
AIM - AN INTEGRITY MONITOR FOR THE DATABASE SYSTEM INGRES 

A. B. Cremers and G. Domann 

lnformatik VI, UniversitSt Dortmund, FRG 

Abstract: Entirely programmed in EDUEL. AIM consists 

of a batch component for periodic integrity control 

and an interactive component which provides an instantane- 

OUS semantic control mechanism at the user interface. 

For certain simple updates AIM implements a prevention 

strategy, whereas, in particular 

detection and recovery strategy is 

and dynamic integrity constraints 

the basis of DUEL qualifications. 

are stored in a separate integrity 

consists of ordinary UNIX files. 

the embedded approach by Stonebraker 

tary. 

for transactions, a 

observed. Both static 

may be specified on 

Integrity constraints 

constraint base uhich 

The AIM concept and 

are largely complemen- 

I. Introduction 

The design goal for AIM is to extend the INGRES 

USCP interface with a nontrivial semantic control mecha- 

nism. Integrity constraints are partitioned into two 

categories: conditions that are to be checked periodically 

and others that are to be examined with every relevant 

uadate request. Each category is stored in a separate 

UNIX file which serves as an integrity base for an AIM 

batch resp. interactive component. 

In terms of the integrity subsystem model by Hammer 

and McLeod [4 1 I AIM may be briefly characterized as 

follows: 

Descriptive language: We have developed a simple syntax 

for integrity constraints. The qualification part of 

a constraint is to be specified in terms of the database 

language DUEL of INGRES. Besides a DUEL predicate, every 

integrity constraint contains a definition of the objects 

concerned as well as the information required for identi- 

fying and categorizing the constraint. 

Translation: AIM incorporates a parser for this syntax; 

the translation of DUEL predicates is done by INGRES. 

Integrity constraint checker: This component is implemented 

by a set of procedures which identify the relevant data 

objects for each constraint to be checked. The violation 

of a given integrity constraint is detected by way of 

submitting a query whose qualification is the negation 

of the DUEL predicate stated in the constraint. The 

component distinguishes betueen periodic and instanteneous 

control. 

Action coaponent: The actions of this component are 

triggered by the integrity constraint checker. In many 

cases the output of the constraint along with the violating 

tuples will be required. In addition, the interactive 

subsystem is capable of resetting violating updates. 

(The present version of AIM, however, does not yet provide 

a facility for automatically resetting coapound update 

requests, i.e. transactions.) 

Validity checker: A subsequent version of AIM will incorpo- 

rate a set of routines for checking the data-independent 

validity of the integrity constraints defined. 

AIM has been successfully implemented by G. Domann 

on a DEC PDP 11/60 computer system running under the 

UNIX operating system. The present paper describes the 

design and implementation of AIM, operational September 

1982 under UNIX, Version 6. and INGRES [7], Version 

6.1/10. 

2. Scope and format of integrity constraints 

The normal mode of integrity control is postoperative, 
that is, all relevant constraints are validated after 

the effect of an update request (APPEND, DELETE, REPLACE) 

has been computed. For efficient retrieval of relevant 

constraints, every integrity constraint is uniquely 

named and contains identification of all data objects 

(relations) to which it refers. Old tuples and values, 

as uell as newly inserted data together uith their keys 

ought to be saved in an appropriate way so as to enable 

the system to recover upon violation of a constraint. 

Unless specified otherwise, the decision as to which 

constraints have to be validated is based on the data 

objects alone, and not on the kind of update operation 

to be performed. Typical instances are conditions based 

on the mean value of a given numeric domain, or foreign 

key conditions. 

Consider the (quite standard) example of a database 

consisting of the follouing relations. Primary key in 

each relation is the attribute "number:" 

citytnuaber, name, distance) 

dept(nuMber, name, floor, room, manager) 

employee(nuMbcr, name, salary, manager, startdate) 

item(nuwber, name, dept, price, qoh, supplier) 

pers data(number, city, fan status, children, birth- - 
date, taxclass) - 

supplier(number, name, city) 

AIM requires a nonempty list of tuple variable declara- 
tions, e.g.: 

167 



“For no sales item the quantity-on-hand exceeds 100 

unless the supplier of that item is located more than 

2,500 miles away:” 

I536 item : i , supplier : s, city : c ; 
i.qoh < 100 or i.supplier !- s.number or 

s.city !- c.number or c.dirtance > 2500 

The use of aggregate functions in constraints is 
illustrated by the follouing example: 

"The average salary of employees with the same manager 
must be less than 30000 $" 

1392 employee : e: avg(e.salary by e.manager) 3 30000. 

There may be more than one tuple variable declared 

for a given relation, e.g. in: “All departments have 

different names:" 

1465 dept : dl, dept : d2; dl.name != d2.name or 

dl.number = d2.number 

To show a foreign key condition, let the constraint 
be that every city value in the supplier relation agree 
with a number entry in the city relation: 

1608 supplier : s, city : c; count(s.city) = 
count(s.city where s.city = c.number). 

OH-Conditions 
Conditions that refer to single values or to dependen- 

cies within a tuple (validity constraints) may be con- 

trolled before a given update request takes place: tuples 

other than the ones to be changed are not affected. 

AIM allows for an important class of preoperative con- 

straints by providing a facility to specify the kind 

of update for which such a constraint is to be validated. 
The AIM syntactical element for this facility is termed 

W-condition. Since ON-conditions are being introduced 

for the sake of economy, and their validation requires 

temporary relations, it seems reasonable to restrict 
them to validity constraints. 

A constraint "ON DELETE," of course, refers to the 

tuples before e?ecution of the update request: Just 

for the tuples that qualify, the deletion vi11 take 

effect. For instance, consider the constraint that only 

those sales items may be deleted whose quantity-on-hand 

is zero: 

11050 item : i; i.qoh = 0. 

The ON-condition is specified immediately after 

the constraint name. To show a constraint "ON APPEND" 

consider the case that a new employee joins the enterprise: 

1134A employee : e; e.startdate = 1983. 

In the case of APPEND, the qualification refers 

to the tuples to be inserted. Similarly, for REPLACE, 

the qualification pertains to the new values: the update 

request is to be rejected unless the new values satisfy 

the constraint. 

All constraints are immediate in the sense that 

they are supposed to hold after every elementary update 

(A, 0, R). AIM, however, also accomodates transactions, 

and for transactions all constraints, except for those 

with ON-conditions, change into delayed assertions. 
Relevant delayed assertions are checked upon the end 

of a transaction. 

For integrity violations AIM implements the following 

maintenance strategy: Either the update request does 

not take effect (ON-conditions, even inside transactions) 
or all changes implied by the violating request are 
undone. In the second case, no further change is allowed 
on the objects affected until the undo is complete. 

Clearly, the primary keys of these objects must be uniquely 

identifiable. For this purpose. AIM provides the option 

of an automatic check of the primary key condition. 

We stress that the present version of AIM does not provide 

for triggered undo in the case of a transaction: Delayed 

assertions are "soft" assertions. Stronger measures 

depend on whether an ON-condition has been specified 
(immediate assertion) and, in the case of elementary 

updates, on whether the automatic primary key checking 

option has been switched on. 

3. Comparison with an embedded approach 

In the embedded approach by Stonebraker [a], defined 

integrity constraints are stored in a catalogue, in 
proximity to the description of the data objects to 

which they refer. Constraints are implemented by means 

of query modification: 

Example: Consider the constraint 

RANGE OF e IS employee 

INTEGRITY CONSTRAINT IS 

e.salary > 1200@ 

The INGRES update request 

RANGE OF e IS employee 

REPLACE e (salary = e.salary - 1500) 
where e.name = "Jones" 

is transformed into 

RANGE OF e IS employee 

REPLACE e (salary = e.salary - 1500) 
where e.name = "Jones11 

AND e.salary - 1500 > 12000. 

The automatic integration of the constraint in the 

request guarantees the prevention of certain integrity 
violations. In order to obtain all tuples that satisfy 

the original qualification but whose alteration would 

violate the constraint, a second query would have to 

be dispatched which outputs those tuples in an error 

relation: 

RETRIEVE INTO Rerror (e.all) 

where e.name = "Jones" 

AND NOT (e.salary - 1500 > 12000) 

The fact that integrity control is based on the 

ICY values may, however, entail serious problems, e.g. 

in connection with incomplete updates, duplicate-respecting 

aggregates, deletion, state transition and interrelational 

constraints; periodic and delayed modes of integrity 

control are ruled out [3]. 

In comparison, AIM largely mitigates those problems 

while preserving some of the advantages of a subsystem 

designed by the embedded approach. 

(1) Integrity control in AIM. with the exception of 

constraints ON DELETE, is not based on query modifica- 

tion. The search for tuples violating a constraint 

is specified in terms of a RETRIEVE query whose 

168 



qualification is the inverted predicate. Since this 

task is entirely delegated to INGRES. conplex con- 
straints are handled, from the subsystem point of 

view, as easily as simple ones. 

(2) An update causing a violation is either aborted 
(violation of an ON-condition) or its effect undone. 

For the only form of a modified qualification (con- 

straints ON DELETE) AIU provides the option for 

the user to either proceed with the modified qualifica- 

tion or to abort in order to avoid an undesirable 

partial deletion. 

(3) Due to the separation of request execution and integri- 

ty control there is no difficulty with aggregate 

functions. Due to the implementation of the primary 

key checking option AIM restricts insertions to 

a single tuple per APPEND. Houever, a single REPLACE 

w change several tuples as long as primary keys 
are not affected. 

(A) The AIM feature ON DELETE closes a serious gap of 

the integrated approach. This is probably the most 

important case of a preoperative constraint. 

(5) All constraints for which no ON-condition has been 

specified are validated after execution of the request. 

Therefore, AIM is capable of detecting the violation 

of e.g. foreign key conditions due to deletions. 

Transactions can be handled by Means of delaying 
the point of control. Periodic control also becomes 

oossible, an important point in view of complex 
constraints. 

(6) The present version of AIR does not accomodate state 

transition constraints but this feature is not hard 

to incorvorate. 

(7) Constraints may be arbitrarily complex, in principle. 

Their validation may encompass sets of tuples from 

several relations. Implementation-dependent restric- 

tions on lengths, number of items etc. are rather 

liberal and accomodate most practical examples. 

We conclude the discussion by an evaluation of the 

AIM design in the light of advantages conceivable for 

the ingrated approach. 

Simple constraints: Query modification is presumably 

mope efficient for very simple conditions, whereas for 

more demanding constraints the AIM mechanism is clearly 

opeferable. 

Storage: The decision to implement the integrity base 

by means of UNIX files entails ease of change. Different 

integrity bases for several user views may be supported. 

Adequacy of effort: With ON-conditions just the tuples 

to be changed have to be checked. Compared to Stonebraker's 

oroposal. there is greater flexibility in that con- 

straints may be specified e.g. ON APPEND but not ON 

REPLACE. On the other hand it seems desirable to adopt 

Stonebraker's more flexible unit of control for a more 

advanced version of AIN. 

Subsystem security: A separate integrity base, of course, 

requires separate security measures. For the present 

version of AIM we have not taken any steps to increase 

subsystem security beyond the standard protection provided 

by the system. 

Extendability: Conceptual separation favors change. 

It is not only easy to extend the integrity base, the 
modular design of the AIM software also supports quick 

changes in control strategy. For this purpose it is 

decisive that the monitor be independent of the extant 

INGRES processes. As a further consequence, AIM is easily 

adaptable to different versions of the database system. 

Finally, AIM could perfectly well coexist with an embedded 

integrity control based on query modification. 

4. Structure of the integrity monitor 

As mentioned in the Introduction, AIM consists of 

a batch component and an interactive component. The 

latter builds on the first, and requires aore discussion. 

4.1. Batch component 

The purpose of this program is to detect violations 

of integrity constraints and, in that case, to identify 

the inconsistent parts of the database. The constraints 

to be checked by the batch component are stored in a 

separate file. Typically these are either low priority 

or more demanding constraints which are to be checked 

in greater intervals. If the batch program is to be 

-xecuted not only by user activation but also automatically 

in periodic intervals, a simple UNIX command procedure 

takes care of this. AIM provides the option for the 

user to execute the batch component in dialogue mode. 

In this mode the user may uatch the output on the screen 

and, for every constraint in the file, has the choice 

of either requesting the constraint to be checked or 

skipping it (or suitching the monitor off). In view 
of highly complex constraints this option seems to be 

very useful. If the mode of activation is batch then 

all constraints in the file are checked and results 
uritten in an output file. In this mode it is possible 

for UNIX to process the component in the background 

while the user may execute other actions in the foreground. 

4.2. Interactive component 
The interactive component uses a protocol file in 

uhich to log all database requests, the changes performed, 

the integrity constraints selected, all detected viola- 

tions, and the recovery measures taken. If necessary, 
the protocol file together with the last system checkpoint 

allows the reconstruction of a consistent database. 

However, in all cases, except for transactions, AIM 
will be capable of maintaining a consistent database 

0" its own power. We mention that, in analogy to the 

key check, the protocol option may be switched off by 
the user. (Yet, normally we would excpect the option 

to be in effect.) 

Our description follows the menue technique offered 

by the interactive component. After giving the names 

of the database and integrity base to be accessed, the 

user may choose between the following modes of operation: 

read / urite / transaction / quit. 

The transaction mode is independent of read and 

write modes: As part of a transaction arbitrarily many 

read and write requests (i.e. read/write mode alternations) 

are possible. The selection of the next INGRES command 
and the transmission of the parameters is the same inside 

and outside of transactions. The user remains in the 

mode selected until he requests a change of mode instead 

of the execution of a further INGRES command. A transaction 

169 



request is finished by changing the mode. 

In read mode the commands HELP, PRINT. and RETRIEVE 

are possible. The parameters for the former two (i.e. 
relation names) are obtained in dialogue with the user. 

upon HELP, AIM outputs the dictionary information stored 

for the relation specified (name, owner. type, storage 

structure, size etc.). Upon PRINT. the current instance 

of the relation is displayed. Inputs for RETRIEVE are 

given in the same way as required by the ordinary INGRES 

dialogue monitor. In this way the full banduidth of 

the RETRIEVE command is made available uithout excessive 

dialogue overhead: There is no buffering of single parame- 

ters and the transmission of the complete command to 

INGRES is simplified. The original string is transmitted 

through a UNIX pipe. 

In urite mode ("modify"), this efficient way of 

transmission has not been possible due to the fact that 

the use of temporary relations for the validation of 

preoperative constraints (ON-condition) necessitates 

several consecutive changes of relation names and tuple 

variables. Therefore, the transmission of the INGRES 

commands for a write request is programmed in EQUEL , where 

the necessary changes can be accomodated by program 

variables. The INGRES commands enabled in write mode 

are APPEND, DELETE, and REPLACE. Every command has its 

oun control procedure in AIM. When a constraint has 

been determined to be relevant it is validated, by means 

of a triggered RETRIEVE uith the predicate inverted, 

against either the changed database or (ON APPEND resp. 

REPLACE) a temporary relation of new tuples. 

In transaction mode, there are the following differen- 

ces with respect to the processing of update commands: 

As soon as an update has taken effect in the database, 

it is considered to be complete. That is. for APPEND 

and REPLACE only the ON-conditions are checked, for 

DELETE query modification is employed. Instead of the 

immediate subsequent control of postoperative constraints, 

the names of the relations modified are stored in a 

list. Only after the end of transactions, the relevant 

postoperative constraints are checked. The present version 

of AIN does not support automatic recovery from violations 

of postoperative constraints caused by a transaction. 

Clearly, keeping a copy of all relations affected is 

too much inefficient. For the time being, AIM in this 

case relies on the support provided by the log subsystem. 

We note that the load modules of AIM require some 

17 KBytes and 35 KBytes for the batch and interactive 

components, resp. 

References 

1. Esuaran , K.P.; Chamberlin, 0.0.: Functional Specifica- 

tion of a Subsystem for Data Ease Integrity, Proc. 

VLOB, Framingham. 1975, 48-68. 

2. Gardarin, G.; Melkanoff, N.: Proving Consistency 

of Database Transactions. Proc. VLDB. Rio de Janeiro, 

1979, 2gl-zg6. 

3. HXrder , Theo: Impleaentierung von Datenbanksystemen, 

Carl Hanser Verlag, MUnchen, Nien, 1976. 

4. Hammer , M.M.; MC Leod, O.J.: Semantic Integrity 

in a Relational Data Base System, Proc. VLOB, Framing- 

ham. 1975. 25-47. 

5. Hong, Y.C.; Stanley, Y.W.: Associative Hardware 

and Software Techniques for Integrity Control, ACM 

TOOS 6, 1961, 416-440. 

6. Relo. Rubens, 1.: Monitoring Integrity Constraints 

in a COOASYL - like DBMS, Proc. VLOB, Rio de Janeiro, 

1979, 209-218. 

7. Stonebraker, Michael; Wow, Eugene; Kreps, Peter; 

Held, Gerald: The Design and Implementation of INGRES. 

ACM TOOS, 1976. 169-222. 

8. Stonebraker, Michael: Implementation of Integrity 

Constraints and Views by Query Modification, ACM 

SI6ltO0, San Jo&, 1975, 65-78. 

170 


