
Universal Relation Views: A PraRmatic Apwoach 

Joachim Biskup and Hans Hermann Brliggemann 

Informatik III 
University of Dortmund, West Germany 

Abstract: 

A universal relation view is a view 
(external schema) on top of a relational 
database schema (conceptual schema). It 
shows the whole database as a single 
fictitious universal relation. It 
provides a user-friendly interface where 
queries can be expressed without 
navigation, even on the level of 
relations, as far as possible. We 
carefully develop the fundamental 
decisions of our approach: different 
kinds of users should have a consistent 
understanding of the view; the 
underlying database schema should 
satisfy a new desirable property called 
unambiguity. Besides unambiguity and the 
so-called universal scheme assumption 
our approach does not rely on any 
further prerequisites. 

1. Introduction 

A user can access to information of a 
database by means of a data manipulation 
language. In case of a tuple-oriented 
(one record at a time) language he must 
tuple-wise "navigate" in the database, 
for instance by using the FIND-statement 
of DBTG network databases. In case of a 
high-level, relation-oriented language, 
as for instance the relational algebra 
for relational databases, the burden of 
tuple-wise navigation is taken by the 
database system. However, the user must 
still relation-wise navigate, in 

particular he must determine appropriate 
join paths in the database schema. 

As an example, consider (a variation of) 
the well-known suppliers-parts database, 
cf. /D/: 

relation scheme attributes 

Suppliers supplier&, 
supplier name, 
supplier location 

Parts Eart&, 
Eart name, 
color, 
stock 

Shipment supplier?, 
EaWb 
quantity 

S! sa ! SNAME ! LOC ! 
! Sl ! Smith ! London f 
! s2 ! Jones ! Paris ! 
I S3 ! Blake ! Paris ! 

P ! Pa ! PNAME ! COLOR ! STOCK ! 
I p1 , ! nut ! red 1 L . ondon ! 

! bolt ! green ! Paris ! 
! screw ! blue ! London ! 

SP ! sa ! Pa- ! QY ! 
! Sl ! Pl ! 30 T 
! s2 ! Pl ! 30 I 
! s2 ! P2 ! 40 ! 
! S3 ! P4 ! 10 ! 
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A query “find name of suppliers that 
currently supply red parts” 

is expressed in relational algebra as 

~piAME) (6~~~~~= ‘red ’ (S W SP DO PI 1. 

Here the user relation-wise “navigates” 
in the database schema by determining 
the path S, SP, Pine (hypergraph of 
the) database schema; then the database 
system automatically generates appro- 
priate operations on tuples in order to 
calculate the natural join along the 
path. 

The main goal of a universal relation 
visw is to allow queries with no 
navigation whatever (as far as 
possible). For this purpose queries are 
stated only by means of attributes 
without mentioning the database 
relations. Instead the user refers to a 
fictitious universal relation, denoted 
say by the relation name U, that 
contains the information of all database 
relations. For instance, the query above 
is exDressed as 

or QUEL-like 
afSNAME)(GCOLOR=‘red’ (‘))y 

as 
retrieve SNAME where COLOR=‘red’. 

The data maniDulation language for a 
universal relation view should be a 
user-friendly language for querying and 
updating a database using only the basic 
concepts of attributes and conditions. 
It should be as powerful and flexible 
that it covers the usual applications 
(in contrast to menue techniques). 

In this paper we present our 
Dragmatically oriented approach to a 
universal relation view. The 
relationship to other approaches is 
discussed in Section 8. Our emDhasis is 
on a careful develoDment and 
justification of our fundamental design 
decisions. Accordingly we start by 
stating our general prerequisites 
(Section 2) and the intended user 
profile (Section 3). Our definition of 
the fictitious universal relation is 
derived both by intuitive considerations 
(Section 4) and formal investigations 
(Section 5). Then we treat the problem 
of possible ambiguities in the inter- 
Dretation of responses to queries; we 
introduce a new desirable property of 
database schemas that we require as 
additional prerequisite (Section 6). 
Finally the data manipulation language 
is outlined (Section 7). 

Proofs of theorems are added in an 
ApDendix. 

2. General Prerequisites 

Our approach is based on a single 
essential prerequisite: attributes are 
designed in such a way that they are 
expressive enough to carry the semantic 
of the database. This DroDertv has been 
called the universal sbheme assumption, 
see /AP, U2/. 

At the moment, no other formal 
properties (i.e. dependency preserva- 
tion, lossless join, third normal form, 
etc.) are necessarily required. However, 
as it is well-known, such properties are 
useful in any case in particular for 
update operations. Furthermore we 
emphasize that, in order to be 
pragmatic, we do not require that the 
database system hrfacilities for 

- nontrivially processing null 
values, 

- enforcing general data 
dependencies (other than 
(intrarelational) keys), 

- enforcing interrelational 
constraints (e.g. foreign keys). 

For simplicity we shall assume that 
database relations do not contain any 
null values. 

3 . User Profile 
of the Universal Relation View 

Our universal relation view should be 
used as a view (external schema) on top 
of a relational database schema 
(conceptual schema). The intended user 
profile is given by describing two 
extreme cases. 

The sophisticated user knows the under- 
lvinn database schema, and he uses the 
universal relation view for abbreviating 
queries and updates, thereby avoiding to 
program join paths by his own. 

The casual user knows only (some of) the 
attributes, more precisely the universal 
relation scheme, and he expresses his 
queries essentially by stating the 
attributes of his interest and 
appropriate conditions on them (e.g. for 
denoting selections). He is not aware of 
the database relations. For him the 
actions of the database system (semantic 
of the data manipulation language) are 
explained in terms of a fictitious 
universal relation (to be formally 
defined as the result of a suitable 
operator applied to the underlying data- 
base relations). Often the casual user 
is not allowed to update the database. 
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We require that our universal relation 
view must be consistent with the 
understanding of all intended users. 

In order to support user-friendly 
man-maschine communication the database 
system provides users of the universal 
relation view with reports on actually 
performed actions, warnings (for 
instance against possible ambiguities), 
and error messages. 

Some of these communications necessarily 
rely on the database schema, thus the 
casual user will not always be able to 
fully understand them. 

We argue, however, that such messages 
indicate the limit up to which the user 
concerned should be allowed to employ 
the view without help of a sophisticated 
user: this is to ensure 

- that responses to queries are 
informative and not misleading for 
the user concerned, and 

- that updates of database relations 
are always semantically correct. 

4. The Fictitious Universal Relation: 
Intuitive Approach 

Suppose that D q (Rl,...,R,) is a 
relational database schema over 
attribute set U, where RiC U denotes a 
relation scheme. Let d = (rl,...,rn) be 
an actual database, that is ri is a 
relation (finite set of tuples) valid 
for scheme Ri. 

For the purpose of the universal 
relation view we want to represent the 
information contained in (rl,...,rn) by 
a single relation u on attribute set U. 
The most usual way to combine the infor- 
mation contained in several relations is 
to take the natural join of them. 

Looking at the suppliers-parts database 
we can try to get the combined 
information by computing the natural 
join SWPWSP yielding 

S# SNAME LOC Pit PNAME COLOR STOCK QY 

Sl Smith London Pl nut red London 30 
S2 Jones Paris Pl nut red London 30 
S2 Jones Paris P2 bolt green Paris 40 

Unfortunately, the example shows that 
the join operator is not fully adequate 
if it happens that there are so-called 

"dangling" tuples in some database 
relations or intermediate relations, for 
instance the tuples 
and (P3, screw, blue, London) of P, 

(S3, Blake, Paris, P4, 10) of SWSP. 

In order to prevent the occurence of 
such dangling tuples while performing 
updates we would need complex facilities 
to handle indexed null values and 
interrelational constraints. But, as 
stated in Section 2, we don't want to 
rely on these facilities. 

Alternatively we shall define a new 

operator, the complete join ig,ri 9 = 
according to the following guidelines: 
- it also takes care of partial joins 

121 'i for I ?{l,...,nj; 

- if t is an element of a partial join 
then, using a single null value l. as 
some kind of placeholder, the tuple tU 
on U, defined by 

tU(A):= t(A) if t is defined for A, 
I, otherwise, 

is visible in i!, ri; 

is free of subsumed tuples; 

that means it does not contain two 
tuples t 

1 
and t 

identica- with 
such that tl is 

nortion of t,. 
g2 on the nonnull 

In the example the comolete join should 
yield the following relation: 

Ss SNAME LOC Pt PNAME COLOR STOCK QY 

Sl Smith London P1 nut red London 30 
S2 Jones Paris P: nut red London 30 
S2 Jones Paris P2 bolt green Paris 40 
S3 Blake Paris P4 L L I 10 

I L L P3 screw blue London 1. 

Notice that we have not taken the 
partial join that degenerates to a 
Cartesian product. For we want to 
combine only pieces of information 
(tuples) which are related to one 
another in a nontrivial way (having at 
least one common attribute). 

In the discipline of formal methods for 
database schema design the natural join 
is also a well-known tool for combining 
information. In particular, in 
considering only functional dependencies 
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as semantic constraints, the natural 
join is proven to be the unique inverse 
operator of the projection (if the 
inverse exists at all). Existence of the 
inverse operator of the projection is 
usually referred to as lossless join 
property of the schema. 

In computing the complete join we do not 
exclude lossv (oartial) joins in the - 
sense of design’theory. For there seems 
to be no apriori reason to prevent a 
sophisticated user of the universal 
relation view from computing a lossy 
join if the designer of the schema 
agreed to such a lossy decomposition. 

On the other hand, we expect that 
database schemas without lossy 
decompositions will be particularly 
suitable for our universal relation 
view. For in this case the ratio behind 
the decomposition (thinking of the 
database relations ri as projections of 
a single relation v: ri = TR (v)) is 

directly connected to our cokept of 
defining a universal relation u as the 
comolete join of the database relations, 

U:= j,Pi. 

Morover, Corollary 3 (in Section 5 
below) shows how we could exclude a join 
from contributing to the fictitious 
universal relation. 

Before now giving the formal definition 
of the comclete join of a database 
(rl,---,-n ?- J, we emphasize that we must 
not actually evaluate it for the purpose 
of our universal relation view. It will 
be only a theoretical tool for 
describing the semantic of the data 
manipulation lanqss.ge. 

The following notations are used 
throughout the paper. Let 

D:= (RI ,...,R,) a database schema with 
nz2 that iS supposed to be connected 
(considered as hypergraph) ; 

JP:= {El@fEcD, E connected (as 
Wperaraph 1) 
the set of join paths in D; 

UE:= {A 1 there exists R;eE with AaRi> 
the set of attribut6.s covered by 
join nath E; 

y d:= RMeEri for join path E and 

theioartial 
database d= (“1 r 1 

join_ of d witi’rlAp:ct 
to E; 

X(r) : = { tU I tcrj the U-expansion of 
relation r; 

t,s t : iff t 
t2at for 31 

t 
1 

are tuples on U such 
uU 

t,(A)tl+ t,(A)=t2(A); 

maxtuple (v):= 4 t I ta v, and for all 
tiv :t4 t’ 3j t=t’) . 

Definition: 

The mapping 
@ : jd ( d database for schema DJ-, 

{u 1 u relation on U), 

0 d:= maxtuple ( EcJP u X(Fd)) 

is called complete join (for D). 

The complete join evaluates all 
noncartesian partial joins, interprets 
the resulting tuples as tuples on U by 
formally introducing null values, and 
finally removes redundancy. 

5. The Fictitious Universal Relation: 
Formal ADDrOaCh 

The basic query of our data manipulation 
language is 

retrieve X, 
where X is a set of attributes. 

. 
For the casual user, obviously the 
effect 0 fy should be 

rX(urv(d)), 

where urv(d), universal relation view of 
d, is the fictTtious universal relation 
that is computed from the actual 
database d=(r,,...,rn). 

More formally , urv is a mapping 

urv: {d Id database for schema D)3 
f,ulu relation on U), 

such that urv(d) contains only 
values occuring in d and, if 
necessary, the null value1 . 

(For the moment, urv(d) is not 
necessarily the complete join, but see 
Theorem 4 below.) 

Since the null value I, as introduced in 
Section 4, does not carry any real 
information, we decided to define 

VX as the total projection on X 
yielding omuples without nulls. 
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For the sophisticated user, the query is 
intended to be an abbreviation of a 
request to evaluate one or several join 
paths. Thus the database system must 
relate the attribute set X with a set of 
join paths covering X. 

More formally the database system needs 
a specification of a join path function 

jp: {xlxcu) 9 {QlQdP) such that 
EEjp(X) 3 XcTJE; 

based on jp the query has the effect of 
computing the relation 

U 
EEjp(X) 

RxC y d) . 
Of course, we can always optimize jp by 
actually taking only the minimal (with 
respect tot) elements of jp(X), i.e. 
for all X we have 

&CO 
Tx( rf d) = myp(x)"-,( T d) ' _. 

E minimal in jp(X> 
Since both understandings of the query 
should be consistent, we have to require 
the following cond ition on urv and jp: 

property 1 Cconsistent understanding] 

for all d = (r,,...,r,), for all XcU: 

Wx(urv(d)) q u mX(y d) . 
Ea~p(x) 

Moreover, for a given join path function 
jp the fictitious universal relation 
urv(d) should not contain any spurious 
information: 

property 2 [minimality] 

for all d = (rl,...,rn): urv(d) is the 
minimum relation satisfying the property 
of consistent understanding, that means 
urv(d) is the minimum element of 

{ulfor all XcU: TX(u) = 
Ec!!(,)~~$~)" 

where u1<u2 :'iff UlCU2 and 
for all t2Gu2 there exists t,Cu, 
such that t2st1. 

Given a join path function jp for the 
sophisticated user (that is a detailed 
specification of abbreviations provided 
by the universal relation view) we are 
asking whether property 1 and property 2 
are satisfiable by some mapping urv. We 
present the following fundamental 
theorems: 

Theorem 1 

Let jp be a join path function and d a 
database. Then the following assertions 
are equivalent: 

a) There exists u such that for all XcU: 

ox = u T+?$d) . 
Wp(X) 

b) For all X, Y with XCYCU: 

[Note: For the total projection we 
have r (ry(r))Cv) if XcY, but in 
genera r not equality!J 

Theorem 2 

Under the suppositions of Theorem 1, if 
the assertions of Theorem 1 hold then 
there exists a minimum relation u 
satisfying assertion a); moreover 

u = maxtuple I xyu Eeyp(x)=‘~x’ y d) )I. 

In order to guarantee property 1, 
consistent understanding, for an 
arbitrary join path function jp we would 
need complex facilities for maintaining 
the interrelational constraints given in 
assertion b) of Theorem 1. 

However, there is a natural condition on 
jp under which assertion b) always holds 
for any database d: 

Corollary 3 

Let jp be a join path function such that 
for all X,YCU, for all EGJP: 

XcY and Esjp(Y) =$ 
there exists FcE with Fcjp(X). 

Then for all d = (r,,...,rn) 

maxtupleE U 
XcU EC+!!!(X)= '"x"y d))l 

is the minimum relation u such that for 
all XcU: 

T,(u) = u m,(W d). 
Ecjp(X) E 

As discussed in Section 4, the ficti- 
tious universal relation urv(d) should 
make visible all partial joins vd; 
thus we additionally require for urv 
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property 3 [visibility of partial joins1 

for all d=(rl,...,rn), for all E@JP: 

q d C ~&(UrV(d)). 

The next theorem states that properties 
1, 2, and 3 already completely determine 
jp and urv. 

Theorem 4 

The following assertions are equivalent: 
a) jp and urv satisfy properties 1, 2, 

and 3. 
b) For all d=(rl r 1, for all XCU: 

i) jp(X> = {i;‘E&?P, and XCUE) 
up to optimization, and 

ii) urv(d) = 0 d. 

6. Unambiguous partial joins and 
characteristic attributes 

Both the intuitive approach (Section 4) 
and the formal approach (Section 5) 
support our fundamental decision to 
define the fictitious universal relation 
bY 

urv(d) := bp d . 

This implies that the semantic, denoted 
by the evaluation function eval, of the 
basic query is given by 

eval(d; retrieve X) *- 
Kx( @ d) ‘-Egp -rr,( y d). 

XcUE 
In general there will be more than just 
one minimal join path E with XCUE, say 
El 1**-, Ek. Then the interpretation of a 
tuDle tceval(d; retrieve X), as seen by 
the user of the universal relation view, 
will be ambiguous: it means 

tE‘bX(yd) or . . . or tGhX(qd). 
'1 “k 

This ambiguity is caused by two reasons. 

On the one hand, X may be a subset of 
several base relations, for instance in 
our suppliers-parts database we have 

eval(d,retrieve Pw) = 
h~prr~(PivTpt3(SP) = *u + 

P2 P2 
P3 P4 . 

In this case our semantic provides a 

good answer, namely all part numbers the 
system knows about. 

On the other hand, the ambiguity may 
stem from the existence of some kind of 
cycle in the database schema (considered 
as hypergraph), see, for instance, /AP, 
F/. In general, this situation seems 
unavoidable since nontrivial 
applications usually have to model 
inherently cyclic features of the real 
world. 

For instance, in a library 
- a copy of a book is identified by 

an inventory number, and its 
content is described by an ISBN 
entry; 

- customers can take out a copy or, 
if all copies of the book are 
currently taken out, make a 
reservation. 

Date of Return 

Obviously there are two relationships 
between customers and copies; 
accordingly we have 
eval(d; retrieve cust,inv) = 

cust t invj [ $$ve OQ book) . 

In dealing with ambiguity, we argue for 
the following two requirements: 
- In the special case that X is equal to 

the set of attributes covered by some 
join path E, i.e. X=UE, there should 
be no essential ambiguity. For the 
sophisticated user should be able to 
get the exact value of @@d by means 
of the query retrieve UE’: 

- In the other cases it should always be 
possible to remove the ambiguity by -- 
specifying additional attributes. In 
the library example we can take 

retrieve Cust,Inv where DRet=DRet, 
respectively 

retrieve Cust,Inv where DRes=DRes. 

(See Section 7 below for an 
explanation of nonbasic queries.) 

Thus in any case the (more 
sophisticated) user should be able to 
get a precise unambiguous result. 
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We shall formalize the first requirement 
by property 4 below and subsequently 
show how this property can be 
efficiently guaranteed by property 5 in 
such a way that the second requirement 
is also satisfied: 

property 4 Cunambiguous visibility of 
partial joinsJ 

for all d=(rl ,*--,rn), for all EcJP: 

tfd = a,,( d d). 

The condition of property 4 can be 
equivalently stated as follows: 

Theorem 5 

Let d=(r,,...,r,). Then the following 
assertions are equivalent: 

a) For all EEJP: 
7iYd 

= ruE( dp d). 

b) For all EfJP, for all RiGD: 
RiCUE 3 TR, ( ?$ d) C ri . 

As assertion b) of Theorem 1, in general 
the assertion b) above requires to 
maintain a complex interrelational 
constraint. 

However, we found a natural condition on 
the database schema D under which 
assertion b) always holds for any 
database; furthermore essentially there 
does not exist any other possibility to 
guarantee property 4 on the conceptual 
level : 

property 5 runambiguous database schema] 

for all EGJP, for all RieD: 
RiCUE j RiCE. 

Theorem 6 

1. Property 5 implies property 4. 

2. Suppose that there are no 
interrelational constrams for data- 
base schema D; furthermore suppose 
that the intrarelational constraints 
admit some natural simple databases 
(see the proof). Then property 4 
implies property 5. 

Property 5 can be easily tested: 

Theorem 7 

The following assertions are equivalent: 

a) [unambiguous database schema] 
For all EeJP, for all RicD : 
Ri,UE + RicE 

b) [existence of characteristic 
attributes3 
For all Ri” D: 
D\(R:$ connected (considered as 
hype+graph) 
3 there exists AI Ri\ U(D\(Ri\ ). 

An attribute AGRi \ lJ(D\{R+i) is called a 
characteristic attribute of relation 
scheme R;. In expressing queries it can 
serve as&a substitute for-the name of 
the relation scheme. We believe that the 
concept of characteristic attributes is 
fundamental for the design of database 
schemas that satisfy the universal 
scheme assumption. According to our 
experience, good designs nearly always 
possess characteristic attributes. On 
the other hand, if a tentative design 
does not, the possible sources of 
ambiguity can be detected using 
assertion b) above and subsequently 
eliminated by introducing a suitable new 
attribute for the relation concerned. 

As announced at the beginning of this 
section, a user of the universal 
relation view can employ property 5 to 
remove ambiguities in the interpretation 
of a query, say retrieve X. As an 
example, assume that there are two 
minimal join paths ElfE2 covering X. 
Then, for an unambiguous database schema 
there must exist attributes A,, 
respectively A2, with A CUE -UE2, 
respectively A26UE2LUi,. (atherwise, 
supposing indirectly UElcUE2 we could 
derive EIC E2 using property 5, a 
contradiction.) 

Thus the user can “navigate” through the 
schema, i.e. determine exactly that join 
path that he wishes to be evaluated, by 
restating his query as 
respectively retrieve X is an 
appropriate set with X~$~i~~~~ZZ g&i. 

Referring to our motivation for a 
universal relation view, namely querying 
l’without navigation”, we can now clarify 
this point: 

in general the user need not to 
navigate explicitly; however in those 
cases for that some kind of 
navigation is inherently necessary, 
due to the cyclic nature of an 
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application, he still can “navigate” 
using the expressive pxr of 
characteristic attributes. 

91:s retrieve t.SNAME 
where t.P& = ‘Pl’. 

7. The Data Manipulation Language 

In this case, since there is only 
one tuple variable, the tuple 
variable can be omitted at all and 
thus we don’t need the renaming 
function: 

The semantic of our data manipulation 
language is based on the fundamental 
decisions discussed in the previous 
sections: 
- to consistently serve users ranging 

from being casual up to soohisticated 
(Section 31, 

- to define the fictitious universal 
relation as the complete join of the 
database (Section I! and 5?, and 

- to suppose an underlying unambiguous 
database schema (Section 6). 

eval(d;q,) =~{SNAME~(~PB=‘P~ l ( @ d)) 

yielding SNAME 
Smith 
Jones. 

ii) If q is a join conjunctive query, 
i.e. it contains tuole variables 
t1* . . ..t. with aa2’and its 
condition is a conjunction of 
elementary selection conditions, 

For the sake of brevity, in the present 
report we only outline the basic 
constructs of our language. A detailed 
F;;Tsition will be given separately 

. 

A query has the general form 

qs retrieve attribute list 
where condition. 

Here the attribute list is constructed 
from qualified attributes (of the form: 
tuple variable.attribute), and the 
condiyion is a boolean combination (for 
the time of writing: without negation) 
of elementary selection conditions (es). 

The semantic is defined as follows: 

9s retrieve t. 
11 

.Al,...,ti ksAk 

where es1 h . . . hesi, 
then 

eval(d;q):=rit. 
ll 

.A ,,“., t 
ikaAk3 

(6 eslA...Aesl ( !? rename(tj, 
j=l 

Qb d))). 

Example : 

“Find name of suppliers and name of 
parts such that location of supplier 
is equal to stock of part” 
(Vote: the suppliers need not to 
supply this part currently): 

i) If q is a basic conjunctive query, eval(d;q2) 
1.e. it contains only one tupie 

= ‘{t, .SNAME,t2.PNAME) 

variable t and its cond’tion is a Aa (6t,.Loc=t2.STOCK 
con junction of elementary selection (renamect,, 0 d) x rename(t2, d d))) 
conditions, yielding t, .SNAME t,.PNAME 

q a retrieve t.Al,...,t.Ak 
where es, A . . . hesl , 

then 
eval(d;q):= r{t.A, ,..., t.Akj 

Smith 
Smith 
Jones 
!3lake 

nut 
screw 
bolt 
bolt. 

(&es,4 ...resl(rename(t, bb d))) iii) If q is not conjunctive, then its 
condition c is eauivalent to a 

where rename(t,u) is a copy of 
relation u, where each attribute is 
qualified by the tuole variable t, 
i.e. instead of AQU we take t.A. 

Example : 

(unique) condition in disjunctive 
normal form clv . . . vcb where each 
Ci is a conjunction of elementary 
selection conditions, 

q E retrieve attribute list 
where c1v . ..vcb ; 

then 

“Find name of suppliers that 
currently supply part PI “: 

eval(d;q):= 
19 

eval(d; retrieve 

attribute list where ci). 
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Example: 

"Find name of suppliers that 
currently supply part P4 or nuts": 

q3:s retrieve t.SNAME 
where t.Prz'P4' 

or t.PNAME='nut', 

eval(d;q3) = 
eval(d; retrieve t.SNAME 

where t.P# ='P4') 
.p eval(d; retrieve t.SNAME 

where t.PNAME='nut') 

= TB~~~~I(Q pe='p4'( @d)) " 
a@NAME](6 PNAME='nut'( QD d))' 

yieding SNAME 
Blake 
Smith 
Jones. 

Expansion in disjunctive normal form 
should indicate how the selection 
operator C works on tuples with null 
values, see also the following note 
on optimizations. 

Of course, in general we don't have to 
compute the whole universal relation 
@ d. As an optimization, it suffices to 

proceed as follows instead: 

for each tuple variable t of conjunc- 
tive query q we determine the attri- 
bute set W+:= {A( t.A occurs in q> ; 
then we ca6 replace @ d by 

Twt( 0 d) = U TWt(q d), 

625, 
where we actually need to consider 
only the minima: such E's. 

As with other views, updating of the 
universal relation view is possible only 
in rather restricted form (cf. /DB, 
Si/>. The most basic update statements 
are 

insert t , respectively delete t 

where t is a tuple defined for some 
attribute set WCU. 

Our semantic of update statements is 
guided by the following principles: 
a) The user should be able to 

reconstruct the original database 
after an erroneous update. 

b) The effect of an update should always 
be visible by a subsequent query of 
the basic form retrieve W. 

c) If an update was' performable only on 

the basis of some arbitrary decision, 
probably obscure for a user, then it 
should be rejected at all. 

The effect of insert t is roughly 
described as follows: 

beg:zi;;;Esaction 
:= false; 

E:= {Ril Rm 
if HEhW 0~ 

Rjc W; 
E not connected 

then (error messaT; 

sert subtuple tCR$ into 
r-4 : 
it insertion rejected [because of - 

violation of constraints] 
then (prepare error message; 

failure:= true) 
else 
if ttR,l was newly inserted 

in ri 
then prepare success message 

1; - 
if failure then undo else commit - ---~ 

end transaction. 

The effect of delete t is decribed by 

if w = Ri for some Ric D 
then try to delete t from ri 
else error message. 

8. Relationship to other Approaches 

Recently many different approaches to a 
universal relation view have been 
presented /O; KU, K, MU, FMU, U2; MW, 
MRSSW; MS, Sa; L/. 

By assessing their advantages and 
disadvantages we adopted many useful 
ideas from previous approaches. However, 
our proposal as a whole is essentially 
different from all of them. 

The most advanced projects are due to 
Korth/Ullman et al. /KU, K, MU, FMU, 
U2/, Maier/Warren et al. /MW, MRSSW/ and 
Sagiv et al. /MS, Sa/. 

The query interpretation algorithm of 
the Svstem/U by Korth/Ullman uses an 
optimization technique which assumes a 
globally consistent database (i.e. 
without dangling tuples) satisfying 
global semantic constraints. The 
proposed update procedures to maintain 
such a database are based on extensive 
usage of indexed null values and 
enforcement of complex semantic 
constraints by applying tableau chase 
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techniques on actual relations (instead 
of schemes). As far as we see! these 
features seem to be not efficiently 
implementable. However Korth/Ullman do 
not insist that the database is indeed 
free of dangling tuples, rather they 
argue in favor of their approach that 
the user will expect to get some kind of 
“simplest” response. 

Maier/Warren, as already anticipated in 
System/U, employ the notion of “objects1 
as basic construct for navigation. They 
suggest to actually define the database 
schema in terms of both relation schemes 
(there called “associations”) and 
objects. In applications objects are 
intended to model relevant real world 
concepts as they are referred to in 
natural languages, for instance. In 
contrast, our approach relies only on a 
conventional relational database schema. 
On the other hand, our notion of a join 
path function is related to the concept 
of objects, as our conditions for 
consistent understanding, respectively 
unambiguity (assertion b) of Theorem 1, 
respectively assertion b) of Theorem j) 
are related to the Maier/Warren 
“containment condition” for objects. 

The spirit of Sagiv’s approach seems to 
be closest to our’s: he tries to avoid 
null values and is looking for 
conditions that allow to efficiently 
compute orojections of the fictitious 
universal relation without knowing it 
exclictly. However, his fictitious 
universal relation, the so-called 
“reoresentative instance”, is d’ fferent A^ 
from our’s. 

Finally we note that our complete join 
is in the spirit of the ooeration 
“maxtravw (maximal traversal) of Lien 
IL/. 

After preparing the first version of 
this paoer we learnt f?om furttier work 
on uni.versal relation views /CK, B, 
Second edition of U?, NV, DYS/. 

Carlson and Kaplan /CK/ present an early 
study on query languages based on 
attributes. They oropose a method to 
select an appropriate “access path” on 
the basis of the database system’s 
information about functional 
dependencies and interrelational 
const3icts. 

Babb /B/ describes how to construct a 
single v joined normal form” relation 
that is intended to model a database 

8 

application and that can be stored in 
one Content Addressable File Store. 
Furthermore a suitable data manipulation 
language has been developed. Although 
Babb’s work is directed to employ the 
power of the Content Addressable File 
Store whereas we intend to use a 
conventional relational database system, 
it turns out there are some similarities 
between these approaches. 

In the second edition of his book /Ul/ 
Ullman presents an actual and 
comprehensive treatment of the System/U. 

Maier, Ullman, and Vardi /MUV/ study the 
relationship between the approach taken 
for the System/U and by Maier/Warren and 
the “representative instance” approach 
of Sagiv. 

Finally D’Atri, Moscarini, and Spyratos 
/DMS/ define a notion of unambiguous 
context -a context corresponds to a join 
path- and relate this notion to the 
relationship uniqueness assumption and 
to $ -acyclicity. 

9. Conclusion 

On the basis of realistic prerequisites 
and a determination of te intended user 
profile we carefully developped our 
fundamental decisions for a universal 
relation view: consistent understanding 
for all users; complete join as defining 
operator for the fictitious universal 
relation; unambiguous database schemas. 
The data manipulation language is 
outlined. 

We are currently involved in 
implementing a prototype version of our 
approach. 
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Appendix 

Proof of Theorem 1: 

(a) 3 (b) : 
XCYCU 

3 vx(ry(U)) c TX(u) (by definition of 
total projection) 

3 u~l: u "y(tidfl C u a,(tid) 
Wp(Y) E Ecjp(X) E 

(by a> 

(b) 3 (a) : 
Define u:= u u aC['1T,(W d)] 

X=U E~jp(x) E 

(1) u TX( W d)crX(u) for all XcU 
Wp(X) E (by definition of u) 

(2) Q(u) = TXcy$ Eey(yyuY( 04 dll] 
E 

(by definition of u) 

=aX[u u =[!?.(;dfl 
XCYcU Ecjp(Y) 

(forrX is the total projection) 
= u TXI u WoQd)] 

XCYCU Eejp(Y) E 
(?c superfluous) 

cu u a,< 04 d) 
XIYCU Erjp(X) E 

(by b) 
= U rr,( 04 d) 

Wp(X) E 

Proof of Theorem 2: 

Let URV(d) := 

Cu'l vxcu : Ux(u') = u Ux( b4 d)) 
Eajp(X) E 

We prove that U~U' for all u'CURV(d), 
i.e. 
u'aURV(d) =+ (1) vt2&]t,C u : 

$Qtl, and 
(2) ucu'. 

Since u,ukURV(d), we have for all Xc0 : 
ox = ox (*I 

(1) Let +u', X:= {AI t2CAJfI]. 
=9 t2tX‘JC~~h') 

(by definition of total projection) 
rs 3t,au : t,[x) = tgx] 

(by (*)) 

* 3t1eu : t24t1 
(by definition of X) 

(2) Assume 3t1 a u\u' 
Let X := (A I t,CAJ zU]. 
=$ vtptu : qxj f 
3 lTx(u) f a,(u’) 
This is a contradiction 

t2cx3 

to (*>. 

Proof of Corollary 3: 

Let XCY. 
"$l: u %(DW] 

Eejp(Y) E 

= u Irx( r,( bd d)) 
Ee.l~(Yl E 

=U rx( W d) 
Eejp(Y) E 

cu aX(ti d) (by supposition and 
Fcjp(X) F FcE =$ 

~#tU d)c$(od d)) 
E F 

Then apply Theorem 1 and 2. 
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Proof of Theorem 4: 

(a) + (b) : 
(i) "C": 

VECJP : Wldc rTE(urv(d)) 
E (by property 3) 

j VEGJP : _ 
[XcUE + VXCti d)crX(rUR(urv(d))g 

E 

crX(urv(d)) 
3 U Tx(w d)crX(urv(d)) 

EcJP E 
ItcUE 

” 3 ” : 
rx(urv(d)) = u Kx(W d) 

Ecjp(X) E 
(by property 1) 

cu ~xbcl d) 
EcJP E 
XCUE 

(by definition of jp) 

Hence we have 
'ITX(urv(d)) = u ux(o4 d) 

ECJP E 
XcUE 

and so (i) holds. 

(ii) urv(d) = 
maxtuple[u U rr(aX(w d))] = 

Xcku EQJP E 
XcUE 

(by Thm. 2 and (i) above) 

maxtuple [ U &L( owl d)] = 
EEJP E 

(by the definition of the complete join) 

qbd 

(b) + (a) : 
property 1: 

l-x( @d) = 
RX(maxtuple[u W(W d)]) = 

E=JP E 

(by definition of QD ) 

rx( u u(w d)) = 
EeJP E 
XcUE 

(for TX is the total projection) 

u r,(M d) = 
EGTP E 
XczUE 

u ~xbdd) 
EljP(X) E (by (b)(i)) 

P=wm 22: 
@d= 
maxtuplet U ~C(W d)) = 

EeJP E 

maxtuple(u U x( ~X<W d))) = 
XcU EGJP E 

XcIE 
maxtuplet u U *("xW d))) 

XCU Eejp(X) E 
(by (b)(i)) 

Then property 2 follows from Corollary 3 

mmerty 3: 
-rr,,( dp d)3 ob d 

E (by definition of QD ) 

' Proof of Theorem 5: 

(a) =3 (b): 

TcRi(y d) c u,i( ad) 
=~d (by (a) with E=iRi\dJP) 

Oi') 
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(b) =$ (a): 
"C n : by property 3 
fl5>": Let ELJP. 

a,,( add) = u rUE(Md) 
FaJP F 
TJEcUF (by Theorem 4) 

Let taBUE( QD d) 
j 3FG.P : t,E rUE(w d) and UEGUF. 

Then F 

R~"E 3 RicUEcUF 
+ TR (bQ d)Cri (by (b)) 

iF 

=3 {ttRi'J) = BR (it]> 
i 

CT, (beI d)cri 
i F 

hence t=t[UEkti d 
E 

Proof of Theorem 6: 

(1) Let EEJP. 
RicUE 3 RieE (by property 5) 

e TR (w d)cri 
iE 

(by definition of join) 

=+ ba d = u,,( aD d) (by Theorem 5) 
E 

(2) We shall prove the contraposition: 
Let w.1.o.g. EGJP, RlfD with 
R~cUE and R,$E. 
Let rl := 0 and r-1 := {tCR$) for 

for some tuple t on U. 
?Z'd'.ln(r,,...,r ) 
We require that then intrarelational 
constraints admit that the ri are 
valid relations for Ri. Then d is a 
valid database for schema D. 
But we have 
W d = {tLUEJ$ (by construction of d 
E and RICE), 

T,, ( tf d) = ftfR,'1$ (by t is 
nullfree and RjcUE), 

and W d = rl = 0 
013 (by construction of d) 

So property 4 does not hold for d. 

Proof of Theorem 7: 

(a) 3 (b): Let D\{Ri\ be connected. 
Assume indirectly RicU(D\{Ri)) 
=b RieD\{Ri3 (by (a) with 

E=D\ {Ri\ CJP) 
This is a contradiction. 

(b) + (a): Let RicUE. 
EM@J 1: D\{Ri> is connected: 

=+ SAE R+U(D\ {RI3 1 (by (b)) 
S R+E (else AqUE and R,eUE> 

WC 2: D\fRi) is not connected: 
Since D is connected, Ri connects 
all the maximal components Cj of 
D+& ('1 
Assume indirectly RieE. 
3 EcD+i) (since Ri4E) 
3 3Cj : ECCj (since E connected 

and Cj max. components) 

=+ 3kfJ : 3A: AaRi"UCk (by (*)) 
=+ ZArRi : A(UCjaUE 

(since cj,cI< not connected, EcCj) 
=+ Ri+UE. 
This is a contradiction. 
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