
AN IMPLEMENTATION OF HYPOTHJBXXL RELATIONS

John Woodflll and Michael Stonebraker

DEPARTMENTTCF ELECTRICAL ENGINEERING A@ COMPUTER SCIENCE
UNIVERSITY OF CALIFORNIA BERKELEY. CA.

ABSTRACT

In this paper we present a new approach to
implementing hypothetical relations. Our design bor-
rows idea3 from techniques used in processing views
and differential Bles and offers several advantages
over other schemes. A working implementation is
described and performance statistics are presented.

1. JNTRODUCIION

Pyoothetical relation3 [STONBO, sr0~61,
AGRAK?) have been suggested as a mechanism to
allow users to generate alternate versions of real
relations. Each version can be updated as if it were a
real relation: however, only differences between the
hyoothetical relation (HR) and the real relation on
w&ch it is defined are ‘actually stored. Previous
papers have concentrated on data structures for
representing these differences and algorithms for
processing data manipulation commands addressed
to VR’S.

HR’s correspond closely to the notion of versions
:BONA77] used IV systems which manage iterations of
computer programs. On the other hand, HR’s differ
*undamentally from view3 in that updates to HR’s
should not cause changes to the relation on which
they are defined. An uodate to a view is reflected
through to the base re!acon(s) underneath it.

Consider for example, a university Anancial
officer who is in charge of research assistant’s
salaries. Suppose she is trying to balance her budget
and wanls to know whether her accounts would bal-
ance under the hypothetical scenario that salaries of
senior employees were cut by 20%. She could make a
new copy of her database, actually perform the
appropriate updates, and then survey the results.
This procedure would be slow and require consider-
able disk space. Alternatively she could define an PR
on the employee relation, perform her updates on the
HR and then survey the results.

Another use of database HR’s might be in debug-
ging a database application program. The program-
mer might not want to test his program on “!ive” data

This research was supported by the Advanced
nesearch Project Agency under contract #NOO039-C-
0235.

because a logical error could corrupt the database.
He could define an HR on the live data and test the
program on this HR

The implementation suggested in [STONBO]
involves a single differential file [SEvR76]. A more
elegant solution [STONBl] suggests supporting HR’s
by using the view mechanism [STON75] already
present in many relational systems. A hypothetical
relation, W, for a real relation R would be deflned as a
view of the form W = (R UNION S) DIFFERENCE T. To
support this implementation of HR’s, one need only
extend a relational DBMS and its associated view
mechanism with the UNION and DIFFERENCE opera-
tors. A possible advantage of this implementation is
that R can be a read-o& relation while S and T are
append-only. This leads to the possibility of imple-
mentation on an optical disk.

Unfortunately, there are problems with deflnii
HR’s as views. We first examine these problems and
show general solutions in Section 2. Then in Section 3
we combine these solutions into a new mechanism for
supporting HR’s. Our implementation of this solution
is described in Section 4. Finally, we present perfor-
mance statistics from our running prototype in Sec-
tion 5.

2. PROI3IXMS AND SOLUTIONS

Proposals for implementing hypothetical rela-
tions as views contain various flaws which must be
removed before a realistic implementation can be
attempted.

2.1. The Reinsertion Problem

[STONM] points out that the implementation of
hypothetical relations as W = (R UNION S) DIFFER-
ENCE T is flawed in the case where one wants to re-
append a tuple which ha3 been deleted, as shown by
the example in Fiiure 1. Initiallv there is a tuple in
relation R corresp&di.ng to Eric. Following the algo-
rithm in [STCNAlj. the tuple can be deleted by insert-
ing it into relation T. Lastly a user re-appends Eric
and an appropriate tuple is inserted into S. Unfor-
tunately, the resulting hypothetical relation, W does
not contain the Fe-appended tuple since (R UNION S)
is the same as R, and R D!PFERENCE T is empty.

(tizqzq*mj
I eric I 10000 j eric

Figure 1.

157

22. A Solution Using ‘lImestamp
This problem can be solved by adding a times-

tamp field to the relations S and T. and modifying the
semantics of the DIFFERENCE operator. Tuples in R
do not require a timestamp field and can be thought
of as having a timestamp of zero. [AGRA62] also pro-
poses a timestamp solution to this problem.

The timestamp fleld is set to the current time
(from a system clock, or any other monotonicaly
increasing source of timestamps) whenever a tuple is
appended to S or T. For any relations A and B with
timestamps as described, A DIFFERENCE B is deflned
as all tuples a in A for which there is no tuple b in B
such that

(1) DATA(a) = DATA(b)

and

(2) TIMESTAMP < TIMESTAMP

The definition of R UNION S is unchanged, except that
a timestamp field must be added to the result, which
contains either the timestamp of a tuple in S, or a
zero tiiestamp for a tuple in R. If tuples with identi-
cal DATA appear in both R and S, the newer times-
tamp (from S) is chosen for the result tuple.

In the above example, the timestamp of Eric’s
tuple in T would be newer than that of Eric’s tuple in
R (zero), but would be older than the timestamp of
Eric’s tuple in S: hence, (R UNION S) DIFFERENCE T
would be equivalent to S. and W would contain the re-
appended tuple.

[KATZ621 suggests solving the problem of re-
appended tuples by adding a unique identifier
(termed a Surrogate) to each tuple. Thus if a tuple is
deleted from an HR, the appended tuple in T has the
same Surrogate as the tuple to be deleted. If a tuple
with the same DATA is subsequently appended, it will
have a new Surrogate, and hence be distinct. Neither

%I?%ussed next.
nor [KA’IZ82] deals with the multi-level HR’s

2.3. The Multiple-level Problem
The addition of timestamps solves the re-

insertion problem. However, this solution does not
work for multi-level HR’s. Multi-level HR’s would be
useful in many applications where several people are
updating different aspects of a design stored in the
DBMS. One designer might want to safely test his own
embellishments to another’s proposed modifications.
Consider the case of a second level hypothetical rela-
tion, w’ = (W UNION S’) DIFFERENCE T’. as shown in
Figure 2. Suppose Eric has been given a 20 percent
raise in w’ at timestamp 10 which caused the indi-
cated entries in S’ and T’. Since no updates have
occurred in W, S and T are empty. Now suppose a

s ,,T
name I salary I timeslamp I I name I salary I timestamp 1

I I I 1 I I I I I I 1 I

s’ ..r .
name I salary j timestamp I I name I salary I timestamp
eric I 12000 I 10 I I eric I 10000 I 10

Figure 2. Eric’s 20% raise in W.

user gives Eric a 50 percent raise in W at timestamp
20, which results in the entries for S and T shown in
Figure 3. According to the algorithm above, w’ would
contain two tuples for Eric, one with salary 15.000,
and one with salary 12,000. The problem is that the
tuple in T’ no longer functions to exclude Eric from W
UNION S’ and hence an unwanted Eric tuple is
present.

s ,.T
nllme 1 salary I tiestAmp 1 1 name 1 salary I timestamp
eric I 15000 I 20 I I eric I 1WOO I 20

s *.T
name 1 salary j timestamp I [name I adary I timestamp ’
eric I 12000 I 10 I I eric I 10000 j 10

Fipre 3, Eric’s 50% raise in w.

There are at ‘lea& two choices for the proper
semantics for w’ under this update pattern:

1) Eric’s salary is set to the latest value, in
this case the 15,000 frpm W.

2) Eric’s salary is set to 12,000, correspond-
ing to the original update of w’.

We make the latter choice, and specify the following
semantics:

Once a tuple has been changed at level N,
changes to this tuple at levels < N cannot
afYect tuples at levels >= N.

As a result further modifications to the HR algorithms
are required.

2.4. A Solution With Identillers
These semantics can be guaranteed by the addi-

tion of a tuple identifier, and modification of the
DIFFERENCE operator. A tuple identifler. TNAME,
must be added to each tuple in R. Any inserts to S or
T, which are used to replace or delete a tuple in W,
must be marked with the identifler for the original
tuple in R or S which they replace or delete. Each
tuple inserted into W (and thereby added to S) must
be given a new identifler. For any relations A and B
with timestamps and TNAMES as described, A DIFFER-
ENCE B is defined to be all tuples a in A for which
there is no tuple b in B such that

(l)zdAME(a) = TNAME(b)

(2) TIMESTAMP < TIMESTAMP

To guarantee that our chosen update semantics
hold, tuples in A DIFFERENCE B must be given times-
tamps of zero. Hence, at a second level, each tuple in
s’ and T’ will have a newer timestamp than its
corresponding tuple in W.

In our example the identifier of all of the five
Eric tuples from Figure 3 will be identical. Since the
timestamp of the tuple in W is treated as being older
than that of the tuple in T’, only Eric’s tuple from S’
will be contained in W’.

Timestamps alone have been shown to be
insufficient for solving the problems of multi-level
HR’s. Identifiers alone are also insufflcient, since in
multi-level HR’s. identifiers must remain constant in
REPLACES and hence multiple tuples with the same
identifier must be distinguishable (timestamps can
distinguish the multiple tuples).

158

Given these modiications to the composition of
S, T and the meaning of DIFFERENCE, an HR of the
form W = (R UNION S) DIFFERENCE T no longer has its
original conceptual simplicity. Moreover, support for
HR’s becomes considerably more complex than sim-
ply implementing UNION and DIFFERENCE as valid
P erators in a relational system. Consequently, we
E ve designed a mechanism based on dlfTerentia1 file
techniques. The goal is to provide a singlepass algo-.
rithm with proper semantics that will support arbi-
trury cascu&ng of HR’s. The next two sections
describe our data structure and algorithm in detail.

3.1. The Differential Relation
Each hypothetical relation W, built on top of a

real or hypothetical relation B, has S and T merged
into an associated differential file D, which contains
all columns from B plus plus five additional fields.
For example, the differential relation D for the base
relation R from Section 2 is shown in Figure 4. Name
and salq are the attributes from R The Aelds min-

name cl2
salary i4
rnindate i4
maxdate i4
level il
tupnum i4
type il

Rgure 4. attributes of the differential relation

date and mazddte are both timestamps. Mndute is
the timestamp as defined in Section 2, while ma&ate
is another timestamp to be explained in Section 4.2.
The fields level and tupnum are used to identify the
tuple which this tuple replaces or causes the deletion
of. Each hypothetical relation is assigned a level
number as indicated in Figure 5. All real relations
are at level zero, and an HR built from a real relation
is assigned a level of one. Then an HR built on top of

level 3

level 2

level 1

level 0

D”]

Figure 5, a three level hypothetical relation.

a level one l-?R is given a level of two. Henc; the
column level identifies the level number of a particu-
lar tuple, while the column tupnum is a unique
identifier at a particular !evel. Together tupum and
level comprise the unique identifier, TNAME, of a
tuple. Values for ti.urn are sequentially allocated
integers. The last field in D, type, marks what form of
update the tuple represents; thus, it has three
values, APPEND, REPLACE, and DELETE.

The following examples will illustrate the use of
these extra fields. A precise algorithm is presented
in Section 3.2. Suppose the relation R has the data
shown in Figure 6.

tupnum of this tuple is 0
tupnum of this tuple is 1

Ftgure 8.

Initially W is identical to R and D is empty.

Running the following QUEL command:

append to W (name = “nancy”, salary = 5000)

would cause a single tuple to be inserted into D as
shown in Figure 7. The 30 stored in mindate is simply
the current timestamp, and the tarpe is APPEND.
Since there is no corresponding tuple at level 0,
which the tuple replaces, the fields level and ClLpnwn
are set to identify the tuple itself (i.e. level = 1, &p-
num = 0)

I
I name 1 salary ! mindate) maxdate 1 level tupnum type

nmcyI 5000 ! 30 I -I I I 0 IAPPEND

Rgurs 7.

Suppose we now change the salary of Sally as fol-
lows:

rangeofwisw

replace w (salary = 6000) where w.name = “sally”

After this update, D looks like the table in Figure 6.
Mindate is~ 40, the current timestamp. The tuple
which we are replacing in R has an identifier of (level
= 0, tugmum = 1 (see Figure 6)).

name I salary 1 mindate , maxdate 1 level j tupnum 1
namy / 5000 i 30 I -1
sally I em I 40 I - 0 I 1 1 REPLACE

Suppose we delete the tuple just replaced:

deiete w where w.name = “sally”

The resulting form of D is Figure 9. Since this opera-
tion is a delete and name and salary are no longer

, name (salary 1 mindate : maxdate level t tUDI’iUm 1 tYDe
Mncy i 5wO I 30 I -1 j 0 I APPEND 1
sally I Eoco I 40 I -0 ! 1 [REPLACE

I I 50 I -0 I 1 IDELETE

ngurs 9.

important, they are set to null. nLpnllm and level
are the same as in in Figure 8, since they refer to the
same tuple.

Suppose we now replace the tuple appended
above; eg:

159

replace w (name = “billy”) where w.name = “nancy’

Figure 10 shows D in its final form. 7kpnum and level
identify the original “nancy” tuple (see Figure 7
above). At this point, R is unchanged, and W looks
lie:

name salary / mindate 1 maxdate level 1 tupnum YP
nancy 5000 I 30 I -1 j 0 AP’,EGl
sally moo I 40 I -0 1 1 REPLACE

1 50 I -0 j 1 DELETE
I billy 5000 I 80 I - 1 I 0 REPLACE

ngure 10.

2.2. The Algorithm

There are two parts to the algorithm for support-
ing hypothetical relations: accessing an HR. and
updating an HR

3.2.1. Aocesaing Hypothetical Relations

The algorithm for deriving a level N hypothetical
relation W from a base relation R and a collection of
differential relations Dl, DN is a one pass algo-
rithm which starts with the highest level differential
relation and proceeds by examining all tuples at each
level, passing through lower levels, and finally scan-
ning through the level 0 base relation. Figure 11
shows this processing order more clearly. MzzLevel is
the level N of the relation W.

FOR physlevel := MaxLevel DOWN TO 0 DO
BEGIN

WHILF: (there are tuples at level physlevel) DO
BEGIN

tuple := get-next-tuple(physleve1);

examine-and-process-tuple(tuple, physlevel);
END

Figure 11, HR processing order.

examineand-process-tuple(f physlewl)
BEGIN

belO. newest. seen. samelevel : BOOLEAN;
tYF= : (APPEND. REPLACE, DELETE):

llamelenl := (t.level = physlevel);

*een := seen(t.level, t.tupnum);

IF (physlevel = 0) THEN BEGIN
newest := NULL;

type := NULL:

level0 := TRUE:
END ELSE BEGIN

newest := is-nerest(t.mindate, Llavel. t.tupnum):

type := t.type;

level0 := FAlSE;
END:

IF (table-accept(level0. newest. seen. type)) THEN
accept-tuple(t);

lF (table-see(level0, newest, seen. type, samelevel)) THEN
see(t.level. tAupnum);

END:

Figure 12. processing L tup1e.

An auxiliary data structure, called “seenids,” is
maintained during the execution of this algorithm.
This data structure has one associated update rou-
tine, “see(leve1, tupnum)“. and a boolean retrieval
function, “seen(leve1, tupnum)“. The routine
see(leve1. tupnum) inserts a TNAME (<level, tup-
num>) into the data structure if it has not been seen
before, while seen(leve1, tupnum) returns the value
TRUE if <level, tupnum> is in seen-ids, FALSE other-
wise.

The “examine-and-process-tuple” routine takes
one or both of the following actions: it can accept the
tuple for inclusion in W and/or it can call the routine
see to place the identifier in seen-i.&. The algorithm
for examining and processing of a tuple is shown in
i%gure 12. The choice of actions is summarized in
Table 1. In applying Table 1, to a particular tuple t.
level0 is true if physlevel (from Figure 11) is zero,
false otherwise. A tuple t at physlevel N is newest if
(as in Section 2.4) there is no tuple tb at physlevel N
such that

(1) (t.level = tb.!evel and t.tupnum = tb.tupnum)
and

(2) ta.mindate < tb.mindate.

A tuple t has been seen when the pair <t.level.
t.tupnum> has already been entered into seen-ids.
Fast tests for newest and seen are presented in Sec-

Table 1, processing criteria for HR’s.

160

tuple 1 name I salary ! mindate maxdate level tupnum type
1 1 nancy 1 5000 1 30 1 0 APPEND
2 i sally j 8000 / 40 , 0 1 REPLACE
3 i I 50 I 0 1 DELETE
4 1 billy / 5000 / 80 1 1 0 REPLACE

seen-ids = {I

Tuples “accepted”

tupnum of this tuple is 0
tupnum of this tuple is 1

Figure 13. initial structures for processing W.

tions 4.2 and 4.3. The type of tuple t is t.type.
Samelevel is true if t.level is the same as the current
value of physlevel.

To demonstrate this processing we will generate
W from D in Figure 10 and R in Figure 8. The starting
configuration is shown in Faure 13. Processing starts
with b!azL.t?vet = 1 and physlevel = 1 in the
differential relation D; hence, for all of this level,
level0 will be false. Tuple (1) is not newest, since
tuple (4) has the same identifler, and a higher m.in-
dafe. Since level0 is false, the tuple corresponds to
line (3) of Table 1, and the tuple is neither accepted
nor seen.

Tuple (2) is not newest either, because tuple (3)
has the same identifier, and a higher mindate. and so
it also corresponds to line (3) of Table 1, and is nei-
ther accepted nor seen.

Tuple (3) is newest, because the only other tu le
at this physlevel with the same identifier, tuple 7 2)
has a smaller m&date. It has not been seen, since
seen-ids is empty and type is DELETE. We now deter-
mine samelevel by comparing the Level Aeld with
physlevel. Physlevel is 1 and level is 0, so samelevel
is false and line (8) is applied. Hence, the tuple is
seen but not accepted Tuple (4) is also newest, has
not been seen, and type is REPLACE. Comparing level
and physlevel, we find samelevel is true, since the
level fleld is 1. and physlevel is still 1. Hence, (8) is
the correct line in Table i, and the tuple is accepted
but not seen. At this point, Wand seen-ids look like:

seen-ids = l<O. l>j

Physlevel now changes to 0, level0 becomes true,
and we start to scan the base relation. Since level0 is
true, only lines (1) and (2) of Tab!e 1 are relevant.
The choice between them is determined by the value
of seen. To check whether a tuple has been seen, at

level 0, we look for the pair <level = 0, tupnum =
location> in seenids. For tuple (5) this pair is <O, 0>

I
see Figure 13) which is not in seenids. Hence, lime
2) of Table 1 is applied and the tuple is accepted.

The pair <O. location> for tuple (8) is <O, l>,, which is
in seen-ids. The corresponding line is (l), so the
tuple is not accepted and is not sesn. We have
reached the end of our scan, and have generated the
relation W as follows:

3.2.2. Updating Hypothetical Relations
All updates to an HR of level N require appending

tuples to the diferential relation DN at level N. The
contents of the different fields in the appended tuple
are specified as follows:

(A) For APPENDS and REPLACES, the data
columns of DN. are filed with new data. For DELETES,
the data Aelds are empty.

(B) Mindute, is assigned the current timestamp.
(M&ate is discussed in Section 4.2.)

(C) For APPENDS, @mum and level are set to
self-identify the inserted tuple. For DELETES and
REPLACES tzLp7L’ILm and level identify the tuple which
we will call the “Mected Tuple”. The Mected Tuple is
the tuple in R or in one of the differential relations
DM (M <= N) which is being deleted or replaced.

DEL;% o%P&C!~ typ
e of the update, APPEND,

.4. -ATION
An implementation of HR’s was done within the

INGRES DBMS [STONYB]. This implementation took
approximately 2 man months and 2000 lines of code.
In order to create an HR, the following addition to
QUEL was made:

DEFINE HYPREL new& ON baserel

Once an HR has been defined, it can be updated and
accessed just lie an ordinary relation. Since,
buserel can be either a regular relation, or an HR. a
practically unlimited number of levels is allowed.

4.1. DJ3JdS Modifications
Within the INGRES access methods, a relation is

accessed fist by a call to “find” which sets the range
for a scan of tuples, and then “get” is called repeat-
edly to access each tuple in this range. It is within
“get” that most of the HR algorithm is implemented.
“Get” returns accepted tuples from each differential
relation, and flnally the accepted tuples from the
base relation. The routines which perform
REPLACES, DELETES, and APPENDS have also been
modified to initialize and append the appropriate
tuples to the differential relation.

161

4.2. implementation of Newest

If tuples were appended to a differential relation
and the relation were scanned in the same direction,
it would be possible to tell when a tuple was the
nezuest for a particular identifier by the fact that it
was the first one encountered. Unfortunately, the
INGRES access methods append tuples at the end of a
relation and and scan relations from the beginning.
In order to be able to tell from a single pass whether
a tuple is newest, an additional timestamp Aeld muz-
date was added. When a tuple is appended, mazdate
is set to infinity. When the tuple is REPLACED or
DELETED at the same level, muzdate in the Affected
Tuple is updated. Thus a tuple is the newest if the
time of the current scan is between mindate and
mazdate. If access methods which appended and
scanned starting at the same end of a relation were
implemented, the field mandate could be eliminated
and the differential relation could be append-only.

4.3. Implementation of Seen-ids

The data structure, seen-& can be stored either
in a series of main memory bitmaps, one for each
level, or as a hashed table. For small relations or
ones with many changes, the bitmap representation
makes sense. Thus to see a tuple with tupnum Y at
level L, bit Y in bitmap L is set. The boolean function
“seen(L, Y)” tests whether the corresponding bit is
set. For large relations, with few changes a hash
table is more efficient.

4.4. Performance Ehhancement

If the base relation is organized as either a ran-
dom hash structure or an ISAM structure, the
differential relations can be given a similar structure
and a sequential scan of the differential relation can
be avoided. To accomplish this, a correspondence
must be established between the pages in a
differential relation and those in the base relation. If
a tuple would be placed on a certain page of the base
relation, then the tuple in the hypothetical relation
must be placed on the corresponding page in the
differential relation.

If the base relation is structured so that the
number of pages which must be scanned can be res-
tricted for a particular query, then only the
corresponding section of the structured differential
relation need be scanned. For example, suppose the
relation R(name, salary) is stored hashed on name
and the differential relation D is stored likewise.

Then, the query

rangeofwisw

retrieve (w.all) where w.name = “billy”

only requires accessing the hash buckets correspond-
ing to the hash value of “billy” in both R and D.

There is one complication with this performance
enhancement, which stems from the fact that a
replace can create a new tuple which differs from the
Affected Tuple in the value of the column (or set of
columns) which determine where a tuple is located.
We will call this column (or set of columns) the Access
Key of the relation. If the new version of a tuple has a
different Access Key than the Affected Tuple it may
go on a different page than it would if it had the same
Access Key. This possible movement of the newest
version of a tuple could have dire consequences. For
example, consider the contents of R and D shown in
Figure 14. Then, suppose we do the following
REPLACE:

range of w is W

replace w (name = “kelly”) where w.name = “suzy”

As a result, R and D would look like Figure 15.

The query:

retrieve (w.all) where w.name = “suzy”

would generate the result:

Despite the fact that we changed Suzy’s name, she
appears in the result because the algorithm indicates
searching the hashbucket corresponding to “suzy”.
hashbucket 1 of D, where there are no tuples, then
searching hashbucket 1 of R. where Suzy’s tuple

R ,D
hashbucket name 1 salary I j name I salary type ! other

Figure 14.

1 suzy j 3000 1 / I
2 kelly ! 25 j / j

R and D hashed on name.

ngure 15,

problematic hashed replace.

162

hashbucket t name 1 salary mindate 1 maxdate level tupnum type
1 0 100 1 INFINITY 0 0 FORWARD
2 kelly 1 3000 100 1 INFINITY 0 0 REPLACE

Figure 16.

appears. This tuple in hashbucket 1 of R is accepted,
because no tuples have been seen. Unfortunately,
the algorithm never searches hashbucket 0 of D to
discover the replacement tuple.

This problem can be solved by the addition of a
fourth type of differential tuple, FORWARD. A FOR-
WARD tuple is inserted in hashed and ISAM differential
relations in the location indicated by the Access Key
of the AfIected Tuple whenever a REPLACE is done
which changes the Access Key so that the new
REPLACE tuple will go in a different hashbucket (or
ISAM data page) than that of the AfIected Tuple. With
this correction, D of Figure 15 would look like Figure
16. The processing of the query would then start in
hashbucket 1 of D in Figure 16. where a FORWARD
tuple would be found, and the ordered pair <O, 0>
would be added to sea-ids. Next, hashbucket 1 of R
would be scanned, but since <O. 0> is in seenids,
Suzy’s tuple, tuple 0 of R, would not be accepted.

4.5. Functionality
With these enhancements, all QUEL commands

have been made operational on HR’s. Moreover, a
type of “snap-shot” of the state of an HR at any point
in the past can be accessed by setting the scan time
(see Section 4.2) to a time prior to t.he current time.
In this way the algorithm is run with some earlier
timestamp than the usual current one.

Because differential relations are stored as stan-
dard relations, they can be restructured and manipu-
lated using the full power of QUEL Hence, a user
could easily purge the differential relation of records
which became invalid as of a certain date using the
following QUEL command:

updated, one page in the differential relation might
correspond to four pages in the base relation.

The only primary storage requirement is tem-
porary space for bitmaps or hash tables for the dura-
tion of a scan. Bitmaps, require roughly one bit per
unique identifier. For example a million record rela-
tion would require a corresponding bitmap of 1 mil-
lion bits, i.e. 125k bytes. Hash tables require more
bits per identifier, but should have far fewer entries,
and hence should be fairly small.

5. PEXFORMANCE-
Our performance study is aimed at comparing

the performance of QUEL commands on standard
relations versus the same commands on HR’s. The
tests were run on a single-user VAX-11/760. The
three benchmarks in Figure 17 are used to measure
update performance for a relation parts5000(pnum.
pname, pweight, pcolor) of 5000 tuples stored as a
heap. Moreparts is a source of 5000 additional
parts tuples. At the beginning of each benchmark
parts5000 is returned to its initial state. Table 2 indi-
cates the results of running benchmarks (a) - (c) Arst
with parts5000 as a real relation stored as a heap and
then for parts5000 as an HR stored as a heap. In the
latter case parts5000 consists of an empty
differential relation, D and a 5000 tuple real relation,
R stored as a heap. Notice that real and hypothetical
relations perform comparably. Table 3 shows the
same update tests run against parts5000 hashed on
pnum. Benchmark (d) (shown in Figure 16) is added
in order to test HR performance when Access Keys
are changed and FORWARD tuples are inserted in the
differential relation (see Section 4.4).

range of d is D

delete d where d.maxdate < “a given date”

Alternatively, if a user wanted to merge the HR back
into the base relation, he can use a series of QUEL
statements to update the base relation using the
information in the differential relations. A simpk
utility could also be constructed to perform the same
function.

4.6. Space Utilization
The secondary storage requirement for an

unstructured HR is one differential tuple per updated
tuple. For a structured relation, there is a significant
initial overhead for the hashed or ISA&f differential
relation. This cost can be minimized by constructing
the differential relation so that one of its pages
corresponds to several in the base relation. If it is
expected that 25X of the tuples in the HR will be

Benchmark (a)
range of p is parts5000
range of m is moreparts

append to parts5000 (m.all)

Benchmark (b)

range of p is parts5000

delete p

Benchmark (c)

range of p is parts5000

replace p (weight = m.weight + 1000)

Figure 17, update benchmarks.

163

Benchmark (d) Benchmark (e)

range of p is parts5000 range of p is parts

replace p (pnum = p.pnum l 1000) retrieve (m = max(p.weight))

Figure 18, hashed update benchmark. Figure 19, retrieval benchmark.

CPU Time

benchmark operation HR real relation performance
cpu sets cpu sets change

append 26.57 24.47 6%
delete 19.78 24.36 -19%

replace 25.03 26.03 -4%

Elapsed Time

benchmark operation HR real relation performance
elapsed sets elapsed sets change

append 36 32 12%
delete 25 -4%

replace 35 E 25%

Table 2. updates on 5000 tuples unstructured.

CPU Time

benchmark operation HR real relation performance
cpu sets cpu sets change

append 64.82 74.68 -14%
delete 21.32 20.15 5%

replace 40.97 42.32 -4%
replace 69.63 91.33 -2%

Elapsed ‘Iime

benchmark operation HR real relation performance
elapsed sets elapsed sets change

append 226 268 -16%
delete 37 31 19%

replace 59 47 25%
replace 422 345 22%

Table 3. updates on 5000 tuples. hashed on pnum.

To test retrieval performance we also ran bench-
mark (e) (shown in Figure 19) for 10000 tuple real
relation and a 10000 tuple HR. The hypothetical rela-
tions had sizes of differential relations, D, varying
from 0 to 100% of the size of the R. (if every tuple has
been replaced once in an HR. D is 100% of the size of

R) Figure 20 shows the results of these tests.
Benchmark (e) was also run against a second

level HR based on a first level HR with 50% of its
tuples replaced. The results of this test are in Figure
21.

164

I I

1:: _______--______--___-------------- ---- (c) _______---____-----_-----------------. Cd)
IO

(a) HR elapsed time

(b) HR cpu time

(c) regular elapsed time

(d) regular cpu time

50% 100%
I I

1

Figure 20, retrieval performance with 10000 tuple base.
(Benchmark (e))

Cl0
i (a) HR elapsed time

(b) HR cpu time

I (c) regular elapsed time

(d) regular cpu time

SO% 100%
,

Figure 21, retrieval performance 10000 tuples, 2 levels.
(Benchmark (e))

Benchmark (f)

range of m is moreparts
range of p is parts5000

retrieve (m.weight, p.weight)
where m.pnum = p.pnum

Lastly, we ran benchmark (f) (shown in Figure
22) against a parts relation hashed on pnum. Table 4
compares performance where parts5000 is either a
5000 tuple real relation hashed on pawn, or a 5000
tuple HR hashed on pawn, with 50% of its tuples
replaced. Moreparts is an unstructured 5000
tuple relation.

tn= cpu time elapsed time
sets minutes

real relation
HR

131 5.85
165 9.88

performance
change 88%

Table 4, hashed access erformance.
(Benchmark 5))

We can see that the performance of INGRES
using hypothetical relations is comparable to its per-
formance on real relations for a variety of commands
including restrictions, aggregates, and joins. In some
cases HR’s cause additional overhead, however thii
penalty is usually small. Only in extreme cases is it
more than a factor of the HR level number.

6. CONCLUSIONS
We have described a mechanism for supporting

HR’s which is shown to overcome the problems of pre-
ViOLIS proposals. We have described an
implementation of this mechanism and provided data
to show that performance of HR’s is surprisingly good
and has modest space requirements. Moreover using
our HR mechanisms, it is possible to make inquiries
about HR’s as of a particular time in the past. Hence,
an additional benefit is an efficient implementation of
“snapshots”.

F’igure 22. hashed retrieval benchmark.

165

REFERENCES

[AGRABZ] Agrawal, R. and DeWitt, D. J., “Updating
Hypothetical Data Bases,” Unpub-
lished working paper.

[BONA771 Bonanni, L E. and Glasser, A. L.,
“SCCS/PWB User’s Manual,” Bell
Telephone Laboratories, November
1977.

[KATZ621 Katz, R. and Lehman, T., “Storage Struc-
tures for Versions and Alterna-
tiW?S,” University of Wisconsin -
Madison, Computer Sciences
Technical Report #479, July 1982.

[SEVR~~] Severance, D. and Lohman, G., “Differential
Files: Their Application to the
Maintenance of Large Databases,”
TODS, June 1976.

[STON75] Stonebraker, M., “Implementation of
Integrity Constraints and Views by
Query Modification,” Proc. 1975
ACM-SIGMOD Conference
Management of Data, San Jose, C”,z
June 1975.

[STON76] Stonebraker, M. et. al., “The Design and
Implementation of INGRES,” TODS
2, 3. September 1976.

[STONEO] Stonebraker, M. and Keller, K.. “Embedding
Expert Knowledge and Hypotheti-
cal Data Bases Into a Data Base
System,” Proc. 1960 ACM-SIGMOD
Conference on Management of
Data, Santa Monica, Ca., May 1960

[STONBl] Stonebraker, M., “Hypothetical Data Bases
as Views,” Proc. 1961 ACM-SIGMOD
Conference on Management of
Data, Ann Arbor, Mich., June 1962.

166

