
Universal Relation Views: A PraRmatic Apwoach

Joachim Biskup and Hans Hermann Brliggemann

Informatik III
University of Dortmund, West Germany

Abstract:

A universal relation view is a view
(external schema) on top of a relational
database schema (conceptual schema). It
shows the whole database as a single
fictitious universal relation. It
provides a user-friendly interface where
queries can be expressed without
navigation, even on the level of
relations, as far as possible. We
carefully develop the fundamental
decisions of our approach: different
kinds of users should have a consistent
understanding of the view; the
underlying database schema should
satisfy a new desirable property called
unambiguity. Besides unambiguity and the
so-called universal scheme assumption
our approach does not rely on any
further prerequisites.

1. Introduction

A user can access to information of a
database by means of a data manipulation
language. In case of a tuple-oriented
(one record at a time) language he must
tuple-wise "navigate" in the database,
for instance by using the FIND-statement
of DBTG network databases. In case of a
high-level, relation-oriented language,
as for instance the relational algebra
for relational databases, the burden of
tuple-wise navigation is taken by the
database system. However, the user must
still relation-wise navigate, in

particular he must determine appropriate
join paths in the database schema.

As an example, consider (a variation of)
the well-known suppliers-parts database,
cf. /D/:

relation scheme attributes

Suppliers supplier&,
supplier name,
supplier location

Parts Eart&,
Eart name,
color,
stock

Shipment supplier?,
EaWb
quantity

S! sa ! SNAME ! LOC !
! Sl ! Smith ! London f
! s2 ! Jones ! Paris !
I S3 ! Blake ! Paris !

P ! Pa ! PNAME ! COLOR ! STOCK !
I p1 , ! nut ! red 1 L . ondon !

! bolt ! green ! Paris !
! screw ! blue ! London !

SP ! sa ! Pa- ! QY !
! Sl ! Pl ! 30 T
! s2 ! Pl ! 30 I
! s2 ! P2 ! 40 !
! S3 ! P4 ! 10 !

172

A query “find name of suppliers that
currently supply red parts”

is expressed in relational algebra as

~piAME) (6~~~~~= ‘red ’ (S W SP DO PI 1.

Here the user relation-wise “navigates”
in the database schema by determining
the path S, SP, Pine (hypergraph of
the) database schema; then the database
system automatically generates appro-
priate operations on tuples in order to
calculate the natural join along the
path.

The main goal of a universal relation
visw is to allow queries with no
navigation whatever (as far as
possible). For this purpose queries are
stated only by means of attributes
without mentioning the database
relations. Instead the user refers to a
fictitious universal relation, denoted
say by the relation name U, that
contains the information of all database
relations. For instance, the query above
is exDressed as

or QUEL-like
afSNAME)(GCOLOR=‘red’ (‘))y

as
retrieve SNAME where COLOR=‘red’.

The data maniDulation language for a
universal relation view should be a
user-friendly language for querying and
updating a database using only the basic
concepts of attributes and conditions.
It should be as powerful and flexible
that it covers the usual applications
(in contrast to menue techniques).

In this paper we present our
Dragmatically oriented approach to a
universal relation view. The
relationship to other approaches is
discussed in Section 8. Our emDhasis is
on a careful develoDment and
justification of our fundamental design
decisions. Accordingly we start by
stating our general prerequisites
(Section 2) and the intended user
profile (Section 3). Our definition of
the fictitious universal relation is
derived both by intuitive considerations
(Section 4) and formal investigations
(Section 5). Then we treat the problem
of possible ambiguities in the inter-
Dretation of responses to queries; we
introduce a new desirable property of
database schemas that we require as
additional prerequisite (Section 6).
Finally the data manipulation language
is outlined (Section 7).

Proofs of theorems are added in an
ApDendix.

2. General Prerequisites

Our approach is based on a single
essential prerequisite: attributes are
designed in such a way that they are
expressive enough to carry the semantic
of the database. This DroDertv has been
called the universal sbheme assumption,
see /AP, U2/.

At the moment, no other formal
properties (i.e. dependency preserva-
tion, lossless join, third normal form,
etc.) are necessarily required. However,
as it is well-known, such properties are
useful in any case in particular for
update operations. Furthermore we
emphasize that, in order to be
pragmatic, we do not require that the
database system hrfacilities for

- nontrivially processing null
values,

- enforcing general data
dependencies (other than
(intrarelational) keys),

- enforcing interrelational
constraints (e.g. foreign keys).

For simplicity we shall assume that
database relations do not contain any
null values.

3 . User Profile
of the Universal Relation View

Our universal relation view should be
used as a view (external schema) on top
of a relational database schema
(conceptual schema). The intended user
profile is given by describing two
extreme cases.

The sophisticated user knows the under-
lvinn database schema, and he uses the
universal relation view for abbreviating
queries and updates, thereby avoiding to
program join paths by his own.

The casual user knows only (some of) the
attributes, more precisely the universal
relation scheme, and he expresses his
queries essentially by stating the
attributes of his interest and
appropriate conditions on them (e.g. for
denoting selections). He is not aware of
the database relations. For him the
actions of the database system (semantic
of the data manipulation language) are
explained in terms of a fictitious
universal relation (to be formally
defined as the result of a suitable
operator applied to the underlying data-
base relations). Often the casual user
is not allowed to update the database.

173

We require that our universal relation
view must be consistent with the
understanding of all intended users.

In order to support user-friendly
man-maschine communication the database
system provides users of the universal
relation view with reports on actually
performed actions, warnings (for
instance against possible ambiguities),
and error messages.

Some of these communications necessarily
rely on the database schema, thus the
casual user will not always be able to
fully understand them.

We argue, however, that such messages
indicate the limit up to which the user
concerned should be allowed to employ
the view without help of a sophisticated
user: this is to ensure

- that responses to queries are
informative and not misleading for
the user concerned, and

- that updates of database relations
are always semantically correct.

4. The Fictitious Universal Relation:
Intuitive Approach

Suppose that D q (Rl,...,R,) is a
relational database schema over
attribute set U, where RiC U denotes a
relation scheme. Let d = (rl,...,rn) be
an actual database, that is ri is a
relation (finite set of tuples) valid
for scheme Ri.

For the purpose of the universal
relation view we want to represent the
information contained in (rl,...,rn) by
a single relation u on attribute set U.
The most usual way to combine the infor-
mation contained in several relations is
to take the natural join of them.

Looking at the suppliers-parts database
we can try to get the combined
information by computing the natural
join SWPWSP yielding

S# SNAME LOC Pit PNAME COLOR STOCK QY

Sl Smith London Pl nut red London 30
S2 Jones Paris Pl nut red London 30
S2 Jones Paris P2 bolt green Paris 40

Unfortunately, the example shows that
the join operator is not fully adequate
if it happens that there are so-called

"dangling" tuples in some database
relations or intermediate relations, for
instance the tuples
and (P3, screw, blue, London) of P,

(S3, Blake, Paris, P4, 10) of SWSP.

In order to prevent the occurence of
such dangling tuples while performing
updates we would need complex facilities
to handle indexed null values and
interrelational constraints. But, as
stated in Section 2, we don't want to
rely on these facilities.

Alternatively we shall define a new

operator, the complete join ig,ri 9 =
according to the following guidelines:
- it also takes care of partial joins

121 'i for I ?{l,...,nj;

- if t is an element of a partial join
then, using a single null value l. as
some kind of placeholder, the tuple tU
on U, defined by

tU(A):= t(A) if t is defined for A,
I, otherwise,

is visible in i!, ri;

is free of subsumed tuples;

that means it does not contain two
tuples t

1
and t

identica- with
such that tl is

nortion of t,.
g2 on the nonnull

In the example the comolete join should
yield the following relation:

Ss SNAME LOC Pt PNAME COLOR STOCK QY

Sl Smith London P1 nut red London 30
S2 Jones Paris P: nut red London 30
S2 Jones Paris P2 bolt green Paris 40
S3 Blake Paris P4 L L I 10

I L L P3 screw blue London 1.

Notice that we have not taken the
partial join that degenerates to a
Cartesian product. For we want to
combine only pieces of information
(tuples) which are related to one
another in a nontrivial way (having at
least one common attribute).

In the discipline of formal methods for
database schema design the natural join
is also a well-known tool for combining
information. In particular, in
considering only functional dependencies

174

as semantic constraints, the natural
join is proven to be the unique inverse
operator of the projection (if the
inverse exists at all). Existence of the
inverse operator of the projection is
usually referred to as lossless join
property of the schema.

In computing the complete join we do not
exclude lossv (oartial) joins in the -
sense of design’theory. For there seems
to be no apriori reason to prevent a
sophisticated user of the universal
relation view from computing a lossy
join if the designer of the schema
agreed to such a lossy decomposition.

On the other hand, we expect that
database schemas without lossy
decompositions will be particularly
suitable for our universal relation
view. For in this case the ratio behind
the decomposition (thinking of the
database relations ri as projections of
a single relation v: ri = TR (v)) is

directly connected to our cokept of
defining a universal relation u as the
comolete join of the database relations,

U:= j,Pi.

Morover, Corollary 3 (in Section 5
below) shows how we could exclude a join
from contributing to the fictitious
universal relation.

Before now giving the formal definition
of the comclete join of a database
(rl,---,-n ?- J, we emphasize that we must
not actually evaluate it for the purpose
of our universal relation view. It will
be only a theoretical tool for
describing the semantic of the data
manipulation lanqss.ge.

The following notations are used
throughout the paper. Let

D:= (RI ,...,R,) a database schema with
nz2 that iS supposed to be connected
(considered as hypergraph) ;

JP:= {El@fEcD, E connected (as
Wperaraph 1)
the set of join paths in D;

UE:= {A 1 there exists R;eE with AaRi>
the set of attribut6.s covered by
join nath E;

y d:= RMeEri for join path E and

theioartial
database d= (“1 r 1

join_ of d witi’rlAp:ct
to E;

X(r) : = { tU I tcrj the U-expansion of
relation r;

t,s t : iff t
t2at for 31

t
1

are tuples on U such
uU

t,(A)tl+ t,(A)=t2(A);

maxtuple (v):= 4 t I ta v, and for all
tiv :t4 t’ 3j t=t’) .

Definition:

The mapping
@ : jd (d database for schema DJ-,

{u 1 u relation on U),

0 d:= maxtuple (EcJP u X(Fd))

is called complete join (for D).

The complete join evaluates all
noncartesian partial joins, interprets
the resulting tuples as tuples on U by
formally introducing null values, and
finally removes redundancy.

5. The Fictitious Universal Relation:
Formal ADDrOaCh

The basic query of our data manipulation
language is

retrieve X,
where X is a set of attributes.

.
For the casual user, obviously the
effect 0 fy should be

rX(urv(d)),

where urv(d), universal relation view of
d, is the fictTtious universal relation
that is computed from the actual
database d=(r,,...,rn).

More formally , urv is a mapping

urv: {d Id database for schema D)3
f,ulu relation on U),

such that urv(d) contains only
values occuring in d and, if
necessary, the null value1 .

(For the moment, urv(d) is not
necessarily the complete join, but see
Theorem 4 below.)

Since the null value I, as introduced in
Section 4, does not carry any real
information, we decided to define

VX as the total projection on X
yielding omuples without nulls.

175

For the sophisticated user, the query is
intended to be an abbreviation of a
request to evaluate one or several join
paths. Thus the database system must
relate the attribute set X with a set of
join paths covering X.

More formally the database system needs
a specification of a join path function

jp: {xlxcu) 9 {QlQdP) such that
EEjp(X) 3 XcTJE;

based on jp the query has the effect of
computing the relation

U
EEjp(X)

RxC y d) .
Of course, we can always optimize jp by
actually taking only the minimal (with
respect tot) elements of jp(X), i.e.
for all X we have

&CO
Tx(rf d) = myp(x)"-,(T d) ' _.

E minimal in jp(X>
Since both understandings of the query
should be consistent, we have to require
the following cond ition on urv and jp:

property 1 Cconsistent understanding]

for all d = (r,,...,r,), for all XcU:

Wx(urv(d)) q u mX(y d) .
Ea~p(x)

Moreover, for a given join path function
jp the fictitious universal relation
urv(d) should not contain any spurious
information:

property 2 [minimality]

for all d = (rl,...,rn): urv(d) is the
minimum relation satisfying the property
of consistent understanding, that means
urv(d) is the minimum element of

{ulfor all XcU: TX(u) =
Ec!!(,)~~$~)"

where u1<u2 :'iff UlCU2 and
for all t2Gu2 there exists t,Cu,
such that t2st1.

Given a join path function jp for the
sophisticated user (that is a detailed
specification of abbreviations provided
by the universal relation view) we are
asking whether property 1 and property 2
are satisfiable by some mapping urv. We
present the following fundamental
theorems:

Theorem 1

Let jp be a join path function and d a
database. Then the following assertions
are equivalent:

a) There exists u such that for all XcU:

ox = u T+?$d) .
Wp(X)

b) For all X, Y with XCYCU:

[Note: For the total projection we
have r (ry(r))Cv) if XcY, but in
genera r not equality!J

Theorem 2

Under the suppositions of Theorem 1, if
the assertions of Theorem 1 hold then
there exists a minimum relation u
satisfying assertion a); moreover

u = maxtuple I xyu Eeyp(x)=‘~x’ y d))I.

In order to guarantee property 1,
consistent understanding, for an
arbitrary join path function jp we would
need complex facilities for maintaining
the interrelational constraints given in
assertion b) of Theorem 1.

However, there is a natural condition on
jp under which assertion b) always holds
for any database d:

Corollary 3

Let jp be a join path function such that
for all X,YCU, for all EGJP:

XcY and Esjp(Y) =$
there exists FcE with Fcjp(X).

Then for all d = (r,,...,rn)

maxtupleE U
XcU EC+!!!(X)= '"x"y d))l

is the minimum relation u such that for
all XcU:

T,(u) = u m,(W d).
Ecjp(X) E

As discussed in Section 4, the ficti-
tious universal relation urv(d) should
make visible all partial joins vd;
thus we additionally require for urv

176

property 3 [visibility of partial joins1

for all d=(rl,...,rn), for all E@JP:

q d C ~&(UrV(d)).

The next theorem states that properties
1, 2, and 3 already completely determine
jp and urv.

Theorem 4

The following assertions are equivalent:
a) jp and urv satisfy properties 1, 2,

and 3.
b) For all d=(rl r 1, for all XCU:

i) jp(X> = {i;‘E&?P, and XCUE)
up to optimization, and

ii) urv(d) = 0 d.

6. Unambiguous partial joins and
characteristic attributes

Both the intuitive approach (Section 4)
and the formal approach (Section 5)
support our fundamental decision to
define the fictitious universal relation
bY

urv(d) := bp d .

This implies that the semantic, denoted
by the evaluation function eval, of the
basic query is given by

eval(d; retrieve X) *-
Kx(@ d) ‘-Egp -rr,(y d).

XcUE
In general there will be more than just
one minimal join path E with XCUE, say
El 1**-, Ek. Then the interpretation of a
tuDle tceval(d; retrieve X), as seen by
the user of the universal relation view,
will be ambiguous: it means

tE‘bX(yd) or . . . or tGhX(qd).
'1 “k

This ambiguity is caused by two reasons.

On the one hand, X may be a subset of
several base relations, for instance in
our suppliers-parts database we have

eval(d,retrieve Pw) =
h~prr~(PivTpt3(SP) = *u +

P2 P2
P3 P4 .

In this case our semantic provides a

good answer, namely all part numbers the
system knows about.

On the other hand, the ambiguity may
stem from the existence of some kind of
cycle in the database schema (considered
as hypergraph), see, for instance, /AP,
F/. In general, this situation seems
unavoidable since nontrivial
applications usually have to model
inherently cyclic features of the real
world.

For instance, in a library
- a copy of a book is identified by

an inventory number, and its
content is described by an ISBN
entry;

- customers can take out a copy or,
if all copies of the book are
currently taken out, make a
reservation.

Date of Return

Obviously there are two relationships
between customers and copies;
accordingly we have
eval(d; retrieve cust,inv) =

cust t invj [$$ve OQ book) .

In dealing with ambiguity, we argue for
the following two requirements:
- In the special case that X is equal to

the set of attributes covered by some
join path E, i.e. X=UE, there should
be no essential ambiguity. For the
sophisticated user should be able to
get the exact value of @@d by means
of the query retrieve UE’:

- In the other cases it should always be
possible to remove the ambiguity by --
specifying additional attributes. In
the library example we can take

retrieve Cust,Inv where DRet=DRet,
respectively

retrieve Cust,Inv where DRes=DRes.

(See Section 7 below for an
explanation of nonbasic queries.)

Thus in any case the (more
sophisticated) user should be able to
get a precise unambiguous result.

177

We shall formalize the first requirement
by property 4 below and subsequently
show how this property can be
efficiently guaranteed by property 5 in
such a way that the second requirement
is also satisfied:

property 4 Cunambiguous visibility of
partial joinsJ

for all d=(rl ,*--,rn), for all EcJP:

tfd = a,,(d d).

The condition of property 4 can be
equivalently stated as follows:

Theorem 5

Let d=(r,,...,r,). Then the following
assertions are equivalent:

a) For all EEJP:
7iYd

= ruE(dp d).

b) For all EfJP, for all RiGD:
RiCUE 3 TR, (?$ d) C ri .

As assertion b) of Theorem 1, in general
the assertion b) above requires to
maintain a complex interrelational
constraint.

However, we found a natural condition on
the database schema D under which
assertion b) always holds for any
database; furthermore essentially there
does not exist any other possibility to
guarantee property 4 on the conceptual
level :

property 5 runambiguous database schema]

for all EGJP, for all RieD:
RiCUE j RiCE.

Theorem 6

1. Property 5 implies property 4.

2. Suppose that there are no
interrelational constrams for data-
base schema D; furthermore suppose
that the intrarelational constraints
admit some natural simple databases
(see the proof). Then property 4
implies property 5.

Property 5 can be easily tested:

Theorem 7

The following assertions are equivalent:

a) [unambiguous database schema]
For all EeJP, for all RicD :
Ri,UE + RicE

b) [existence of characteristic
attributes3
For all Ri” D:
D\(R:$ connected (considered as
hype+graph)
3 there exists AI Ri\ U(D\(Ri\).

An attribute AGRi \ lJ(D\{R+i) is called a
characteristic attribute of relation
scheme R;. In expressing queries it can
serve as&a substitute for-the name of
the relation scheme. We believe that the
concept of characteristic attributes is
fundamental for the design of database
schemas that satisfy the universal
scheme assumption. According to our
experience, good designs nearly always
possess characteristic attributes. On
the other hand, if a tentative design
does not, the possible sources of
ambiguity can be detected using
assertion b) above and subsequently
eliminated by introducing a suitable new
attribute for the relation concerned.

As announced at the beginning of this
section, a user of the universal
relation view can employ property 5 to
remove ambiguities in the interpretation
of a query, say retrieve X. As an
example, assume that there are two
minimal join paths ElfE2 covering X.
Then, for an unambiguous database schema
there must exist attributes A,,
respectively A2, with A CUE -UE2,
respectively A26UE2LUi,. (atherwise,
supposing indirectly UElcUE2 we could
derive EIC E2 using property 5, a
contradiction.)

Thus the user can “navigate” through the
schema, i.e. determine exactly that join
path that he wishes to be evaluated, by
restating his query as
respectively retrieve X is an
appropriate set with X~$~i~~~~ZZ g&i.

Referring to our motivation for a
universal relation view, namely querying
l’without navigation”, we can now clarify
this point:

in general the user need not to
navigate explicitly; however in those
cases for that some kind of
navigation is inherently necessary,
due to the cyclic nature of an

178

application, he still can “navigate”
using the expressive pxr of
characteristic attributes.

91:s retrieve t.SNAME
where t.P& = ‘Pl’.

7. The Data Manipulation Language

In this case, since there is only
one tuple variable, the tuple
variable can be omitted at all and
thus we don’t need the renaming
function:

The semantic of our data manipulation
language is based on the fundamental
decisions discussed in the previous
sections:
- to consistently serve users ranging

from being casual up to soohisticated
(Section 31,

- to define the fictitious universal
relation as the complete join of the
database (Section I! and 5?, and

- to suppose an underlying unambiguous
database schema (Section 6).

eval(d;q,) =~{SNAME~(~PB=‘P~ l (@ d))

yielding SNAME
Smith
Jones.

ii) If q is a join conjunctive query,
i.e. it contains tuole variables
t1*t. with aa2’and its
condition is a conjunction of
elementary selection conditions,

For the sake of brevity, in the present
report we only outline the basic
constructs of our language. A detailed
F;;Tsition will be given separately

.

A query has the general form

qs retrieve attribute list
where condition.

Here the attribute list is constructed
from qualified attributes (of the form:
tuple variable.attribute), and the
condiyion is a boolean combination (for
the time of writing: without negation)
of elementary selection conditions (es).

The semantic is defined as follows:

9s retrieve t.
11

.Al,...,ti ksAk

where es1 h . . . hesi,
then

eval(d;q):=rit.
ll

.A ,,“., t
ikaAk3

(6 eslA...Aesl (!? rename(tj,
j=l

Qb d))).

Example :

“Find name of suppliers and name of
parts such that location of supplier
is equal to stock of part”
(Vote: the suppliers need not to
supply this part currently):

i) If q is a basic conjunctive query, eval(d;q2)
1.e. it contains only one tupie

= ‘{t, .SNAME,t2.PNAME)

variable t and its cond’tion is a Aa (6t,.Loc=t2.STOCK
con junction of elementary selection (renamect,, 0 d) x rename(t2, d d)))
conditions, yielding t, .SNAME t,.PNAME

q a retrieve t.Al,...,t.Ak
where es, A . . . hesl ,

then
eval(d;q):= r{t.A, ,..., t.Akj

Smith
Smith
Jones
!3lake

nut
screw
bolt
bolt.

(&es,4 ...resl(rename(t, bb d))) iii) If q is not conjunctive, then its
condition c is eauivalent to a

where rename(t,u) is a copy of
relation u, where each attribute is
qualified by the tuole variable t,
i.e. instead of AQU we take t.A.

Example :

(unique) condition in disjunctive
normal form clv . . . vcb where each
Ci is a conjunction of elementary
selection conditions,

q E retrieve attribute list
where c1v . ..vcb ;

then

“Find name of suppliers that
currently supply part PI “:

eval(d;q):=
19

eval(d; retrieve

attribute list where ci).

179

Example:

"Find name of suppliers that
currently supply part P4 or nuts":

q3:s retrieve t.SNAME
where t.Prz'P4'

or t.PNAME='nut',

eval(d;q3) =
eval(d; retrieve t.SNAME

where t.P# ='P4')
.p eval(d; retrieve t.SNAME

where t.PNAME='nut')

= TB~~~~I(Q pe='p4'(@d)) "
a@NAME](6 PNAME='nut'(QD d))'

yieding SNAME
Blake
Smith
Jones.

Expansion in disjunctive normal form
should indicate how the selection
operator C works on tuples with null
values, see also the following note
on optimizations.

Of course, in general we don't have to
compute the whole universal relation
@ d. As an optimization, it suffices to

proceed as follows instead:

for each tuple variable t of conjunc-
tive query q we determine the attri-
bute set W+:= {A(t.A occurs in q> ;
then we ca6 replace @ d by

Twt(0 d) = U TWt(q d),

625,
where we actually need to consider
only the minima: such E's.

As with other views, updating of the
universal relation view is possible only
in rather restricted form (cf. /DB,
Si/>. The most basic update statements
are

insert t , respectively delete t

where t is a tuple defined for some
attribute set WCU.

Our semantic of update statements is
guided by the following principles:
a) The user should be able to

reconstruct the original database
after an erroneous update.

b) The effect of an update should always
be visible by a subsequent query of
the basic form retrieve W.

c) If an update was' performable only on

the basis of some arbitrary decision,
probably obscure for a user, then it
should be rejected at all.

The effect of insert t is roughly
described as follows:

beg:zi;;;Esaction
:= false;

E:= {Ril Rm
if HEhW 0~

Rjc W;
E not connected

then (error messaT;

sert subtuple tCR$ into
r-4 :
it insertion rejected [because of -

violation of constraints]
then (prepare error message;

failure:= true)
else
if ttR,l was newly inserted

in ri
then prepare success message

1; -
if failure then undo else commit - ---~

end transaction.

The effect of delete t is decribed by

if w = Ri for some Ric D
then try to delete t from ri
else error message.

8. Relationship to other Approaches

Recently many different approaches to a
universal relation view have been
presented /O; KU, K, MU, FMU, U2; MW,
MRSSW; MS, Sa; L/.

By assessing their advantages and
disadvantages we adopted many useful
ideas from previous approaches. However,
our proposal as a whole is essentially
different from all of them.

The most advanced projects are due to
Korth/Ullman et al. /KU, K, MU, FMU,
U2/, Maier/Warren et al. /MW, MRSSW/ and
Sagiv et al. /MS, Sa/.

The query interpretation algorithm of
the Svstem/U by Korth/Ullman uses an
optimization technique which assumes a
globally consistent database (i.e.
without dangling tuples) satisfying
global semantic constraints. The
proposed update procedures to maintain
such a database are based on extensive
usage of indexed null values and
enforcement of complex semantic
constraints by applying tableau chase

180

techniques on actual relations (instead
of schemes). As far as we see! these
features seem to be not efficiently
implementable. However Korth/Ullman do
not insist that the database is indeed
free of dangling tuples, rather they
argue in favor of their approach that
the user will expect to get some kind of
“simplest” response.

Maier/Warren, as already anticipated in
System/U, employ the notion of “objects1
as basic construct for navigation. They
suggest to actually define the database
schema in terms of both relation schemes
(there called “associations”) and
objects. In applications objects are
intended to model relevant real world
concepts as they are referred to in
natural languages, for instance. In
contrast, our approach relies only on a
conventional relational database schema.
On the other hand, our notion of a join
path function is related to the concept
of objects, as our conditions for
consistent understanding, respectively
unambiguity (assertion b) of Theorem 1,
respectively assertion b) of Theorem j)
are related to the Maier/Warren
“containment condition” for objects.

The spirit of Sagiv’s approach seems to
be closest to our’s: he tries to avoid
null values and is looking for
conditions that allow to efficiently
compute orojections of the fictitious
universal relation without knowing it
exclictly. However, his fictitious
universal relation, the so-called
“reoresentative instance”, is d’ fferent A^
from our’s.

Finally we note that our complete join
is in the spirit of the ooeration
“maxtravw (maximal traversal) of Lien
IL/.

After preparing the first version of
this paoer we learnt f?om furttier work
on uni.versal relation views /CK, B,
Second edition of U?, NV, DYS/.

Carlson and Kaplan /CK/ present an early
study on query languages based on
attributes. They oropose a method to
select an appropriate “access path” on
the basis of the database system’s
information about functional
dependencies and interrelational
const3icts.

Babb /B/ describes how to construct a
single v joined normal form” relation
that is intended to model a database

8

application and that can be stored in
one Content Addressable File Store.
Furthermore a suitable data manipulation
language has been developed. Although
Babb’s work is directed to employ the
power of the Content Addressable File
Store whereas we intend to use a
conventional relational database system,
it turns out there are some similarities
between these approaches.

In the second edition of his book /Ul/
Ullman presents an actual and
comprehensive treatment of the System/U.

Maier, Ullman, and Vardi /MUV/ study the
relationship between the approach taken
for the System/U and by Maier/Warren and
the “representative instance” approach
of Sagiv.

Finally D’Atri, Moscarini, and Spyratos
/DMS/ define a notion of unambiguous
context -a context corresponds to a join
path- and relate this notion to the
relationship uniqueness assumption and
to $ -acyclicity.

9. Conclusion

On the basis of realistic prerequisites
and a determination of te intended user
profile we carefully developped our
fundamental decisions for a universal
relation view: consistent understanding
for all users; complete join as defining
operator for the fictitious universal
relation; unambiguous database schemas.
The data manipulation language is
outlined.

We are currently involved in
implementing a prototype version of our
approach.

Acknowledgments:

We thank the members of the
?rojektgruppe DURST (twelve students of
comouter science at University of
9ortmund joining the project entitled
DURST, “Eatenbank mit Iniversalyelation-
Schnittstelle”) for many discussions and
contribu?ions that helped to clarify the
concepts presented in this paper:
M. Srocke, R. Burhop, B. Convent,
D. gliinghaus, ;. Kalinski, M. Kramer,
R. Lieboid, H. Yichaelis, U. Rlsch,
S. Richter, L. Schnetgoke,
9. Sfiefeling.

Furthermore we are grateful to the
referees for constructive comments on
the first version of this paper and to
colleagues in Rome, Pisa, and Paderborn
for helpful discussions.

References:

/AP/

/B/

/BB/

/CK/

/D/

/DMS/

/DB/

/F/

/FMU/

/K/

Atzeni, P., Parker, D.S.,
Assumptions in relational
database theory,
Proc. 1st ACM SIGACT-SIGMOD
Svw . on Principles of Database
Systems, 1982, pp. 1-9
Babb, E.,
Joined Normal Form: A Storage
Encoding for Relational
Databases, ACM Transactions on
Database Systems, Vo1.7, No.4,
Dec. 1982, pp. 588-614
Biskup, J., Briiggemann, H.H.,
Eine Datenbanksprache ftir eine
Universalrelation-Sicht,
unpublished manuscript, 1983
Carlson, C.R., Kaplan, R.S.,
A Generalized Access Path Model
and its Application to a
Relational Data Base System,
Proc. ACM SIGMOD Int. Conference
on M;;;g;;;nt of Data, 1976,

i",;e C.J
An &,rod&ion to Database
Systems, Addison-Wesley,
Reading, 3rd edition, 1981
D'Atri, A., Moscarini, M.,
Spyratos, N.,
Answering Queries in Relational
Databases, Proc. ACM SIGMOD
Database Week, May 1983
Dayal, U., Bernstein, P.A.,
On the updatability of
relational views,
Proc. 4th Intern. Conf. on
Very Large Data Bases, 1978,
pp. 368-377
Fagin, R.,
Degrees of acyclicity for
hypergraphs and relational
database schemes,
to appear J. ACM
Fagin, R., Mendelzon, A.O.,
Ullman, J.D.,
A simplified universal relation
assumption and its properties,
ACM Trans. on Database Systems,
Vo1.7, No.3, Sept. 1982,
;",,,~43,3$"

Syste&UI-i'progress report
XP2 Workshop on Relational
y;gtybase Theory, State College,

/KU/

/L/

/MRSSW/

/MU/

/MUV/

/Mw/

/MS/

/O/

/Sa/

/Si/

/Ul/

Korth, H.F., Ullman, J.D.,
Svstem/U: a database system
based on the universal-relation
assumption, XPl Workshop on
Relational Database Theory,
Stony Brook, 1980
Lien, Y.E.,
On the equivalence of database
models, Journal ACM, Vo1.29,
No.2, 198.2, pp.333-362
Maier, D., Rozenshtein, D.,
Salveter, S., Stein, J.,
Warren, D.S.,
Towards logical data indepen
dence: a relational query
language without relations,
Proc. ACM SIGMOD Int. Conference
on Management of Data, 1982,
&,;'-g" Ullman, J.D.,
Maxim;1 i;jects and the
semantics of universal relation
databases, ACM Trans. on
Database Systems, Vo1.8, No.1,
;;;E; 1~83, pp. 1-14

Ullman, J.D.,
Vardi: Ml+.,
The Equivalence of Universal
Relation Definitions,
STAN-CS-82-940, Dept. of
Computer Science, Stanford, 1982
Maier, D., Warren, D.S.,
Specifing connections for a
universal relation scheme
database, Proc. ACM SIGMOD Int.
Conference on Management of
Data, 1982, pp. 1-7
McCure Kuck, S., Sagiv, Y.,
A universal relation database
system implemented via the
network mo,.‘el, Proc. 1st ACM
SIGACT-SIGMOD Symposium on
Principles of Database Systems,
1982, pp.147-157
Osborn, S.L.,
Towards a universal relation
interface, Proc. 5th Intern.
Conference on Very Large Data
Bases, 1979, pp. 52-60
Sagiv, Y.,
Can we use the universal
instance assumption without
using nulls?, Proc. ACM SIGMOD
Int. Conference on Management of
Data, 1981, pp. 108-120
Siklossy, L.,
Updating views: a constructive
anproach, Preprints Workshop
Logical Bases for Data Bases,
Toulouse, 1982
Ullman, J.D.,
Principles of Database Systems,
Computer Science Press, Potomac,
1980; 2nd revised edition 1983

182

/u2/ Ullman, J.D.,
The U.R. strikes back,
Proc. 1st ACM SIGACT-SIGMOD
Sump . on Principles of Database
Systems, 1982, pp. lo-22

Appendix

Proof of Theorem 1:

(a) 3 (b) :
XCYCU

3 vx(ry(U)) c TX(u) (by definition of
total projection)

3 u~l: u "y(tidfl C u a,(tid)
Wp(Y) E Ecjp(X) E

(by a>

(b) 3 (a) :
Define u:= u u aC['1T,(W d)]

X=U E~jp(x) E

(1) u TX(W d)crX(u) for all XcU
Wp(X) E (by definition of u)

(2) Q(u) = TXcy$ Eey(yyuY(04 dll]
E

(by definition of u)

=aX[u u =[!?.(;dfl
XCYcU Ecjp(Y)

(forrX is the total projection)
= u TXI u WoQd)]

XCYCU Eejp(Y) E
(?c superfluous)

cu u a,< 04 d)
XIYCU Erjp(X) E

(by b)
= U rr,(04 d)

Wp(X) E

Proof of Theorem 2:

Let URV(d) :=

Cu'l vxcu : Ux(u') = u Ux(b4 d))
Eajp(X) E

We prove that U~U' for all u'CURV(d),
i.e.
u'aURV(d) =+ (1) vt2&]t,C u :

$Qtl, and
(2) ucu'.

Since u,ukURV(d), we have for all Xc0 :
ox = ox (*I

(1) Let +u', X:= {AI t2CAJfI].
=9 t2tX‘JC~~h')

(by definition of total projection)
rs 3t,au : t,[x) = tgx]

(by (*))

* 3t1eu : t24t1
(by definition of X)

(2) Assume 3t1 a u\u'
Let X := (A I t,CAJ zU].
=$ vtptu : qxj f
3 lTx(u) f a,(u’)
This is a contradiction

t2cx3

to (*>.

Proof of Corollary 3:

Let XCY.
"$l: u %(DW]

Eejp(Y) E

= u Irx(r,(bd d))
Ee.l~(Yl E

=U rx(W d)
Eejp(Y) E

cu aX(ti d) (by supposition and
Fcjp(X) F FcE =$

~#tU d)c$(od d))
E F

Then apply Theorem 1 and 2.

183

Proof of Theorem 4:

(a) + (b) :
(i) "C":

VECJP : Wldc rTE(urv(d))
E (by property 3)

j VEGJP : _
[XcUE + VXCti d)crX(rUR(urv(d))g

E

crX(urv(d))
3 U Tx(w d)crX(urv(d))

EcJP E
ItcUE

” 3 ” :
rx(urv(d)) = u Kx(W d)

Ecjp(X) E
(by property 1)

cu ~xbcl d)
EcJP E
XCUE

(by definition of jp)

Hence we have
'ITX(urv(d)) = u ux(o4 d)

ECJP E
XcUE

and so (i) holds.

(ii) urv(d) =
maxtuple[u U rr(aX(w d))] =

Xcku EQJP E
XcUE

(by Thm. 2 and (i) above)

maxtuple [U &L(owl d)] =
EEJP E

(by the definition of the complete join)

qbd

(b) + (a) :
property 1:

l-x(@d) =
RX(maxtuple[u W(W d)]) =

E=JP E

(by definition of QD)

rx(u u(w d)) =
EeJP E
XcUE

(for TX is the total projection)

u r,(M d) =
EGTP E
XczUE

u ~xbdd)
EljP(X) E (by (b)(i))

P=wm 22:
@d=
maxtuplet U ~C(W d)) =

EeJP E

maxtuple(u U x(~X<W d))) =
XcU EGJP E

XcIE
maxtuplet u U *("xW d)))

XCU Eejp(X) E
(by (b)(i))

Then property 2 follows from Corollary 3

mmerty 3:
-rr,,(dp d)3 ob d

E (by definition of QD)

' Proof of Theorem 5:

(a) =3 (b):

TcRi(y d) c u,i(ad)
=~d (by (a) with E=iRi\dJP)

Oi')

184

(b) =$ (a):
"C n : by property 3
fl5>": Let ELJP.

a,,(add) = u rUE(Md)
FaJP F
TJEcUF (by Theorem 4)

Let taBUE(QD d)
j 3FG.P : t,E rUE(w d) and UEGUF.

Then F

R~"E 3 RicUEcUF
+ TR (bQ d)Cri (by (b))

iF

=3 {ttRi'J) = BR (it]>
i

CT, (beI d)cri
i F

hence t=t[UEkti d
E

Proof of Theorem 6:

(1) Let EEJP.
RicUE 3 RieE (by property 5)

e TR (w d)cri
iE

(by definition of join)

=+ ba d = u,,(aD d) (by Theorem 5)
E

(2) We shall prove the contraposition:
Let w.1.o.g. EGJP, RlfD with
R~cUE and R,$E.
Let rl := 0 and r-1 := {tCR$) for

for some tuple t on U.
?Z'd'.ln(r,,...,r)
We require that then intrarelational
constraints admit that the ri are
valid relations for Ri. Then d is a
valid database for schema D.
But we have
W d = {tLUEJ$ (by construction of d
E and RICE),

T,, (tf d) = ftfR,'1$ (by t is
nullfree and RjcUE),

and W d = rl = 0
013 (by construction of d)

So property 4 does not hold for d.

Proof of Theorem 7:

(a) 3 (b): Let D\{Ri\ be connected.
Assume indirectly RicU(D\{Ri))
=b RieD\{Ri3 (by (a) with

E=D\ {Ri\ CJP)
This is a contradiction.

(b) + (a): Let RicUE.
EM@J 1: D\{Ri> is connected:

=+ SAE R+U(D\ {RI3 1 (by (b))
S R+E (else AqUE and R,eUE>

WC 2: D\fRi) is not connected:
Since D is connected, Ri connects
all the maximal components Cj of
D+& ('1
Assume indirectly RieE.
3 EcD+i) (since Ri4E)
3 3Cj : ECCj (since E connected

and Cj max. components)

=+ 3kfJ : 3A: AaRi"UCk (by (*))
=+ ZArRi : A(UCjaUE

(since cj,cI< not connected, EcCj)
=+ Ri+UE.
This is a contradiction.

185

