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Abstract 
This paper presents an empirical comparison of 
three classes of database concurrency control 
schemes: classical (r,x)-protcols, (r,a,c)/ 
(r,a,x)-protocols based on two temporary 
object versions, and optimistic concurrency 
control. maluation is based on six different 
real-life database reference strings mrded 
with a network DBMS. Sizes of the underlying 
databases vary between 60 MB and 2.9 GB. For 
comparing the performance impacts of 
synchronization protocols, we introduce a 
quantitative measure which basically reflects 
two parameters: First, number and length of 
blocking situations, and second the overhead 
incurred by repeated transaction execution due 
to deadlocks and validation conflicts, 
respectively. The results are highly sur--' 
prisinq compared to the expectations based on 
qualitative considerations. 

1. Introduction 

Locking as the basic means of concurrency 
control in database management systems (DBMS) 
has been introduced and fully investigated in 
the landmark papers (EGLT76, GLPT76). It was 
there that levels of consistency were defined, 
that serializability as the basic criterion of 
inteqrity-preservinq execution was introduced, 
and that the concept of a transaction entered 
the database scene. Based on this seminal work 
there were many investigations concerninq more 
formal notions of consistency and 
serializability, and meanwhile there is a 
well-established theory of database 

concurrency control, represented, e.g., by 
(BSW80). Performance impacts of locking 
schemes haveinitially been discussed in a very 
restricted sense: One topic was the granule of 
locking and its implication on transaction 
parallelism (GLPT76, RS77, RS79), the other 
one was the overhead incurred by maintaining 
lock tables, dependency graphs etc. durinq 
normal operation (Gr78). Both problems are 
still highly relevant, as can be seen from 
performance analyses (or better: cede reviews) 
of nowadays commercial CAMS. 
In parallel to the development of 
serializability theory, novel concurrency 
control mechanisms have been proposed, all of 
which differ from the classical (r,x)-scheme 
(since an object can have a read-lock or an 
exclusive lock) in one salient point: They 
permit readers to access an object which is 
currently changed by a writer, which is 
impossible with @,x)-locking. It can be shown 
that the results are consistent, thouqh, based 
on the serializability criterion, and the 
methods for detecting and resolvinq conflicts 
shall briefly be sketched for the two 
approaches we are going to compare with (r,x)- 
protocols in this paper. 
The first one has been proposed in (BHR80), 
and the basic idea is to qive the old value of 
an object currently under chanqe (objects are 
normally pages) to all readers requesting 
access while the writer is busy. So an object 
can have an r-lock, an a-lock which allows 
one transaction to prepare a new version, 
while an arbitrary number of readers can 
analyze the old state, and a c-lock, if the 
writer wants to commit its new version. If the 
object is in c-&de, new read transactions 
will be directed to the new version, which 
will become the only one, as soon as the last 
reader using the old version has finished. 
There is a variant of the (r,a,c)-protocol 
which does notallow for concurrent usage of 
an old and a new committed version; this one 
is termed (r,a,x)-protocol. The other approach 
to the same problem originates in the 
observation that in some applications 
conflicts are extremely rare - so why burden 
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the system with costs for locking, instead Of 
let things go and see what happens. The 
synchronization protocol based on this liberal 
view is called optimistic concurrency control 
(occ) and has first been described in (KR81). 
It assumes that all transactions access all 
objects they need without locking: updates are 
prepared in a private working space, and 
before end-of-transaction a test is performed 
to detect conflicts with other transactions. 
If there are none - which is supposed to be 
the normal outcome - the transaction finishes 
and commits its updates if there are any. 
Otherwise it has to be backed out and then 
must try again. Various possibilities for 
implementing this scheme are discussed in 
(HZ82). 
There are Sane more synchronisation protocols, 
especially those based cn time-stamps, but we 
want to investigate these three, (r,a,c), 
(r,a,x), occ, and compare their performance 
impact on a real database workload with the 
figures achieved by classical (r,x)-locking. 
For doing this, we have organized the paper as 
follows: In sec. 2 we present the empirical 
basis of our measurement, in sec. 3 we discuss 
the problem of meaningful quantitative 
performance comparison, sec. 4 contains the 
empirical results, and in sec. 5 we give some 
interpretations and identify interesting open 
prcblems. 

2. Rpirid Ferfarmance Caparistm - 
nethods and Platerial 

It is interesting to note that until recently 
the different synchronization protocols have 
only been compared w.r.t. the kind of 
equivalent serial schedule they produce: 
results on absolute and relative performance 
figures, however, are virtually unavailable. 
This is a strange situation, since all the 
novel prcposals claim to improve performance 
by reducing administration overhead, 
transaction waits, or both. We will show in 
sec. 3 that establishing a meaningful 
performance measure for this purpose is all 
but trivial, but let us defer this problem for 
the:moment and discuss the empirical 
foundation for such a performance comparison 
first. 
To our knowledge, there are two papers dealing 
with the impacts of different synchronization 
schemes on transaction waits, deadlocks, etc. 
(KL82, MN82). In the latter paper the lock 
strategy as well as the database and the 
transactions' references are modelled by using 
stochastic processes and waiting queues. In 
(KL82) the lock protocol is actually coded, 
but it is driven by simulated references 
obtained fran a random number generator. And 
this is the crucial problem: The real 
reference pattern of a multiuser database 

application is extremely dependent on the 
database structure, the data stored in the D%, 
and the input data to the transactions. Until 
now there is no way for modelling database 
references with sufficient precision (EH82). 
Note that some protocols (like OCC, e.g.) are 
explicitly designed for certain types of 
reference patterns, and so their value will 
critically depend on whether or not you can 
find the required types in reality. 
For these reasons we have decided not to rely 
on simulation, neither for the database and 
the transactions, nor for the protocols 
themselves. The other extreme, namely 
modifying a real DBMS by implementing all the 
synchronization protocols and then putting it 
into cperation in seine applications, was not 
viable, too - for reasons of expence. But the 
method we finally applied is very close to 
this approach, and we will highlight the most 
imprtant features in the following. 
First, we used a CODASYL-like DBMS (UDS) to 
record logical pa% reference strings (EH82) 
in 6 applications with different characte- 
ristics. A page reference string is kind of an 
audit trail of the DBMS-internal activities, 
and it contains the following record types: 
-Begin-of-transaction (BOT), end-of- 

transaction (EOT), abort-transaction (RBT). 
In each case, the transaction number, run- 
unit identifier and some other data are 
recorded. 

- Logical page reference 
This indicates that some module inside the 
DBMS has requested a page from the buffer 
manager on behalf of a certain transaction. 
The transaction no. is recorded as well as 
the type of reference (read or update). For 
instance, fetching a record via an attribute 
index implemented by a B*-tree would result 
in logical references to the root, to all 
pages visited down to the leaf node, and 
finally to the record's page. 

- Page wait events 
Our DBMS does page locking with long 
exclusive and short read locks - a strategy 
we did not want to investigate. So page 
waits were transformed into normal page 
references and whether or not wait 
situations did occur was left to the resp. 
synchronization protocol. In other words: 
Transactions did not have to wait in our 
simulation if they had to in reality. This 
was left to the synchronization protocol 
under consideration. 

These data were recorded for all 6 
applications with a characteristic transaction 
load over a certain period of time (this type 
of audit trail is extremely expensive), 
resulting in reference strings containing some 
10.000 to 100.000 page references. 
The underlying databases and the charac- 
teristics of the cut-out of the transaction 
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mixes reflected in the reference strings are 
summarized in Table 1. 
The sizes of read and write sets used for 
characterizing the transaction types are in 
units of pages (the minimum of the resp. class 
is specified). Since our DBMS did paqe locking 
and the novel protocols we have investigated 
are especially suited for page-sized objects, 
we have used pages as the smallest units of 
resource requests in all cases. A note for 
those who are familiar with implementational 
details: pages containing system admini- 
stration data like database key translation 
tables etc. have not been processed as objects 
of normal references, since they would 
severely impede concurrency using page 
lockin+ Since there are several techniques 
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check complex integrity constraints, or have 
to read large portions of the database. 
Primary design goal of these applications was 
ti correctly reflect the complex structure Of 
the miniworld completely. Strings 3-6 have 
been recorded in different DB/DC-environments 
with interactive processing only; therefore, 
transactions are short in order to minimize 
response time. 
There was one problem with these empirical 
data: Each string was recorded with a fixed 
degree of parallelism which has been specified 
at system start-uptime. But we want to know 
how these reference patterns behave under the 
synchronization protocols mentioned at 
different w of multiprogramming. 
The solution we have implemented is 
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sr : short reader, ar : average reader, lr : long reader, SW : short writer, aw : average writer, 

lw : long writer 

Table 1: Characteristics of transacticn mixes and databases 

II 
%valuation parameters: 
type of synchronizat,on 
DrOtOCOl S 
degree of parallelism n 

interface between 
scheduler and string 
c2nver'ter 

Fig. l: Block diaqram of the evaluation envLronmsnt 

for synchronizing transactions on such tables illustrated in Fig. 1. - _ _ . . . . _. 
indirectly, dropping the resp. references There is a scheduler dr1vHIq the evaluation 
from our consideration was quite realistic, programs, keeping track of the active 
since each implementation would take the same transactions, the blocked cries, etc., in other 
approach. words it is a rudimentary transaction 
Obviously, the mixes are considerably scheduler as can be found in each DBMS. As 
dj.fferent w.r.t. transaction types and sizes. input parameters for each evaluation it is 
Strings nos.. 1 and 2 originate from a provided with the protocol to be applied (s) 
scientific database with a large share of and the desired degree of multiprogramming 
batch transactions; all transactions are (n). The scheduler does not directly read the 
comparatively long, since they either have to reference string file, rather it interfaces 
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with a string converter, which delivers KYP- 
records, logical references, etc. as thoogh 
the string were Lpaorded with n transactions 
in parallel. This is done by reading ahead in 
the reference string file until n BLIP-records 
have been located and then searching for the 
logical references pertaining to those trans- 
actions. With each logical reference and HUT- 
record the scheduler invokes the 
synchronization protocol requested (all of 
them have been explicitly coded). In return, 
they inform the scheduler about whether the 
request was granted, or the transaction has to 
wait, or the transaction must be rolled back 
Note that the logical references are not 
really recessed; there is no real DB envolved 
in 5T-* the eva uations. The behaviour of the 
complete DBMS - except the synchronization 
manager - is considered to be condensed in the 
reference strings, which are then subject to 
the different synchronization protocols. Of 
course, the real transactions on the real 
database executed with a DBMS using the resp. 
protocol would have behaved slightly 
different, but we believe this to be a 
tolerable idealization since the reference 
patterns would not change anyway. 

3. Citeria for Performance ccelpariscn 

Given the empirical data about transaction 
references, the scheduler, the routines 
incorporating the synchronization protocols - 
which values can be used to characterize the 
performance impacts of each protocol, and 
which quantitative criteria can be used to 
compare protocol A to protocol B? In (MN82)a 
synthetic response time parameter is 
introduced for this purpose, but the 
underlying processor and device model is 
idealized to the same degree as the rest of 
the simulation. In (KL82) three measures are 
considered: the number of blocking situations, 
the number of backed transgytions and the 
number of backed up actions . These values 
are aanputed for different shares of read 
transactions in the mix. Moreover the impact 
of write operations in proportion to read 
operations within update transactions is 
evaluated. It is quite obvious that the number 
ofbackups,beitcausedby deadlocksorother 
types of conflicts, is an interesting 
parameter for characterising a synchronization 
protocol. But one must see clearly that some 
protocols are more susceptible to backup than 
others. The occ-approach, e.g., resolves 
almost each conflict by backing up a 
transaction; on the other hand it has the 
virtue of causing no blocking situations at 

') An action in (KL82) can be regarded as a 
logical page reference according to our 
terminology. 

all. And counting backups alone will not 
reveal sufficient information, since it makes 
a great difference whether primarily short, 
medium-sized, or long transactions are victims 
of back- This in turn depends on the type of 
the protocol. 
A similar problem arises when counting the 
number of blockingsituations. Even a large 
number of transaction waits can be tolerable 
if they are short, and on the other hand a few 
number of extremely long blockingscanbecome 
intolerable. So we rather should know which 
transaction (transaction types) have to wait, 
and how long they are blocked. 
Based on these considerations we have decided 
to use two parameters, which are defined as 
follows: 
- ?i is the average degree of multiprogramming. 

As described in sec.2,a maximum degree of 
multiprogramming, n, is specified for each 
evaluation. This means the scheduler will 
try to keep n transactions busy in parallel 
at each moment. But due to blocking 
situations the effective parallelism will 
decrease now and then. So with each logical 
reference processed by the scheduler the 
number of active (i.e. unblocked) trans- 
actions is added to a counter which is 
divided by the total number of references at 
the end. Hence, K contains the average 
number of active transactions during 
processing of the mix, and thereby reflects 
the length of blocking situations in an 
awropriate way. 

- q is the relative increase of number of 
references in the string due to backup and 
re-execution of transactions. Let 1: be the 
number of logical references in the string 
(there are no deadlocks in the input 
strings), and r' the number of references 
actually processed by the scheduler, then rC 
will be greater or equal r, since each time 
a transaction must be rolled back it is 
started again and the number of references 
processed twice adds to the total number of 
references. Then q denotes the relative 
elongation which is independent of the 
absolute size of the string, i.e. q= rc/r. 

With these two parameters we still have a 
plane where the different protocols will fall 
in, and there is no obvious way for deciding 
whether A is better than B. If the same 
reference string yields ii = 6.2 and q = 1.12 
with one protocol, and ii = 7.3 and q = 1.23 
with the other - which is better? For occ- 
schemes we will always have n = ?i, i.e. the 
only distinction can be made via q. !Io resolve 
this problem in a simple way we introduce a, 
performance measure n*, which is based on the 
following idea: 
Let protocol s be characterized by iis and 
q, > 1. What we actually want to do is process 
r logical references; if q,*r are required, 
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this is overhead incurred by the 
synchronization protocol. In other words, a 
certain amount of the Es transactions running 
concurrently are engaged in re-processing 
transactions instead of doing useful work. 
Since r (1 - 
references, 

qs) is the number of re-executed 
a proportional part of ii, is 

required to process them. The rest is 
processing original references, and this is 
what will be depted by n*. So we get: 

n,+=n q 
This simple m cd el'makes a lot of implicit 
assumptions, one of which shall be mentioned 
explicitly. We state that the underlying 
machine, the channels, the storage devices 
etc. are capable of processing twice the 
amount of references per time interval, if we 
double n. Otherwise n* would not be a useful 
comparative measure. In our evaluations we 
have varied n between 2 and 32, so this should 
not be tco far from realistic. We will return 
to this in sec. 5. 
But note that these are problems of 
performance comparison only at the level where 
the objects used for synchronization are 
visible. There are more subtle - and possibly 
more important - implications on lower layers 
of implementation, having strong implications 
on performance, which will also be mentioned 
in sec. 5. 

4. mpirical &slllts 

The empirical evaluation of the three classes 
of synchronization protocols yielded many 
interesting statistics about the dynamic 
behaviour of each algorithm. Presenting them 
all would exceed the scope of this paper, and 
many performance figures still require 
thorough analysis and interpretation. By the 
way, when implementing the synchronization 
protocols there were numerous pragmatic 
decisions to be made how to cop with special 
situations, none of which could be derived 
from the original papers. We have tried to 
implement each protocol such that the basic 
idea was preserved as much as possible, but we 
have also tried to find good solutions in 
terms of performance. A particular problem 
which is not dealt with in the conceptual 
descriptions of the algorithms is lock 
conversion and deadlock handling. In sec. 5 we 
will briefly discuss this issue when 
interpreting the results. 
The following tables display the basic 
performance parameters introduced in sec. 3 
for each reference string and each 
synchronization protocol. 

I I (fdd I (r,a,c) I 

(r,a,x) OCC 
n ii q n* ii q n* 

2 1.83 1.08 1.69 2. 1.27 1.57 

Table 2: Performance of refstring no. 1 

The next mix containing only few update trans- 
actions shows almost f10 difference between the 
four synchronization protocols. Since the 
string comprises no more than 39 transactions, 
we have restricted evaluation to n ( 16. 

(r,x) (r,a,c) 
n ii q n* ii 9 

2 2 00 
n* , 

3:98 
1.00 2 00 

3:98 
2.00 1.00 2.00 

4 1.00 4.00 1.00 4.00 
8 7.90 1.00 7.90 7.97 1.00 7.97 

16 14.32 1.00 14.32 $5.62 1.00 15.62 

(r,a,x) OCC 
n ii a n* Ti Q n* 

Table 3: Performance of refstring no. 2 

The results for reference strings nos. 3-6, 
originating fran commercial DB/DC-applications 
with transactions being completely different 
from those on the first two mixes, are shown 
in Table 4 - Table 7. 

b-,x) (r,a,c) 
n n'q n* Ii 9 n* 

2 194 . 1 . 00 1 . 94 1 . 99 1 . 00 1 .99 

1 4 8 6 I 3.52 6.05 8.37 1.01 1.01 1.02 8.24 3.48 5.99 I 10.39 3.81 6.87 1.03 1.05 1.03 6.68 3.71 9.93 
b2 110.98 1.06 10.35b7.20 1.13 15.15 

I I 

P2 1 

(r,a.x) I 

1 ii . 95 ‘i..n* 1 . 00 1 . 95f 

OCC I 

ii 2 . 1 q . 08 1 n* . 85 1 
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c rrx 
n ii q n* ii q n* I . . . . . . 

(r,aA OCC 
n Kq n* Kg n* 
2 2 . 00 1 . 00 2 . 00 . . . 

I 16 : I 6.75 9.71 3.80 1.09 1.00 1.00 6.75 8.90 3.80 16. 8. 4. 1.22 1.28 1.19 12.50 6.56 3.36 I 
32 119.66 1.07 13.70 1 32. 1.42 22.53 1 

Table 5: Performance of refstring no. 4 
(f,x) (r,atc) , 

n ii q n* n' q n* 
2 195 . 1 . 00 195 . 198 . 1 . 00 1 . 97 

Table 6: Performance of restring no. 5 

(r,x) (r,a,d 
n E 9 n* K q n* . 
2 199 1.01 1.97 2.00 1.01 1.97 
4 3:93 1.02 3.86 3.98 1.05 3.78 
8 7.56 1.06 7.11 7.79 1.11 7.04 

16 13.38 1.15 11.64 14.45 1.25 11.54 
32 23.89 1.25 19.12 25.45 1.39 18.29 

(r,a,x) 
I 

occ 

2.00 1.01 1.97 

Table 7: Performance of refstring no. 6 

Before entering discussion and interpretation 
of these results, let us first illustrate some 
of the performance figures by related data. 
Parameter q indicates the relative increase of 
the number of logical references that must be 
processed in order to complete all 
transactions in relation to the net number of 
references in the string. A q-value > 1 is 
always caused by transaction rollback, but the 

relative number of failing transactions does 
notgrowproportional toq. The reason is that 
at low parallelity transactions run 
comparatively long, and have processed many 
references before they are rolled back due to 
deadlock or validation conflict. With a high 
degree of multiprogramming this happens much 
earlier, i.e. the number of transaction 
restarts can grow faster than does the 
corresponding q. This is especially true for 
occ-schemes where in case of a validation 
conflict either the validating transacticn is 
aborted, or the other transactions being in 
conflict with it are killed. To get an 
impression of what level 3 consistency costs 
with the protocols under investigation in 
terms of deadlock frequency and transaction 
restart, lcok at Table 8. 

(r,x) (r,a,d 
n mea+ Jlockcon.#ead-&xkconv. 

locks r+x locks r+a 
2 9 49/ 14 503 
4 15 506 545 

186 145: 567 692 227 f; 617 811 
32 246 817 354 1001 

I I (r,a,xl 1 occ 
n #dead-$&km 

I 

locks r+a &starts #validats. 
2 14 503 17 900 

Table 8: Transaction. restart frequency for 
refstring no.6 

This table applies to reference string no.6, 
containing many very short transactions, i.e. 
a type of application which can be found in 
many DB/DC-environments. The parameter 
deadlocks means the same for locking-schemes 
as does restart for ocoschemes, namely the 
number of transaction restarts. The number of 
lock conversions is particularly interesting 
for the discussion in 5.3. The number of 
validations is one cost measure for EOT- 
handling in occschemes; it indicates how many 
read- and write sets have been compared in 
total for validating transactions at BUT. 
Looking at the (r,a,c)-protocol, it is quite 
interesting to note that the majority of 
deadlocks is caused by a certain type of 
resource request, namely an attempt to convert 
a read-lock into an update lock. The figures 
are given in Table 9. 
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Table 9: Requests causing deadlock USing 

(r,a,c) with refstring no. 6 

The same observation is true for the (r,a,x)- 
scheme, and we will briefly investigate the 
problem in 5.3. 
As a final overview over the results look at 
Fig. 2. The horizontal axis displays the 
degree of multiprogramming, n, and the 
vertical axis corresponds to the number 
deadlocks (restarts) of Table 8. The curves 
are shown for (r,x), (r,a,c) and occ. The 
surprising fact is that restarts of occ grows 
faster than linear, as coulC$be expected. In 
fact, it should grow with n . The growth of 
deadlock rate in the lock-oriented schemes, 
however, slows down for high parallelity, and 
this is in contradiction to some analytic 
models. This phenomenon, however, requires 
some further investigation. 

I 

,I’ 
I 

Fig. 2: Deadlock frequencies at different 
degreesof multiprogramming 

To say the least, the results reported in sec. 
4 have been a great surprise to us. The new 

approaches to concurrency control have been 
designed to improve classical (r,x)-locking in 
different situations. As we explained in the 
beginning, the occ-scheme tries to avoid 
locking control overhead in applications where 
conflicts are rare. The (r,a,x)/(f,a,c)- 
schemes want to provide a restricted kind of 
read- and write-concurrency in cases which 
would cause a blocking situation with normal 
locking protocols. These have sometimes been 
called pessimistic protocols in that they 
assume conflicts to be frequent and thus tend 
to be overly restrictive in cases where this 
is not true. But looking at Tables 2-7, occ 
seems to be superior in most cases, especially 
at a high degree of multiprogramming, whereas 
(r,x)-protocols and the improved locking 
schemes exhibit quite similar performance 
figures, with obvious advantages for 
(r,a,x)/(r,a,c). Since this is not what one 
might have expected, we must investigate the 
results in more detail. The transacticn loads 
characterized in Table 1 are not likely - 
different as they are - to be adequate for 
occ-schemes, with the only exception of 
reference string no. 2, which represents an 
almost pure retrieval load. Strings 3 to 6 
have been recorded in typical commercial 
applications with a significant share of 
update transactions; hence, the optimistic 
assumption certainly does not hold. But the 
results shown in sec.4 do indicate that- at 
least in terms of our performance parameter n* 
- optimistic concurrency control performs 
excellently compared to the pessimistic 
schemes in most of the "unfavourable" 
environments. Are these results likely to be 
correct, or are they due to a fault in the 
evaluation? And if they are correct - how can 
they be explained w.r.t. the opti- 
mistic/pessimistic dichotomy? 

5.1 Tk Ferfo-ce Criteria Reconsidered 

The performance comparison presented in sec. 4 
rests ontwovariables which can be observed 
directly: K, i.e. the average number of 
unblocked transactions at a nominal degree of 
multiprogramming of n; and q, which denotes 
the relative increase of references in the 
string due to transaction backout. Comparing 
the empirical results, one can see clearly 
that occschemes generally have the highest p 
values. Inother words,validation conflicts 
(KR80) cause transactions to be executed 
repeatedly to a much higher degree than do 
deadlocks in the locking oriented schemes. 
Hence, the overhead of references not 
contributing to useful work, which can be 
measured by (l-q)rr for each reference StriJX3, 
is significantly higher for oco-schemes. 'IhiS 
is what could have been expected for this type 
of application. The comparatively good 
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performance figure n* is due to the fact that 
in occ-schemes there are no blocking 
situations, i.e. at each mom t n trans- 

ei) actions do execute concurrently , soii= n, 
which is not true for pessimistic schemes. Rut 
what does it mean to compare the n* of a 
synchronization protocol where 32 transactions 
are executed in parallel at each moment, with 
another one where in the average only, say, 24 
are active while the others are blocked? In 
order tobemeaningful, thecomparison assumes 
an underlying processor which is powerful 
enough to actually service 32 concurrent 
transactions such that none of them is impeded 
by any other - w.r.t. its processor 
requirements (see sec. 3). If this assumption 
holds, then it does not matter if a certain 
amount of useless work is done (high q-value); 
if parallelism is high enough, we will get our 
transactions through the system at a speed 
which is proportional to the value of n*. 
After all - how realistic is this kind of 
processor model? Remember that at least the 
occ and the (r,a,c)/(r,a,x)-schemes do 
require a very large database buffer in order 
to be implementable with reasonable 
performance (Our evaluation has always assumed 
a sufficiently large buffer: storage costs 
have been neglected). Hence, overlapping of 
I/O-operations for timesharing between 
transactions will scarcely occur. One might 
argue that with a large mainframe of, say, 4-6 
MIPS, the delay incurred by terminal I/O, user 
think times, etc. should be sufficient for 
efficiently servicing 32 transactions in an 
interleaved manner. But in large interactive 
environments terminals are not directly 
connected to database subtasks. Rather they 
are scheduled by DB/DC-systems, where terminal 
input and output is queued in the DC- 
subsystem, which will deliver new requests to 
the DBMS as soon as a transaction service 
station has become available. Hence, to 
classical centralized systems our processor 
model may not apply completely, at least for 
large values of n. In such systems, the key 
parameter for synchronization protocol 
performance is q, i.e. the smaller q is, the 
smaller will be the overhead of useless 
references, and the better will be the 
throughput. This criterion yields almost 
identical results for (r,x) and 
(r,a,c)/(r,a,x)-schemes (with slight 
advantages for (r,x)), whereas occ is 
definitely more expensive (see sec. 5.2). 
On the other hand, for real high performance 

l) Of course, at the end of the reference 
string when no more transactions can be 
started, our ccc+evaluation yielded a smaller 
ii, too.But except very small strings (string 
no. 2, e.g.) this does not significantly in- 
fluence the overall degree of multiprogramming. 

systems of* the "one processor per 
transaction/see."-type, our processor model is 
quite adequate, and we can use n* as the only 
performance criterion, which makes things lcok 
completely different. 
Resides the quantitative criteria, there is an 
other aspect to be considered, which might be 
called "fairness of processing". As our 
experiences show, the pessimistic schemes give 
almost equal chances to all types of 
transactions- from 'short readers" to "long 
writers"- tobe successfully processed.The 
only exception will be discussed in 5.2. With 
the occ-scheme, however, there are three 
classes of transactions: 
- the small ones causing no validation 

conflicts, 
- the medium sized, causing occasional 

validation conflicts, 
- the long transactions, causing permanent 

validaticcl conflicts. 
Transactions of the latter type have sometimes 
been re-executed over and over again, till to 
the end of the reference string, when they 
could be processed exclusively. Since this 
made the q-value grow beyond all reasonable 
boundaries, we had to implement some dynamic 
load balancing, which is briefly sketched in 
5.4. 

5.2 Deadlo& HanaliJg 

The most difficult problem during the 
evaluation of different synchronization 
protocols was the phenomenon of recurring 
deadlocks - incaseoflockprotocols- and of 
permanent validation conflicts - in case of 
optimistic concurrency control, as mentioned 
above. Such problems did not occur in the 
original applications, so what was the reason 
in our reference string - driven evaluation? 
There are two answers: First, the DBMS used 
for recording the reference strings did only 
hold short read locks (level 2 consistency), 
i.e. there were less conflicts and, 
consequently, less deadlocks than with the 
level 3-protocols we have implemented. The 
second reason is more important. In the 
recording environments with their fixed degree 
of multi-programming, reference density of the 
single transactions was very irregular. User 
think times,page faults, log I/Oetc.caused 
several references of one transaction to be 
processed, while another transaction did not 
issue any reference. If a transaction failed 
due to deadlock, its restart would take a 
relatively long time in terms of references 
processed meanwhile. For evaluaticn purpose% 
however, we have converted the reference 
strings to arbitrary degrees of concurrency 
(see Fig. l), and therefore had to impose some 
scheduling on the transformed string of 
references. As a first approach, we have used 
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a simple round robin strategy. Each active 
transaction which is ready to execute (i.e. 
which is not blocked) issues one reference, 
then comes the next, etc. As soon as one 
transaction has finished, the next one is 
started - provided there is a next 0~ in the 
input reference string. So each transaction 
will see a more or less different environment 
than in the original application, and the 
actual degree of concurrency will be higher. 
If we run an evaluation with a nominal 
parallelity of n = 8, then the scheduler will 
always keep 8 transactions active. In reality, 
however, only, say, 6 transactions will be 
active in the average, due to delays in the 
DC-subsystem, the operating system, user think 
time, etc. All this contributes to a higher 
frequency of deadlocks. 
As a first approach to deadlock resolution we 
implemented rollback of the transaction 
causing the cyclic wait condition, a method 
which is used in many commercial DBMS. But 
this proved to be a poor solution, since with 
3 reference strings we got permanent cyclic 
restarts (livelocks) for n > 8. This is to say 
that a set of 3 to 5 transactions ran into 
deadlock with each other over and over again 
with no chance of resolution, even at the end 
of the string. As explained in sec. 3, we have 
neglected all pages containing system tables 
etc. in our synchronization protocols, since 
these would be candidates for high blocking 
frequencies. We have also made sure that pages 
with free storage space, which are requested 
by transactions executing a SrORE-operation, 
did not cause unnecessary conflicts. But there 
are, in each database, some schema-dependent 
"hot spots" (Re82), i.e. records which are 
frequently modified by many transactions, and 
these were generally involved when permanent 
deadlocks occurred. In order to avoid this 
anomaly (which caused q-values of > lo!) we 
opted for backing out the cheapest (or 
youngest, respectively) transaction. But since 
deadlock victims are back and active very soon 
- which is a general problem of the reference 
string - driven evaluation - we found sets of 
deadlock-susceptible transactions remaining 
stable over a relatively long period of time 
even with this method. Again, q was increased 
dramatically, thus producing meaningless 
results. The method which proved to be best 
implies some dynamic load balancing, and works 
as follows: Each transaction is assigned with 
a counter containing the number of rollbacks 
this transaction has already suffered. A 
deadlock victim is scheduled behind all other 
transactions that have been found on the 
reference string up to this moment; so if it 
is started again, it will hopefully see a 
different pattern of activities and will not 
run into deadlock again. If a transaction is 
started with a rollback counter greater than a 

predefined tolerance level (we have used 3 
throughout the evaluation), then the scheduler 
will start no new transactions until this 
critical transaction has left the system - by 
either finish or rollback. Thus parallelity is 
sometimes decreased to 1, but it will 
immediately grow to its old value as soon as 
the critical transaction is through. With long 
reference strings and n ) 16 such a decrease 
of concurrency down to 1 has been observed 6-8 
times. Decreases caused by critical 
transactions in other reference strings were 
less frequent and less drastical. Without this 
counter measure, the average parallelity n 
would be somewhat higher, but since q would 
increase much faster, we would yield a worse 
overall performance in terms of n*. 
The same idea can be applied to optimistic 
schemes in their forward oriented version 
(Hki82, PSU82, Sc81, UPS83), too, as will be 
explained in 5.4. 

5.3 Obsexvatim cm (r,a,c)/(r,a,x)- 
schemes 

Surprisingly the results obtained showed 
comparatively small differences between (r,x)- 
protocols on one hand and the (r,a,c)/(r,a,x)- 
protocols on the other hand, except for string 
no. 3 and n ) 8 which displays clear 
advantages of (r,a,c)/(r,a,x) over (r,x). The 
expected superiority of (r,a,c) over (r,a,x) 
is also contradicted by some of our data. 
Though our results in general reveal slight 
advantages of (r,a,c)/(r,a,x) they are in 
contrast to (KL82) where simulations based cm 
synthetic reference strings are strongly in 
favor of the (r,a,x)/(r,a,c)-approach (mixes 
with 50% read-only transactions generate half 
as much backups and blocking situations using 
(r,a,c) than with (r,x)). But this is largely 
due to the assumptions made about the database 
size (100 objects) and the conflict potential 
(10 objects accessed per transaction and100 
transactions concurrently which implies that 
roughly 40% of the database is locked at any 
instant during the entire simulation) and the 
performance measures chosen in (KL82).As we 
already mentioned, the absolute numbers of 
transaction backups and blocking situations 
alone do not adequately reflect underutilized 
processor capacity as long as the length of 
blocking periods is not taken into account. 
But why are thevalues of n so close together 
in many cases and why are (r,a,c)/(r,a,x) so 
prone to deadlocks in our evaluations? The 
reasons are manifold, and due to the 
complexity of this synchronization protocol we 
can rather sketch them than explain the 
problems in detail. 
One of the intricacies of the (r,a,c)-protocol 
is that objects cannot be freed immediately 
after transaction commit. All objects read or 
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written by a transaction T remain locked, the 
modified one9 in a special o(conversion1 
mode, until all transactions which have seen 
the old version of any object changed by T 
have finished, i.e. released their locks, too. 
keeping locks after transaction commit causes 
blocking situations which cannot occur in 
(r,x)-schemes and our results indicate that 
the inactive phases can become very long. 
Figure 2 depicts the length of the inactive 
phases measured in term9 of references 
processed between commit and finish. In order 
to make the values comparable over all 
reference strings the inactive phase's length 
is expressed in multiples of the average 
transaction length. These value9 vary 
considerably with n and the type of reference 
string. However for n ) 8 the inactive phase 
is always several times the transactionlength 
and not only a fraction of it. 

Fig. 3: Duration of clocks after tratNaCtiOn 
termination 

Another, and very important issue is lock 
conversion. All simulations of locking 
protocols (including (KL82)) have implicitly 
assumed that references to an object are 
either of the 'reacTor of the 'update--type. 
But this is not the case in real systems. In 
DBMS using procedural DML, as ours, and - at a 
lower level - in relational systems as well, 
referencesveryfrequentlyare read-references 
at first and are converted into update- 
references later on. Lock conversion turned 
out to be a major cause of deadlock, a9 table 
9 demonstrates for (r,a,c). In general the 
(r,a,c)-scheme produced more deadlock9 than 
(r,a,x) which in turn performed worse than 

(r,xl w.r.t. deadlock frequency. We have 
identified several typical conversion 
scenarios resulting in deadlock for (r,a,x) 
and/or (r,a,c) but not for (r,x). One case is 
illustrated by the following example. Assume 
an object 0 in the database read by several 
transaction9 some of which try to convert 
their lcx2k9 to exclusive mode or analyze mcde 
respectively. Under the (r,x)-9cheme the first 
transaction T making a conversion request 
would block subsequent reader9 (including 
those which might also convert later on) frcm 
accessing 0 until T has left the system. 
pmvided that the period between setting the 
read lock and requesting ocnversion is short, 
no deadlock will occur. In the two version 
approach, the first convert operation is 
admitted immediately since reader9 are 
compatible with at most one writer. In 
contrast to the (r-,x)-case subsequent reader9 
Will still be admitted. Now the next reader 
trying toconvert will cause a deadlock. 
Note that this is only one situation we have 
found to be characteristic for the behavior of 
the two types of protocols. There are many 
other, but such details would exceed the scope 
of the paper. 
However besides the r+x/r+a-conversion 
inherent to all locking protocols, the 
(r,a,c)/(r,a,x)-schemes depend on another 
fundamentally different type of conversion 
during the commit operation. This conversion 
into c or x-mode may reveal conflicts having 
occurred much earlier, but which have not been 
detected due to the compatibility of r- and a- 
locks. 
In order to overcome this problem, we have 
tried a variant of the (r,a,c)-scheme which 
tests for deadlock9 more early than the 
original one, and in some cases does even 
delay readers, but the results have not been 
significantly different. The authors of the 
(r,a,c)-protocol currently investigate a 
combination of this locking scheme with a 
time-stamp mechanism (BEXIR82), hut evaluation 
of such strategies based cn reference strings 
will cost some additional work on cur side. 

5.4 Observations an W 

A9 has been already mentioned in sections 5.1 
und 5.2, we encountered severe problems when 
we tried to guarantee "fairness of processing 
especially tolongtransactions. In particular 
we had to apply different conflict resolution 
strategies in order to achieve a sufficiently 
fair scheduling. This ruled out -schemes in 
their backward oriented version (HZ82) from 
the beginning, since there the only choice is 
rolling back the transaction which un- 
successfully tries to validate. Hence all 
result9 apply to the forward oriented occ- 
schemes (focc). If conflicts with parallel 
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transactions are detected under focc there 
are three basic policies how to proceed, 
namely abort and restart the validating 
transaction, or kill all conflicting 
transactions, or defer validation until the 
conflicting transactions have finished. 
Because the latter policy introduces the 
possibility of deadlock and thus much 
additional administrative werhead we did not 
include it in our simulation experiments. 
Instead we tried some hybrid policies which 
favor multiply reset trans-actions. 
Surprisingly the best results for n* were 
cbtained with unconditionally killing the set 
of conflicting transactions at the expense of 
several long transactions being killed over 
and over again. The superior performance of 
the pure kill policy is due to the fact that 
no validation ever fails. In order to solve 
the livelock problem and enable long 
transactions to commit with a fairly low 
number of restarts, we pursued two strategies. 
On the one hand we incorporated the dynamic 
load balancing algorithm outlined in section 
5.2 in our simulations of the foccscheme. But 
note that each kind of dynamic load control 
applied to occ-schemes in order to support 
"critical" transactions required some type of 
dynamic lock-out mechanism for other 
transactions - which is in contradiction to 
the original optimistic idea of letting things 
go. But obviously this step backward improves 
the protocolbylimiting themaximumnumberof 
restarts for any transaction. 
At first when using the pure kill strategy we 
observed several transactions being aborted 
more than 10 times or even 20 times depending 
on the reference string and the degree of 
parallelism. These values are not tolerable 
in a real application environment. So we 
applied a hybrid policy of the following type: 
We defined a restart limit for all 
transactions, and in case of conflict no 
transaction exceeding this limit must be 
aborted - unless the validating transaction 
itself is beyond the limit. With this we could 
drastically reduce the number of transactions 
with extremely high restart rates. For 
instance allowing for up to 5 unsuccessful 
validations before a transaction was 
authourized to kill conflicting ones, reduced 
the number of transactions reset more than 10 
times by a factor of 2 compared to 
unconditional killing. We are not sure, 
whether all parameters (e.g. tolerance levels 
for number of rollbacks) have already been 
adjusted to their optimal values; but this 
will be investigated in a series of systematic 
evaluations, in particular to access the 
tradeoffs between limiting the number of 
restarts for individual transactions and the 
resulting loss of performance measured by n*. 

6- Ccnc.l- 

In this paper we have tried to compare 
different synchronization mechanisms for 
multiuser databases on a realistic and 
unified basis. We have used real-life page- 
reference strings from databases with a 
relevant size rather than random number 
simulations. It could be shown that this 
helped to reveal some very important problems 
- think of lock conversion. Second, we 
introduced a performance measure n*, which may 
be considered the effective parallelity doing 
useful work, as a means for comparing the 
synchronization schemes on a quantitative 
scale. Using the criterion, we found the 
classical (r,x)-schemes to perform as well as 
the improved (r,a,c)/(r,a,x)-schemes in many 
situations, which is an interesting fact. The 
average degree of concurrency, R, is usually 
smaller with (1,x), but this is outweighed by 
a smaller q, i.e. less transaction rollback. 
Optimistic schemes achieve excellent 
performance figures in all cases, but this 
evaluation does heavily depend on the 
(idealized) processor model underlying the 
definition of n*. This is especially 
remarkable since the applications have a 
comparatively high amount of update 
transactions. 
We do clearly realize the problems with our 
simplistic performance measure n*. It has been 
introduced for the only purpose of getting the 
different approaches compared atal1.A more 
realistic comparison must, of course, be based 
on response time and throughput. But in order 
to map the events we can observe now (blocking 
situations, deadlocks, etc.) onto elapsed time 
and transaction rates, a more detailed model 
is required. The list of effects it has to 
comprise looks as follows: 
-1mplementational aspects of the 

synchronization protocols: instructions for 
manipulating control structures, length of 
critical sections, storage overhead, length 
of EOT-processing, costs for deadlock 
detection, etc. 

- Realistic scheduling of references: times of 
transaction de-activation due to 
communication with the DC-subsystem, wait 
times due to physical I/O (this requires 
implementation of a DB-buffer and a log 
subsystem). 

- A processor model: number and speed of 
physical processors dedicated to DB- 
processing, type of processor 
synchronization (via shared memory or via 
messages), etc. 

- A physical DB-model: distribution of the DE 
segments wer physical devices, association 
between devices and channels, channels and 
processors, etc. This is particularly 
necessary to estfrrate the degree of actual 
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parallelity of transactions in the presence 
of I/O-wait times. This parameter is 
definitely overestimated in cur above model. 
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