
Peter Peinl
Andreas Reuter

Dept. of Carputer Sciences, Univ. of Kaiserslautern, West-Germany

Abstract
This paper presents an empirical comparison of
three classes of database concurrency control
schemes: classical (r,x)-protcols, (r,a,c)/
(r,a,x)-protocols based on two temporary
object versions, and optimistic concurrency
control. maluation is based on six different
real-life database reference strings mrded
with a network DBMS. Sizes of the underlying
databases vary between 60 MB and 2.9 GB. For
comparing the performance impacts of
synchronization protocols, we introduce a
quantitative measure which basically reflects
two parameters: First, number and length of
blocking situations, and second the overhead
incurred by repeated transaction execution due
to deadlocks and validation conflicts,
respectively. The results are highly sur--'
prisinq compared to the expectations based on
qualitative considerations.

1. Introduction

Locking as the basic means of concurrency
control in database management systems (DBMS)
has been introduced and fully investigated in
the landmark papers (EGLT76, GLPT76). It was
there that levels of consistency were defined,
that serializability as the basic criterion of
inteqrity-preservinq execution was introduced,
and that the concept of a transaction entered
the database scene. Based on this seminal work
there were many investigations concerninq more
formal notions of consistency and
serializability, and meanwhile there is a
well-established theory of database

concurrency control, represented, e.g., by
(BSW80). Performance impacts of locking
schemes haveinitially been discussed in a very
restricted sense: One topic was the granule of
locking and its implication on transaction
parallelism (GLPT76, RS77, RS79), the other
one was the overhead incurred by maintaining
lock tables, dependency graphs etc. durinq
normal operation (Gr78). Both problems are
still highly relevant, as can be seen from
performance analyses (or better: cede reviews)
of nowadays commercial CAMS.
In parallel to the development of
serializability theory, novel concurrency
control mechanisms have been proposed, all of
which differ from the classical (r,x)-scheme
(since an object can have a read-lock or an
exclusive lock) in one salient point: They
permit readers to access an object which is
currently changed by a writer, which is
impossible with @,x)-locking. It can be shown
that the results are consistent, thouqh, based
on the serializability criterion, and the
methods for detecting and resolvinq conflicts
shall briefly be sketched for the two
approaches we are going to compare with (r,x)-
protocols in this paper.
The first one has been proposed in (BHR80),
and the basic idea is to qive the old value of
an object currently under chanqe (objects are
normally pages) to all readers requesting
access while the writer is busy. So an object
can have an r-lock, an a-lock which allows
one transaction to prepare a new version,
while an arbitrary number of readers can
analyze the old state, and a c-lock, if the
writer wants to commit its new version. If the
object is in c-&de, new read transactions
will be directed to the new version, which
will become the only one, as soon as the last
reader using the old version has finished.
There is a variant of the (r,a,c)-protocol
which does notallow for concurrent usage of
an old and a new committed version; this one
is termed (r,a,x)-protocol. The other approach
to the same problem originates in the
observation that in some applications
conflicts are extremely rare - so why burden

97

the system with costs for locking, instead Of
let things go and see what happens. The
synchronization protocol based on this liberal
view is called optimistic concurrency control
(occ) and has first been described in (KR81).
It assumes that all transactions access all
objects they need without locking: updates are
prepared in a private working space, and
before end-of-transaction a test is performed
to detect conflicts with other transactions.
If there are none - which is supposed to be
the normal outcome - the transaction finishes
and commits its updates if there are any.
Otherwise it has to be backed out and then
must try again. Various possibilities for
implementing this scheme are discussed in
(HZ82).
There are Sane more synchronisation protocols,
especially those based cn time-stamps, but we
want to investigate these three, (r,a,c),
(r,a,x), occ, and compare their performance
impact on a real database workload with the
figures achieved by classical (r,x)-locking.
For doing this, we have organized the paper as
follows: In sec. 2 we present the empirical
basis of our measurement, in sec. 3 we discuss
the problem of meaningful quantitative
performance comparison, sec. 4 contains the
empirical results, and in sec. 5 we give some
interpretations and identify interesting open
prcblems.

2. Rpirid Ferfarmance Caparistm -
nethods and Platerial

It is interesting to note that until recently
the different synchronization protocols have
only been compared w.r.t. the kind of
equivalent serial schedule they produce:
results on absolute and relative performance
figures, however, are virtually unavailable.
This is a strange situation, since all the
novel prcposals claim to improve performance
by reducing administration overhead,
transaction waits, or both. We will show in
sec. 3 that establishing a meaningful
performance measure for this purpose is all
but trivial, but let us defer this problem for
the:moment and discuss the empirical
foundation for such a performance comparison
first.
To our knowledge, there are two papers dealing
with the impacts of different synchronization
schemes on transaction waits, deadlocks, etc.
(KL82, MN82). In the latter paper the lock
strategy as well as the database and the
transactions' references are modelled by using
stochastic processes and waiting queues. In
(KL82) the lock protocol is actually coded,
but it is driven by simulated references
obtained fran a random number generator. And
this is the crucial problem: The real
reference pattern of a multiuser database

application is extremely dependent on the
database structure, the data stored in the D%,
and the input data to the transactions. Until
now there is no way for modelling database
references with sufficient precision (EH82).
Note that some protocols (like OCC, e.g.) are
explicitly designed for certain types of
reference patterns, and so their value will
critically depend on whether or not you can
find the required types in reality.
For these reasons we have decided not to rely
on simulation, neither for the database and
the transactions, nor for the protocols
themselves. The other extreme, namely
modifying a real DBMS by implementing all the
synchronization protocols and then putting it
into cperation in seine applications, was not
viable, too - for reasons of expence. But the
method we finally applied is very close to
this approach, and we will highlight the most
imprtant features in the following.
First, we used a CODASYL-like DBMS (UDS) to
record logical pa% reference strings (EH82)
in 6 applications with different characte-
ristics. A page reference string is kind of an
audit trail of the DBMS-internal activities,
and it contains the following record types:
-Begin-of-transaction (BOT), end-of-

transaction (EOT), abort-transaction (RBT).
In each case, the transaction number, run-
unit identifier and some other data are
recorded.

- Logical page reference
This indicates that some module inside the
DBMS has requested a page from the buffer
manager on behalf of a certain transaction.
The transaction no. is recorded as well as
the type of reference (read or update). For
instance, fetching a record via an attribute
index implemented by a B*-tree would result
in logical references to the root, to all
pages visited down to the leaf node, and
finally to the record's page.

- Page wait events
Our DBMS does page locking with long
exclusive and short read locks - a strategy
we did not want to investigate. So page
waits were transformed into normal page
references and whether or not wait
situations did occur was left to the resp.
synchronization protocol. In other words:
Transactions did not have to wait in our
simulation if they had to in reality. This
was left to the synchronization protocol
under consideration.

These data were recorded for all 6
applications with a characteristic transaction
load over a certain period of time (this type
of audit trail is extremely expensive),
resulting in reference strings containing some
10.000 to 100.000 page references.
The underlying databases and the charac-
teristics of the cut-out of the transaction

98

mixes reflected in the reference strings are
summarized in Table 1.
The sizes of read and write sets used for
characterizing the transaction types are in
units of pages (the minimum of the resp. class
is specified). Since our DBMS did paqe locking
and the novel protocols we have investigated
are especially suited for page-sized objects,
we have used pages as the smallest units of
resource requests in all cases. A note for
those who are familiar with implementational
details: pages containing system admini-
stration data like database key translation
tables etc. have not been processed as objects
of normal references, since they would
severely impede concurrency using page
lockin+ Since there are several techniques

nc!.oc ref.
string

5 r I- i

1

,izes of DB

60 MB

60 MB

160 MB

2.9 GB

280 MB

560 MB
--

r

T
?

no.af TA's
(total)

0-i ters in %

250 94.0

33 la.0

669 46.5

2014 14.8

a47 32.0

2286 46.2

check complex integrity constraints, or have
to read large portions of the database.
Primary design goal of these applications was
ti correctly reflect the complex structure Of
the miniworld completely. Strings 3-6 have
been recorded in different DB/DC-environments
with interactive processing only; therefore,
transactions are short in order to minimize
response time.
There was one problem with these empirical
data: Each string was recorded with a fixed
degree of parallelism which has been specified
at system start-uptime. But we want to know
how these reference patterns behave under the
synchronization protocols mentioned at
different w of multiprogramming.
The solution we have implemented is

transaction types (occurrences in %/read set size/

0

0

16,2/1/O

59.2/1/o

23.2/1/o

40.2/1/O

ar

2.0/50/O

30.8/50/o

23.5/6,'0

17.2/6,'0

41.9/6/C

13.3/6/O 0 25.3,1,1’20.4,6,3

rite set size

IW

1.6/110/100

0

6.7/11/S

2.1/31/14

13.3/31/15

3.54/11/4
J

sr : short reader, ar : average reader, lr : long reader, SW : short writer, aw : average writer,

lw : long writer

Table 1: Characteristics of transacticn mixes and databases

II
%valuation parameters:
type of synchronizat,on
DrOtOCOl S
degree of parallelism n

interface between
scheduler and string
c2nver'ter

Fig. l: Block diaqram of the evaluation envLronmsnt

for synchronizing transactions on such tables illustrated in Fig. 1. - _ _ _.
indirectly, dropping the resp. references There is a scheduler dr1vHIq the evaluation
from our consideration was quite realistic, programs, keeping track of the active
since each implementation would take the same transactions, the blocked cries, etc., in other
approach. words it is a rudimentary transaction
Obviously, the mixes are considerably scheduler as can be found in each DBMS. As
dj.fferent w.r.t. transaction types and sizes. input parameters for each evaluation it is
Strings nos.. 1 and 2 originate from a provided with the protocol to be applied (s)
scientific database with a large share of and the desired degree of multiprogramming
batch transactions; all transactions are (n). The scheduler does not directly read the
comparatively long, since they either have to reference string file, rather it interfaces

99

with a string converter, which delivers KYP-
records, logical references, etc. as thoogh
the string were Lpaorded with n transactions
in parallel. This is done by reading ahead in
the reference string file until n BLIP-records
have been located and then searching for the
logical references pertaining to those trans-
actions. With each logical reference and HUT-
record the scheduler invokes the
synchronization protocol requested (all of
them have been explicitly coded). In return,
they inform the scheduler about whether the
request was granted, or the transaction has to
wait, or the transaction must be rolled back
Note that the logical references are not
really recessed; there is no real DB envolved
in 5T-* the eva uations. The behaviour of the
complete DBMS - except the synchronization
manager - is considered to be condensed in the
reference strings, which are then subject to
the different synchronization protocols. Of
course, the real transactions on the real
database executed with a DBMS using the resp.
protocol would have behaved slightly
different, but we believe this to be a
tolerable idealization since the reference
patterns would not change anyway.

3. Citeria for Performance ccelpariscn

Given the empirical data about transaction
references, the scheduler, the routines
incorporating the synchronization protocols -
which values can be used to characterize the
performance impacts of each protocol, and
which quantitative criteria can be used to
compare protocol A to protocol B? In (MN82)a
synthetic response time parameter is
introduced for this purpose, but the
underlying processor and device model is
idealized to the same degree as the rest of
the simulation. In (KL82) three measures are
considered: the number of blocking situations,
the number of backed transgytions and the
number of backed up actions . These values
are aanputed for different shares of read
transactions in the mix. Moreover the impact
of write operations in proportion to read
operations within update transactions is
evaluated. It is quite obvious that the number
ofbackups,beitcausedby deadlocksorother
types of conflicts, is an interesting
parameter for characterising a synchronization
protocol. But one must see clearly that some
protocols are more susceptible to backup than
others. The occ-approach, e.g., resolves
almost each conflict by backing up a
transaction; on the other hand it has the
virtue of causing no blocking situations at

') An action in (KL82) can be regarded as a
logical page reference according to our
terminology.

all. And counting backups alone will not
reveal sufficient information, since it makes
a great difference whether primarily short,
medium-sized, or long transactions are victims
of back- This in turn depends on the type of
the protocol.
A similar problem arises when counting the
number of blockingsituations. Even a large
number of transaction waits can be tolerable
if they are short, and on the other hand a few
number of extremely long blockingscanbecome
intolerable. So we rather should know which
transaction (transaction types) have to wait,
and how long they are blocked.
Based on these considerations we have decided
to use two parameters, which are defined as
follows:
- ?i is the average degree of multiprogramming.

As described in sec.2,a maximum degree of
multiprogramming, n, is specified for each
evaluation. This means the scheduler will
try to keep n transactions busy in parallel
at each moment. But due to blocking
situations the effective parallelism will
decrease now and then. So with each logical
reference processed by the scheduler the
number of active (i.e. unblocked) trans-
actions is added to a counter which is
divided by the total number of references at
the end. Hence, K contains the average
number of active transactions during
processing of the mix, and thereby reflects
the length of blocking situations in an
awropriate way.

- q is the relative increase of number of
references in the string due to backup and
re-execution of transactions. Let 1: be the
number of logical references in the string
(there are no deadlocks in the input
strings), and r' the number of references
actually processed by the scheduler, then rC
will be greater or equal r, since each time
a transaction must be rolled back it is
started again and the number of references
processed twice adds to the total number of
references. Then q denotes the relative
elongation which is independent of the
absolute size of the string, i.e. q= rc/r.

With these two parameters we still have a
plane where the different protocols will fall
in, and there is no obvious way for deciding
whether A is better than B. If the same
reference string yields ii = 6.2 and q = 1.12
with one protocol, and ii = 7.3 and q = 1.23
with the other - which is better? For occ-
schemes we will always have n = ?i, i.e. the
only distinction can be made via q. !Io resolve
this problem in a simple way we introduce a,
performance measure n*, which is based on the
following idea:
Let protocol s be characterized by iis and
q, > 1. What we actually want to do is process
r logical references; if q,*r are required,

100

this is overhead incurred by the
synchronization protocol. In other words, a
certain amount of the Es transactions running
concurrently are engaged in re-processing
transactions instead of doing useful work.
Since r (1 -
references,

qs) is the number of re-executed
a proportional part of ii, is

required to process them. The rest is
processing original references, and this is
what will be depted by n*. So we get:

n,+=n q
This simple m cd el'makes a lot of implicit
assumptions, one of which shall be mentioned
explicitly. We state that the underlying
machine, the channels, the storage devices
etc. are capable of processing twice the
amount of references per time interval, if we
double n. Otherwise n* would not be a useful
comparative measure. In our evaluations we
have varied n between 2 and 32, so this should
not be tco far from realistic. We will return
to this in sec. 5.
But note that these are problems of
performance comparison only at the level where
the objects used for synchronization are
visible. There are more subtle - and possibly
more important - implications on lower layers
of implementation, having strong implications
on performance, which will also be mentioned
in sec. 5.

4. mpirical &slllts

The empirical evaluation of the three classes
of synchronization protocols yielded many
interesting statistics about the dynamic
behaviour of each algorithm. Presenting them
all would exceed the scope of this paper, and
many performance figures still require
thorough analysis and interpretation. By the
way, when implementing the synchronization
protocols there were numerous pragmatic
decisions to be made how to cop with special
situations, none of which could be derived
from the original papers. We have tried to
implement each protocol such that the basic
idea was preserved as much as possible, but we
have also tried to find good solutions in
terms of performance. A particular problem
which is not dealt with in the conceptual
descriptions of the algorithms is lock
conversion and deadlock handling. In sec. 5 we
will briefly discuss this issue when
interpreting the results.
The following tables display the basic
performance parameters introduced in sec. 3
for each reference string and each
synchronization protocol.

I I (fdd I (r,a,c) I

(r,a,x) OCC
n ii q n* ii q n*

2 1.83 1.08 1.69 2. 1.27 1.57

Table 2: Performance of refstring no. 1

The next mix containing only few update trans-
actions shows almost f10 difference between the
four synchronization protocols. Since the
string comprises no more than 39 transactions,
we have restricted evaluation to n (16.

(r,x) (r,a,c)
n ii q n* ii 9

2 2 00
n* ,

3:98
1.00 2 00

3:98
2.00 1.00 2.00

4 1.00 4.00 1.00 4.00
8 7.90 1.00 7.90 7.97 1.00 7.97

16 14.32 1.00 14.32 $5.62 1.00 15.62

(r,a,x) OCC
n ii a n* Ti Q n*

Table 3: Performance of refstring no. 2

The results for reference strings nos. 3-6,
originating fran commercial DB/DC-applications
with transactions being completely different
from those on the first two mixes, are shown
in Table 4 - Table 7.

b-,x) (r,a,c)
n n'q n* Ii 9 n*

2 194 . 1 . 00 1 . 94 1 . 99 1 . 00 1 .99

1 4 8 6 I 3.52 6.05 8.37 1.01 1.01 1.02 8.24 3.48 5.99 I 10.39 3.81 6.87 1.03 1.05 1.03 6.68 3.71 9.93
b2 110.98 1.06 10.35b7.20 1.13 15.15

I I

P2 1

(r,a.x) I

1 ii . 95 ‘i..n* 1 . 00 1 . 95f

OCC I

ii 2 . 1 q . 08 1 n* . 85 1

101

c rrx
n ii q n* ii q n* I

(r,aA OCC
n Kq n* Kg n*
2 2 . 00 1 . 00 2 . 00 . . .

I 16 : I 6.75 9.71 3.80 1.09 1.00 1.00 6.75 8.90 3.80 16. 8. 4. 1.22 1.28 1.19 12.50 6.56 3.36 I
32 119.66 1.07 13.70 1 32. 1.42 22.53 1

Table 5: Performance of refstring no. 4
(f,x) (r,atc) ,

n ii q n* n' q n*
2 195 . 1 . 00 195 . 198 . 1 . 00 1 . 97

Table 6: Performance of restring no. 5

(r,x) (r,a,d
n E 9 n* K q n* .
2 199 1.01 1.97 2.00 1.01 1.97
4 3:93 1.02 3.86 3.98 1.05 3.78
8 7.56 1.06 7.11 7.79 1.11 7.04

16 13.38 1.15 11.64 14.45 1.25 11.54
32 23.89 1.25 19.12 25.45 1.39 18.29

(r,a,x)
I

occ

2.00 1.01 1.97

Table 7: Performance of refstring no. 6

Before entering discussion and interpretation
of these results, let us first illustrate some
of the performance figures by related data.
Parameter q indicates the relative increase of
the number of logical references that must be
processed in order to complete all
transactions in relation to the net number of
references in the string. A q-value > 1 is
always caused by transaction rollback, but the

relative number of failing transactions does
notgrowproportional toq. The reason is that
at low parallelity transactions run
comparatively long, and have processed many
references before they are rolled back due to
deadlock or validation conflict. With a high
degree of multiprogramming this happens much
earlier, i.e. the number of transaction
restarts can grow faster than does the
corresponding q. This is especially true for
occ-schemes where in case of a validation
conflict either the validating transacticn is
aborted, or the other transactions being in
conflict with it are killed. To get an
impression of what level 3 consistency costs
with the protocols under investigation in
terms of deadlock frequency and transaction
restart, lcok at Table 8.

(r,x) (r,a,d
n mea+ Jlockcon.#ead-&xkconv.

locks r+x locks r+a
2 9 49/ 14 503
4 15 506 545

186 145: 567 692 227 f; 617 811
32 246 817 354 1001

I I (r,a,xl 1 occ
n #dead-$&km

I

locks r+a &starts #validats.
2 14 503 17 900

Table 8: Transaction. restart frequency for
refstring no.6

This table applies to reference string no.6,
containing many very short transactions, i.e.
a type of application which can be found in
many DB/DC-environments. The parameter
deadlocks means the same for locking-schemes
as does restart for ocoschemes, namely the
number of transaction restarts. The number of
lock conversions is particularly interesting
for the discussion in 5.3. The number of
validations is one cost measure for EOT-
handling in occschemes; it indicates how many
read- and write sets have been compared in
total for validating transactions at BUT.
Looking at the (r,a,c)-protocol, it is quite
interesting to note that the majority of
deadlocks is caused by a certain type of
resource request, namely an attempt to convert
a read-lock into an update lock. The figures
are given in Table 9.

1113

Table 9: Requests causing deadlock USing

(r,a,c) with refstring no. 6

The same observation is true for the (r,a,x)-
scheme, and we will briefly investigate the
problem in 5.3.
As a final overview over the results look at
Fig. 2. The horizontal axis displays the
degree of multiprogramming, n, and the
vertical axis corresponds to the number
deadlocks (restarts) of Table 8. The curves
are shown for (r,x), (r,a,c) and occ. The
surprising fact is that restarts of occ grows
faster than linear, as coulC$be expected. In
fact, it should grow with n . The growth of
deadlock rate in the lock-oriented schemes,
however, slows down for high parallelity, and
this is in contradiction to some analytic
models. This phenomenon, however, requires
some further investigation.

I

,I’
I

Fig. 2: Deadlock frequencies at different
degreesof multiprogramming

To say the least, the results reported in sec.
4 have been a great surprise to us. The new

approaches to concurrency control have been
designed to improve classical (r,x)-locking in
different situations. As we explained in the
beginning, the occ-scheme tries to avoid
locking control overhead in applications where
conflicts are rare. The (r,a,x)/(f,a,c)-
schemes want to provide a restricted kind of
read- and write-concurrency in cases which
would cause a blocking situation with normal
locking protocols. These have sometimes been
called pessimistic protocols in that they
assume conflicts to be frequent and thus tend
to be overly restrictive in cases where this
is not true. But looking at Tables 2-7, occ
seems to be superior in most cases, especially
at a high degree of multiprogramming, whereas
(r,x)-protocols and the improved locking
schemes exhibit quite similar performance
figures, with obvious advantages for
(r,a,x)/(r,a,c). Since this is not what one
might have expected, we must investigate the
results in more detail. The transacticn loads
characterized in Table 1 are not likely -
different as they are - to be adequate for
occ-schemes, with the only exception of
reference string no. 2, which represents an
almost pure retrieval load. Strings 3 to 6
have been recorded in typical commercial
applications with a significant share of
update transactions; hence, the optimistic
assumption certainly does not hold. But the
results shown in sec.4 do indicate that- at
least in terms of our performance parameter n*
- optimistic concurrency control performs
excellently compared to the pessimistic
schemes in most of the "unfavourable"
environments. Are these results likely to be
correct, or are they due to a fault in the
evaluation? And if they are correct - how can
they be explained w.r.t. the opti-
mistic/pessimistic dichotomy?

5.1 Tk Ferfo-ce Criteria Reconsidered

The performance comparison presented in sec. 4
rests ontwovariables which can be observed
directly: K, i.e. the average number of
unblocked transactions at a nominal degree of
multiprogramming of n; and q, which denotes
the relative increase of references in the
string due to transaction backout. Comparing
the empirical results, one can see clearly
that occschemes generally have the highest p
values. Inother words,validation conflicts
(KR80) cause transactions to be executed
repeatedly to a much higher degree than do
deadlocks in the locking oriented schemes.
Hence, the overhead of references not
contributing to useful work, which can be
measured by (l-q)rr for each reference StriJX3,
is significantly higher for oco-schemes. 'IhiS
is what could have been expected for this type
of application. The comparatively good

103

performance figure n* is due to the fact that
in occ-schemes there are no blocking
situations, i.e. at each mom t n trans-

ei) actions do execute concurrently , soii= n,
which is not true for pessimistic schemes. Rut
what does it mean to compare the n* of a
synchronization protocol where 32 transactions
are executed in parallel at each moment, with
another one where in the average only, say, 24
are active while the others are blocked? In
order tobemeaningful, thecomparison assumes
an underlying processor which is powerful
enough to actually service 32 concurrent
transactions such that none of them is impeded
by any other - w.r.t. its processor
requirements (see sec. 3). If this assumption
holds, then it does not matter if a certain
amount of useless work is done (high q-value);
if parallelism is high enough, we will get our
transactions through the system at a speed
which is proportional to the value of n*.
After all - how realistic is this kind of
processor model? Remember that at least the
occ and the (r,a,c)/(r,a,x)-schemes do
require a very large database buffer in order
to be implementable with reasonable
performance (Our evaluation has always assumed
a sufficiently large buffer: storage costs
have been neglected). Hence, overlapping of
I/O-operations for timesharing between
transactions will scarcely occur. One might
argue that with a large mainframe of, say, 4-6
MIPS, the delay incurred by terminal I/O, user
think times, etc. should be sufficient for
efficiently servicing 32 transactions in an
interleaved manner. But in large interactive
environments terminals are not directly
connected to database subtasks. Rather they
are scheduled by DB/DC-systems, where terminal
input and output is queued in the DC-
subsystem, which will deliver new requests to
the DBMS as soon as a transaction service
station has become available. Hence, to
classical centralized systems our processor
model may not apply completely, at least for
large values of n. In such systems, the key
parameter for synchronization protocol
performance is q, i.e. the smaller q is, the
smaller will be the overhead of useless
references, and the better will be the
throughput. This criterion yields almost
identical results for (r,x) and
(r,a,c)/(r,a,x)-schemes (with slight
advantages for (r,x)), whereas occ is
definitely more expensive (see sec. 5.2).
On the other hand, for real high performance

l) Of course, at the end of the reference
string when no more transactions can be
started, our ccc+evaluation yielded a smaller
ii, too.But except very small strings (string
no. 2, e.g.) this does not significantly in-
fluence the overall degree of multiprogramming.

systems of* the "one processor per
transaction/see."-type, our processor model is
quite adequate, and we can use n* as the only
performance criterion, which makes things lcok
completely different.
Resides the quantitative criteria, there is an
other aspect to be considered, which might be
called "fairness of processing". As our
experiences show, the pessimistic schemes give
almost equal chances to all types of
transactions- from 'short readers" to "long
writers"- tobe successfully processed.The
only exception will be discussed in 5.2. With
the occ-scheme, however, there are three
classes of transactions:
- the small ones causing no validation

conflicts,
- the medium sized, causing occasional

validation conflicts,
- the long transactions, causing permanent

validaticcl conflicts.
Transactions of the latter type have sometimes
been re-executed over and over again, till to
the end of the reference string, when they
could be processed exclusively. Since this
made the q-value grow beyond all reasonable
boundaries, we had to implement some dynamic
load balancing, which is briefly sketched in
5.4.

5.2 Deadlo& HanaliJg

The most difficult problem during the
evaluation of different synchronization
protocols was the phenomenon of recurring
deadlocks - incaseoflockprotocols- and of
permanent validation conflicts - in case of
optimistic concurrency control, as mentioned
above. Such problems did not occur in the
original applications, so what was the reason
in our reference string - driven evaluation?
There are two answers: First, the DBMS used
for recording the reference strings did only
hold short read locks (level 2 consistency),
i.e. there were less conflicts and,
consequently, less deadlocks than with the
level 3-protocols we have implemented. The
second reason is more important. In the
recording environments with their fixed degree
of multi-programming, reference density of the
single transactions was very irregular. User
think times,page faults, log I/Oetc.caused
several references of one transaction to be
processed, while another transaction did not
issue any reference. If a transaction failed
due to deadlock, its restart would take a
relatively long time in terms of references
processed meanwhile. For evaluaticn purpose%
however, we have converted the reference
strings to arbitrary degrees of concurrency
(see Fig. l), and therefore had to impose some
scheduling on the transformed string of
references. As a first approach, we have used

104

a simple round robin strategy. Each active
transaction which is ready to execute (i.e.
which is not blocked) issues one reference,
then comes the next, etc. As soon as one
transaction has finished, the next one is
started - provided there is a next 0~ in the
input reference string. So each transaction
will see a more or less different environment
than in the original application, and the
actual degree of concurrency will be higher.
If we run an evaluation with a nominal
parallelity of n = 8, then the scheduler will
always keep 8 transactions active. In reality,
however, only, say, 6 transactions will be
active in the average, due to delays in the
DC-subsystem, the operating system, user think
time, etc. All this contributes to a higher
frequency of deadlocks.
As a first approach to deadlock resolution we
implemented rollback of the transaction
causing the cyclic wait condition, a method
which is used in many commercial DBMS. But
this proved to be a poor solution, since with
3 reference strings we got permanent cyclic
restarts (livelocks) for n > 8. This is to say
that a set of 3 to 5 transactions ran into
deadlock with each other over and over again
with no chance of resolution, even at the end
of the string. As explained in sec. 3, we have
neglected all pages containing system tables
etc. in our synchronization protocols, since
these would be candidates for high blocking
frequencies. We have also made sure that pages
with free storage space, which are requested
by transactions executing a SrORE-operation,
did not cause unnecessary conflicts. But there
are, in each database, some schema-dependent
"hot spots" (Re82), i.e. records which are
frequently modified by many transactions, and
these were generally involved when permanent
deadlocks occurred. In order to avoid this
anomaly (which caused q-values of > lo!) we
opted for backing out the cheapest (or
youngest, respectively) transaction. But since
deadlock victims are back and active very soon
- which is a general problem of the reference
string - driven evaluation - we found sets of
deadlock-susceptible transactions remaining
stable over a relatively long period of time
even with this method. Again, q was increased
dramatically, thus producing meaningless
results. The method which proved to be best
implies some dynamic load balancing, and works
as follows: Each transaction is assigned with
a counter containing the number of rollbacks
this transaction has already suffered. A
deadlock victim is scheduled behind all other
transactions that have been found on the
reference string up to this moment; so if it
is started again, it will hopefully see a
different pattern of activities and will not
run into deadlock again. If a transaction is
started with a rollback counter greater than a

predefined tolerance level (we have used 3
throughout the evaluation), then the scheduler
will start no new transactions until this
critical transaction has left the system - by
either finish or rollback. Thus parallelity is
sometimes decreased to 1, but it will
immediately grow to its old value as soon as
the critical transaction is through. With long
reference strings and n) 16 such a decrease
of concurrency down to 1 has been observed 6-8
times. Decreases caused by critical
transactions in other reference strings were
less frequent and less drastical. Without this
counter measure, the average parallelity n
would be somewhat higher, but since q would
increase much faster, we would yield a worse
overall performance in terms of n*.
The same idea can be applied to optimistic
schemes in their forward oriented version
(Hki82, PSU82, Sc81, UPS83), too, as will be
explained in 5.4.

5.3 Obsexvatim cm (r,a,c)/(r,a,x)-
schemes

Surprisingly the results obtained showed
comparatively small differences between (r,x)-
protocols on one hand and the (r,a,c)/(r,a,x)-
protocols on the other hand, except for string
no. 3 and n) 8 which displays clear
advantages of (r,a,c)/(r,a,x) over (r,x). The
expected superiority of (r,a,c) over (r,a,x)
is also contradicted by some of our data.
Though our results in general reveal slight
advantages of (r,a,c)/(r,a,x) they are in
contrast to (KL82) where simulations based cm
synthetic reference strings are strongly in
favor of the (r,a,x)/(r,a,c)-approach (mixes
with 50% read-only transactions generate half
as much backups and blocking situations using
(r,a,c) than with (r,x)). But this is largely
due to the assumptions made about the database
size (100 objects) and the conflict potential
(10 objects accessed per transaction and100
transactions concurrently which implies that
roughly 40% of the database is locked at any
instant during the entire simulation) and the
performance measures chosen in (KL82).As we
already mentioned, the absolute numbers of
transaction backups and blocking situations
alone do not adequately reflect underutilized
processor capacity as long as the length of
blocking periods is not taken into account.
But why are thevalues of n so close together
in many cases and why are (r,a,c)/(r,a,x) so
prone to deadlocks in our evaluations? The
reasons are manifold, and due to the
complexity of this synchronization protocol we
can rather sketch them than explain the
problems in detail.
One of the intricacies of the (r,a,c)-protocol
is that objects cannot be freed immediately
after transaction commit. All objects read or

105

written by a transaction T remain locked, the
modified one9 in a special o(conversion1
mode, until all transactions which have seen
the old version of any object changed by T
have finished, i.e. released their locks, too.
keeping locks after transaction commit causes
blocking situations which cannot occur in
(r,x)-schemes and our results indicate that
the inactive phases can become very long.
Figure 2 depicts the length of the inactive
phases measured in term9 of references
processed between commit and finish. In order
to make the values comparable over all
reference strings the inactive phase's length
is expressed in multiples of the average
transaction length. These value9 vary
considerably with n and the type of reference
string. However for n) 8 the inactive phase
is always several times the transactionlength
and not only a fraction of it.

Fig. 3: Duration of clocks after tratNaCtiOn
termination

Another, and very important issue is lock
conversion. All simulations of locking
protocols (including (KL82)) have implicitly
assumed that references to an object are
either of the 'reacTor of the 'update--type.
But this is not the case in real systems. In
DBMS using procedural DML, as ours, and - at a
lower level - in relational systems as well,
referencesveryfrequentlyare read-references
at first and are converted into update-
references later on. Lock conversion turned
out to be a major cause of deadlock, a9 table
9 demonstrates for (r,a,c). In general the
(r,a,c)-scheme produced more deadlock9 than
(r,a,x) which in turn performed worse than

(r,xl w.r.t. deadlock frequency. We have
identified several typical conversion
scenarios resulting in deadlock for (r,a,x)
and/or (r,a,c) but not for (r,x). One case is
illustrated by the following example. Assume
an object 0 in the database read by several
transaction9 some of which try to convert
their lcx2k9 to exclusive mode or analyze mcde
respectively. Under the (r,x)-9cheme the first
transaction T making a conversion request
would block subsequent reader9 (including
those which might also convert later on) frcm
accessing 0 until T has left the system.
pmvided that the period between setting the
read lock and requesting ocnversion is short,
no deadlock will occur. In the two version
approach, the first convert operation is
admitted immediately since reader9 are
compatible with at most one writer. In
contrast to the (r-,x)-case subsequent reader9
Will still be admitted. Now the next reader
trying toconvert will cause a deadlock.
Note that this is only one situation we have
found to be characteristic for the behavior of
the two types of protocols. There are many
other, but such details would exceed the scope
of the paper.
However besides the r+x/r+a-conversion
inherent to all locking protocols, the
(r,a,c)/(r,a,x)-schemes depend on another
fundamentally different type of conversion
during the commit operation. This conversion
into c or x-mode may reveal conflicts having
occurred much earlier, but which have not been
detected due to the compatibility of r- and a-
locks.
In order to overcome this problem, we have
tried a variant of the (r,a,c)-scheme which
tests for deadlock9 more early than the
original one, and in some cases does even
delay readers, but the results have not been
significantly different. The authors of the
(r,a,c)-protocol currently investigate a
combination of this locking scheme with a
time-stamp mechanism (BEXIR82), hut evaluation
of such strategies based cn reference strings
will cost some additional work on cur side.

5.4 Observations an W

A9 has been already mentioned in sections 5.1
und 5.2, we encountered severe problems when
we tried to guarantee "fairness of processing
especially tolongtransactions. In particular
we had to apply different conflict resolution
strategies in order to achieve a sufficiently
fair scheduling. This ruled out -schemes in
their backward oriented version (HZ82) from
the beginning, since there the only choice is
rolling back the transaction which un-
successfully tries to validate. Hence all
result9 apply to the forward oriented occ-
schemes (focc). If conflicts with parallel

106

transactions are detected under focc there
are three basic policies how to proceed,
namely abort and restart the validating
transaction, or kill all conflicting
transactions, or defer validation until the
conflicting transactions have finished.
Because the latter policy introduces the
possibility of deadlock and thus much
additional administrative werhead we did not
include it in our simulation experiments.
Instead we tried some hybrid policies which
favor multiply reset trans-actions.
Surprisingly the best results for n* were
cbtained with unconditionally killing the set
of conflicting transactions at the expense of
several long transactions being killed over
and over again. The superior performance of
the pure kill policy is due to the fact that
no validation ever fails. In order to solve
the livelock problem and enable long
transactions to commit with a fairly low
number of restarts, we pursued two strategies.
On the one hand we incorporated the dynamic
load balancing algorithm outlined in section
5.2 in our simulations of the foccscheme. But
note that each kind of dynamic load control
applied to occ-schemes in order to support
"critical" transactions required some type of
dynamic lock-out mechanism for other
transactions - which is in contradiction to
the original optimistic idea of letting things
go. But obviously this step backward improves
the protocolbylimiting themaximumnumberof
restarts for any transaction.
At first when using the pure kill strategy we
observed several transactions being aborted
more than 10 times or even 20 times depending
on the reference string and the degree of
parallelism. These values are not tolerable
in a real application environment. So we
applied a hybrid policy of the following type:
We defined a restart limit for all
transactions, and in case of conflict no
transaction exceeding this limit must be
aborted - unless the validating transaction
itself is beyond the limit. With this we could
drastically reduce the number of transactions
with extremely high restart rates. For
instance allowing for up to 5 unsuccessful
validations before a transaction was
authourized to kill conflicting ones, reduced
the number of transactions reset more than 10
times by a factor of 2 compared to
unconditional killing. We are not sure,
whether all parameters (e.g. tolerance levels
for number of rollbacks) have already been
adjusted to their optimal values; but this
will be investigated in a series of systematic
evaluations, in particular to access the
tradeoffs between limiting the number of
restarts for individual transactions and the
resulting loss of performance measured by n*.

6- Ccnc.l-

In this paper we have tried to compare
different synchronization mechanisms for
multiuser databases on a realistic and
unified basis. We have used real-life page-
reference strings from databases with a
relevant size rather than random number
simulations. It could be shown that this
helped to reveal some very important problems
- think of lock conversion. Second, we
introduced a performance measure n*, which may
be considered the effective parallelity doing
useful work, as a means for comparing the
synchronization schemes on a quantitative
scale. Using the criterion, we found the
classical (r,x)-schemes to perform as well as
the improved (r,a,c)/(r,a,x)-schemes in many
situations, which is an interesting fact. The
average degree of concurrency, R, is usually
smaller with (1,x), but this is outweighed by
a smaller q, i.e. less transaction rollback.
Optimistic schemes achieve excellent
performance figures in all cases, but this
evaluation does heavily depend on the
(idealized) processor model underlying the
definition of n*. This is especially
remarkable since the applications have a
comparatively high amount of update
transactions.
We do clearly realize the problems with our
simplistic performance measure n*. It has been
introduced for the only purpose of getting the
different approaches compared atal1.A more
realistic comparison must, of course, be based
on response time and throughput. But in order
to map the events we can observe now (blocking
situations, deadlocks, etc.) onto elapsed time
and transaction rates, a more detailed model
is required. The list of effects it has to
comprise looks as follows:
-1mplementational aspects of the

synchronization protocols: instructions for
manipulating control structures, length of
critical sections, storage overhead, length
of EOT-processing, costs for deadlock
detection, etc.

- Realistic scheduling of references: times of
transaction de-activation due to
communication with the DC-subsystem, wait
times due to physical I/O (this requires
implementation of a DB-buffer and a log
subsystem).

- A processor model: number and speed of
physical processors dedicated to DB-
processing, type of processor
synchronization (via shared memory or via
messages), etc.

- A physical DB-model: distribution of the DE
segments wer physical devices, association
between devices and channels, channels and
processors, etc. This is particularly
necessary to estfrrate the degree of actual

107

parallelity of transactions in the presence
of I/O-wait times. This parameter is
definitely overestimated in cur above model.

Ebeferemces

BEER82

BHR80

BSW80

EGLT76

M82

GILT76

Gr78

HZ82

KLJ82

KR81

MN82

Bayer, R, Elhard, K., Heigert, J.,
Reise, A.: Dynamic Timestamp
Allocation for Transactions in
Database Systems, in: Proc. 2nd
International Symposium on
Distributed Data Bases, Berlin, 1982,
pp. 9-20.
Bayer, R., Heller, Reiser, A.:
Parallelism and Recovery in Database
SystemS, in: ACM TODS, vol. 5, No. 2,
Juni1982, pp.139-156.
Bernstein, P.A., Shipman, D.W., Wong,
W.S.: Formal Aspects of
Serializability in Database
Concurrency Control, in: IEEE Trans-
actions on Software Engineering, Vol.
SE-S, 3 (May1979), pp. 203-215.
Eswaran, K.P., Gray, J.N., Lorie,
RA., Traiger, I.L.: The Notions of
Consistency and Predicate Locks in a
Database System, in: CACM, Vol. 19,
No.ll, November 1976,pp.624-633.
Effelsberg, W., Harder, T.:
Principles of Database Buffer
Management, Research Report, No.
51/82, University of Kaiserslautern,
1982.
Gray, J.N., Lorie, R.A., PutzOlU,
G.R., Traiger, I.L.: Granularity of
L.ocks and Degreesof Consistency in a
Shared Data Base, in: Modelling in
Data Base Management Systems, G.M.
Nijssen (Ed.), Elsevier North-Holland
Inc., New York, 1976,pp.365-394.
Gray, J.N.: Notes on Data Base
Operating Systems, in: Lecture Notes
in Computer Science 6O,pp.394-481,
Springer Verlag, Berlin 1978.
HZrder, Th.: Observations on
Optimistic Concurrency Control
Schemes, IBM Research Report W 3645
(42501), 10/15/82, San Jose, 1982.
Kiessling, W., Landherr, G.: A
Quantitative Comparison of Lockpro-
cols for Centralized Databases,
Research Report, Sonderforschungsbe-
reich Programmiertechnik, 'lU M&&en,
1982.
Kung, H.T., Robinson, J.T.: On
Optimistic Methods for Concurrency
Control, in: ACM TODS, Vol. 6, NO. 2,
June1981rpp.213-226.
Menasce, D.A., Nakanishi, T.:
Optimistic vs. Pessimistic
Concurrency Control Mechanisms in
Database Manaqement Systems, in:

PSU82

Re82

=77

SC!81

UPS83

Information Systems, Vol. 7, No. 1,
pp.13-27, 1982.
Prldel, U., Schlageter, G., Unland,
R.: Einige Verbesserungen
optimistischer Sperrverfahren, in:
Proc. GI-Jahrestagung, 1982, pp. 684-
698 (in German).
Reuter, A.: Concurrency on High-
Traffic Data Elements, in: Proc.
1982, Conf. on Principles of Database
Systems, 1982, Los Angeles.
Ries, D.R., Stonebraker, M.: Effects
of Iocking Granularity in a Database
Management System, in: ACM ToD6, Vol.
2, No. 3, September 1977, pp. 233-
246, University of California-
Berkeley.
Ries, D.R., Stonebraker, M.R.:
Docking Granularity Revisited, in:
ACM TODS, Vol. 4, No. 2 (June 1979),
pp. 210-227.
Schlageter, G.: Optimistic Methods
for Concurrency Control in
Distributed Database Systems, in:
Proc. VLDB, 1981, Cannes, pp. 125-
130.
Unland, R, Prsdel, U., Schlageter,
G.: Ideas on Optimistic Concurrency
Control II: Design Alternatives for
Optimistic Concurrency Control
Schemes, Technical Report, Univ.
Hagen, 1983.

108

