact that Ri belongs to the final 

decomposition even though it could be decomposed 

further using S. o 

6. EFFICIENCY OF THE DECOMPOSITION ALGORITHM 

Besides the actual decomposition n our algo- 

rithm computes the set K, which is a subset of 

LHS(D+). Therefore the algorithm is more effi- 

cient than the straightforward method where the 

entire D 
+ 

is computed. Unfortunately, in the gen- 

eral case we have been unable to determine exact- 

ly how much smaller K is when compared to LHS(D+). 

There exist pathological examples where it ap- 

pears difficult to bound the size of K by a 

polynomial. Thus the complexity of the algorithm 

is still open. 

Before looking at the difficult cases, let us 

examine how the basic algorithm in Section 4 

could be improved. There are two main approaches 

that can be used. First, the set K computed by 

the algorithm is still too large: there exist 

sets in K that do not serve any useful purpose. 

Thus we could place additional requirements for a 

set to be added to K, and prove that the algo- 

rithm still works correctly. 

We have actually already met one such re- 

quirement: condition (ii) in the definition of 

splitting was introduced for the purpose of re- 

stricting the size of K. Another requirement can 

be added by examining the proof of Theorem 1. We 

can observe that whenever the proof refers to an 

element in K-LHS(D), the element is of the form 

VU(WnP) where either VELHS(D)-or PELHS(D). 

Thus we can immediately add the condition 

VELHS(D) or PELHS(D) - 
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to the inner while-loop of the algorithm without 

violating its correctness. 

Another way to enhance the efficiency of the 

decomposition algorithm is to choose a decomposi- 

tion order that keeps both n and K small. Recall 

that the algorithm works correctly independently 

of the order in which the sets in K are con- 

sidered; thus we are free to choose a convenient 

order as we please. 

We will require that the sets are chosen from 

K in an order that is compatible with the fol- 

lowing containment order. Let XEK, X'EK, X$X', 

so that both X and X' are nontrivial in some R E 

n; then X' is not chosen before X as the left- 

hand side to be used in the decomposition. The 

same order is used by Lien [Lie82], who calls it 

a "p-ordering". 

Intuitively, the motivation for using the 

containment order is that if X is used for decom- 

posing R, then X' is contained in at most one of 

the resulting schemes. In the opposite case X 

would be contained in alI the sons of R and could 

possibly be used to decompose several of them 

further. The following theorem establishes this 

property formally. 

Theorem 2. Consider the sets n and K at the be- 

ginning of the outer while-loop. Let ZsREn such 

that Z is nontrivial in R. For all T En-{RI, Z&T. 

Proof. By induction on Inl. 

Basis. n ={U). Obvious. 

Inducti.vg step. Suppose that the claim holds for 

K and IT, which are replaced by K' and n' = 
P 

(n-(R)) U U {X(YinR>) during a single execution 
i=l 

of the outer while-loop. We will show that the 

claim holds for K' and n'. Let ZsR' En' such 

that Z is nontrivial in R'. 

Consider first the case R' En. By the induc- 

tive hypothesis, Z&T for any TEn-(R'). In par- 

ticular, Z&R, which yields Z&X(YiflR) for all 

1. This proves the claim. 

Suppose then that R' gn, i.e. R' =X(YinR) 

for some i. Clearly Z is nontrivial in R; by the 

inductive hypothesis, Z&T for any Ten-(R). Sup- 

pose (contrary to the claim) that Zc_X(Yj OR) for 

some j #i. But then ZsX. By Theorem 1, there 

exists a minimal SEK such that S is nontrivial 

in R. By the minimality of S, ScZgX. This con- 

tradicts the containment order of decomposition 

and proves the claim. o 

Theorem 2 shows that each set in K can be 

used in the decomposition at most once. We also 

know that each basic step of the algorithm can be 

carried out efficiently: the main operation re- 

quired is the computation of a dependency basis 

which can be done in almost linear time [GalSZl. 

Thus our algorithm works in polynomial time ex- 

actly when IKI is bounded by a polynomial of IDI 

and IUI. 

For restricted classes of dependencies it is 

possible to show that K does not grow excessively. 

So-called conflict-free sets of dependencies are 

the largest class that can be decomposed effi- 

ciently using previous algorithms (e.g. Lien's 

algorithm [Lie81,Lie82]). A conflict-free set is 

characterized in [BFMBl] as a set that (i) does 

not split keys (where a "key" means a left-hand 

side of a dependency), and (ii) satisfies one of 

several equivalent properties, such as the or- 

thogonality property or the intersection property. 

Clearly, requirement (ii) is immaterial from 

the point of view of our algorithm. As long as 

condition (i) is satisfied, no sets are added to 

K, and the algorithm terminates in polynomial 

time. This trivially defines a class of depend- 

encies properly containing conflict-free sets. 

The really interesting cases are, of course, 

those where there exist splittings among members 

of LHS(D) (and thus K). If the splitting relation 

is acyclic, it is not difficult to find a decom- 

position order (a refinement of the containment 

order) that guarantees the efficiency of the 

algorithm. This still holds true for dependency 

sets containing cyclic splittings in a 
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restricted, regular manner. A definition of such 

a class would be technical, with no apparent in- 

tuitive interpretation, so we refrain from giving 

one. 

As mentioned before, there are cases where it 

appears difficult to derive a polynomial upper 

bound for IKI. We conclude this section with two 

simple examples that can be combined and expanded 

to produce complicated splittings. 

It may not be immediately clear why the inner 

loop is required in the decomposition algorithm, 

i.e. why do we in a sense perform a group of 

"trivial decompositions" simultaneously with the 

"real" decomposition based on X. The following 

example illustrates this situation. Here U=ABCEF 

and D={AB*CE 1 F, C-ABE 1 F, EF++A I BC); U is 

illustrated by the following diagram. 

Suppose that AB is used first to decompose U, 

resulting in the schemes ABCE and ABF. Now AB 

does not split either'C or EF; although EF breaks 

into two pieces, it does not have a right-hand 

side that could partition ABCE-AB-EF=C. There- 

fore no sets are added to K because of AB. How- 

ever, C becomes trivial during the same decompo- 

sition step, and C-ABE does split EF. Therefore 

C U (ABE nEF) =CE is added to K, and we can in the 

next step use CE++A 1 B I F to further decompose 

ABCE into ACE and BCE. 

In this case the new set is immediately non- 

trivial in some scheme. The next example illus- 

trates a situation where we reach a nontrivial 

set only through a chain of trivial sets. Let U= 

ABCEFGHI and D = {A-HBCEFGH I I, BGH--Ac I E I F I I, 

BI-uACGH 1 E I F, CF-wBH 1 AEGI} (see the fol- 

lowing diagram). 

E F 

A t-a G C 

I t----------l 
I w 

Suppose now that decomposition begins by 

using BGH, i.e. (ll) is replaced by (ABCGH, BEGH, 

BFGH, BGHI). Again, BGH does not split any of the 

other left-hand sides, but since also A becomes 

trivial in ABCGH and since A splits both BI and 

CF, we add AB and AC to K. Computing the depend- 

ency bases we find that AB+CGH I E 1 F 1 I and 

AC++BEFGH I I are both trivial in ABCGH; there- 

fore they are also considered in the role of V 

within the inner loop of the algorithm. In par- 

ticular, since AB splits CF, the set ABC is added 

to K. Now ABC-G 1 H 1 E 1 F 1 I, so ABC can be used 

to further decompose ABCGH. 

These examples show that, as regards the 

inner loop of the algorithm, there may be many 

sets in the role of V, and also that it is 

necessary to consider the newly added trivial 

sets in the role of V. By generalizing these ex- 

amples so that they involve many alternatives 

instead of only two, it is possible to create 

situations where K grows excessively during a de- 

composition step. 

As stated before, all the sets that are added 

to K are not useful. The problem of restricting 

the growth of K, either by adding new require- 

ments into the algorithm or by refining the de- 

composition order, is left for further study. 

7. CONCLUDING REMARKS 

We have given an algorithm that decomposes a 

universal relation scheme into a set of schemes 

that are in 4NF and have a lossless join. The 

algorithm works for any set of functional and 

multivalued dependencies. The key idea was to 
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apply the concept of splittings among the attri- 

bute sets in order to avoid the computation of 

the entire closure of the dependency set. This is 

in contrast with most of the previous methods, 

which downright forbid splittings (e.g. [Lie821). 

The algorithm works in polynomial time for 

classes of dependencies that properly contain 

conflict-free dependency sets. It is an open 

question whether improvements in the basic algo- 

rithm or in the decomposition order can make the 

algorithm run in polynomial time in the general 

case. 
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