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ABSTRACT 

In this paper we present a new approach to 
implementing hypothetical relations. Our design bor- 
rows idea3 from techniques used in processing views 
and differential Bles and offers several advantages 
over other schemes. A working implementation is 
described and performance statistics are presented. 

1. JNTRODUCIION 

Pyoothetical relation3 [STONBO, sr0~61, 
AGRAK?) have been suggested as a mechanism to 
allow users to generate alternate versions of real 
relations. Each version can be updated as if it were a 
real relation: however, only differences between the 
hyoothetical relation (HR) and the real relation on 
w&ch it is defined are ‘actually stored. Previous 
papers have concentrated on data structures for 
representing these differences and algorithms for 
processing data manipulation commands addressed 
to VR’S. 

HR’s correspond closely to the notion of versions 
:BONA77] used IV systems which manage iterations of 
computer programs. On the other hand, HR’s differ 
*undamentally from view3 in that updates to HR’s 
should not cause changes to the relation on which 
they are defined. An uodate to a view is reflected 
through to the base re!acon(s) underneath it. 

Consider for example, a university Anancial 
officer who is in charge of research assistant’s 
salaries. Suppose she is trying to balance her budget 
and wanls to know whether her accounts would bal- 
ance under the hypothetical scenario that salaries of 
senior employees were cut by 20%. She could make a 
new copy of her database, actually perform the 
appropriate updates, and then survey the results. 
This procedure would be slow and require consider- 
able disk space. Alternatively she could define an PR 
on the employee relation, perform her updates on the 
HR and then survey the results. 

Another use of database HR’s might be in debug- 
ging a database application program. The program- 
mer might not want to test his program on “!ive” data 
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because a logical error could corrupt the database. 
He could define an HR on the live data and test the 
program on this HR 

The implementation suggested in [STONBO] 
involves a single differential file [SEvR76]. A more 
elegant solution [STONBl] suggests supporting HR’s 
by using the view mechanism [STON75] already 
present in many relational systems. A hypothetical 
relation, W, for a real relation R would be deflned as a 
view of the form W = (R UNION S) DIFFERENCE T. To 
support this implementation of HR’s, one need only 
extend a relational DBMS and its associated view 
mechanism with the UNION and DIFFERENCE opera- 
tors. A possible advantage of this implementation is 
that R can be a read-o& relation while S and T are 
append-only. This leads to the possibility of imple- 
mentation on an optical disk. 

Unfortunately, there are problems with deflnii 
HR’s as views. We first examine these problems and 
show general solutions in Section 2. Then in Section 3 
we combine these solutions into a new mechanism for 
supporting HR’s. Our implementation of this solution 
is described in Section 4. Finally, we present perfor- 
mance statistics from our running prototype in Sec- 
tion 5. 

2. PROI3IXMS AND SOLUTIONS 

Proposals for implementing hypothetical rela- 
tions as views contain various flaws which must be 
removed before a realistic implementation can be 
attempted. 

2.1. The Reinsertion Problem 

[STONM] points out that the implementation of 
hypothetical relations as W = (R UNION S) DIFFER- 
ENCE T is flawed in the case where one wants to re- 
append a tuple which ha3 been deleted, as shown by 
the example in Fiiure 1. Initiallv there is a tuple in 
relation R corresp&di.ng to Eric. Following the algo- 
rithm in [STCNAlj. the tuple can be deleted by insert- 
ing it into relation T. Lastly a user re-appends Eric 
and an appropriate tuple is inserted into S. Unfor- 
tunately, the resulting hypothetical relation, W does 
not contain the Fe-appended tuple since (R UNION S) 
is the same as R, and R D!PFERENCE T is empty. 

(tizqzq*mj 
I eric I 10000 j eric 

Figure 1. 
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22. A Solution Using ‘lImestamp 
This problem can be solved by adding a times- 

tamp field to the relations S and T. and modifying the 
semantics of the DIFFERENCE operator. Tuples in R 
do not require a timestamp field and can be thought 
of as having a timestamp of zero. [AGRA62] also pro- 
poses a timestamp solution to this problem. 

The timestamp fleld is set to the current time 
(from a system clock, or any other monotonicaly 
increasing source of timestamps) whenever a tuple is 
appended to S or T. For any relations A and B with 
timestamps as described, A DIFFERENCE B is deflned 
as all tuples a in A for which there is no tuple b in B 
such that 

(1) DATA(a) = DATA(b) 

and 

(2) TIMESTAMP < TIMESTAMP 

The definition of R UNION S is unchanged, except that 
a timestamp field must be added to the result, which 
contains either the timestamp of a tuple in S, or a 
zero tiiestamp for a tuple in R. If tuples with identi- 
cal DATA appear in both R and S, the newer times- 
tamp (from S) is chosen for the result tuple. 

In the above example, the timestamp of Eric’s 
tuple in T would be newer than that of Eric’s tuple in 
R (zero), but would be older than the timestamp of 
Eric’s tuple in S: hence, (R UNION S) DIFFERENCE T 
would be equivalent to S. and W would contain the re- 
appended tuple. 

[KATZ621 suggests solving the problem of re- 
appended tuples by adding a unique identifier 
(termed a Surrogate) to each tuple. Thus if a tuple is 
deleted from an HR, the appended tuple in T has the 
same Surrogate as the tuple to be deleted. If a tuple 
with the same DATA is subsequently appended, it will 
have a new Surrogate, and hence be distinct. Neither 

%I?%ussed next. 
nor [KA’IZ82] deals with the multi-level HR’s 

2.3. The Multiple-level Problem 
The addition of timestamps solves the re- 

insertion problem. However, this solution does not 
work for multi-level HR’s. Multi-level HR’s would be 
useful in many applications where several people are 
updating different aspects of a design stored in the 
DBMS. One designer might want to safely test his own 
embellishments to another’s proposed modifications. 
Consider the case of a second level hypothetical rela- 
tion, w’ = (W UNION S’) DIFFERENCE T’. as shown in 
Figure 2. Suppose Eric has been given a 20 percent 
raise in w’ at timestamp 10 which caused the indi- 
cated entries in S’ and T’. Since no updates have 
occurred in W, S and T are empty. Now suppose a 

s ,,T 
name I salary I timeslamp I I name I salary I timestamp 1 

I I I 1 I I I I I I 1 I 

s’ ..r . 
name I salary j timestamp I I name I salary I timestamp 
eric I 12000 I 10 I I eric I 10000 I 10 

Figure 2. Eric’s 20% raise in W. 

user gives Eric a 50 percent raise in W at timestamp 
20, which results in the entries for S and T shown in 
Figure 3. According to the algorithm above, w’ would 
contain two tuples for Eric, one with salary 15.000, 
and one with salary 12,000. The problem is that the 
tuple in T’ no longer functions to exclude Eric from W 
UNION S’ and hence an unwanted Eric tuple is 
present. 

s ,.T 
nllme 1 salary I tiestAmp 1 1 name 1 salary I timestamp 
eric I 15000 I 20 I I eric I 1WOO I 20 

s *.T 
name 1 salary j timestamp I [ name I adary I timestamp ’ 
eric I 12000 I 10 I I eric I 10000 j 10 

Fipre 3, Eric’s 50% raise in w. 

There are at ‘lea& two choices for the proper 
semantics for w’ under this update pattern: 

1) Eric’s salary is set to the latest value, in 
this case the 15,000 frpm W. 

2) Eric’s salary is set to 12,000, correspond- 
ing to the original update of w’. 

We make the latter choice, and specify the following 
semantics: 

Once a tuple has been changed at level N, 
changes to this tuple at levels < N cannot 
afYect tuples at levels >= N. 

As a result further modifications to the HR algorithms 
are required. 

2.4. A Solution With Identillers 
These semantics can be guaranteed by the addi- 

tion of a tuple identifier, and modification of the 
DIFFERENCE operator. A tuple identifler. TNAME, 
must be added to each tuple in R. Any inserts to S or 
T, which are used to replace or delete a tuple in W, 
must be marked with the identifler for the original 
tuple in R or S which they replace or delete. Each 
tuple inserted into W (and thereby added to S) must 
be given a new identifler. For any relations A and B 
with timestamps and TNAMES as described, A DIFFER- 
ENCE B is defined to be all tuples a in A for which 
there is no tuple b in B such that 

( l)zdAME(a) = TNAME(b) 

(2) TIMESTAMP < TIMESTAMP 

To guarantee that our chosen update semantics 
hold, tuples in A DIFFERENCE B must be given times- 
tamps of zero. Hence, at a second level, each tuple in 
s’ and T’ will have a newer timestamp than its 
corresponding tuple in W. 

In our example the identifier of all of the five 
Eric tuples from Figure 3 will be identical. Since the 
timestamp of the tuple in W is treated as being older 
than that of the tuple in T’, only Eric’s tuple from S’ 
will be contained in W’. 

Timestamps alone have been shown to be 
insufficient for solving the problems of multi-level 
HR’s. Identifiers alone are also insufflcient, since in 
multi-level HR’s. identifiers must remain constant in 
REPLACES and hence multiple tuples with the same 
identifier must be distinguishable (timestamps can 
distinguish the multiple tuples). 
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Given these modiications to the composition of 
S, T and the meaning of DIFFERENCE, an HR of the 
form W = (R UNION S) DIFFERENCE T no longer has its 
original conceptual simplicity. Moreover, support for 
HR’s becomes considerably more complex than sim- 
ply implementing UNION and DIFFERENCE as valid 
P erators in a relational system. Consequently, we 
E ve designed a mechanism based on dlfTerentia1 file 
techniques. The goal is to provide a singlepass algo-. 
rithm with proper semantics that will support arbi- 
trury cascu&ng of HR’s. The next two sections 
describe our data structure and algorithm in detail. 

3.1. The Differential Relation 
Each hypothetical relation W, built on top of a 

real or hypothetical relation B, has S and T merged 
into an associated differential file D, which contains 
all columns from B plus plus five additional fields. 
For example, the differential relation D for the base 
relation R from Section 2 is shown in Figure 4. Name 
and salq are the attributes from R The Aelds min- 

name cl2 
salary i4 
rnindate i4 
maxdate i4 
level il 
tupnum i4 
type il 

Rgure 4. attributes of the differential relation 

date and mazddte are both timestamps. Mndute is 
the timestamp as defined in Section 2, while ma&ate 
is another timestamp to be explained in Section 4.2. 
The fields level and tupnum are used to identify the 
tuple which this tuple replaces or causes the deletion 
of. Each hypothetical relation is assigned a level 
number as indicated in Figure 5. All real relations 
are at level zero, and an HR built from a real relation 
is assigned a level of one. Then an HR built on top of 

level 3 

level 2 

level 1 

level 0 

D”] 

Figure 5, a three level hypothetical relation. 

a level one l-?R is given a level of two. Henc; the 
column level identifies the level number of a particu- 
lar tuple, while the column tupnum is a unique 
identifier at a particular !evel. Together tupum and 
level comprise the unique identifier, TNAME, of a 
tuple. Values for ti.urn are sequentially allocated 
integers. The last field in D, type, marks what form of 
update the tuple represents; thus, it has three 
values, APPEND, REPLACE, and DELETE. 

The following examples will illustrate the use of 
these extra fields. A precise algorithm is presented 
in Section 3.2. Suppose the relation R has the data 
shown in Figure 6. 

tupnum of this tuple is 0 
tupnum of this tuple is 1 

Ftgure 8. 

Initially W is identical to R and D is empty. 

Running the following QUEL command: 

append to W (name = “nancy”, salary = 5000) 

would cause a single tuple to be inserted into D as 
shown in Figure 7. The 30 stored in mindate is simply 
the current timestamp, and the tarpe is APPEND. 
Since there is no corresponding tuple at level 0, 
which the tuple replaces, the fields level and ClLpnwn 
are set to identify the tuple itself (i.e. level = 1, &p- 
num = 0) 

I 
I name 1 salary ! mindate ) maxdate 1 level tupnum type 

nmcyI 5000 ! 30 I -I I I 0 IAPPEND 

Rgurs 7. 

Suppose we now change the salary of Sally as fol- 
lows: 

rangeofwisw 

replace w (salary = 6000) where w.name = “sally” 

After this update, D looks like the table in Figure 6. 
Mindate is~ 40, the current timestamp. The tuple 
which we are replacing in R has an identifier of ( level 
= 0, tugmum = 1 (see Figure 6)). 

name I salary 1 mindate , maxdate 1 level j tupnum 1 
namy / 5000 i 30 I -1 
sally I em I 40 I - 0 I 1 1 REPLACE 

Suppose we delete the tuple just replaced: 

deiete w where w.name = “sally” 

The resulting form of D is Figure 9. Since this opera- 
tion is a delete and name and salary are no longer 

, name ( salary 1 mindate : maxdate level t tUDI’iUm 1 tYDe 
Mncy i 5wO I 30 I -1 j 0 I APPEND 1 
sally I Eoco I 40 I -0 ! 1 [REPLACE 

I I 50 I -0 I 1 IDELETE 

ngurs 9. 

important, they are set to null. nLpnllm and level 
are the same as in in Figure 8, since they refer to the 
same tuple. 

Suppose we now replace the tuple appended 
above; eg: 
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replace w (name = “billy”) where w.name = “nancy’ 

Figure 10 shows D in its final form. 7kpnum and level 
identify the original “nancy” tuple (see Figure 7 
above). At this point, R is unchanged, and W looks 
lie: 

name salary / mindate 1 maxdate level 1 tupnum YP 
nancy 5000 I 30 I -1 j 0 AP’,EGl 
sally moo I 40 I -0 1 1 REPLACE 

1 50 I -0 j 1 DELETE 
I billy 5000 I 80 I - 1 I 0 REPLACE 

ngure 10. 

2.2. The Algorithm 

There are two parts to the algorithm for support- 
ing hypothetical relations: accessing an HR. and 
updating an HR 

3.2.1. Aocesaing Hypothetical Relations 

The algorithm for deriving a level N hypothetical 
relation W from a base relation R and a collection of 
differential relations Dl, . . . . DN is a one pass algo- 
rithm which starts with the highest level differential 
relation and proceeds by examining all tuples at each 
level, passing through lower levels, and finally scan- 
ning through the level 0 base relation. Figure 11 
shows this processing order more clearly. MzzLevel is 
the level N of the relation W. 

FOR physlevel := MaxLevel DOWN TO 0 DO 
BEGIN 

WHILF: (there are tuples at level physlevel) DO 
BEGIN 

tuple := get-next-tuple(physleve1); 

examine-and-process-tuple(tuple, physlevel); 
END 

Figure 11, HR processing order. 

examineand-process-tuple(f physlewl) 
BEGIN 

belO. newest. seen. samelevel : BOOLEAN; 
tYF= : (APPEND. REPLACE, DELETE): 

llamelenl := (t.level = physlevel); 

*een := seen(t.level, t.tupnum); 

IF (physlevel = 0) THEN BEGIN 
newest := NULL; 

type := NULL: 

level0 := TRUE: 
END ELSE BEGIN 

newest := is-nerest(t.mindate, Llavel. t.tupnum): 

type := t.type; 

level0 := FAlSE; 
END: 

IF (table-accept(level0. newest. seen. type)) THEN 
accept-tuple(t); 

lF (table-see(level0, newest, seen. type, samelevel)) THEN 
see(t.level. tAupnum); 

END: 

Figure 12. processing L tup1e. 

An auxiliary data structure, called “seenids,” is 
maintained during the execution of this algorithm. 
This data structure has one associated update rou- 
tine, “see(leve1, tupnum)“. and a boolean retrieval 
function, “seen(leve1, tupnum)“. The routine 
see(leve1. tupnum) inserts a TNAME (<level, tup- 
num>) into the data structure if it has not been seen 
before, while seen(leve1, tupnum) returns the value 
TRUE if <level, tupnum> is in seen-ids, FALSE other- 
wise. 

The “examine-and-process-tuple” routine takes 
one or both of the following actions: it can accept the 
tuple for inclusion in W and/or it can call the routine 
see to place the identifier in seen-i.&. The algorithm 
for examining and processing of a tuple is shown in 
i%gure 12. The choice of actions is summarized in 
Table 1. In applying Table 1, to a particular tuple t. 
level0 is true if physlevel (from Figure 11) is zero, 
false otherwise. A tuple t at physlevel N is newest if 
(as in Section 2.4) there is no tuple tb at physlevel N 
such that 

(1) (t.level = tb.!evel and t.tupnum = tb.tupnum) 
and 

(2) ta.mindate < tb.mindate. 

A tuple t has been seen when the pair <t.level. 
t.tupnum> has already been entered into seen-ids. 
Fast tests for newest and seen are presented in Sec- 

Table 1, processing criteria for HR’s. 

160 



tuple 1 name I salary ! mindate maxdate level tupnum type 
1 1 nancy 1 5000 1 30 1 0 APPEND 
2 i sally j 8000 / 40 , 0 1 REPLACE 
3 i I 50 I 0 1 DELETE 
4 1 billy / 5000 / 80 1 1 0 REPLACE 

seen-ids = {I 

Tuples “accepted” 

tupnum of this tuple is 0 
tupnum of this tuple is 1 

Figure 13. initial structures for processing W. 

tions 4.2 and 4.3. The type of tuple t is t.type. 
Samelevel is true if t.level is the same as the current 
value of physlevel. 

To demonstrate this processing we will generate 
W from D in Figure 10 and R in Figure 8. The starting 
configuration is shown in Faure 13. Processing starts 
with b!azL.t?vet = 1 and physlevel = 1 in the 
differential relation D; hence, for all of this level, 
level0 will be false. Tuple (1) is not newest, since 
tuple (4) has the same identifler, and a higher m.in- 
dafe. Since level0 is false, the tuple corresponds to 
line (3) of Table 1, and the tuple is neither accepted 
nor seen. 

Tuple (2) is not newest either, because tuple (3) 
has the same identifier, and a higher mindate. and so 
it also corresponds to line (3) of Table 1, and is nei- 
ther accepted nor seen. 

Tuple (3) is newest, because the only other tu le 
at this physlevel with the same identifier, tuple 7 2) 
has a smaller m&date. It has not been seen, since 
seen-ids is empty and type is DELETE. We now deter- 
mine samelevel by comparing the Level Aeld with 
physlevel. Physlevel is 1 and level is 0, so samelevel 
is false and line (8) is applied. Hence, the tuple is 
seen but not accepted Tuple (4) is also newest, has 
not been seen, and type is REPLACE. Comparing level 
and physlevel, we find samelevel is true, since the 
level fleld is 1. and physlevel is still 1. Hence, (8) is 
the correct line in Table i, and the tuple is accepted 
but not seen. At this point, Wand seen-ids look like: 

seen-ids = l<O. l>j 

Physlevel now changes to 0, level0 becomes true, 
and we start to scan the base relation. Since level0 is 
true, only lines (1) and (2) of Tab!e 1 are relevant. 
The choice between them is determined by the value 
of seen. To check whether a tuple has been seen, at 

level 0, we look for the pair <level = 0, tupnum = 
location> in seenids. For tuple (5) this pair is <O, 0> 

I 
see Figure 13) which is not in seenids. Hence, lime 
2) of Table 1 is applied and the tuple is accepted. 

The pair <O. location> for tuple (8) is <O, l>,, which is 
in seen-ids. The corresponding line is (l), so the 
tuple is not accepted and is not sesn. We have 
reached the end of our scan, and have generated the 
relation W as follows: 

3.2.2. Updating Hypothetical Relations 
All updates to an HR of level N require appending 

tuples to the diferential relation DN at level N. The 
contents of the different fields in the appended tuple 
are specified as follows: 

(A) For APPENDS and REPLACES, the data 
columns of DN. are filed with new data. For DELETES, 
the data Aelds are empty. 

(B) Mindute, is assigned the current timestamp. 
(M&ate is discussed in Section 4.2.) 

(C) For APPENDS, @mum and level are set to 
self-identify the inserted tuple. For DELETES and 
REPLACES tzLp7L’ILm and level identify the tuple which 
we will call the “Mected Tuple”. The Mected Tuple is 
the tuple in R or in one of the differential relations 
DM (M <= N) which is being deleted or replaced. 

DEL;% o%P&C!~ typ 
e of the update, APPEND, 

.4. -ATION 
An implementation of HR’s was done within the 

INGRES DBMS [STONYB]. This implementation took 
approximately 2 man months and 2000 lines of code. 
In order to create an HR, the following addition to 
QUEL was made: 

DEFINE HYPREL new& ON baserel 

Once an HR has been defined, it can be updated and 
accessed just lie an ordinary relation. Since, 
buserel can be either a regular relation, or an HR. a 
practically unlimited number of levels is allowed. 

4.1. DJ3JdS Modifications 
Within the INGRES access methods, a relation is 

accessed fist by a call to “find” which sets the range 
for a scan of tuples, and then “get” is called repeat- 
edly to access each tuple in this range. It is within 
“get” that most of the HR algorithm is implemented. 
“Get” returns accepted tuples from each differential 
relation, and flnally the accepted tuples from the 
base relation. The routines which perform 
REPLACES, DELETES, and APPENDS have also been 
modified to initialize and append the appropriate 
tuples to the differential relation. 
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4.2. implementation of Newest 

If tuples were appended to a differential relation 
and the relation were scanned in the same direction, 
it would be possible to tell when a tuple was the 
nezuest for a particular identifier by the fact that it 
was the first one encountered. Unfortunately, the 
INGRES access methods append tuples at the end of a 
relation and and scan relations from the beginning. 
In order to be able to tell from a single pass whether 
a tuple is newest, an additional timestamp Aeld muz- 
date was added. When a tuple is appended, mazdate 
is set to infinity. When the tuple is REPLACED or 
DELETED at the same level, muzdate in the Affected 
Tuple is updated. Thus a tuple is the newest if the 
time of the current scan is between mindate and 
mazdate. If access methods which appended and 
scanned starting at the same end of a relation were 
implemented, the field mandate could be eliminated 
and the differential relation could be append-only. 

4.3. Implementation of Seen-ids 

The data structure, seen-& can be stored either 
in a series of main memory bitmaps, one for each 
level, or as a hashed table. For small relations or 
ones with many changes, the bitmap representation 
makes sense. Thus to see a tuple with tupnum Y at 
level L, bit Y in bitmap L is set. The boolean function 
“seen(L, Y)” tests whether the corresponding bit is 
set. For large relations, with few changes a hash 
table is more efficient. 

4.4. Performance Ehhancement 

If the base relation is organized as either a ran- 
dom hash structure or an ISAM structure, the 
differential relations can be given a similar structure 
and a sequential scan of the differential relation can 
be avoided. To accomplish this, a correspondence 
must be established between the pages in a 
differential relation and those in the base relation. If 
a tuple would be placed on a certain page of the base 
relation, then the tuple in the hypothetical relation 
must be placed on the corresponding page in the 
differential relation. 

If the base relation is structured so that the 
number of pages which must be scanned can be res- 
tricted for a particular query, then only the 
corresponding section of the structured differential 
relation need be scanned. For example, suppose the 
relation R(name, salary) is stored hashed on name 
and the differential relation D is stored likewise. 

Then, the query 

rangeofwisw 

retrieve (w.all) where w.name = “billy” 

only requires accessing the hash buckets correspond- 
ing to the hash value of “billy” in both R and D. 

There is one complication with this performance 
enhancement, which stems from the fact that a 
replace can create a new tuple which differs from the 
Affected Tuple in the value of the column (or set of 
columns) which determine where a tuple is located. 
We will call this column (or set of columns) the Access 
Key of the relation. If the new version of a tuple has a 
different Access Key than the Affected Tuple it may 
go on a different page than it would if it had the same 
Access Key. This possible movement of the newest 
version of a tuple could have dire consequences. For 
example, consider the contents of R and D shown in 
Figure 14. Then, suppose we do the following 
REPLACE: 

range of w is W 

replace w (name = “kelly”) where w.name = “suzy” 

As a result, R and D would look like Figure 15. 

The query: 

retrieve (w.all) where w.name = “suzy” 

would generate the result: 

Despite the fact that we changed Suzy’s name, she 
appears in the result because the algorithm indicates 
searching the hashbucket corresponding to “suzy”. 
hashbucket 1 of D, where there are no tuples, then 
searching hashbucket 1 of R. where Suzy’s tuple 

R ,D 
hashbucket name 1 salary I j name I salary type ! other 

Figure 14. 

1 suzy j 3000 1 / I 
2 kelly ! 25 j / j 

R and D hashed on name. 

ngure 15, 

problematic hashed replace. 
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hashbucket t name 1 salary mindate 1 maxdate level tupnum type 
1 0 100 1 INFINITY 0 0 FORWARD 
2 kelly 1 3000 100 1 INFINITY 0 0 REPLACE 

Figure 16. 

appears. This tuple in hashbucket 1 of R is accepted, 
because no tuples have been seen. Unfortunately, 
the algorithm never searches hashbucket 0 of D to 
discover the replacement tuple. 

This problem can be solved by the addition of a 
fourth type of differential tuple, FORWARD. A FOR- 
WARD tuple is inserted in hashed and ISAM differential 
relations in the location indicated by the Access Key 
of the AfIected Tuple whenever a REPLACE is done 
which changes the Access Key so that the new 
REPLACE tuple will go in a different hashbucket (or 
ISAM data page) than that of the AfIected Tuple. With 
this correction, D of Figure 15 would look like Figure 
16. The processing of the query would then start in 
hashbucket 1 of D in Figure 16. where a FORWARD 
tuple would be found, and the ordered pair <O, 0> 
would be added to sea-ids. Next, hashbucket 1 of R 
would be scanned, but since <O. 0> is in seenids, 
Suzy’s tuple, tuple 0 of R, would not be accepted. 

4.5. Functionality 
With these enhancements, all QUEL commands 

have been made operational on HR’s. Moreover, a 
type of “snap-shot” of the state of an HR at any point 
in the past can be accessed by setting the scan time 
(see Section 4.2) to a time prior to t.he current time. 
In this way the algorithm is run with some earlier 
timestamp than the usual current one. 

Because differential relations are stored as stan- 
dard relations, they can be restructured and manipu- 
lated using the full power of QUEL Hence, a user 
could easily purge the differential relation of records 
which became invalid as of a certain date using the 
following QUEL command: 

updated, one page in the differential relation might 
correspond to four pages in the base relation. 

The only primary storage requirement is tem- 
porary space for bitmaps or hash tables for the dura- 
tion of a scan. Bitmaps, require roughly one bit per 
unique identifier. For example a million record rela- 
tion would require a corresponding bitmap of 1 mil- 
lion bits, i.e. 125k bytes. Hash tables require more 
bits per identifier, but should have far fewer entries, 
and hence should be fairly small. 

5. PEXFORMANCE- 
Our performance study is aimed at comparing 

the performance of QUEL commands on standard 
relations versus the same commands on HR’s. The 
tests were run on a single-user VAX-11/760. The 
three benchmarks in Figure 17 are used to measure 
update performance for a relation parts5000(pnum. 
pname, pweight, pcolor) of 5000 tuples stored as a 
heap. Moreparts is a source of 5000 additional 
parts tuples. At the beginning of each benchmark 
parts5000 is returned to its initial state. Table 2 indi- 
cates the results of running benchmarks (a) - (c) Arst 
with parts5000 as a real relation stored as a heap and 
then for parts5000 as an HR stored as a heap. In the 
latter case parts5000 consists of an empty 
differential relation, D and a 5000 tuple real relation, 
R stored as a heap. Notice that real and hypothetical 
relations perform comparably. Table 3 shows the 
same update tests run against parts5000 hashed on 
pnum. Benchmark (d) (shown in Figure 16) is added 
in order to test HR performance when Access Keys 
are changed and FORWARD tuples are inserted in the 
differential relation (see Section 4.4). 

range of d is D 

delete d where d.maxdate < “a given date” 

Alternatively, if a user wanted to merge the HR back 
into the base relation, he can use a series of QUEL 
statements to update the base relation using the 
information in the differential relations. A simpk 
utility could also be constructed to perform the same 
function. 

4.6. Space Utilization 
The secondary storage requirement for an 

unstructured HR is one differential tuple per updated 
tuple. For a structured relation, there is a significant 
initial overhead for the hashed or ISA&f differential 
relation. This cost can be minimized by constructing 
the differential relation so that one of its pages 
corresponds to several in the base relation. If it is 
expected that 25X of the tuples in the HR will be 

Benchmark (a) 
range of p is parts5000 
range of m is moreparts 

append to parts5000 (m.all) 

Benchmark (b) 

range of p is parts5000 

delete p 

Benchmark (c) 

range of p is parts5000 

replace p (weight = m.weight + 1000) 

Figure 17, update benchmarks. 
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Benchmark (d) Benchmark (e) 

range of p is parts5000 range of p is parts 

replace p (pnum = p.pnum l 1000) retrieve (m = max(p.weight)) 

Figure 18, hashed update benchmark. Figure 19, retrieval benchmark. 

CPU Time 

benchmark operation HR real relation performance 
cpu sets cpu sets change 

append 26.57 24.47 6% 
delete 19.78 24.36 -19% 

replace 25.03 26.03 -4% 

Elapsed Time 

benchmark operation HR real relation performance 
elapsed sets elapsed sets change 

append 36 32 12% 
delete 25 -4% 

replace 35 E 25% 

Table 2. updates on 5000 tuples unstructured. 

CPU Time 

benchmark operation HR real relation performance 
cpu sets cpu sets change 

append 64.82 74.68 -14% 
delete 21.32 20.15 5% 

replace 40.97 42.32 -4% 
replace 69.63 91.33 -2% 

Elapsed ‘Iime 

benchmark operation HR real relation performance 
elapsed sets elapsed sets change 

append 226 268 -16% 
delete 37 31 19% 

replace 59 47 25% 
replace 422 345 22% 

Table 3. updates on 5000 tuples. hashed on pnum. 

To test retrieval performance we also ran bench- 
mark (e) (shown in Figure 19) for 10000 tuple real 
relation and a 10000 tuple HR. The hypothetical rela- 
tions had sizes of differential relations, D, varying 
from 0 to 100% of the size of the R. (if every tuple has 
been replaced once in an HR. D is 100% of the size of 

R) Figure 20 shows the results of these tests. 
Benchmark (e) was also run against a second 

level HR based on a first level HR with 50% of its 
tuples replaced. The results of this test are in Figure 
21. 
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I I 

1:: _______--______--___-------------- ---- (c) _______---____-----_-----------------. Cd) 
IO 

(a) HR elapsed time 

(b) HR cpu time 

(c) regular elapsed time 

(d) regular cpu time 

50% 100% 
I I 

1 

Figure 20, retrieval performance with 10000 tuple base. 
(Benchmark (e)) 

Cl0 
i (a) HR elapsed time 

(b) HR cpu time 

I (c) regular elapsed time 

(d) regular cpu time 

SO% 100% 
, 

Figure 21, retrieval performance 10000 tuples, 2 levels. 
(Benchmark (e)) 

Benchmark (f) 

range of m is moreparts 
range of p is parts5000 

retrieve (m.weight, p.weight) 
where m.pnum = p.pnum 

Lastly, we ran benchmark (f) (shown in Figure 
22) against a parts relation hashed on pnum. Table 4 
compares performance where parts5000 is either a 
5000 tuple real relation hashed on pawn, or a 5000 
tuple HR hashed on pawn, with 50% of its tuples 
replaced. Moreparts is an unstructured 5000 
tuple relation. 

tn= cpu time elapsed time 
sets minutes 

real relation 
HR 

131 5.85 
165 9.88 

performance 
change 88% 

Table 4, hashed access erformance. 
(Benchmark 5)) 

We can see that the performance of INGRES 
using hypothetical relations is comparable to its per- 
formance on real relations for a variety of commands 
including restrictions, aggregates, and joins. In some 
cases HR’s cause additional overhead, however thii 
penalty is usually small. Only in extreme cases is it 
more than a factor of the HR level number. 

6. CONCLUSIONS 
We have described a mechanism for supporting 

HR’s which is shown to overcome the problems of pre- 
ViOLIS proposals. We have described an 
implementation of this mechanism and provided data 
to show that performance of HR’s is surprisingly good 
and has modest space requirements. Moreover using 
our HR mechanisms, it is possible to make inquiries 
about HR’s as of a particular time in the past. Hence, 
an additional benefit is an efficient implementation of 
“snapshots”. 

F’igure 22. hashed retrieval benchmark. 
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