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Abstract: To process transactions of several 
users concurrently and consistently in a shared 
database various lockprotocols have been de- 
veloped recently. Though the need for a quanti- 
tative analysis of lockprotocols is rather ob- 
vious, this work has not yet been fully per- 
formed for centralized database systems. As data- 
base applications in the near future tend to 
have very high transaction rates, such quantita- 
tive investigation on the quality of lockproto- 
cols will become increasingly valuable. 

The paper evaluates three well-know lockproto- 
cols by discrete-event simulation. We represent 
and discuss the results which we have gained in 
the simulation runs. 
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1. Introduction 

To process transactions of several users con- 
currently and consistently in a shared database 
various lockprotocols have been developed re- 
cently. These lockprotocols hopefully increase 
the systems's efficiency by providing a high de- 
gree of concurrency among executing transactions. 
However, in raising the ootential concurrency we 
also increase the involved synchronization ef- 
fort to enforce the underlying lockprotocol. 
Therefore it is essential to make a tradeoff be- 
tween potential efficiency gains by increased 
concurrency and the involved synchronization 
overhead when selecting a particular lockproto- 
col. In this paper we analyse three lockproto- 
cols for centralized databases as presented in 
[EGLT 761, [BAY 761 and [BHR 801. Though the 
need for a quantitative analysis of lockprotocols 
is rather obvious, this work has mostly been done 
only for distributed databases, where different 
optimization criteria are applied (see e.g. 
[BAD 801). 

For database applications in the near future 
high-performance database management systems are 
required, providing a transaction throughput in 
the order of about 100 transactions per second 
(as opposed to 1-15 transactions/set for existent 
systems). Thus quantitative investigations con- 
cerning the quality of lockprotocols will become 
increasingly valuable also for centralized data- 
bases. 

Most analysis techniques for distributed lockpro- 
tocols presented in the literature rely on ana- 
lytical models. But as the subject of concurrency 
evaluation is rather complicated, often many sim- 
plifying assumptions are stated in order to get a 
still analytically tractable model. However, as 
we do not want to restrict our investigations by 
assumptions which are too restrictive, like pre- 
claiming of locks ([PL 803, [MN 821), we devel- 
oped a discrete-event simulation model, which is 
more flexible and will presumably produce more 
reliable results. 

Terms: 

We consider a database consisting of a set of ob- 
,jects. The DB-system provides operations each F 
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which manipulates one or more objects. The exe- 
cution of an operation on an object is called an 
action. Actions are uninterpreted, we only dis- 
tinguish read-access and write-access. 

In order to efficiently supervise the correctness 
of data, which are stored in a shared database 
and which are subject to instantaneous changes, 
the logical concept of a transaction has been 
developed. 

A transaction ') T is a finite sequence of ac- 
tions, exhibiting an atomic behavior (often also 
called 'all-or-nothing' property): Either all ac- 
tions of T are executed or T has no effect at 
all on the database state. In the first case, T 
is said to be successfully committed, in the la- 
ter one, T is said to be backed out. In many 
practical applications efficiency requirements, 
such as high transaction rates and short response 
time, enforce that a set of transactions is pro- 
cessed cocurrently on a shared database. 

Consistency deals with the correct processing of 
concurrent transactions. Various stases of cor- 
rect concurrent behavior, termed consistency 
levels 0, 1, 2 and 3, have been identified in 
[GLPT 761. In this oaoer we onlv deal with dearee 
3 consistency, sometimes also called serial- 
bility. 
The concurrent execution of a set ITI,TZ,...,T1l] 

of transactions is serializable, if T,,T,,...,T n 
oroduces the same effect on the database state as 
some serial execution (Tp(l),Tp(2),...,Tp(n~], 

where p: (l,Z,...,n] + (i,2,..,,n] is a permuta- 
tion. 

To achieve consistency, the interleaved execu- 
tion of concurrent transactions must be properly 
synchronized, i.e. the particular actions of 
these concurrent transactions must be scheduled 
in a way that guarantees the serializability- 
criterion. The usual method to achieve this is 

F* 
A set of rules for requesting and re- 

easing locks defines a lockprotocol. 

In the sequel the term consistency will be used 
as a synonym for serializability. A transaction 
is termed well-formed, if it requests an appro- 
priate lock on an object before it performs the 
intended action on this object. 
In [EGLT 761 the notion of two phase transac- 
tions is introduced. A transaction is two phase, 
m can be divided into a growing and a shrink- 
ing phase. During the growing phase the trans- 
action may request locks but must not release 
locks. Inversely, during the shrinking phase it 
may release locks but not request locks. Well- 
formed two phase transactions are shown to pre- 
serve consistency. 

If a transaction T has to be backed out, it 
might be necessary'to back out another transac- 
tion T,, too, since T, has read a value of an 

')A formal model is presented in [GRA 803. 

object which has been generated by T . A cas- 
cade of backups may become necessary,'being espe- 
cially troublesome for already committed trans- 
actions. We avoid cascading by allowing only 
strict two phase transactions. 

A transaction is strict two phase, if it is two 
phase and in addition its shrinking phase com- 
prises only one indivisible action, i.e. the 
transaction must hold all its locks until its 
very end. Then all its locks are released with a 
single atomic action. Strict two phase trans- 
actions allow the isolated backup of an uncom- 
mitted transaction. This paper deals with three 
well-known lot protocols 
base t 

for centralized data- 
systems.* They all employ the concept of 

well-formed and strict two phase transactions. 

2. Description of three Well-known Lockprotocols 
for a Centralized DBMS ( ) : r,x -, ( r,a,x - an 
(r,a,c)-Protocol 

For concurrency control by locking, three basic 
lockprotocols are known in a centralized data- 
base: 

(a) The (r,x)-protocol, presented in [EGLT 761. 

(b) The (r,a,x)-protocol, presented in [BAY 761. 

(c) The (r,a,c)-protocol, presented in IBHR 801. 

In this paper we will give an overview about 
these synchronization methods; for a more precise 
description the interested reader is referred to 
the above stated references. 

2.1. Lockmodes and Compatibilities 

The (r,x)-protocol 

This protocol disposes of two lockmodes which can 
be requested on an object, namely: 

l the r-lock, if read access is intended 
. the x-lock, if write access is intended. 

The r-lock on a particular object protects it 
from concurrent updates, several r-locks may co- 
exist on it. The x-lock provides exclusive ac- 
cess to an object. Thus, if a transaction T 
issuesanx-lock request for an object which is 
already r-locked, this request has to be denied 
and T must wait. Likewise, r-locks and x-locks on 
an already x-locked object must not be granted 
and have to be deferred. From this semantics of 
r-locks and x-locks we can derive compatibilities 
between lockmodes. 

Two lockmodes are said to be compatible, if they 
can coexist on the same object, otherwise they 
are incompatible. 

*'The authors somewhat arbitrarily decided on 
this restricted set of locking protocols for 
the basic investigations. Our planned future 
work will cover a broader class of suggested 
concurrency control methods (see chapter 5). 
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--I-- t means compatible 
r+ - - means incompatible 

x- - 

Fig. 1. Compatibility matrix for the (r,x)-pro- 
toco1 

This last protocol forms the starting point for 
the other two protocols, which both aim to re- 
duce the inhibitions among concurrent transac- 
tions, originating from wait situations due to 
incompatible lock requests. In the (r,x)-proto- 
co1 there are two transaction-states. A trans- 
action is blocked, if it requests an incompatible 
lock. A trmon which is not blocked is 
called active. 

The (r,a,x)-protocol 

This protocol was encouraged by the following 
considerations concerning the processing of an 
isolated transaction backup: Since the effects 
of uncommitted transactions must be erasable in 
the event of failure, the following strategy ob- 
viously improves the efficiency of a backup pro- 
cedure: 

The new value of an object is prepared on a co y, 
+ leaving the valid value unaffected; this vail 

value is kept as a shadow for recovery purposes. 
Furthermore, read access to the shadow can be 
granted to concurrent transactions while the pre- 
paration of a new value on a copy is in progress. 

The (r,a,x)-protocol employs the following lock- 
modes: 

. the r-lock, if read access is intended 

. the a-lock, if the preparation of a new value 
isimd 

e the x-lock, if the prepared new value is ready 
for commit. 

The compatibilities among these lockmodes are de- 
fined below: 

r a x 

rt t - 

t 

at- - 

x - - - 

Fig. 2: Compatibility matrix for (r,a,x)-protocol 

Only at the end of a transaction (EOT), when a 
transaction wants to commit all prepared new ob- 
ject values in one atomic action, read accesses 
to the respective shadow values are prohibited. 
This is achieved as follows: 

Assume, transaction T holds a-locks on objects 
o,+..., 0, and wants to get committed at EOT. 

When all r-locks on O,,O,,...,O, from other 

transactions have been released, the a-locks of 

T on O,,O,,..., 0, are converted into x-locks. 

This conversion can cause certain difficulties 
which will be discussed later (chapter 2.2). 
Thereafter, in accordance to the strict two phase 
property, all locks held by T are atomically re- 
leased, thereby committing T successfully. Addi- 
tional to the transaction-states, blocked and ac- 
tive, a transaction T can also accept the state 
inactive in the (r,a,x)-protocol. Transaction T 
is Inactive, if it is in its conversion phase, 
i.e. from the moment transaction T wants to get 
converted until all locks of T are released. 

The (r,a,c)-protocol 

This protocol succeeded in diminishing the delay 
caused by locking even further. It makes use of 
the fact that for recovery reason there are tem- 
porarily two versions of one object. The basic 
observation concerns the conversion procedure 
from a-locks to x-locks of the (r,a,x)-protocol, 
which delays this process although the new pre- 
pared values are readily available. The (r,a,c)- 
protocol handles the ending of an updating trans- 
action T in the following way at EOT: 

- All a-locks of T are converted into c-locks; a 
c-locked object now has two valid values, the 
shadow value and the new value. This conversion 
step is the actual commit point of a transac- 
tion (for complications introduced by this con- 
version step see chapter 2.2). 

- The c-locks of T are released when the shadows 
are no longer needed for a consistent sched- 
uling of concurrent transactions. 

In [BHR 803 a method is presented to decide which 
value of a c-locked object has to be provided for 
read accesses in order to preserve consistency. 

In summary, the lockmodes of the (r,a,c)-protocol 
are: 

. the r-lock, if read access is desired 

. the 8-lack, if the preparation of a new value 
isiXGid'Zd 

l the c-lock, if the prepared new value is com- 
mittnwever, the shadow is still available 
for read accesses. 

The main advantage of this (r,a,c)-protocol is 
the fact that read requests are never blocked by 
a concurrent update transaction, as can be seen 
from lock compatibilities. Similar to the (r,a,x)- 
protocol the (r,a,c)-protocol has also three dif- 
ferent states of a transaction T. If T requests 
an incompatible lock it is blocked until the lock 
can be granted. If T has successfully converted 
its a-locks into c-locks, but not yet released 
its c-locks, it is called inactive. 

Transactions which are neither blocked nor inac- 
tive are called active. 
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Fig. 3: Compatibility matrix for the (r,a,c)- 
protocol 

2.2. Specification of the Lockmanagers 

In a well-structured DBMS there exists a special 
module called the lockmanager (LM) which is re- 
sponsible for correctly executing the concurren- 
cy control method. For each actually locked ob- 
ject the LM maintains information describing the 
lock state of the particular objects; this lock 
information can be managed in a dynamic fashion. 
The interface operations of the particular LM 
correspond to the allowed lockrequests of the 
employed lockprotocol; the semantics of these 
lock/convert/unlock-operations is specified by 
the lock compatibilities. In addition, in a data- 
base system where locks can be requested dynamic- 
ally (i.e. we don't restrict concurrency control 
to preclaiming of locks at transaction begin), a 
LM must be prepared for handling the well-known 
phenomena of deadlock and starvation. 

The lockmanager LMl,,X): 

The (r,x)-lockprotocol introduces wait relation- 
ships among concurrent transactions, issuing in- 
compatible lockrequests for the same object. 
These wait relationships are retained in a di- 
rected graph G=(W,U) where 

W = (TilTi is a transaction in the DB-system 

(i=1,2,...,n)l; 

U = l(Ti,Tj)ITi waits for T. 

(i,j=1,2 ,.,., i; i*j)); 

This graph G(W,U), called the wait graph, is dy- 
namically maintained by the LMl,,X), when trans- 

actions are blocked due to denied lockrequests or 
activated due to the granting of a so far denied 
lockrequest. In the former case the LMIr Xl has 

to check whether a deadlock situation hag occurred 
(i.e. we test for deadlocks in a dynamic fashion 
and not periodically). Deadlocks are recognized 
by a cycle in the wait graph. If such a deadlock 
situation is detected, this deadlock must be 
broken by backing out one or several transactions; 
the victim transactions have to be restarted. 
This backup and restart procedure in the event of 
deadlocks is subject to another phenomenon known 
as livelock in which two or more transactions re- 
pea-use each other to be backed out and 
restarted.3) 

3)In our simulation livelocks actually occurred. 
Strategies for resolving livelocks are outlined 
in chapter 3.1. 

Though the LM1t,X1 recovers from deadlock, and 

handles livelock, too, it is possible that a 
transaction T is prevented from ever finishing. 
This situation may happen,if an x-lock request 
of T is blocked on an object 0 and there are al- 
ways r-lock requests for 0 from different trans- 
actions granted. This is the well-known problem 
of starvation. 

To avoid starvation for the (r,x)-protocol, the 
LMl,,X1 pursues the following strategy: 

With each locked object the LMC, X1 associates a 

waiting queue of pending (i.e. wiiting or not yet 
served) lockrequests. This queue is served in a 
first-in-first-out manner. Thus, in case an x- 
lock request of T is blocked on an object 0 and 
T' issues an r-lock request on 0 subsequently, 
this lockrequest is not granted immediately, in- 
stead it is queued behind the x-lock request of 
T (and the wait graph is maintained accordingly). 
This strategy ensures that starvation cannot 
occur, however, this has been achieved only by 
restricting the compatibilities as specified in 
Fig. 1. A strategy for selecting a backup victim 
to resolve a deadlock will be given in a summary 
later, because this strategy is identical for all 
three lockmanagers LMIr a X1 and LMII: a o), in 

order to make things cokpirable. 
, , 

The lockmanager LM{., B Xl: 

The (r,a,x)-protocol'l;kewise introduces wait 
relationships among conflicting transactions. 

These relationships are retained again in a (ex- 
tended) wait graph G(W,U). The manipulation of 
G(W,U) by the LMC, a X1 is as follows: 

- Wait relationshiis'due to blocked r-lock or 
a-lock requests are inserted and removed as 
usual. 

- Within the conversion phase: 
Suppose, T holds an a-lock on 0 and wants to 
convert this lock into an x-lock, further there 
exist r-locks of TI,T2,..., T, on 0. Then the 

conversion can only be granted when \,T2,...,Tk 

have released their r-locks on 0. Therefore 
wait relationships from T to T,,T,,...,T, must 

be inserted into G(W,U). If this leads to a 
cycle in G(W,U), then backup victims have to be 
selected. 

The problem of starvation cannot arise when a- 
locks are requested as can be seen from the com- 
patibility matrix in Fig. 2. However, the problem 
has not vanished at all, instead it has been 
shifted to the conversion of a-locks into x-locks. 
Our LM 1r a X) employs the following strategy for 

coping wit; starvation of conversion for a trans- 
action T: 

Having inserted the respective wait relationships ' 
and having tested that no cycle exists in G(W,U), 
we delay further r-lock requests on objects a- 
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locked by transaction T. 

This delay can conceptionally be achieved by 
placing a "delay mark" on the respective objects. 
Practically the same effect is gained by immedi- 
ately converting T's a-locks into x-locks, 
thereby slightly changing the compatibilities as 
specified in Fig. 2. The x-locks are finally 
released when all r-locks on the respective 
shadow values have disappeared. 

It should be recalled that we perform the con- 
version of all a-locks held by a transaction T 
at the very end of T in a single step. Theore- 
tically, a-locks could also be converted sepa- 
ately into x-locks without violating consistency. 
However, our solution has the advantage that the 
LM Cr a xl has to execute the costly cycle de- 

tectio; algorithm only once due to conversion 
of T. 

On the other hand inconsistencies are detected 
at the latest possible moment. 

The lockmanager LMjr a c). 

The synchronization Fe;uirements of the (r,a,c)- 
protocol necessitate the LMrr,a.C1 again to main- 

tain a graph, which is now called a dependence 
graph. Arcs in this graph represent wait rela- 
tionships defined as usual or the so-called 
follow relationships being defined as: 

T.follows Tj if there is an object 0 such that -1 
Ti reads the new value of 0 while Tj holds a c- 

lock on 0 or T. holds a c-lock on 0 while T. 
-1 J 

reads the shadow value of 0. 

For a precise description of the maintenance of 
this dependence graph by the LMIr a C1 the reader 

3 , 
!'s referred to [BHR 801. 

However it remains to emphasize two facts: 

- The conversion of a-locks into c-locks is done 
as last active action at the very end of a 
transaction, only one cycle detection process 
is performed. This means again that inconsist- 
encies are detected at the latest possible 
moment (just before transaction commit). 

- Starvation of conversion is not possible due 
to the lock compatibilities (it either fails 
or can be done immediately). 

Finally we want to summarize the requirements 
which we impose on our three lockmanagers: 

(1) 

(2) 

Each lockmanager reacts in the described way 
when a transaction T requests a lock or an- 
nounces its end (transactions are strict two 
phase). 

The respective graph is maintained in the 
correct way. The method of selecting a back- 
up victim to break a cycle in the graph is 
chosen identically for all three protocols: 
Simply backup and restart that transaction 
which caused the cycle. Strategies for coping 

with livelock are discussed in chapter 3.1. 

3. The Simulation Model 

3.1. The Transaction Processina Model 

The processing of transactions essentially is 
simulated by two functional modules, the trans- 
action manager (TM) and the lockmanager (LM). 

DB-system&y F ,_----- - -----_- -----. 
I 

Fig. 3.1.: The transaction processing model 

The actual LM is one of the previously described 
lockmanagers LMf,,xj, LMIr,a,xls LMI,,a,cl de- 
pending on the emoloyed lockprotocol. In fact, 
the LMs are not sjmulated, instead they are im- 
plemented inxeir full functionality. The TM is 
identical for all three lockprotocols. 

The task of the transaction manager TM is as 
follows: 
The TM supervises the execution of transactions 
which work concurrently in the database system. 
Themaximum concurrency-degree is limited by the 
number n max ’ i.e. at most nmax transactions are 

allowed to be in the database system at a time; 
of course nmax can be varied in different simu- 

lation runs. The TM is in charge of the coordi- 
nation of executing actions of concurrent trans- 
actions. Therefore, it retains also the states 
(active, blocked, inactive) of the particular 
transactions. To enable the execution of an ac- 
tion, the TM sends the appropriate lockrequest, 
which is required by the employed lockprotocol, 
to the LM. The LM decides this lockrequest in 
the specified way and returns an answer to the 
TM, whether this request is granted (then the 
transaction T in question remains active) or T is 
blocked or backed up. 

For well-formed transactions a granted lock is 
the prerequisite for a read or write operation 
on the locked object. However, as our intention 
is to investigate the potential concurrency in- 
herent in the particular lockprotocols, we do not 
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model those parts of the DB-system (access sYs- 
tern, storage subsystem, . ..) which actually Per- 
form the desired operation. 

Since we are only interested in the lockrequest 
pattern of concurrent transactions, we consider 
an action to be executed when the concerning 
lockrequest has been granted by the LM. In this 
way we gain two advantages: 

- 9i9i;;icity4) of the transaction processing 

- Only relevant aspects are included in our mod- 
el; thus the results will not be impaired by 
potential bottlenecks araising at other server 
modules of DB-system and secondly, the results 
can be interpreted more accurately. 

To simulate the concurrent execution of trans- 
actions, the TM serves the particular actions 
in the following interleaved way: Active trans- 
actions in the concurrent working set are served 
in a cyclic manner, one lockrequest at a time. 

Surely there are more refined (and realistic5)) 
scheduling strategies, but, mindful of the varie- 
ty of other simulation parameters discussed later, 
we restricted ourselves to this straightforward 
scheduling strategy. 

During transaction execution the TM further col- 
lects statistic data of interest (see chapter 
3.3). When a transaction T has finished, i.e. T 
has released all its locks at EOT, T exits the 
DB-system. The statistic results of T are kept in 
a statistics module for global evaluation of the 
simulation run. 

Another task of the TM consists in the handling 
of livelocks. The TM is the proper placm 
tect a threatening livelock because the TM has 
available statistic data such as a backup count 
for each individual transaction. 

Our heuristic livelock avoidance strategy works 
as follows: 
If a transaction's backup count exceeds a certain 
limit, the TM removes this particular transaction 
from the concurrent working set and puts it into 
the waiting queue before the system entry (see 
Fig. 3.1.) and, in exchange, takes a different 
waiting transaction (if there is one) into its 
concurrent working set. In this way, the composi- 
tion of the concurrent working set is changed re- 
ducing the probability of livelocks, because it 
is likely that different objects are involved in 
lockrequests (in different modes and different 
sequences). 
The transaction generator (see Fig. 3.1.) prod- 
uces transactions to be processed with a certain 
arrival rate and puts them into the waiting 
queue in front of the system entry to the TM. If 
the concurrency-degree within the TM sinks below 

'IThis means also limitation of the programming 
* effort. 

5)0ur solution assumes equal-priority transac- 
tions and equal processing time for each action. 

the maximum value n the TM removes trans- 
actions from the wa!%g queue and includes them 
into its concurrent working set, if there are 
some transactions in the waiting queue. 

3.2. Generation of a Synthetic Transaction 
Workload 
A transaction Ti is simply modelled by a sequence 

of pairs of the form (object, action mode), the 
action mode is either 'Read' or 'Write': 

T. = 1 [(Oilsami ),-.-s(Oi 
I li 

ami )I, 
i 

ami.E ('Read', 'Write'), 
3 

li is called the transaction length of T.. 

Ti is called a reader, if am. = 'read','l<j:l.. 
1. L 

J 

Ti is called a pure writer, if ami. = 'write', 
..- J lcj-cl - - i’ 

A transaction which is neither a reader nor a 
pure writer is called a writer. 

The problem to be solved now is, in which way do 
we obtain a realistic transaction profile and 
transaction mix to run our simulation. Because 
trace data from existing database systems were 
not available, we had to construct synthetic 
transactions. Again, as nowhere in the literature 
characteristic transaction profiles are described, 
we were forced to construct a probabilistic 
transaction generator with a variety of parame- 
ters such that many practical applications are 
covered by this generation mechanism. 

These parameters are: 

(PAR 1) 

(PAR 2) 

(PAR 3) 

(PAR 4) 

Number of lockable objects 

(01’02”“‘0maxobj)’ 
This corresponds to the notion of lock 
granularity. 

Transaction length t. 
This parameter is a random variable with 
a specific statistical distribution, 
which itself is a parameter of the trans- 
action generator. The expectation of R, 
termed av -9,, indicates what percentage 
of the a a ase is locked on the average a+Ei 
by a transaction. 
Obviously in addition we must take care 
that 1 < maxobj holds for every generated 
transaciion T. 

Ratio between readers and writers. 
This parameter 1s essential to produce 
different and realistic transaction 
mixes. 

Ratio between 'Read'- and 'Write'-actions 
within a writer. 
Due to the incompatibilities among the 
various lockmodes, this parameter is 
likely to influence concurrency of ac- 
cesses very heavily. 
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(PAR 5) Distribution of accesses to the database 
ObJeCtS. 

With this parameter we can model clus- 
tered or dispersed access to the DG-ob- 
jects, it governs the selection of ob- 
jects to be locked by a transaction. As 
a side condition we make sure that no 
duplicate objects are selected for a 
particular transaction. 

3.3. Evaluation of the Simulation Model 

In the literature the judgement of the quality 
of lockprotocols often is given by simple infor- 
mal arguments like 'protocol 1 is better than 
protocol 2 because its lockcompatibilities are 
less restrictive'. Due to this lack of precise 
measures on concurrency and efficiency of lock- 
protocols we had to develop our own evaluation 
model for a quantitative comparison of different 
lockprotocols. 

In general two contrary aspects of lockprotocols 
have to be analysed in order to judge their qual- 
ities: 

(1) How much concurrency and efficiency is en- 
abled by a lockprotocol? 

(2) How much synchronization overhead is neces- 
sary to realize a lockprotocol? 

The purpose of this paper is to give an answer to 
question (l), question (2) which is related to 
the efficiency of a lockmanager, will be investi- 
gated in a forthcoming paper. 

A measure for the potential concurrency enabled 
bv a lockprotocol is the number of simultaneously 
active transactions in the DB-system. Obviously,- 
this measure is heavily influenced by the lock- 
compatibilities. Instead of measuring this quan- 
tity directly, we determined the number of block- 
ing situations which indirectly relates to the 
same property. 

A measure for the efficiency of a lockprotocol is 
the number of transaction backups and, in more 
detail, the number of backed up actions. These 
quantities shall give information about how much 
work gets lost due to the concurrent scheduling 
of transactions and whether a transaction is 
backed up early or late during its course of life. 

Further quantities related to the stated measures 
are given in [LAN 821. 

Summarizing, the measured quantities by which we 
want to evaluate a simulation run are 

(1) the number of blocking situations 

(2) the number of backed out transactions 

(3) the number of actions of a backed out trans- 
action which have to be re-processed. 

Note, that it isssential to measure both quanti- 
ties (2) and (3) separately. There may be situa- 
tions where the number of observed backups for a 
protocol Pl is greater than that for a protocol 

P2 (processing the same workload), but the num- 
ber of actions to be re-processed for I?1 is 
smaller than that for P2. 

4. Simulation Results 

Let us shortly mention some implementation as- 
pects. The functional modules of the simulation 
model are programmed in sequential PASCAL. To 
realize the dynamic simulation process we used 
the event-oriented simulation language SIMPAS 
[BRY 801, which is an extension of ordinary 
PASCAL. In our model we have two events, the 
transactiongenerator filling the transaction 
waiting queue and the TM emptying the same queue. 
The unit of simulation time was chosen virtually 
as a certain number of processed actions. 
The unexpanded source code (which includes all 
three LMs) amounts to about 2000 lines of code. 

The flexibility of a synthetic transaction work- 
load, with its wide spectrum of possible para- 
meter combinations, made it necessary to restrict 
the experiments to a few, but hopefully signifi- 
cant and/or realistic cases. Again we were faced 
with the problem that no reliable informations 
about transaction profiles and mixes in real 
systems are available. Also the problem of an 
appropriate lockgranularity (which is related 
to our parameter maxobj) is not satisfactorily 
answered in literature (see IRS 791). 

The following simulation parameters are fixed 
for all performed experiments: 

- The arrival process of newly generated trans- 
actions is modelled as a Poisson process, the 
arrival rate h is chosen so high that always 
n max transactions are in the concurrent work- 

ing set of the TM (at simulation start nmax 

transactions are generated at a time). 

- PAR 1 is set to maxobj = 100. 
This can be considered as 100 lockable objects 
in the LIB-system, or alternatively, these 100 
objects can be regarded as the highly active 
part of the CB-system (catalog data, access 
path data, . ..) where the conflict rate is most 
significant. 

- The transaction length is uniformly distributed 
in the interval [5,151. Therefore, the average 
transaction length avg-a is 10. Thus every 
transaction locks approximately 10% of the 05. 

- For PAR 5, objects are uniformly selected from 
the objects 01,02,...,0maxobj over the entire 

simulation run. 

- The simulation run is stopped after 300 trans- 
actions have finished. 
This value has been gained by several test runs 
indicating the 300 is a sufficient run length 
in order to produce statistically reliable eval- 
uation results. 

The following experimental results reflect meas- 
ured quantities, which are averages over three 
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s!nulation runs with identical input parameters, 
but different initializations of the employed 
random number generators. 

Basically we performed three different test se- 
ries with the above fixed parameters and with 
changing parameters PAR 3, PAR 4 and nmax. 

Experiment 1 

- PAR 3: only writers are generated (with differ- 
ent percentage of 'read'-actions) 

- PAR 4 varies 

- Concurrency: n 
UlaX 

= 5; (see fig. 4.1.) 

Fig. 4.1.:Relationship between the number of 
blocking situations and the percentage 
of 'read'-actions (within writers) 

Interpretation of results: 
At first we can observe the expected high de- 
pendence of the number of blocking situations on 
the percentage of 'read'-actions within the 
transactions. 

Another point, which should be noted, is that 

- the (r,a,x)- and (r,a,c)-protocol both involve 
significantly fewer blocking situations than 
the (r,x)-protocol, 

- the difference between (r,a,x)- and (r,a,c)- 
protocol is relatively small. 

With a concurrency degree of five simultaneous 
processed transactions there are relatively few 
backed up transactions. Therefore to compare 
LM !r,xl' LM (r,a,xl and LMfr,a,cl also with re- 

spect to the number of backed up transactions 
n max is doubled in the next experiment. 

EXDeritWnt 2 

- PAR 3: only writers are generated 

- PAR 4 varies 

- Concurrency: n = 10. 

I m. xn Th w. xs am ?&I & & pl.g 

Fig. 4.2.: Relationship between the number of 
blocking situations and the percent- 
age of 'read'-actions 

yoo . . 

Fig. 4.3.: Relationship between the number of 
backed up transactions and the per- 
centage of 'read'-actions 

Interpretation of results: 
Fig. 4.2. which shows the number of blocking si- 
tuations depending on the percentage of 'read'- 
actions within the transactions is very similar 
to the results of the corresponding Fig. 4.1. 

If we also consider the number of backed up 
transactions (Fig. 4.3.) it can be seen that the 
(r,a,x)-protocol backs up fewer transactions 
than the (r,x)-protocol. To our surprise the 
(r,a,c)-protocol causes by far the most backups 
on the whole. 

On the other hand, if we look at the number of 
actions which have to be reprocessed because of 
the backed up transactions, we observe (Fig.4.4.) 
that the application of the (r,a,x)- or (r,a,c)- 
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protocol require more actions to be reprocessed 
than the (r,x)-protocol. The results in Fig. 4.3. 
and 4.4. were unexpected, because our intuition 
(and that of the designers of the (r,a,c)- pro- 
tocol) was that the improved lock compatibili- 
ties of the (r,a,c)-protocol would lead to a 
reduction of the conflict rate among concurrent 
transactions and this should result in a re- 
duced number of backups. But this feeling proved 
incorrect for special workloads as demonstrated 
above. 

In summary it is now obvious that the (r,x)-pro- 
tocol backs up the transactions earlier during 
their course of life opposite to the (r,a,x)- 
and (r,a,c)-protocols which resolve most con- 
flicts at the very end of a transaction. 

Fig. 4.4.: Relationship between the number of 
backed up actions and the percentage 
of 'read'-actions. 

Experiment 3 

- PAR 3 varies 

- PAR 4: only pure writers are generated 

- Concurrency: n max = 10 transactions; 

In experiment 3 we regard an important class of 
transactions, namely the readers, which is fa- 
vored by the application of the (r,a,c)-protocol 
because of the compatibility of the lockmodes. 
Therefore we distinguish the transactions which 
are generated into readers and pure writers. The 
obtained results are represented in Fig. 4.5., 
Fig. 4.6. and Fig. 4.7. 

Fig. 4.5.: Relationship between the number of 
blocking situations and the percentage 
of readers within generated trans- 
actions. 

Fig. 4.6.: Relationship between the number of 
backed up transactions and the per- 
centage of readers 

Interpretation of the results: 
Concerning the number of blocking situations 
(Fig. 4.5.) we receive a similar result as in 
Fig. 4.1. and Fig. 4.2. The correspondence with 
the result of experiment 2 is realistic, because 
in both experiments the same set of 'read'- and 
'write'-actions must be processed only different- 
ly distributed on the transactions. 

The property of the (r,a,c)-protocol never to 
back up a reader [BHR 801 involves that we now 
have the fewest backed up transactions using this 
protocol (see Fig. 4.6.). Also with the applica- 
tion of (r,a,x)-protocol the number of backed up 
transactions is reduced considerably compared to 
the experiment 2. Only if we use the traditional 
(r,x)-protocol we have the same number of backed 
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up transactions like in experiment 2. This means 
that the (r,x)-protocol does not favor a situa- 
tion where transactions are distinguished into 
readers and writers. 

Regarding also Fig. 4.7. we can conclude that a 
distinction of created transactions into readers 
and writers favors the application of the 
(r,a,x)- or (r,a,c)-protocol. 

- 
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Fig. 4.7.: Relationship between the number of 
backed up actions and the percentage 
of readers. 

As an alternative representation, we now show the 
relative relationship of blocking situations be- 
tween (r,x)- and (r,a,x)-protocol and between 
(r,x)- and (r,a,c)-protocol. 

r wx’ 
t 
a% 

E 

Fig. 4.8.: Relationship between the percentage 
of blocking situations and the per- 
centage of readers. 

From this result we derive the following rule of 
thumb: 

With the application of the (r,a,x)- or (r,a,c)- 
protocol 

x% readers involves about x% less blocking 
C situations 

respectively 

x% 'read'-actions (within the writers) in- 
volves about 

,x% less blocking situations. 

5. Summary and Future Work 

Summarizing the observations from our few basic 
experiments we come to the following conclusions: 

The number of blocking situations is considerably 
reduced by both the (r,a,x)- and the (r,a,c)-pro- 
tocol compared to the traditional (r,x)-protocol. 
Although the (r,a,c)-protocol exhibits the best 
behavior concerning blocking situations, the 
difference to the (r,a,x)-protocol is relatively 
small; this proposition also carries over to the 
average number of blocked transaction. 

In general we recommend the application of the 
(r,a,c)- protocol for transaction mixes which 
allow a distinction of transactions into readers 
and (pure) writers. In special applications, 
where such a separation does not exist and where 
the percentage of write-operations is very high, 
the increased backup probability and lost work of 
the (r,a,x)- and (r,a,c)-protocol may cause trou- 
bles. As this phenomenon is caused by the fact, 
that inconsistency checks are done only at the 
latest possible moment (in order to minimize the 
cycle searching overhead), it would be promising 
to make inconsistency checks earlier increasing 
the overhead for cycle detection. However, to 
overcome this overhead without significant impact 
on concurrency the method of dynamic timestamps 
can be applied which replaces the costly cycle 
detection ([BEHR 821). 

Evidently our results should be verified by real 
transaction profiles and workloads. As these are 
commonly not available by now, it is highly de- 
sirable that existent DB-systems are benchmarked 
to get the required data. 

Our planned future work on lockprotocol evalua- 
ion is as follows: 

The next step is to complete the present investi- 
gations by a comparison of the synchronization 
;;erhead required by the LMlr,Xl, LM1r,a,Xl and 

fr,a,cl' 
including also the dynamic timestamp 

method from [BEHR 821 and static timestamp methods 
as described in [RSL 781. Furthermore, these lock- 
protocols will be compared to optimistic concur- 
rency control methods as suggested in [KR 791. 
Finally, extensions of these one-level lockproto- 
cols to hierarchical lockprotocols as discussed 
in [GLPT 761 and [BAY 761 should be evaluated, 
with a special attention to gain reliable results 
with respect to an optimal lockgranularity. 

Most 0-f these planned investigations are assumed 
to require only slight modifications of the ex- 
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isting basic simulation model. The goal of these 
activities is to finally get a reliable assess- 
ment and selection procedure for a suitable lock- 
protocol given a specific transaction workload. 
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