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Ab8tract 

Database programming languages provide powerful telationai 
structures and operators based on, for exampb, first-order 
predicate calculus. Language Constructs for database 
programming, including a tmnsaction concepC requite thsrefof’e 
a predttteorbnted approach to con~m~lcy c~ntrool. A 
predicative optimistic concunency control is presented that 
attacks problems inhefwt in predtcate locking. Oniy those 
conflicts that achrally occurred between tnurractions Srs 
detected, and well-known query evaluation algorithms en9 applied 
instead of algorithms testing the diijointneas of certain m&icted 
cbsses of pmdiites. For that reason, this approach is an 
elegant solution to the phantom problem. 

1 Introduction: Programmer6 are Afrald of Phantoms 

Data in a database are often subject to integrity constraints that 
require, one way or another, that statements ate executed 
conditionally. Therefore, a very common situation in d8tabsSe 
pfogramming is the test of preconditions that depend on the 
actual state of the database prior to actions accessing a 
database. lf preconditions are not fulfilled alternative operations 
have to be executed indicating some exceptionai situation. The 
following statement sketches such aconditional operation : 

IF (0 precondition 0) 
THEN (0 databaseaction 4 
ELSE (0 exception l ) 
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The semantics of this conditionai statement are precisely defined 
in sequential programming (cf., e.g., [GrieBlD. The database 
action guarded by the precondition is executed tf and only if (tff) 
the precondttion Is fulfilled; othemise, the e-ion ls 
perlomed. However, If objects are shated by concurrent 
programs, additional semantic issues have to be cont5idsred. 
Before or during execution of a guarded command (i.e., database 
action or exception), the values of shared objects that determine 
the value of the precondition may be subject to changes by 
programs running in par&l. Obviousty. the value of the 
precondition may be changed as a conseguence, and da- 
actions may have manipulated a database that would not be 
executed if the precondition would be reevaluated. Therefore, it 
must be required that the value of the precondition remains 
constant during the execution of the conditional statement This 
requirement must be met if nothing is known in dance &cut 
the programs running in parallel [GasaBl]. This scenario is 
assumed throughout the whole paper. 

The semantic definition of the conditional statement must capture 
also the very common precondition testing the existence 
(respectiveiy the non-existence) of objects in a shared database. 
!Subsequentiy, the relational approach will be used for data and 
transaction modelling. With this approach, the precondition may 
be a membership (non-membership) teat for some reiation 
ebment. The following example will illustrate thii kind of 
precondition. It is based on a library database containing 
information about lendings of books by persons. Borrowtng a 
book may be modelled through the subsequent condiiionai 
statement. (The programming notation adopts concepts of the 
database programming language PascaM [!%hmT7].) 

IF (0 precondition 0) 
NOT SOME b IN lendings ( bbooknr = booMole&) 

THEM (0 database action 0) 
lendings : + { [booktolend, borrowingperson] } 

ELSE (* exception 0) 
WriteLn (“Book already lent.“) 

END 

lf two of the above statements referring to the same book are 
executed concurrently, the schadubr may decide to first test the 
two preconditions. Both tests are fulfilled if the book b not lent at 
the beginning. Then, both conditional statements perform thei 
database action. Nevertheless, the final database state will be 
inconsistent since the same book is tent twice. Thb 



inconsistency resulting from concumwtt insertiona has been 
~bservec~ as the phantom mob/em (cf. [EswaleD and results from 
instable preconditions 

The notion of a transaction &m to a pro&ted SInMe or 
composite statement for which the above rSqukameM must be 
s&isfii. A tmnsaction transfomw a databaS 
consistent state to another consistent state #swa76], =I 
In eddition, the definition of a transactiOn specfbs the shsrsd 
database objects that am taessedbythetnvrractkmwltha 
certain m mode (mad, write, mdwrlte). Theabovaexampb 
canberemittMbymeansofthatmnsactionconcapt- 
in [Mall83]. 

TRANSACTKIN Borrow 
(booktolendz...; bOWOWitlgpeoon:...); 

IMPORT lendings READWRm 
BEGIN 

IF NOTSGMEbINlendings(b.booknrrbooktobnd) 
THEN lendings : + { [booktolend, bonumingperson] } 
ELSE WriteLn (“Book already lsnt.“) 
END 

END Borrow; 

Transactions do not operate In general on whole mlatlons (e.g.. 
lendings), but on subrelations fulfilling some selection predicate. 
The notion of a se/eCled relation, Introduced in wl63] and 
[Bchm83a], defines a selector containing a selection predicate 
and applies selectors to dabbase dations Tha example 
illustrates these concepts. 

SELECTOR LentBook (booktolendz...) FOR Iret...; 
BEGIN 

EACH le IN Itwl: kbooknr = booktolend 
END LentBoM 

TRANSACTKIN Borrow 
(booktobnd:...; bOfTOWiflgpenon:...); 

IMPORT subkulings = lendings [ LentBook(booktoknd)] 
READWR~ 

BEGIN 
IF sublendings I Q 
THEN sublendings : + { [booktolend, borrowIngperson] } 
ELSE WriteLn (“Book already lent.“) 
END 

END Borrow; 

With the transaction concept, the requirement for a stable 
precondition of a conditional statement can now be refom~ulated. 
For a transaction to be scheduled consistently, their imported 
database objects (i.e., selected relations) must mmain constant 
during execution of the transaction. 

To sohre conflicts raised by the concurmnt execution of 
-Ions acca9BstoshamdobjsctsmuatbasynchKullzed. 
Execution models have been propoW that guarantee conalsbmt 
scheduling of concurrent tmnsactions based on various 
concurmncy control methods Including predicate locking 
[Eswa76]. Pmdlcata locking sohnss the above conslstenq 
problems including that of preventing phantoms. 

This w v a dlffamnt concunwnoy control method, 
called pfedkative optimistk concurrency control. It is baaed on 
the optimistic approach of [KungBl]. Section 2 introduces and 

defines the idea of the pmdicatii optimistic concutmncy control. 
Its advantages compared to other concuKency conb.01 methods 
am discussed ln Section 3. Algorithms for a posslbb 
impbmsntation of the prediitii optimistic concuntmcy control 
am given in section 4, including optimlzatkns of the pmposed 
nwlod. 

2 Predlcatlve Optlmlrtlc Concurrency Control 

2.1 The Method 

The predicative optimistic method to concum control is 
based on the oplimistk assumptron that conflicts between 
concurrent VansactIons will occur mther seldom. The method ls 
founded on concepts of the orlginal optimistic appmach of 
[KungBl]. The ktea of the Predkatlve optimislic method is 
summarized in the following. 

Each bansdon is divided into thma phases. During the read 
phase, the operations of a tmnsaction am exacutad. Database 
objects can ba mad unrestrtctedly, however, wrlb opamtions am 
performed on local copies. In the validation phase, it is teeted if 
tha mquimments introduced above are fulfilled. Thls means that 
theobjsctsimpoM3byatmnsactionmustnotbechangedby 
other tmnsactions. lf validation sum the local copies are 
mada global during the wrHe phase. Gthenvii, the tmnsaction is 
aborbdandmstarted. 

Foreachtransaction,twosetsaremaintalned:areadJetanda 
write set. The read se1 consists of all selected relations accessM 
byatransaction. Thenameofthedatabaserelationofwhichthe 
selected relation is part of and the selector defining the selection 
pradicate am kept In the mad set. The writ0 set determines the 
objects written by a tmnsaction. Since sebcbd relations are 
defined by means of predicates, the objscts manipulated through 
a certain selected relation can be described by the values of the 
selected relation before and after access. When acces& fint, a 
copy of the selected relation local to the transaction is made, and 
all further read and write operations are directed to this copy. 
This means that writes to the global database do not occur during 
the mad phase. 

To verify the correct execution of concurrent tmnsactions the 
crlterion of serializability is generally accepted [Eswa76]. 
Berialkabillty is achieved by assigning unktue numbem to 
transactions and by guaranteeing that wtmnwat i < i, then 
tmnsaction TO comes before transaction TGI in the equivalent 
serial schedule. The transaction number3 are assigned at thet 
Mdoftheraadphase. 

Transactions TO CM be divided with respect to tmnsaction To) 
with I < 1 into thme classes (TO bebu Tg) in the equivalent serial 
schadub): 

(1) each TO that finishes before TO start& 
(2) eachTfi)thatfinisheswhenTU~islnltsmad~ 
(B) ewzh TU that finishes after TO) has begun lb validation 
Ph==. 

Transactions T(il with i > I don’t have to be consklemd, only the 
robofT(tiandT(i)hastobechaqd. 
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Transactions of class (1) cannot conflict with T@, so WtidattOn 
against transactions of class (1) is not necBss1vy. For clsrr (2). it 
mustbeconfirmedUlcrttheob)ectsmmenbyTdi)havenot~ 
read by Tfi). This is checked by testing each write set af T(i) 
against the reed set of TffI on disjointness For class (3). the 
additionalrequirementhsstOk,mathat~~mmenby 
T(i) will not be written by To) in pamllet. Mm, each wrtte set 
ofT(i)mustbedisjointfromthereadsaandtrom~mitesaof 
ToI. If the validation for transfMion TO) fails, T@ b aborted and 
restarted from its beginning. tr valktatlon succeeds all local 
copies am transfered to the da&baseinthewrltephasa 

2.2 Formal Deflnltion 

Before the predicative optimistic method will be defined precisely, 
afonnalmodelofthedatabaseconceptsusedinthkpsperis 
introduced. 

A relational database consists of a set of relation variables A 
relation variable R has some type < DI, . . . . W >. Di is called a 
domain, and d specifii the degree of R. A relation elemenr of R 
is denoted by refR1, and it has a value, < v-1, . . . . vd >, with vi in DL 

A subset of the universe of R may be sssigned to a relation 
variable R. The universe UfRl is defined by D1 x 02 x . . . x Dd. The 
actual value of relation variable R at some point in time is 
determined by a finite subset VfRJimel c U(R). 

Transactions operate on subrelations fulfilling some selection 
predicate [Mall83]. Se/e&d felalions IvB defined as SR = 
< R. pred > ; pred speciks an a&ii first-order predicate 
applicable to relation variable R. The universe of SR is defined by 

UN?) = { re I fe f$ U(R) and pred~re) } 
and the value of SR at a certain time by 

VfSRJime) = { re 1 re E VfR.timel and predfd ). 
The set NfSRJime) denotes relation elements that are not 
materialized. It is the set difference between the univer%e and the 
actual vaiue : 

N(SR,time) = UfSR) - VfSRJimel. 

Let T be the set of all active and of all finished transactions I 
( t E T ). A transaction consists of a sequence of database 
operations transforming a database from one consistent state to 
another consistent state [Gray81]. A transaction opemtas on 
selected relations with some access mode specifying the 
transaction’s access right (Wonly, writeonly, readwrite) on 
selected parts of relations. An access a = < SR. m > dehes a 
selected relation SR that may be auxssed through m mode 
m E { read, write, readwrite }. The set of all acce$~% of 
transaction t is given by A(t). The first time at which a transWion 
perfc4ms a certain m a is denoted by b(a) (i.e., beginning of 
access). Respectiily, the last time at which a tram&ion 
performs a certain access a is denoted by eW (I.e., end of 
-1. 

Granting an access to a selected relation SR impllss that not only 
VfSR,bfa)). but also N(SR,bfe)) may be chaqpd by 1. To describe 
the manipulations on NfSR,bfd) perhmsd by tramaction t. a set 
called maferia/izaCons is introduced : 

h4fSR.o = NfSR,bfd) - NfSR,efd) 
= VfSR.efd) - VfSR.bfd). 

The phantom problem arises for transaction t with twpect to 
accessa witha CA(t). tfr 

3 t’E r-01 
( { m 1 re E MfSRXJ and m insorted intoMO.1’l 

betwemb@ande(d ) t 0 1. 

ThereadaM ofatmnsactionIconststsofalldatabmeobjscts 
acwssedbyr. lheobjects- tJyrlwdeterminedthrough 
Aft). Foreach~aEA(t).~~sacontaim<S~m>. 
These mad set entries de&mine UC& 

The w&e aer contains the sebcted retations written by a 
bansaction r. Written &acted IW~WE~ can be detefmtned by 
their values at the beginning of m and their vatuea at theend 
ofaccess. Then3fore,thewrlteeetcontalnstheebmentsof 
VfSR.bfd) and VfSR,efal) for each access a E A(t) with - 
mode dierent from read. Notice, that each &xess that b 
dementofthewrltesetlsalsomemberofthemadset. 

Validation of transaction r must constder all bansactions r* that 
aremembersofthechssrw(2)and(3)introducedkrthe~ious 
subsection. Thesetransdonsaredet~inedbytheset 

T’(t) = { t’ 1 r’c 7 and 
1’ finished between beginning and end of r }. 

Validation of a transaction r is performed cnty against finished 
transactions I’. For that reason, the materMbWons MfSR’,r~ (vb 
known explicitly for each access a’ E A(17 : 

MfSR’J’) = VfSR:e(a?) - WSR:bfa’#. 

With consideration of U&RI and with the W of the 
materializations, the following definition of validation for the 
predicative optimistic approach guarantees sefiah&Mty. This 
definition resolves any consists problems due to concunent 
execution of transactions including the phantom probbm. 

PredicaUve validation of transection t suoceeds, Hi 

v acA(f) v l’ET’(II v a’EAfI? 
( UtSRl n VfSR’,b(aYl = 0 and U&R) n WSR’,ebY = 0 

or m’ = read ). 

The objects written by t cannot be in conflict with the objects rcwd 
byr’sincetheobjectsaremittenbyronlyonlocalcopkscurdr’ 
is already finished. 

3 Comparlson wlth Other Predicative Concurrency 
Control Methods 

3.1 Preventing Phantoms: Predicate Locking 

The concurrency control method most ccmmonty used tn 
database scheduling is locking. To solve the phantom problem 
predicate rocking must be used ((Bern31J, [EswaTel, [JordN), 
[Klug83], [Schi78j). Subeequent)y. predicate locklng b defined in 
terms of the formal model introduced in Ssction 22 

AnaccessagmntsabansacticnttoopemteonsebctadMtticn 
SR with access mode m. The cctncufrency control ccmponent 
will lock, accordingly, each element accessibb through the 
selected relation (i.e.. each relation ekunent fulfilling the aetectlon 
predicate). Alockmaybegmnted~MdOn~ifIisnOother 
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active bansaction holding a conflkting I& lhe dscbion h 
madeatthebeginningoftheaccessbfs)petformsdbyt. Atthb 
time, the set of active tmnsactlcns with twsfmct to f and e ts 
determined by: 

T%(t,a) = { I’ I 1’ E T and 1’ t t and r’aetive at b(a) }. 

3ince locking must be drme before cn &xms to a sebcted 
relation is performed, W3W cannot be ~lned tn advance. 
MlSR,r’I is a subset of NfSR,bbh Therefom, the whob Sa 

N6R,bh?l must be locked in addition to WSR,bW). The 
concurrency control component may grant a p&kate lock on 
accessrtotransactionr, iff 

v r’c ma) v dcAfr3 
( ( VtSR.bta)) u NW?,bfa& ) n 

( VfSR:bfa)) u NfSR:bfB)) ) = f) 
or (m = resd and m’ = read) ). 

This is equtvalent to 

v r’~T”lr,a) v e’cA(r3 
( ufSR~nulSR7 = 0 or (m = mud and rn’= read)). 

UtSR) must be constant between b(al and e(a). This means that 
the predicate defining SR must be constant between b(s) and 
e(e). To guarantee this proper& additional read locks must be 
set on all quantiii relations occurring in the predii [KtugSSJ. 

The test on diijointness of U(SRI and U@R9 is the basib for the 
detection of a conflict between two m of transstions. 
Therefore, the predicates defining the selected relations must be 
tested on diijointness. Unfortunately, thii ts a hard algortthmk 
problem, decidable only for certatn ctasses of fii-order 
predicate calculus (cf. e.g., [Eswa7e], [HunVg], [KtugSS]. 
[Munzlg], [RoseSO~. In general, arbitrary selection predicates 
must be generalized to simpler predicates fitting into some 
common class of decidable predkates. This may increase the 
locking granularity and, consequently, may reduce the degree of 
concurrency. 

A serious problem arises through the fact that diijointness tests 
am based on the inter&on of database operation. Therefore, all 
possible conflicts are detected indepemM tly of their actual 
occurrence. For that reason, the reachabb degree of 
concurrency may be restricted severely. 

Predicate locking is a concurrency control method that applies 
prevention to the phantom problem. By locking the whob set of 
relation elements possibly fulfilling the selection predicate, 
conflicts occurring through the matertaliiion of phantoms afw 
completely prevented. This is achieved on the expense of 
serializing transactions that are not really in confkct. 

Apart from the problem of dtsjointness testing of predkates, the 
lodting approach to concurrency controf has some addttlonat 
chadvantages (cf. [Bada70], [KungelD : 

(1) Setting end releesing of locks b necessay onlyhc-w 
whemtransactionsarefeallyinconflkt. LockingassunKJethat 
conflkts will be frequent. This b catted the pessimkrk 
assumprion of locking. 

(2) Each lock requast of a tmnsaction requires commtlbility 
tests relathfe to the locks already set. Accesms to tha global 
data structures fegesentingthelocksmustk8ynduonlzad 

b&WCMM paralbl transaCtionS. This may heaVit~ reduce the 
degreeofconcuwxy,evenifconflkbdonatoaw. 

(3) All locks must be held until the end of a transaction to 
enabbanindepewMtbackupof- 

(4) Due to inwmentatty requesting Kx% deadlocks may 
occur. tfdeadbcksanzpn3ventedbypmctatmtngof~ 
concunencyisheavilyleduwd. 

3.2 The Bwlc Optlmlrtlc Method 

The database model used in the original optlmbtk method of 
[KungSl] assigns a unique name toe& databmeobject. Amad 
setcontainstheraunesofallobjscts~bya~kn. 
In terms of the above model, only V(SR.b(dl is stotw,i in the f&ad 
set for each sebcted varbbb. Therefor& validation in the 
original optimtstic method can be defined as foltom. 

Valid&on of tmnsaction r in the original cptiiisttc method of 
[KlJng61] is successful fff 

v a EAttl v r~~TYt) v 8’cAfr? 
( VfSR,b(a)) n V~SR’,bW 3: Q and 

WSR.bWl n WSR’,e(a?J = Q 
or m’ = fead ). 

WSR,b(all caphrrw only the relation elements existing at time 
b(a). Relation elements created by a tmnsactian I are not 
considered during valiition of 1. However, the manipufation of 
NtSR,bta)) performed by r must also be validated. For that 
mson, the optimistic approach of (KungSl] has inherited the 
phantom probkm out of reasons similar to those appfylng to the 
physical locking spproadr. 

3.3 Certlfylng Phantomr: 
Predicative Optlmbtlc Concurrency Control 

Relative to the disadvantages of l@tng, the optimtstic method 
gains the following advantages : 

(1) The optimistic method affects concurrency only tf a confkct 
has really occurred. With the optimistic assumption of a low 
possibility for conflkts, restarting a transaction is necessary 
only in the worst case. 

(2) Only write sets must be known to all trans&ions. llmy 
must be contained in a global data structurs; reed sets, 
however,whichareintheaveragemuchtargsrthanwrttesets 
canbekeptlocally. Eachwritesetbifwpecmonlyonce 
during validation and not with each lock request These two 
impKwements are resulting in fewer - to global data 
stfuctures thus increasing the degree of cacumncy. 

oAny~jectmay~- at any time; the optkntstk 
method does not have the notion of exclustveness as enforced 
by exclusive locks 

(4) No tmnsaction is ever waiting, so dedlocks cannot occur. 
-Mreis.howevw. thelmblsmof~lestartor 
tmnsactions in heavity loaded ay@ms. 

In addiiion to these e&an&w% the predicative optimbtk 
&lppmch is superior to pn3dkate locking for the following 
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(1) The access intension 0f a tramaction is not tested against 
other interM3ns, but against the objects actually menMated 

by other tmnsacti0ns. ltweby, onfy real COMclS an21 

ci&cted, andfewertran%ctionsaresertaiized. 

(2) Pdkates don’t have to be tested on disjolntness The 
tests, uisR) n VkZ#f :btaY = 0 and WSR) n V6R:efa@l = 0, 
m an evaluation of the predicate defining SR With respect to 

the sets of daticm ebmenb contained in VtSR:...L In other 
W&S, the intension is tested against ~xf~nsions For thb test 
we&known algorithms can be used that perform an evalUatiOn 
of tie-order predicates. These query evaluation algorfthms are 
Obvio&y available in evefy relational database system. 
Therefore, any predicate may be used for the definition of 
selected relations specifying the accesses of tmnsactions. 
Neither restricted classes of predicates, nor generaikations of 
predicates must be introduced as with predicate locking. 

In contrast to predicate locking, phantoms (ye not prevented, but 
their absence is certified during validation of transactions. This 
ceflification is the main characteristic of the predicative 
optimistic approach to concurrency control. 

4 Aigorlthms for Predicative Optimi8tic Concurrency 
Cont roi 

Subsequently, the algorithms required for the predicative 
optimistic concurrency control are presented. The notation used 
for the algorithms is an extension of the programmfng language 
Modula-2 [wirt82] by constructs of the relational database model. 
Most of the relational constructs an3 adopted from the database 
programming language Pascal/R [Schmq. They consist of a 
data type relafion and operators defined on relations, in 
particular. relation altering operators (i.e., insert (: +). delete (: -)) 
and logical and relational expressions based on first-order 
calculus. 

Concurrency control requires certain data that must be 
accessible (i.e., global) to all running transactions. These data 
stf-Jctures constitute the module GlobalDafa. it contains the write 
sets of transactions that are finished or in their write phase. 
Transaction sets contain information a!xut active transactions 
(ectives), about transactions !hat are in their validation phase 
(valideters), and about transactions that are in their write phase 
(writers). A clock is maintained in crime, and the cunentty 
highest transaction identiiier is stored in crransid. The body of 
the module initializes the global data structures. 

An entry of the write set consists of fiikfs specifying the 
transaction responsible for the entry (tramid; i.e., f with respect to 
the formal definitions of Section 2). the name of the access 
through which the writes are performed (accname; Le., a E A(f)), 
the name of the relation manipulated (fefname; Le., R), the values 
of the selected relation at the beginning of access (oldvalue% i.e., 
V(SR,b@~), the values at the end of access (newvalues; I.e.. 
V(SR,&&. and the time at which the new values have been 
written to the database (time). 

MODULE GlobalData; 

TYPE 
TransIdent = CARDINAL; 
TransSet = SET OF TransIdent; 
GlobalWSEntry I RECORD 

transid : TransIdent: 
accnaae : AccessName; 
relnare : RelationMare; 
oldvalues. 
newvalues : Relation; 
tiae : TiaeType 

END; 
GlobalWSType = RELATION transid. accnaae OF 

GlobalWSEntry; 
VAR 

globalUS : GlobalWSType; 
actives, 
validaters. 
writers : TransSet ; 
ctine : TimeType: 
ctransid : TransIdent; 

BEGIN 
globalUS := {}; 
actives := {}; 
validaters := {}: 
writers := {}; 
ctime := StartTime; 
ctransid := 0 

END GlobalData. 

The module ConcurrencyControl contains the data structure 
and algorithms required to control one transaction f. Additbnalty. 
it operates on the global data sbucturr# of modub QfohfDatu. 
An AccessEntry t-epmsmts an access a E A(t), eqmcbiiy it 
contains the predicate and the access mode. The -icab set 
@redicates) contains ail acces~6 on which the tmnsaction has 
operated on. The write set consists of the lvFlwn towhichthe 
transaction has written. Write operations any perfwnad on the 
field newvalues of the write set. 

MODULE ConcurrencyControl: 

TYPE 
AccessEntry = RECORD 

accname 
relname 
pred 
mode 

END; 
PredSetEntry = RECORD 

accname 
reTname 
pred 
time 

END; 

: AccessName; 
: RelationWale; 
: Predicate: 
: (READ, WRITE, 

READWRITE) 

: AccessName; 
: RelationNaae: 
: Predicate; 
: TiaeType 

PredSetType = RELATION accnaae OF 
PredSetEntry; 
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WriteSetEntry = 

WriteSetType = 

VAR 

RECORD 
accnawe : AccessName; 
relnawe : RelationName; 
oldvalues, 
newvalues : Relation 

END; 
RELATION accname OF 

WriteSetEntry; 

predicates : PredSetType; 
writeset : WriteSetType; 
owntransid : TransIdent; 
begintrans : TransSet: 

The procedure 8eghTransacrion Is executed at the baginnlng of 
atmnsaction. RaeaighaahewtmnaacUohkkntifbr,deflhaafhe 
trahsactiohtobeactii ahdinitiaRzeathelocaldataabucfufwa. 
Operationsonglobaldatastructurssthatmudnot~l~pted 
byparatlelopeMohaareguan3edbycrRicalaecBott3(dauoted 
by<< . . . >>). 

PROCEDURE BeginTransaction; 
BEGIN 

<< ctransid := ctransid + 1; 
owntransid := ctransid; 
begintrans := actives; 
actives :+ {owntransid); >> 

predicates := {}: 
writeset := {} 

END BeginTransaction: 

lfamadaccessispetfonnedbyatmnsaction,theprocsdum 
RequestRead b executed. It inserts the &xoas apactfkxl as 
parameterintothepredicatesetin~itbthefksto(#rationon 
this aazess. The time of this opemtioh la twuwbed. The 
subsequehtreadoperatiohiapa&medohthedatakrchexcopt 
iftheaccessiaabeadymemberoffhewrRoeet.Inthatcm3o,the 
readaccessoperateaohthehewvalueacohfalhedlnthewrReaot 
entry. 

PROCEDURE RequestRead (accentry: AccessEntry): 
VAR predentry : PredSetEntry; 

BEGIN 
WITH accentry DO 

IF NOT SOME p IN predicates 
(p.accname = accnaae) THEN 

predentry.accnane := accnaue: 
predentry.relnaae := relnaue: 
predentry.pred := pred; 
predentry.time := ctiae; 
predicates :+ {predentry} 

END 
END 

END RequestRead; 

TheprocedureRequesZWriteinsertS(m~lntoth8~~ 
aetahdihtothowrReaef.~theo#valueanndlhenaw 
values are evaluated ahd atonsd in the write set. SubaequaM 
write operations em diracted to the hew values of fhe 
cofmspcMingmiteaetenby. 

PRDCEWRE RequestWrite (accentry: AccessEntry); 
VAR writeentry : WriteSetEntry; 

BEGIN 
WITH accentry DD 

IF NOT SOME w IN writeset 
(w.accnare I accnaae) 

RequestRead(accentry); 
writeentry.accnane := accnaue; 
writeentry.relname := relnaue; 
writeentry.oldvalues := 

{EACH r IN relname : 
writeentry.newvalues := 

{EACH r IN relname : 
writeset :+ {writeentry} 

END 
END 

END RequestWrite; 

THEN 

wed(r)); 

pred(r)l; 

Thefunction NoConFkrbused duringval#atioh. fttwfumathe 
valueTRUE,RthoreisnoccMctbotwaohapredkzatepandthe 
entrbaofwensacticlhatse~cofltebledbltheglc4alwrReaet.The 
teats U(SR) n V(SR:bb9~ and UtW n V(sR:da9~, ana 
perfonned.AcohfRcfcahohfyoazur,ifthetimeofthereod 
acwsswasbefon3thetimeatthatthehewvalueahavebean 
written to the dRtRbMe. 

PROCEDURE NoConflict (p: PredSetEntry; 
tset: TransSet): BOOLEAN; 

BEGIN 
<< RETURN NOT SOME w IN globalWS 

((w.transid IN tset) AND 
(w.relname = p.relname) AND 
(w.time > p.time) AND 
( SOME e IN w.oldvalues (p.pred(e)) OR 

SOME e IN w.newvalues (p.pred(e)) )) >> 
END NoConflict; 

The procedure ErtdTransacrbn perfofms the validation phmo, 
ahd also the write phase if validation succeada. The mault of 
validationisre~n?edthroughthepamma&. 

PROCEDURE EndTransaction (VAR valid: BOOLEAN); 
VAR finishedtrans. 

validatingtrans, 
waittrans : TransSet; 
conflict : BOOLEAN; 

BEGIN 

Firat,fhelocalwrReaetbtmhaferecftotheglobalwrReaot.Sihce 
themiteoperationtothedatabaseIspsrt~sometimointho 
futufe,adefauRtimeisrem~ 

FOR EACH w IN writeset : TRUE DO 
WITH w DO 

<< globalWS :+ 
{ [owntransid, accneae. relname. 

oldvalues. newvalues. WaxTime] } >> 
END 

END; 

The cohcumshtly running bahaectiona em4 evaluated to 
detetminetheckaaeaoffmhaacBona4ainatthatvalfdaUonmust 
be perbmd. The sot FinMedtrans collacta the flniahed or 
writhg tramactions; va/idatingtfans contains the ttwmmctions 
beihginthoirvalkletionphase. 
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<< begintrens :+ {owntransid+l . . ctransid}; 
validatingtrans := validaters; 
finishedtrans := 

begintrans - actives + writers; 
validaters :+ {owntransid}; >> 

valid := TRUE; 

Vali&ition agminst fmishwci -ioriS b carrkd out NDe@edly 
until there are no bansactionS that haV0 fhbhd th& ValldaNon 
phase. 

WHILE (finishedtrans # 0) AND valid DO 
valid := ALL p IN predicates 

( NoConflict(p. finishedtrans) ); 
<< finishedtrans := 

validatingtrans - validaters; >> 
validatingtrans :- finishedtrans 

END: 

Validation of bansectioh t is performed Separately eQabrst each 
validating transaction 1: lf a conflict is detected, t is only ihvaiid if 
f' becomes valid. To come to this da&km, t must aweif the end 
of the validation phase of 1: The ixocedufw WeitTfena cfe&ys a 
tmhsectioh until ail tmheecfiohs of waAfrens have finished their 
validation phase, and the parameter veAd refums TRUE if all 
transections of waitfrans erw invalid, otherwii FALSE 

waittrans := {}; 
IF valid THEN 

FOR EACH t IN validatingtrans : TRUE DD 
conflict := NOT ALL p IN predicates 

( NoConflict(p. {t}) ); 
IF conflict THEN waittrans :+ {t} END 

END 
END; 
IF waittrans # {} THEN 

WaitTrans(valid. waittrans) 
END: 

ii validation succeeds, the write phase is execufocl, otherwise the 
transaction will be aborted. During writing the changed defebeee 
parts, the time information is updated in the globei writs se&. The 
procedures SendValid and SendfUonValid am tWvsrin~ the 
corrwspohding ihformatioh to the procedure WaHTmns 

IF valid THEN 
SendValid(owntransid); 
<< validaters :- {owntransid}; 

writers :+ {owntransid); >> 
FOR EACH w IN writeset : TRUE DO 

(Write w.newvalues to relation w.relnane); 
<< globalWS[owntransid,w.accnawe].time :E 

ctime >> 
END; 
<< writers :- {owntransid}; 

actives :- {owntransid} >> 
ELSE 

SendNonValid(owntransid); 
<< globalUS :- { EACH w IN globalUS : 

w.transid = owntransid }; 
validaters :- {owntransid); 
actives :- {owntransid} >> 

END 
END EndTransaction; 
END ConcurrencyControl. 

The complete algorithms DroDcMQ sevefai additionei 
optimizetions cah be found in [Br&83]. 

5 Concluding Remarks 

Thepeperpreeet%apredlcafivemefhodtoconcurfwncyconboi 
that k bssed on the opfimietic appn#ch Pn3dicative optimistic 
concunwncy contfoi solvea ths consistency probbma dus to 
concunwnt execution of tmnaactions inctuding ths phantom 
problem. nhasm ~spropertks-to 
pfecRcab3 locking. 

mpasefltsdmsthodhasbeenimpbmentedattheunivsaityof 
Hem&q in a muifi-user daf&esw systcnrsupporting~ 
knptementatiorl of databme progrcvnminghngwgesr-I. 
ThesYstemiswrittenintheprogmmmingtangu~Moduta-2 
[wirt&?] and is furming oh a VAX-11 computer. A eecond 
implemenfi3tion b in development at fhw ETH Zurich n will be 
partofM8Xt@tl!Bi~OfthOp?USoddat&C3OsystemLtDAR 
[R&&3] tow& a database aystsm opsmting on a netwotlc of 
personal computen. 

The predicative optimistic cancumsncy control pmposed in this 
paper miles on the optimistic assumption that the probabiiRy for 
conflicting behseclion?, is rather low. Thb assumption should 
hoici for ier~e databases and baheecfiohs that modify only small 
parts of a database. In environments of frequentiy cohflictih~ 
tretxectiohs, combined methods should be ueed that echodub 
fmhsectiom with just the riQht amount of iockin~ hrstead of 
validation [LeusQ2]. Applied to the eppro& plsaented those 
eeiected relations frequehtiy (Lcc85s8d are kcksd, whib thoeo 
eelectsd relations for which the probabiiity of cohfiicf is iow are 
validated. The scheduler may decide upon the ep~ro@efe policy 
by coibctsd ihformetioh about the aax4ss fmquemx to certain 
selectsd febtiona of by measufinQ the pdkted ssbctivity of the 
aebctioh prwdicatwa. &us in this dimcticm are propoasd ln 

@r&=1. 
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