
A QUANTITATIVE COMPARISON OF LOCKPROTOCOLS

FOR CENTRALIZED DATABASES

W. Kiessling, G. Landherr

Institute of Informatics, Technical University Munich

Arcisstrasse 21, D-8000 MUnchen 2, West-Germany

Abstract: To process transactions of several
users concurrently and consistently in a shared
database various lockprotocols have been de-
veloped recently. Though the need for a quanti-
tative analysis of lockprotocols is rather ob-
vious, this work has not yet been fully per-
formed for centralized database systems. As data-
base applications in the near future tend to
have very high transaction rates, such quantita-
tive investigation on the quality of lockproto-
cols will become increasingly valuable.

The paper evaluates three well-know lockproto-
cols by discrete-event simulation. We represent
and discuss the results which we have gained in
the simulation runs.

Contents

1. Introduction

2. Description of three Well-known Lock-
protocols for a Centralized Database
Management System:
(r,x)-, (r,a,x)- and (r,a,c)-Protocol

2.1. Lockmodes and Compatibilities
2.2. Specification of the Lockmanagers

3. The Simulation Model

3.1. The Transaction Processing Model
3.2. Generation of a Synthetic Trans-

action Workload
3.3. Evaluation of the Simulation Model

4. Simulation Results

5. Summary and Future Work

6. References

1. Introduction

To process transactions of several users con-
currently and consistently in a shared database
various lockprotocols have been developed re-
cently. These lockprotocols hopefully increase
the systems's efficiency by providing a high de-
gree of concurrency among executing transactions.
However, in raising the ootential concurrency we
also increase the involved synchronization ef-
fort to enforce the underlying lockprotocol.
Therefore it is essential to make a tradeoff be-
tween potential efficiency gains by increased
concurrency and the involved synchronization
overhead when selecting a particular lockproto-
col. In this paper we analyse three lockproto-
cols for centralized databases as presented in
[EGLT 761, [BAY 761 and [BHR 801. Though the
need for a quantitative analysis of lockprotocols
is rather obvious, this work has mostly been done
only for distributed databases, where different
optimization criteria are applied (see e.g.
[BAD 801).

For database applications in the near future
high-performance database management systems are
required, providing a transaction throughput in
the order of about 100 transactions per second
(as opposed to 1-15 transactions/set for existent
systems). Thus quantitative investigations con-
cerning the quality of lockprotocols will become
increasingly valuable also for centralized data-
bases.

Most analysis techniques for distributed lockpro-
tocols presented in the literature rely on ana-
lytical models. But as the subject of concurrency
evaluation is rather complicated, often many sim-
plifying assumptions are stated in order to get a
still analytically tractable model. However, as
we do not want to restrict our investigations by
assumptions which are too restrictive, like pre-
claiming of locks ([PL 803, [MN 821), we devel-
oped a discrete-event simulation model, which is
more flexible and will presumably produce more
reliable results.

Terms:

We consider a database consisting of a set of ob-
,jects. The DB-system provides operations each F

120

which manipulates one or more objects. The exe-
cution of an operation on an object is called an
action. Actions are uninterpreted, we only dis-
tinguish read-access and write-access.

In order to efficiently supervise the correctness
of data, which are stored in a shared database
and which are subject to instantaneous changes,
the logical concept of a transaction has been
developed.

A transaction ') T is a finite sequence of ac-
tions, exhibiting an atomic behavior (often also
called 'all-or-nothing' property): Either all ac-
tions of T are executed or T has no effect at
all on the database state. In the first case, T
is said to be successfully committed, in the la-
ter one, T is said to be backed out. In many
practical applications efficiency requirements,
such as high transaction rates and short response
time, enforce that a set of transactions is pro-
cessed cocurrently on a shared database.

Consistency deals with the correct processing of
concurrent transactions. Various stases of cor-
rect concurrent behavior, termed consistency
levels 0, 1, 2 and 3, have been identified in
[GLPT 761. In this oaoer we onlv deal with dearee
3 consistency, sometimes also called serial-
bility.
The concurrent execution of a set ITI,TZ,...,T1l]

of transactions is serializable, if T,,T,,...,T n
oroduces the same effect on the database state as
some serial execution (Tp(l),Tp(2),...,Tp(n~],

where p: (l,Z,...,n] + (i,2,..,,n] is a permuta-
tion.

To achieve consistency, the interleaved execu-
tion of concurrent transactions must be properly
synchronized, i.e. the particular actions of
these concurrent transactions must be scheduled
in a way that guarantees the serializability-
criterion. The usual method to achieve this is

F*
A set of rules for requesting and re-

easing locks defines a lockprotocol.

In the sequel the term consistency will be used
as a synonym for serializability. A transaction
is termed well-formed, if it requests an appro-
priate lock on an object before it performs the
intended action on this object.
In [EGLT 761 the notion of two phase transac-
tions is introduced. A transaction is two phase,
m can be divided into a growing and a shrink-
ing phase. During the growing phase the trans-
action may request locks but must not release
locks. Inversely, during the shrinking phase it
may release locks but not request locks. Well-
formed two phase transactions are shown to pre-
serve consistency.

If a transaction T has to be backed out, it
might be necessary'to back out another transac-
tion T,, too, since T, has read a value of an

')A formal model is presented in [GRA 803.

object which has been generated by T . A cas-
cade of backups may become necessary,'being espe-
cially troublesome for already committed trans-
actions. We avoid cascading by allowing only
strict two phase transactions.

A transaction is strict two phase, if it is two
phase and in addition its shrinking phase com-
prises only one indivisible action, i.e. the
transaction must hold all its locks until its
very end. Then all its locks are released with a
single atomic action. Strict two phase trans-
actions allow the isolated backup of an uncom-
mitted transaction. This paper deals with three
well-known lot protocols
base t

for centralized data-
systems.* They all employ the concept of

well-formed and strict two phase transactions.

2. Description of three Well-known Lockprotocols
for a Centralized DBMS () : r,x -, (r,a,x - an
(r,a,c)-Protocol

For concurrency control by locking, three basic
lockprotocols are known in a centralized data-
base:

(a) The (r,x)-protocol, presented in [EGLT 761.

(b) The (r,a,x)-protocol, presented in [BAY 761.

(c) The (r,a,c)-protocol, presented in IBHR 801.

In this paper we will give an overview about
these synchronization methods; for a more precise
description the interested reader is referred to
the above stated references.

2.1. Lockmodes and Compatibilities

The (r,x)-protocol

This protocol disposes of two lockmodes which can
be requested on an object, namely:

l the r-lock, if read access is intended
. the x-lock, if write access is intended.

The r-lock on a particular object protects it
from concurrent updates, several r-locks may co-
exist on it. The x-lock provides exclusive ac-
cess to an object. Thus, if a transaction T
issuesanx-lock request for an object which is
already r-locked, this request has to be denied
and T must wait. Likewise, r-locks and x-locks on
an already x-locked object must not be granted
and have to be deferred. From this semantics of
r-locks and x-locks we can derive compatibilities
between lockmodes.

Two lockmodes are said to be compatible, if they
can coexist on the same object, otherwise they
are incompatible.

*'The authors somewhat arbitrarily decided on
this restricted set of locking protocols for
the basic investigations. Our planned future
work will cover a broader class of suggested
concurrency control methods (see chapter 5).

121

--I-- t means compatible
r+ - - means incompatible

x- -

Fig. 1. Compatibility matrix for the (r,x)-pro-
toco1

This last protocol forms the starting point for
the other two protocols, which both aim to re-
duce the inhibitions among concurrent transac-
tions, originating from wait situations due to
incompatible lock requests. In the (r,x)-proto-
co1 there are two transaction-states. A trans-
action is blocked, if it requests an incompatible
lock. A trmon which is not blocked is
called active.

The (r,a,x)-protocol

This protocol was encouraged by the following
considerations concerning the processing of an
isolated transaction backup: Since the effects
of uncommitted transactions must be erasable in
the event of failure, the following strategy ob-
viously improves the efficiency of a backup pro-
cedure:

The new value of an object is prepared on a co y,
+ leaving the valid value unaffected; this vail

value is kept as a shadow for recovery purposes.
Furthermore, read access to the shadow can be
granted to concurrent transactions while the pre-
paration of a new value on a copy is in progress.

The (r,a,x)-protocol employs the following lock-
modes:

. the r-lock, if read access is intended

. the a-lock, if the preparation of a new value
isimd

e the x-lock, if the prepared new value is ready
for commit.

The compatibilities among these lockmodes are de-
fined below:

r a x

rt t -

t

at- -

x - - -

Fig. 2: Compatibility matrix for (r,a,x)-protocol

Only at the end of a transaction (EOT), when a
transaction wants to commit all prepared new ob-
ject values in one atomic action, read accesses
to the respective shadow values are prohibited.
This is achieved as follows:

Assume, transaction T holds a-locks on objects
o,+..., 0, and wants to get committed at EOT.

When all r-locks on O,,O,,...,O, from other

transactions have been released, the a-locks of

T on O,,O,,..., 0, are converted into x-locks.

This conversion can cause certain difficulties
which will be discussed later (chapter 2.2).
Thereafter, in accordance to the strict two phase
property, all locks held by T are atomically re-
leased, thereby committing T successfully. Addi-
tional to the transaction-states, blocked and ac-
tive, a transaction T can also accept the state
inactive in the (r,a,x)-protocol. Transaction T
is Inactive, if it is in its conversion phase,
i.e. from the moment transaction T wants to get
converted until all locks of T are released.

The (r,a,c)-protocol

This protocol succeeded in diminishing the delay
caused by locking even further. It makes use of
the fact that for recovery reason there are tem-
porarily two versions of one object. The basic
observation concerns the conversion procedure
from a-locks to x-locks of the (r,a,x)-protocol,
which delays this process although the new pre-
pared values are readily available. The (r,a,c)-
protocol handles the ending of an updating trans-
action T in the following way at EOT:

- All a-locks of T are converted into c-locks; a
c-locked object now has two valid values, the
shadow value and the new value. This conversion
step is the actual commit point of a transac-
tion (for complications introduced by this con-
version step see chapter 2.2).

- The c-locks of T are released when the shadows
are no longer needed for a consistent sched-
uling of concurrent transactions.

In [BHR 803 a method is presented to decide which
value of a c-locked object has to be provided for
read accesses in order to preserve consistency.

In summary, the lockmodes of the (r,a,c)-protocol
are:

. the r-lock, if read access is desired

. the 8-lack, if the preparation of a new value
isiXGid'Zd

l the c-lock, if the prepared new value is com-
mittnwever, the shadow is still available
for read accesses.

The main advantage of this (r,a,c)-protocol is
the fact that read requests are never blocked by
a concurrent update transaction, as can be seen
from lock compatibilities. Similar to the (r,a,x)-
protocol the (r,a,c)-protocol has also three dif-
ferent states of a transaction T. If T requests
an incompatible lock it is blocked until the lock
can be granted. If T has successfully converted
its a-locks into c-locks, but not yet released
its c-locks, it is called inactive.

Transactions which are neither blocked nor inac-
tive are called active.

122

jr a c

r + t t

a t - -

c t - -
1

Fig. 3: Compatibility matrix for the (r,a,c)-
protocol

2.2. Specification of the Lockmanagers

In a well-structured DBMS there exists a special
module called the lockmanager (LM) which is re-
sponsible for correctly executing the concurren-
cy control method. For each actually locked ob-
ject the LM maintains information describing the
lock state of the particular objects; this lock
information can be managed in a dynamic fashion.
The interface operations of the particular LM
correspond to the allowed lockrequests of the
employed lockprotocol; the semantics of these
lock/convert/unlock-operations is specified by
the lock compatibilities. In addition, in a data-
base system where locks can be requested dynamic-
ally (i.e. we don't restrict concurrency control
to preclaiming of locks at transaction begin), a
LM must be prepared for handling the well-known
phenomena of deadlock and starvation.

The lockmanager LMl,,X):

The (r,x)-lockprotocol introduces wait relation-
ships among concurrent transactions, issuing in-
compatible lockrequests for the same object.
These wait relationships are retained in a di-
rected graph G=(W,U) where

W = (TilTi is a transaction in the DB-system

(i=1,2,...,n)l;

U = l(Ti,Tj)ITi waits for T.

(i,j=1,2 ,.,., i; i*j));

This graph G(W,U), called the wait graph, is dy-
namically maintained by the LMl,,X), when trans-

actions are blocked due to denied lockrequests or
activated due to the granting of a so far denied
lockrequest. In the former case the LMIr Xl has

to check whether a deadlock situation hag occurred
(i.e. we test for deadlocks in a dynamic fashion
and not periodically). Deadlocks are recognized
by a cycle in the wait graph. If such a deadlock
situation is detected, this deadlock must be
broken by backing out one or several transactions;
the victim transactions have to be restarted.
This backup and restart procedure in the event of
deadlocks is subject to another phenomenon known
as livelock in which two or more transactions re-
pea-use each other to be backed out and
restarted.3)

3)In our simulation livelocks actually occurred.
Strategies for resolving livelocks are outlined
in chapter 3.1.

Though the LM1t,X1 recovers from deadlock, and

handles livelock, too, it is possible that a
transaction T is prevented from ever finishing.
This situation may happen,if an x-lock request
of T is blocked on an object 0 and there are al-
ways r-lock requests for 0 from different trans-
actions granted. This is the well-known problem
of starvation.

To avoid starvation for the (r,x)-protocol, the
LMl,,X1 pursues the following strategy:

With each locked object the LMC, X1 associates a

waiting queue of pending (i.e. wiiting or not yet
served) lockrequests. This queue is served in a
first-in-first-out manner. Thus, in case an x-
lock request of T is blocked on an object 0 and
T' issues an r-lock request on 0 subsequently,
this lockrequest is not granted immediately, in-
stead it is queued behind the x-lock request of
T (and the wait graph is maintained accordingly).
This strategy ensures that starvation cannot
occur, however, this has been achieved only by
restricting the compatibilities as specified in
Fig. 1. A strategy for selecting a backup victim
to resolve a deadlock will be given in a summary
later, because this strategy is identical for all
three lockmanagers LMIr a X1 and LMII: a o), in

order to make things cokpirable.
, ,

The lockmanager LM{., B Xl:

The (r,a,x)-protocol'l;kewise introduces wait
relationships among conflicting transactions.

These relationships are retained again in a (ex-
tended) wait graph G(W,U). The manipulation of
G(W,U) by the LMC, a X1 is as follows:

- Wait relationshiis'due to blocked r-lock or
a-lock requests are inserted and removed as
usual.

- Within the conversion phase:
Suppose, T holds an a-lock on 0 and wants to
convert this lock into an x-lock, further there
exist r-locks of TI,T2,..., T, on 0. Then the

conversion can only be granted when \,T2,...,Tk

have released their r-locks on 0. Therefore
wait relationships from T to T,,T,,...,T, must

be inserted into G(W,U). If this leads to a
cycle in G(W,U), then backup victims have to be
selected.

The problem of starvation cannot arise when a-
locks are requested as can be seen from the com-
patibility matrix in Fig. 2. However, the problem
has not vanished at all, instead it has been
shifted to the conversion of a-locks into x-locks.
Our LM 1r a X) employs the following strategy for

coping wit; starvation of conversion for a trans-
action T:

Having inserted the respective wait relationships '
and having tested that no cycle exists in G(W,U),
we delay further r-lock requests on objects a-

123

locked by transaction T.

This delay can conceptionally be achieved by
placing a "delay mark" on the respective objects.
Practically the same effect is gained by immedi-
ately converting T's a-locks into x-locks,
thereby slightly changing the compatibilities as
specified in Fig. 2. The x-locks are finally
released when all r-locks on the respective
shadow values have disappeared.

It should be recalled that we perform the con-
version of all a-locks held by a transaction T
at the very end of T in a single step. Theore-
tically, a-locks could also be converted sepa-
ately into x-locks without violating consistency.
However, our solution has the advantage that the
LM Cr a xl has to execute the costly cycle de-

tectio; algorithm only once due to conversion
of T.

On the other hand inconsistencies are detected
at the latest possible moment.

The lockmanager LMjr a c).

The synchronization Fe;uirements of the (r,a,c)-
protocol necessitate the LMrr,a.C1 again to main-

tain a graph, which is now called a dependence
graph. Arcs in this graph represent wait rela-
tionships defined as usual or the so-called
follow relationships being defined as:

T.follows Tj if there is an object 0 such that -1
Ti reads the new value of 0 while Tj holds a c-

lock on 0 or T. holds a c-lock on 0 while T.
-1 J

reads the shadow value of 0.

For a precise description of the maintenance of
this dependence graph by the LMIr a C1 the reader

3 ,
!'s referred to [BHR 801.

However it remains to emphasize two facts:

- The conversion of a-locks into c-locks is done
as last active action at the very end of a
transaction, only one cycle detection process
is performed. This means again that inconsist-
encies are detected at the latest possible
moment (just before transaction commit).

- Starvation of conversion is not possible due
to the lock compatibilities (it either fails
or can be done immediately).

Finally we want to summarize the requirements
which we impose on our three lockmanagers:

(1)

(2)

Each lockmanager reacts in the described way
when a transaction T requests a lock or an-
nounces its end (transactions are strict two
phase).

The respective graph is maintained in the
correct way. The method of selecting a back-
up victim to break a cycle in the graph is
chosen identically for all three protocols:
Simply backup and restart that transaction
which caused the cycle. Strategies for coping

with livelock are discussed in chapter 3.1.

3. The Simulation Model

3.1. The Transaction Processina Model

The processing of transactions essentially is
simulated by two functional modules, the trans-
action manager (TM) and the lockmanager (LM).

DB-system&y F ,_----- - -----_- -----.
I

Fig. 3.1.: The transaction processing model

The actual LM is one of the previously described
lockmanagers LMf,,xj, LMIr,a,xls LMI,,a,cl de-
pending on the emoloyed lockprotocol. In fact,
the LMs are not sjmulated, instead they are im-
plemented inxeir full functionality. The TM is
identical for all three lockprotocols.

The task of the transaction manager TM is as
follows:
The TM supervises the execution of transactions
which work concurrently in the database system.
Themaximum concurrency-degree is limited by the
number n max ’ i.e. at most nmax transactions are

allowed to be in the database system at a time;
of course nmax can be varied in different simu-

lation runs. The TM is in charge of the coordi-
nation of executing actions of concurrent trans-
actions. Therefore, it retains also the states
(active, blocked, inactive) of the particular
transactions. To enable the execution of an ac-
tion, the TM sends the appropriate lockrequest,
which is required by the employed lockprotocol,
to the LM. The LM decides this lockrequest in
the specified way and returns an answer to the
TM, whether this request is granted (then the
transaction T in question remains active) or T is
blocked or backed up.

For well-formed transactions a granted lock is
the prerequisite for a read or write operation
on the locked object. However, as our intention
is to investigate the potential concurrency in-
herent in the particular lockprotocols, we do not

124

model those parts of the DB-system (access sYs-
tern, storage subsystem, . ..) which actually Per-
form the desired operation.

Since we are only interested in the lockrequest
pattern of concurrent transactions, we consider
an action to be executed when the concerning
lockrequest has been granted by the LM. In this
way we gain two advantages:

- 9i9i;;icity4) of the transaction processing

- Only relevant aspects are included in our mod-
el; thus the results will not be impaired by
potential bottlenecks araising at other server
modules of DB-system and secondly, the results
can be interpreted more accurately.

To simulate the concurrent execution of trans-
actions, the TM serves the particular actions
in the following interleaved way: Active trans-
actions in the concurrent working set are served
in a cyclic manner, one lockrequest at a time.

Surely there are more refined (and realistic5))
scheduling strategies, but, mindful of the varie-
ty of other simulation parameters discussed later,
we restricted ourselves to this straightforward
scheduling strategy.

During transaction execution the TM further col-
lects statistic data of interest (see chapter
3.3). When a transaction T has finished, i.e. T
has released all its locks at EOT, T exits the
DB-system. The statistic results of T are kept in
a statistics module for global evaluation of the
simulation run.

Another task of the TM consists in the handling
of livelocks. The TM is the proper placm
tect a threatening livelock because the TM has
available statistic data such as a backup count
for each individual transaction.

Our heuristic livelock avoidance strategy works
as follows:
If a transaction's backup count exceeds a certain
limit, the TM removes this particular transaction
from the concurrent working set and puts it into
the waiting queue before the system entry (see
Fig. 3.1.) and, in exchange, takes a different
waiting transaction (if there is one) into its
concurrent working set. In this way, the composi-
tion of the concurrent working set is changed re-
ducing the probability of livelocks, because it
is likely that different objects are involved in
lockrequests (in different modes and different
sequences).
The transaction generator (see Fig. 3.1.) prod-
uces transactions to be processed with a certain
arrival rate and puts them into the waiting
queue in front of the system entry to the TM. If
the concurrency-degree within the TM sinks below

'IThis means also limitation of the programming
* effort.

5)0ur solution assumes equal-priority transac-
tions and equal processing time for each action.

the maximum value n the TM removes trans-
actions from the wa!%g queue and includes them
into its concurrent working set, if there are
some transactions in the waiting queue.

3.2. Generation of a Synthetic Transaction
Workload
A transaction Ti is simply modelled by a sequence

of pairs of the form (object, action mode), the
action mode is either 'Read' or 'Write':

T. = 1 [(Oilsami),-.-s(Oi
I li

ami)I,
i

ami.E ('Read', 'Write'),
3

li is called the transaction length of T..

Ti is called a reader, if am. = 'read','l<j:l..
1. L

J

Ti is called a pure writer, if ami. = 'write',
..- J lcj-cl - - i’

A transaction which is neither a reader nor a
pure writer is called a writer.

The problem to be solved now is, in which way do
we obtain a realistic transaction profile and
transaction mix to run our simulation. Because
trace data from existing database systems were
not available, we had to construct synthetic
transactions. Again, as nowhere in the literature
characteristic transaction profiles are described,
we were forced to construct a probabilistic
transaction generator with a variety of parame-
ters such that many practical applications are
covered by this generation mechanism.

These parameters are:

(PAR 1)

(PAR 2)

(PAR 3)

(PAR 4)

Number of lockable objects

(01’02”“‘0maxobj)’
This corresponds to the notion of lock
granularity.

Transaction length t.
This parameter is a random variable with
a specific statistical distribution,
which itself is a parameter of the trans-
action generator. The expectation of R,
termed av -9,, indicates what percentage
of the a a ase is locked on the average a+Ei
by a transaction.
Obviously in addition we must take care
that 1 < maxobj holds for every generated
transaciion T.

Ratio between readers and writers.
This parameter 1s essential to produce
different and realistic transaction
mixes.

Ratio between 'Read'- and 'Write'-actions
within a writer.
Due to the incompatibilities among the
various lockmodes, this parameter is
likely to influence concurrency of ac-
cesses very heavily.

125

(PAR 5) Distribution of accesses to the database
ObJeCtS.

With this parameter we can model clus-
tered or dispersed access to the DG-ob-
jects, it governs the selection of ob-
jects to be locked by a transaction. As
a side condition we make sure that no
duplicate objects are selected for a
particular transaction.

3.3. Evaluation of the Simulation Model

In the literature the judgement of the quality
of lockprotocols often is given by simple infor-
mal arguments like 'protocol 1 is better than
protocol 2 because its lockcompatibilities are
less restrictive'. Due to this lack of precise
measures on concurrency and efficiency of lock-
protocols we had to develop our own evaluation
model for a quantitative comparison of different
lockprotocols.

In general two contrary aspects of lockprotocols
have to be analysed in order to judge their qual-
ities:

(1) How much concurrency and efficiency is en-
abled by a lockprotocol?

(2) How much synchronization overhead is neces-
sary to realize a lockprotocol?

The purpose of this paper is to give an answer to
question (l), question (2) which is related to
the efficiency of a lockmanager, will be investi-
gated in a forthcoming paper.

A measure for the potential concurrency enabled
bv a lockprotocol is the number of simultaneously
active transactions in the DB-system. Obviously,-
this measure is heavily influenced by the lock-
compatibilities. Instead of measuring this quan-
tity directly, we determined the number of block-
ing situations which indirectly relates to the
same property.

A measure for the efficiency of a lockprotocol is
the number of transaction backups and, in more
detail, the number of backed up actions. These
quantities shall give information about how much
work gets lost due to the concurrent scheduling
of transactions and whether a transaction is
backed up early or late during its course of life.

Further quantities related to the stated measures
are given in [LAN 821.

Summarizing, the measured quantities by which we
want to evaluate a simulation run are

(1) the number of blocking situations

(2) the number of backed out transactions

(3) the number of actions of a backed out trans-
action which have to be re-processed.

Note, that it isssential to measure both quanti-
ties (2) and (3) separately. There may be situa-
tions where the number of observed backups for a
protocol Pl is greater than that for a protocol

P2 (processing the same workload), but the num-
ber of actions to be re-processed for I?1 is
smaller than that for P2.

4. Simulation Results

Let us shortly mention some implementation as-
pects. The functional modules of the simulation
model are programmed in sequential PASCAL. To
realize the dynamic simulation process we used
the event-oriented simulation language SIMPAS
[BRY 801, which is an extension of ordinary
PASCAL. In our model we have two events, the
transactiongenerator filling the transaction
waiting queue and the TM emptying the same queue.
The unit of simulation time was chosen virtually
as a certain number of processed actions.
The unexpanded source code (which includes all
three LMs) amounts to about 2000 lines of code.

The flexibility of a synthetic transaction work-
load, with its wide spectrum of possible para-
meter combinations, made it necessary to restrict
the experiments to a few, but hopefully signifi-
cant and/or realistic cases. Again we were faced
with the problem that no reliable informations
about transaction profiles and mixes in real
systems are available. Also the problem of an
appropriate lockgranularity (which is related
to our parameter maxobj) is not satisfactorily
answered in literature (see IRS 791).

The following simulation parameters are fixed
for all performed experiments:

- The arrival process of newly generated trans-
actions is modelled as a Poisson process, the
arrival rate h is chosen so high that always
n max transactions are in the concurrent work-

ing set of the TM (at simulation start nmax

transactions are generated at a time).

- PAR 1 is set to maxobj = 100.
This can be considered as 100 lockable objects
in the LIB-system, or alternatively, these 100
objects can be regarded as the highly active
part of the CB-system (catalog data, access
path data, . ..) where the conflict rate is most
significant.

- The transaction length is uniformly distributed
in the interval [5,151. Therefore, the average
transaction length avg-a is 10. Thus every
transaction locks approximately 10% of the 05.

- For PAR 5, objects are uniformly selected from
the objects 01,02,...,0maxobj over the entire

simulation run.

- The simulation run is stopped after 300 trans-
actions have finished.
This value has been gained by several test runs
indicating the 300 is a sufficient run length
in order to produce statistically reliable eval-
uation results.

The following experimental results reflect meas-
ured quantities, which are averages over three

126

s!nulation runs with identical input parameters,
but different initializations of the employed
random number generators.

Basically we performed three different test se-
ries with the above fixed parameters and with
changing parameters PAR 3, PAR 4 and nmax.

Experiment 1

- PAR 3: only writers are generated (with differ-
ent percentage of 'read'-actions)

- PAR 4 varies

- Concurrency: n
UlaX

= 5; (see fig. 4.1.)

Fig. 4.1.:Relationship between the number of
blocking situations and the percentage
of 'read'-actions (within writers)

Interpretation of results:
At first we can observe the expected high de-
pendence of the number of blocking situations on
the percentage of 'read'-actions within the
transactions.

Another point, which should be noted, is that

- the (r,a,x)- and (r,a,c)-protocol both involve
significantly fewer blocking situations than
the (r,x)-protocol,

- the difference between (r,a,x)- and (r,a,c)-
protocol is relatively small.

With a concurrency degree of five simultaneous
processed transactions there are relatively few
backed up transactions. Therefore to compare
LM !r,xl' LM (r,a,xl and LMfr,a,cl also with re-

spect to the number of backed up transactions
n max is doubled in the next experiment.

EXDeritWnt 2

- PAR 3: only writers are generated

- PAR 4 varies

- Concurrency: n = 10.

I m. xn Th w. xs am ?&I & & pl.g

Fig. 4.2.: Relationship between the number of
blocking situations and the percent-
age of 'read'-actions

yoo . .

Fig. 4.3.: Relationship between the number of
backed up transactions and the per-
centage of 'read'-actions

Interpretation of results:
Fig. 4.2. which shows the number of blocking si-
tuations depending on the percentage of 'read'-
actions within the transactions is very similar
to the results of the corresponding Fig. 4.1.

If we also consider the number of backed up
transactions (Fig. 4.3.) it can be seen that the
(r,a,x)-protocol backs up fewer transactions
than the (r,x)-protocol. To our surprise the
(r,a,c)-protocol causes by far the most backups
on the whole.

On the other hand, if we look at the number of
actions which have to be reprocessed because of
the backed up transactions, we observe (Fig.4.4.)
that the application of the (r,a,x)- or (r,a,c)-

127

W. Kiessling, G. Landherr

protocol require more actions to be reprocessed
than the (r,x)-protocol. The results in Fig. 4.3.
and 4.4. were unexpected, because our intuition
(and that of the designers of the (r,a,c)- pro-
tocol) was that the improved lock compatibili-
ties of the (r,a,c)-protocol would lead to a
reduction of the conflict rate among concurrent
transactions and this should result in a re-
duced number of backups. But this feeling proved
incorrect for special workloads as demonstrated
above.

In summary it is now obvious that the (r,x)-pro-
tocol backs up the transactions earlier during
their course of life opposite to the (r,a,x)-
and (r,a,c)-protocols which resolve most con-
flicts at the very end of a transaction.

Fig. 4.4.: Relationship between the number of
backed up actions and the percentage
of 'read'-actions.

Experiment 3

- PAR 3 varies

- PAR 4: only pure writers are generated

- Concurrency: n max = 10 transactions;

In experiment 3 we regard an important class of
transactions, namely the readers, which is fa-
vored by the application of the (r,a,c)-protocol
because of the compatibility of the lockmodes.
Therefore we distinguish the transactions which
are generated into readers and pure writers. The
obtained results are represented in Fig. 4.5.,
Fig. 4.6. and Fig. 4.7.

Fig. 4.5.: Relationship between the number of
blocking situations and the percentage
of readers within generated trans-
actions.

Fig. 4.6.: Relationship between the number of
backed up transactions and the per-
centage of readers

Interpretation of the results:
Concerning the number of blocking situations
(Fig. 4.5.) we receive a similar result as in
Fig. 4.1. and Fig. 4.2. The correspondence with
the result of experiment 2 is realistic, because
in both experiments the same set of 'read'- and
'write'-actions must be processed only different-
ly distributed on the transactions.

The property of the (r,a,c)-protocol never to
back up a reader [BHR 801 involves that we now
have the fewest backed up transactions using this
protocol (see Fig. 4.6.). Also with the applica-
tion of (r,a,x)-protocol the number of backed up
transactions is reduced considerably compared to
the experiment 2. Only if we use the traditional
(r,x)-protocol we have the same number of backed

128

up transactions like in experiment 2. This means
that the (r,x)-protocol does not favor a situa-
tion where transactions are distinguished into
readers and writers.

Regarding also Fig. 4.7. we can conclude that a
distinction of created transactions into readers
and writers favors the application of the
(r,a,x)- or (r,a,c)-protocol.

-
~~"zE%-
10 orrmrr -l-St)
IO--

r/a@* ---

I v. .‘I P‘ Uj, +a e.a TEL &. ~w !zcFd

Fig. 4.7.: Relationship between the number of
backed up actions and the percentage
of readers.

As an alternative representation, we now show the
relative relationship of blocking situations be-
tween (r,x)- and (r,a,x)-protocol and between
(r,x)- and (r,a,c)-protocol.

r wx’
t
a%

E

Fig. 4.8.: Relationship between the percentage
of blocking situations and the per-
centage of readers.

From this result we derive the following rule of
thumb:

With the application of the (r,a,x)- or (r,a,c)-
protocol

x% readers involves about x% less blocking
C situations

respectively

x% 'read'-actions (within the writers) in-
volves about

,x% less blocking situations.

5. Summary and Future Work

Summarizing the observations from our few basic
experiments we come to the following conclusions:

The number of blocking situations is considerably
reduced by both the (r,a,x)- and the (r,a,c)-pro-
tocol compared to the traditional (r,x)-protocol.
Although the (r,a,c)-protocol exhibits the best
behavior concerning blocking situations, the
difference to the (r,a,x)-protocol is relatively
small; this proposition also carries over to the
average number of blocked transaction.

In general we recommend the application of the
(r,a,c)- protocol for transaction mixes which
allow a distinction of transactions into readers
and (pure) writers. In special applications,
where such a separation does not exist and where
the percentage of write-operations is very high,
the increased backup probability and lost work of
the (r,a,x)- and (r,a,c)-protocol may cause trou-
bles. As this phenomenon is caused by the fact,
that inconsistency checks are done only at the
latest possible moment (in order to minimize the
cycle searching overhead), it would be promising
to make inconsistency checks earlier increasing
the overhead for cycle detection. However, to
overcome this overhead without significant impact
on concurrency the method of dynamic timestamps
can be applied which replaces the costly cycle
detection ([BEHR 821).

Evidently our results should be verified by real
transaction profiles and workloads. As these are
commonly not available by now, it is highly de-
sirable that existent DB-systems are benchmarked
to get the required data.

Our planned future work on lockprotocol evalua-
ion is as follows:

The next step is to complete the present investi-
gations by a comparison of the synchronization
;;erhead required by the LMlr,Xl, LM1r,a,Xl and

fr,a,cl'
including also the dynamic timestamp

method from [BEHR 821 and static timestamp methods
as described in [RSL 781. Furthermore, these lock-
protocols will be compared to optimistic concur-
rency control methods as suggested in [KR 791.
Finally, extensions of these one-level lockproto-
cols to hierarchical lockprotocols as discussed
in [GLPT 761 and [BAY 761 should be evaluated,
with a special attention to gain reliable results
with respect to an optimal lockgranularity.

Most 0-f these planned investigations are assumed
to require only slight modifications of the ex-

129

isting basic simulation model. The goal of these
activities is to finally get a reliable assess-
ment and selection procedure for a suitable lock-
protocol given a specific transaction workload.

Acknowledgements:

Many thanks to Prof. Rudolf Bayer and Or. Ange-
lika Reiser for critical comments on a first
draft of this paper.

6. References

[BAD 801 Badal, O.Z.:
'The Analysis of the Effects of Concur-
rency Control on Distributed Database
System Performance', Proc. Int. Conf.
on VLOB 1980, pp. 376-383

[BAY 761 Bayer, R.:
'Integrity, Concurrency, and Recovery
in Oatabases!,ECJ Conf. 1976, Berlin,
Springer 76, Lect. Notes in Comp.Sci.
44, pp. 77-106

[BEHR 821 Bayer, R.; Elhardt, K.;Heigert, J.;
Reiser, A.:
'Dynamic Timestamp Allocation for
Transactions in Database Systems', in
Distributed Data Bases, edited by H.-J.
Schneider,North-Holland, 1982, pp.9-20

[BHR 801 Bayer, R.; Heller, H.; Reiser, A.:
'Parallelism and Recovery in Database
Systems', in ACM Transactions on Oata-
base Systems, Vol. 5, No. 2, June 1980

[BRY 801 Bryant, R.M.:
'SIMPAS User Manual', Univ. of Wiscon-
sin-Madison, June 1980, Comp.Sc. Techn.
Report No. 391

[EGLT 761 Eswaran, K.P.; Gray, J.N.; Lorie, R.A.;
Traiger, J.L.:
'The Notions of Consistency and Predi-
cate Locks in a Database System', in
Comm. ACM 19, 11, Nov. 1976, pp.624-633

[GLPT 761 Gray, J.N.; Lorie, R.A.; Putzolu, G.F.;

[GRA 801

[KR 791

[LAN 821

Traiger, J.L.:
'Granularity of Locks and Degrees of
Consistency in a Shared Data Base', in
Modeling in Data Base Management Sys-
tems, G.M. Nijssen editor, North-Hol-
land, 1976 pp. 365-394

Gray, J.N.:
'A Transaction Model', IBM Res. Lab.
San Jose, RJ 2895 (36591), 8/7/80

Kung, H.R.; Robinson, J.:
'On Optimistic Methods for Concurrency
Control', Proc. Int. Conf. on VLOB,
Rio de Janeiro, Oct. 1979
Landherr, G.:
'Simulationsuntersuchungen zur Paral-.
lelitat von Oatenbanksperrprotokollen',
Techn. Univ. Munich, Institute of In-
formatics, Master'sThesis Oct. 1982

[MN 821

[PL 801

[RS 791

Menasce, D.A.; Nakauishi, T.:
'Optimistic versus Pessimistic Concur-
rency Control Mechanisms in Database
Management Systems', in Inf. Syst.,
Vol. 7, No. 1, 1982, pp. 13-27

Potier, 0.; Leblanc, Ph.:
'Analysis of Locking Policies in Data- .
base Management Systems', in Comm. ACM,
Oct. 1980, Vol. 23, No. 10, pp.584-593

Ries, O.R.; Stonebraker, M.R.:
'Locking Granularity Revisited', in ACM
Transactions on Database Systems, Vo1.2,
No. 1, March 1977, pp. 91-104

[RSL 781 Rosenkrantz, O.J.; Stearns, R.E.;
Lewis, P.M.:
'System Level Concurrency Control for
Distributed Database Systems', ACM
Transactions on Database Systems, Vo1.3,
No. 2, June 1978, pp. 178-198

130

