
Solving the Phantom Problem by
Predicative Optimistic Concurrency Control

Manuel Reimer
EDt Zurich, lnstitut fllr lnfonnatik

cwaoQ2 turichl swikerbnd
and

UniversitY Hamburg, FachbeM3 lnformatik
MOOO Hamburg 13, SchliMstr. 70, Fed. Rep. of C&many

Ab8tract

Database programming languages provide powerful telationai
structures and operators based on, for exampb, first-order
predicate calculus. Language Constructs for database
programming, including a tmnsaction concepC requite thsrefof’e
a predttteorbnted approach to con~m~lcy c~ntrool. A
predicative optimistic concunency control is presented that
attacks problems inhefwt in predtcate locking. Oniy those
conflicts that achrally occurred between tnurractions Srs
detected, and well-known query evaluation algorithms en9 applied
instead of algorithms testing the diijointneas of certain m&icted
cbsses of pmdiites. For that reason, this approach is an
elegant solution to the phantom problem.

1 Introduction: Programmer6 are Afrald of Phantoms

Data in a database are often subject to integrity constraints that
require, one way or another, that statements ate executed
conditionally. Therefore, a very common situation in d8tabsSe
pfogramming is the test of preconditions that depend on the
actual state of the database prior to actions accessing a
database. lf preconditions are not fulfilled alternative operations
have to be executed indicating some exceptionai situation. The
following statement sketches such aconditional operation :

IF (0 precondition 0)
THEN (0 databaseaction 4
ELSE (0 exception l)

This work was supported in part by the B&s&e
Fomchungsgemeinschaft (BFG) under grant no. Bchm 45013
(principal investigator. J. W. Schmidt).

The semantics of this conditionai statement are precisely defined
in sequential programming (cf., e.g., [GrieBlD. The database
action guarded by the precondition is executed tf and only if (tff)
the precondttion Is fulfilled; othemise, the e-ion ls
perlomed. However, If objects are shated by concurrent
programs, additional semantic issues have to be cont5idsred.
Before or during execution of a guarded command (i.e., database
action or exception), the values of shared objects that determine
the value of the precondition may be subject to changes by
programs running in par&l. Obviousty. the value of the
precondition may be changed as a conseguence, and da-
actions may have manipulated a database that would not be
executed if the precondition would be reevaluated. Therefore, it
must be required that the value of the precondition remains
constant during the execution of the conditional statement This
requirement must be met if nothing is known in dance &cut
the programs running in parallel [GasaBl]. This scenario is
assumed throughout the whole paper.

The semantic definition of the conditional statement must capture
also the very common precondition testing the existence
(respectiveiy the non-existence) of objects in a shared database.
!Subsequentiy, the relational approach will be used for data and
transaction modelling. With this approach, the precondition may
be a membership (non-membership) teat for some reiation
ebment. The following example will illustrate thii kind of
precondition. It is based on a library database containing
information about lendings of books by persons. Borrowtng a
book may be modelled through the subsequent condiiionai
statement. (The programming notation adopts concepts of the
database programming language PascaM [!%hmT7].)

IF (0 precondition 0)
NOT SOME b IN lendings (bbooknr = booMole&)

THEM (0 database action 0)
lendings : + { [booktolend, borrowingperson] }

ELSE (* exception 0)
WriteLn (“Book already lent.“)

END

lf two of the above statements referring to the same book are
executed concurrently, the schadubr may decide to first test the
two preconditions. Both tests are fulfilled if the book b not lent at
the beginning. Then, both conditional statements perform thei
database action. Nevertheless, the final database state will be
inconsistent since the same book is tent twice. Thb

inconsistency resulting from concumwtt insertiona has been
~bservec~ as the phantom mob/em (cf. [EswaleD and results from
instable preconditions

The notion of a transaction &m to a pro&ted SInMe or
composite statement for which the above rSqukameM must be
s&isfii. A tmnsaction transfomw a databaS
consistent state to another consistent state #swa76], =I
In eddition, the definition of a transactiOn specfbs the shsrsd
database objects that am taessedbythetnvrractkmwltha
certain m mode (mad, write, mdwrlte). Theabovaexampb
canberemittMbymeansofthatmnsactionconcapt-
in [Mall83].

TRANSACTKIN Borrow
(booktolendz...; bOWOWitlgpeoon:...);

IMPORT lendings READWRm
BEGIN

IF NOTSGMEbINlendings(b.booknrrbooktobnd)
THEN lendings : + { [booktolend, bonumingperson] }
ELSE WriteLn (“Book already lsnt.“)
END

END Borrow;

Transactions do not operate In general on whole mlatlons (e.g..
lendings), but on subrelations fulfilling some selection predicate.
The notion of a se/eCled relation, Introduced in wl63] and
[Bchm83a], defines a selector containing a selection predicate
and applies selectors to dabbase dations Tha example
illustrates these concepts.

SELECTOR LentBook (booktolendz...) FOR Iret...;
BEGIN

EACH le IN Itwl: kbooknr = booktolend
END LentBoM

TRANSACTKIN Borrow
(booktobnd:...; bOfTOWiflgpenon:...);

IMPORT subkulings = lendings [LentBook(booktoknd)]
READWR~

BEGIN
IF sublendings I Q
THEN sublendings : + { [booktolend, borrowIngperson] }
ELSE WriteLn (“Book already lent.“)
END

END Borrow;

With the transaction concept, the requirement for a stable
precondition of a conditional statement can now be refom~ulated.
For a transaction to be scheduled consistently, their imported
database objects (i.e., selected relations) must mmain constant
during execution of the transaction.

To sohre conflicts raised by the concurmnt execution of
-Ions acca9BstoshamdobjsctsmuatbasynchKullzed.
Execution models have been propoW that guarantee conalsbmt
scheduling of concurrent tmnsactions based on various
concurmncy control methods Including predicate locking
[Eswa76]. Pmdlcata locking sohnss the above conslstenq
problems including that of preventing phantoms.

This w v a dlffamnt concunwnoy control method,
called pfedkative optimistk concurrency control. It is baaed on
the optimistic approach of [KungBl]. Section 2 introduces and

defines the idea of the pmdicatii optimistic concutmncy control.
Its advantages compared to other concuKency conb.01 methods
am discussed ln Section 3. Algorithms for a posslbb
impbmsntation of the prediitii optimistic concuntmcy control
am given in section 4, including optimlzatkns of the pmposed
nwlod.

2 Predlcatlve Optlmlrtlc Concurrency Control

2.1 The Method

The predicative optimistic method to concum control is
based on the oplimistk assumptron that conflicts between
concurrent VansactIons will occur mther seldom. The method ls
founded on concepts of the orlginal optimistic appmach of
[KungBl]. The ktea of the Predkatlve optimislic method is
summarized in the following.

Each bansdon is divided into thma phases. During the read
phase, the operations of a tmnsaction am exacutad. Database
objects can ba mad unrestrtctedly, however, wrlb opamtions am
performed on local copies. In the validation phase, it is teeted if
tha mquimments introduced above are fulfilled. Thls means that
theobjsctsimpoM3byatmnsactionmustnotbechangedby
other tmnsactions. lf validation sum the local copies are
mada global during the wrHe phase. Gthenvii, the tmnsaction is
aborbdandmstarted.

Foreachtransaction,twosetsaremaintalned:areadJetanda
write set. The read se1 consists of all selected relations accessM
byatransaction. Thenameofthedatabaserelationofwhichthe
selected relation is part of and the selector defining the selection
pradicate am kept In the mad set. The writ0 set determines the
objects written by a tmnsaction. Since sebcbd relations are
defined by means of predicates, the objscts manipulated through
a certain selected relation can be described by the values of the
selected relation before and after access. When acces& fint, a
copy of the selected relation local to the transaction is made, and
all further read and write operations are directed to this copy.
This means that writes to the global database do not occur during
the mad phase.

To verify the correct execution of concurrent tmnsactions the
crlterion of serializability is generally accepted [Eswa76].
Berialkabillty is achieved by assigning unktue numbem to
transactions and by guaranteeing that wtmnwat i < i, then
tmnsaction TO comes before transaction TGI in the equivalent
serial schedule. The transaction number3 are assigned at thet
Mdoftheraadphase.

Transactions TO CM be divided with respect to tmnsaction To)
with I < 1 into thme classes (TO bebu Tg) in the equivalent serial
schadub):

(1) each TO that finishes before TO start&
(2) eachTfi)thatfinisheswhenTU~islnltsmad~
(B) ewzh TU that finishes after TO) has begun lb validation
Ph==.

Transactions T(il with i > I don’t have to be consklemd, only the
robofT(tiandT(i)hastobechaqd.

82

Transactions of class (1) cannot conflict with T@, so WtidattOn
against transactions of class (1) is not necBss1vy. For clsrr (2). it
mustbeconfirmedUlcrttheob)ectsmmenbyTdi)havenot~
read by Tfi). This is checked by testing each write set af T(i)
against the reed set of TffI on disjointness For class (3). the
additionalrequirementhsstOk,mathat~~mmenby
T(i) will not be written by To) in pamllet. Mm, each wrtte set
ofT(i)mustbedisjointfromthereadsaandtrom~mitesaof
ToI. If the validation for transfMion TO) fails, T@ b aborted and
restarted from its beginning. tr valktatlon succeeds all local
copies am transfered to the da&baseinthewrltephasa

2.2 Formal Deflnltion

Before the predicative optimistic method will be defined precisely,
afonnalmodelofthedatabaseconceptsusedinthkpsperis
introduced.

A relational database consists of a set of relation variables A
relation variable R has some type < DI, W >. Di is called a
domain, and d specifii the degree of R. A relation elemenr of R
is denoted by refR1, and it has a value, < v-1, vd >, with vi in DL

A subset of the universe of R may be sssigned to a relation
variable R. The universe UfRl is defined by D1 x 02 x . . . x Dd. The
actual value of relation variable R at some point in time is
determined by a finite subset VfRJimel c U(R).

Transactions operate on subrelations fulfilling some selection
predicate [Mall83]. Se/e&d felalions IvB defined as SR =
< R. pred > ; pred speciks an a&ii first-order predicate
applicable to relation variable R. The universe of SR is defined by

UN?) = { re I fe f$ U(R) and pred~re) }
and the value of SR at a certain time by

VfSRJime) = { re 1 re E VfR.timel and predfd).
The set NfSRJime) denotes relation elements that are not
materialized. It is the set difference between the univer%e and the
actual vaiue :

N(SR,time) = UfSR) - VfSRJimel.

Let T be the set of all active and of all finished transactions I
(t E T). A transaction consists of a sequence of database
operations transforming a database from one consistent state to
another consistent state [Gray81]. A transaction opemtas on
selected relations with some access mode specifying the
transaction’s access right (Wonly, writeonly, readwrite) on
selected parts of relations. An access a = < SR. m > dehes a
selected relation SR that may be auxssed through m mode
m E { read, write, readwrite }. The set of all acce$~% of
transaction t is given by A(t). The first time at which a transWion
perfc4ms a certain m a is denoted by b(a) (i.e., beginning of
access). Respectiily, the last time at which a tram&ion
performs a certain access a is denoted by eW (I.e., end of
-1.

Granting an access to a selected relation SR impllss that not only
VfSR,bfa)). but also N(SR,bfe)) may be chaqpd by 1. To describe
the manipulations on NfSR,bfd) perhmsd by tramaction t. a set
called maferia/izaCons is introduced :

h4fSR.o = NfSR,bfd) - NfSR,efd)
= VfSR.efd) - VfSR.bfd).

The phantom problem arises for transaction t with twpect to
accessa witha CA(t). tfr

3 t’E r-01
({ m 1 re E MfSRXJ and m insorted intoMO.1’l

betwemb@ande(d) t 0 1.

ThereadaM ofatmnsactionIconststsofalldatabmeobjscts
acwssedbyr. lheobjects- tJyrlwdeterminedthrough
Aft). Foreach~aEA(t).~~sacontaim<S~m>.
These mad set entries de&mine UC&

The w&e aer contains the sebcted retations written by a
bansaction r. Written &acted IW~WE~ can be detefmtned by
their values at the beginning of m and their vatuea at theend
ofaccess. Then3fore,thewrlteeetcontalnstheebmentsof
VfSR.bfd) and VfSR,efal) for each access a E A(t) with -
mode dierent from read. Notice, that each &xess that b
dementofthewrltesetlsalsomemberofthemadset.

Validation of transaction r must constder all bansactions r* that
aremembersofthechssrw(2)and(3)introducedkrthe~ious
subsection. Thesetransdonsaredet~inedbytheset

T’(t) = { t’ 1 r’c 7 and
1’ finished between beginning and end of r }.

Validation of a transaction r is performed cnty against finished
transactions I’. For that reason, the materMbWons MfSR’,r~ (vb
known explicitly for each access a’ E A(17 :

MfSR’J’) = VfSR:e(a?) - WSR:bfa’#.

With consideration of U&RI and with the W of the
materializations, the following definition of validation for the
predicative optimistic approach guarantees sefiah&Mty. This
definition resolves any consists problems due to concunent
execution of transactions including the phantom probbm.

PredicaUve validation of transection t suoceeds, Hi

v acA(f) v l’ET’(II v a’EAfI?
(UtSRl n VfSR’,b(aYl = 0 and U&R) n WSR’,ebY = 0

or m’ = read).

The objects written by t cannot be in conflict with the objects rcwd
byr’sincetheobjectsaremittenbyronlyonlocalcopkscurdr’
is already finished.

3 Comparlson wlth Other Predicative Concurrency
Control Methods

3.1 Preventing Phantoms: Predicate Locking

The concurrency control method most ccmmonty used tn
database scheduling is locking. To solve the phantom problem
predicate rocking must be used ((Bern31J, [EswaTel, [JordN),
[Klug83], [Schi78j). Subeequent)y. predicate locklng b defined in
terms of the formal model introduced in Ssction 22

AnaccessagmntsabansacticnttoopemteonsebctadMtticn
SR with access mode m. The cctncufrency control ccmponent
will lock, accordingly, each element accessibb through the
selected relation (i.e.. each relation ekunent fulfilling the aetectlon
predicate). Alockmaybegmnted~MdOn~ifIisnOother

83

active bansaction holding a conflkting I& lhe dscbion h
madeatthebeginningoftheaccessbfs)petformsdbyt. Atthb
time, the set of active tmnsactlcns with twsfmct to f and e ts
determined by:

T%(t,a) = { I’ I 1’ E T and 1’ t t and r’aetive at b(a) }.

3ince locking must be drme before cn &xms to a sebcted
relation is performed, W3W cannot be ~lned tn advance.
MlSR,r’I is a subset of NfSR,bbh Therefom, the whob Sa

N6R,bh?l must be locked in addition to WSR,bW). The
concurrency control component may grant a p&kate lock on
accessrtotransactionr, iff

v r’c ma) v dcAfr3
((VtSR.bta)) u NW?,bfa&) n

(VfSR:bfa)) u NfSR:bfB))) = f)
or (m = resd and m’ = read)).

This is equtvalent to

v r’~T”lr,a) v e’cA(r3
(ufSR~nulSR7 = 0 or (m = mud and rn’= read)).

UtSR) must be constant between b(al and e(a). This means that
the predicate defining SR must be constant between b(s) and
e(e). To guarantee this proper& additional read locks must be
set on all quantiii relations occurring in the predii [KtugSSJ.

The test on diijointness of U(SRI and U@R9 is the basib for the
detection of a conflict between two m of transstions.
Therefore, the predicates defining the selected relations must be
tested on diijointness. Unfortunately, thii ts a hard algortthmk
problem, decidable only for certatn ctasses of fii-order
predicate calculus (cf. e.g., [Eswa7e], [HunVg], [KtugSS].
[Munzlg], [RoseSO~. In general, arbitrary selection predicates
must be generalized to simpler predicates fitting into some
common class of decidable predkates. This may increase the
locking granularity and, consequently, may reduce the degree of
concurrency.

A serious problem arises through the fact that diijointness tests
am based on the inter&on of database operation. Therefore, all
possible conflicts are detected indepemM tly of their actual
occurrence. For that reason, the reachabb degree of
concurrency may be restricted severely.

Predicate locking is a concurrency control method that applies
prevention to the phantom problem. By locking the whob set of
relation elements possibly fulfilling the selection predicate,
conflicts occurring through the matertaliiion of phantoms afw
completely prevented. This is achieved on the expense of
serializing transactions that are not really in confkct.

Apart from the problem of dtsjointness testing of predkates, the
lodting approach to concurrency controf has some addttlonat
chadvantages (cf. [Bada70], [KungelD :

(1) Setting end releesing of locks b necessay onlyhc-w
whemtransactionsarefeallyinconflkt. LockingassunKJethat
conflkts will be frequent. This b catted the pessimkrk
assumprion of locking.

(2) Each lock requast of a tmnsaction requires commtlbility
tests relathfe to the locks already set. Accesms to tha global
data structures fegesentingthelocksmustk8ynduonlzad

b&WCMM paralbl transaCtionS. This may heaVit~ reduce the
degreeofconcuwxy,evenifconflkbdonatoaw.

(3) All locks must be held until the end of a transaction to
enabbanindepewMtbackupof-

(4) Due to inwmentatty requesting Kx% deadlocks may
occur. tfdeadbcksanzpn3ventedbypmctatmtngof~
concunencyisheavilyleduwd.

3.2 The Bwlc Optlmlrtlc Method

The database model used in the original optlmbtk method of
[KungSl] assigns a unique name toe& databmeobject. Amad
setcontainstheraunesofallobjscts~bya~kn.
In terms of the above model, only V(SR.b(dl is stotw,i in the f&ad
set for each sebcted varbbb. Therefor& validation in the
original optimtstic method can be defined as foltom.

Valid&on of tmnsaction r in the original cptiiisttc method of
[KlJng61] is successful fff

v a EAttl v r~~TYt) v 8’cAfr?
(VfSR,b(a)) n V~SR’,bW 3: Q and

WSR.bWl n WSR’,e(a?J = Q
or m’ = fead).

WSR,b(all caphrrw only the relation elements existing at time
b(a). Relation elements created by a tmnsactian I are not
considered during valiition of 1. However, the manipufation of
NtSR,bta)) performed by r must also be validated. For that
mson, the optimistic approach of (KungSl] has inherited the
phantom probkm out of reasons similar to those appfylng to the
physical locking spproadr.

3.3 Certlfylng Phantomr:
Predicative Optlmbtlc Concurrency Control

Relative to the disadvantages of l@tng, the optimtstic method
gains the following advantages :

(1) The optimistic method affects concurrency only tf a confkct
has really occurred. With the optimistic assumption of a low
possibility for conflkts, restarting a transaction is necessary
only in the worst case.

(2) Only write sets must be known to all trans&ions. llmy
must be contained in a global data structurs; reed sets,
however,whichareintheaveragemuchtargsrthanwrttesets
canbekeptlocally. Eachwritesetbifwpecmonlyonce
during validation and not with each lock request These two
impKwements are resulting in fewer - to global data
stfuctures thus increasing the degree of cacumncy.

oAny~jectmay~- at any time; the optkntstk
method does not have the notion of exclustveness as enforced
by exclusive locks

(4) No tmnsaction is ever waiting, so dedlocks cannot occur.
-Mreis.howevw. thelmblsmof~lestartor
tmnsactions in heavity loaded ay@ms.

In addiiion to these e&an&w% the predicative optimbtk
&lppmch is superior to pn3dkate locking for the following

a4

(1) The access intension 0f a tramaction is not tested against
other interM3ns, but against the objects actually menMated

by other tmnsacti0ns. ltweby, onfy real COMclS an21

ci&cted, andfewertran%ctionsaresertaiized.

(2) Pdkates don’t have to be tested on disjolntness The
tests, uisR) n VkZ#f :btaY = 0 and WSR) n V6R:efa@l = 0,
m an evaluation of the predicate defining SR With respect to

the sets of daticm ebmenb contained in VtSR:...L In other
W&S, the intension is tested against ~xf~nsions For thb test
we&known algorithms can be used that perform an evalUatiOn
of tie-order predicates. These query evaluation algorfthms are
Obvio&y available in evefy relational database system.
Therefore, any predicate may be used for the definition of
selected relations specifying the accesses of tmnsactions.
Neither restricted classes of predicates, nor generaikations of
predicates must be introduced as with predicate locking.

In contrast to predicate locking, phantoms (ye not prevented, but
their absence is certified during validation of transactions. This
ceflification is the main characteristic of the predicative
optimistic approach to concurrency control.

4 Aigorlthms for Predicative Optimi8tic Concurrency
Cont roi

Subsequently, the algorithms required for the predicative
optimistic concurrency control are presented. The notation used
for the algorithms is an extension of the programmfng language
Modula-2 [wirt82] by constructs of the relational database model.
Most of the relational constructs an3 adopted from the database
programming language Pascal/R [Schmq. They consist of a
data type relafion and operators defined on relations, in
particular. relation altering operators (i.e., insert (: +). delete (: -))
and logical and relational expressions based on first-order
calculus.

Concurrency control requires certain data that must be
accessible (i.e., global) to all running transactions. These data
stf-Jctures constitute the module GlobalDafa. it contains the write
sets of transactions that are finished or in their write phase.
Transaction sets contain information a!xut active transactions
(ectives), about transactions !hat are in their validation phase
(valideters), and about transactions that are in their write phase
(writers). A clock is maintained in crime, and the cunentty
highest transaction identiiier is stored in crransid. The body of
the module initializes the global data structures.

An entry of the write set consists of fiikfs specifying the
transaction responsible for the entry (tramid; i.e., f with respect to
the formal definitions of Section 2). the name of the access
through which the writes are performed (accname; Le., a E A(f)),
the name of the relation manipulated (fefname; Le., R), the values
of the selected relation at the beginning of access (oldvalue% i.e.,
V(SR,b@~), the values at the end of access (newvalues; I.e..
V(SR,&&. and the time at which the new values have been
written to the database (time).

MODULE GlobalData;

TYPE
TransIdent = CARDINAL;
TransSet = SET OF TransIdent;
GlobalWSEntry I RECORD

transid : TransIdent:
accnaae : AccessName;
relnare : RelationMare;
oldvalues.
newvalues : Relation;
tiae : TiaeType

END;
GlobalWSType = RELATION transid. accnaae OF

GlobalWSEntry;
VAR

globalUS : GlobalWSType;
actives,
validaters.
writers : TransSet ;
ctine : TimeType:
ctransid : TransIdent;

BEGIN
globalUS := {};
actives := {};
validaters := {}:
writers := {};
ctime := StartTime;
ctransid := 0

END GlobalData.

The module ConcurrencyControl contains the data structure
and algorithms required to control one transaction f. Additbnalty.
it operates on the global data sbucturr# of modub QfohfDatu.
An AccessEntry t-epmsmts an access a E A(t), eqmcbiiy it
contains the predicate and the access mode. The -icab set
@redicates) contains ail acces~6 on which the tmnsaction has
operated on. The write set consists of the lvFlwn towhichthe
transaction has written. Write operations any perfwnad on the
field newvalues of the write set.

MODULE ConcurrencyControl:

TYPE
AccessEntry = RECORD

accname
relname
pred
mode

END;
PredSetEntry = RECORD

accname
reTname
pred
time

END;

: AccessName;
: RelationWale;
: Predicate:
: (READ, WRITE,

READWRITE)

: AccessName;
: RelationNaae:
: Predicate;
: TiaeType

PredSetType = RELATION accnaae OF
PredSetEntry;

85

WriteSetEntry =

WriteSetType =

VAR

RECORD
accnawe : AccessName;
relnawe : RelationName;
oldvalues,
newvalues : Relation

END;
RELATION accname OF

WriteSetEntry;

predicates : PredSetType;
writeset : WriteSetType;
owntransid : TransIdent;
begintrans : TransSet:

The procedure 8eghTransacrion Is executed at the baginnlng of
atmnsaction. RaeaighaahewtmnaacUohkkntifbr,deflhaafhe
trahsactiohtobeactii ahdinitiaRzeathelocaldataabucfufwa.
Operationsonglobaldatastructurssthatmudnot~l~pted
byparatlelopeMohaareguan3edbycrRicalaecBott3(dauoted
by<< . . . >>).

PROCEDURE BeginTransaction;
BEGIN

<< ctransid := ctransid + 1;
owntransid := ctransid;
begintrans := actives;
actives :+ {owntransid); >>

predicates := {}:
writeset := {}

END BeginTransaction:

lfamadaccessispetfonnedbyatmnsaction,theprocsdum
RequestRead b executed. It inserts the &xoas apactfkxl as
parameterintothepredicatesetin~itbthefksto(#rationon
this aazess. The time of this opemtioh la twuwbed. The
subsequehtreadoperatiohiapa&medohthedatakrchexcopt
iftheaccessiaabeadymemberoffhewrRoeet.Inthatcm3o,the
readaccessoperateaohthehewvalueacohfalhedlnthewrReaot
entry.

PROCEDURE RequestRead (accentry: AccessEntry):
VAR predentry : PredSetEntry;

BEGIN
WITH accentry DO

IF NOT SOME p IN predicates
(p.accname = accnaae) THEN

predentry.accnane := accnaue:
predentry.relnaae := relnaue:
predentry.pred := pred;
predentry.time := ctiae;
predicates :+ {predentry}

END
END

END RequestRead;

TheprocedureRequesZWriteinsertS(m~lntoth8~~
aetahdihtothowrReaef.~theo#valueanndlhenaw
values are evaluated ahd atonsd in the write set. SubaequaM
write operations em diracted to the hew values of fhe
cofmspcMingmiteaetenby.

PRDCEWRE RequestWrite (accentry: AccessEntry);
VAR writeentry : WriteSetEntry;

BEGIN
WITH accentry DD

IF NOT SOME w IN writeset
(w.accnare I accnaae)

RequestRead(accentry);
writeentry.accnane := accnaue;
writeentry.relname := relnaue;
writeentry.oldvalues :=

{EACH r IN relname :
writeentry.newvalues :=

{EACH r IN relname :
writeset :+ {writeentry}

END
END

END RequestWrite;

THEN

wed(r));

pred(r)l;

Thefunction NoConFkrbused duringval#atioh. fttwfumathe
valueTRUE,RthoreisnoccMctbotwaohapredkzatepandthe
entrbaofwensacticlhatse~cofltebledbltheglc4alwrReaet.The
teats U(SR) n V(SR:bb9~ and UtW n V(sR:da9~, ana
perfonned.AcohfRcfcahohfyoazur,ifthetimeofthereod
acwsswasbefon3thetimeatthatthehewvalueahavebean
written to the dRtRbMe.

PROCEDURE NoConflict (p: PredSetEntry;
tset: TransSet): BOOLEAN;

BEGIN
<< RETURN NOT SOME w IN globalWS

((w.transid IN tset) AND
(w.relname = p.relname) AND
(w.time > p.time) AND
(SOME e IN w.oldvalues (p.pred(e)) OR

SOME e IN w.newvalues (p.pred(e)))) >>
END NoConflict;

The procedure ErtdTransacrbn perfofms the validation phmo,
ahd also the write phase if validation succeada. The mault of
validationisre~n?edthroughthepamma&.

PROCEDURE EndTransaction (VAR valid: BOOLEAN);
VAR finishedtrans.

validatingtrans,
waittrans : TransSet;
conflict : BOOLEAN;

BEGIN

Firat,fhelocalwrReaetbtmhaferecftotheglobalwrReaot.Sihce
themiteoperationtothedatabaseIspsrt~sometimointho
futufe,adefauRtimeisrem~

FOR EACH w IN writeset : TRUE DO
WITH w DO

<< globalWS :+
{ [owntransid, accneae. relname.

oldvalues. newvalues. WaxTime] } >>
END

END;

The cohcumshtly running bahaectiona em4 evaluated to
detetminetheckaaeaoffmhaacBona4ainatthatvalfdaUonmust
be perbmd. The sot FinMedtrans collacta the flniahed or
writhg tramactions; va/idatingtfans contains the ttwmmctions
beihginthoirvalkletionphase.

86

<< begintrens :+ {owntransid+l . . ctransid};
validatingtrans := validaters;
finishedtrans :=

begintrans - actives + writers;
validaters :+ {owntransid}; >>

valid := TRUE;

Vali&ition agminst fmishwci -ioriS b carrkd out NDe@edly
until there are no bansactionS that haV0 fhbhd th& ValldaNon
phase.

WHILE (finishedtrans # 0) AND valid DO
valid := ALL p IN predicates

(NoConflict(p. finishedtrans));
<< finishedtrans :=

validatingtrans - validaters; >>
validatingtrans :- finishedtrans

END:

Validation of bansectioh t is performed Separately eQabrst each
validating transaction 1: lf a conflict is detected, t is only ihvaiid if
f' becomes valid. To come to this da&km, t must aweif the end
of the validation phase of 1: The ixocedufw WeitTfena cfe&ys a
tmhsectioh until ail tmheecfiohs of waAfrens have finished their
validation phase, and the parameter veAd refums TRUE if all
transections of waitfrans erw invalid, otherwii FALSE

waittrans := {};
IF valid THEN

FOR EACH t IN validatingtrans : TRUE DD
conflict := NOT ALL p IN predicates

(NoConflict(p. {t}));
IF conflict THEN waittrans :+ {t} END

END
END;
IF waittrans # {} THEN

WaitTrans(valid. waittrans)
END:

ii validation succeeds, the write phase is execufocl, otherwise the
transaction will be aborted. During writing the changed defebeee
parts, the time information is updated in the globei writs se&. The
procedures SendValid and SendfUonValid am tWvsrin~ the
corrwspohding ihformatioh to the procedure WaHTmns

IF valid THEN
SendValid(owntransid);
<< validaters :- {owntransid};

writers :+ {owntransid); >>
FOR EACH w IN writeset : TRUE DO

(Write w.newvalues to relation w.relnane);
<< globalWS[owntransid,w.accnawe].time :E

ctime >>
END;
<< writers :- {owntransid};

actives :- {owntransid} >>
ELSE

SendNonValid(owntransid);
<< globalUS :- { EACH w IN globalUS :

w.transid = owntransid };
validaters :- {owntransid);
actives :- {owntransid} >>

END
END EndTransaction;
END ConcurrencyControl.

The complete algorithms DroDcMQ sevefai additionei
optimizetions cah be found in [Br&83].

5 Concluding Remarks

Thepeperpreeet%apredlcafivemefhodtoconcurfwncyconboi
that k bssed on the opfimietic appn#ch Pn3dicative optimistic
concunwncy contfoi solvea ths consistency probbma dus to
concunwnt execution of tmnaactions inctuding ths phantom
problem. nhasm ~spropertks-to
pfecRcab3 locking.

mpasefltsdmsthodhasbeenimpbmentedattheunivsaityof
Hem&q in a muifi-user daf&esw systcnrsupporting~
knptementatiorl of databme progrcvnminghngwgesr-I.
ThesYstemiswrittenintheprogmmmingtangu~Moduta-2
[wirt&?] and is furming oh a VAX-11 computer. A eecond
implemenfi3tion b in development at fhw ETH Zurich n will be
partofM8Xt@tl!Bi~OfthOp?USoddat&C3OsystemLtDAR
[R&&3] tow& a database aystsm opsmting on a netwotlc of
personal computen.

The predicative optimistic cancumsncy control pmposed in this
paper miles on the optimistic assumption that the probabiiRy for
conflicting behseclion?, is rather low. Thb assumption should
hoici for ier~e databases and baheecfiohs that modify only small
parts of a database. In environments of frequentiy cohflictih~
tretxectiohs, combined methods should be ueed that echodub
fmhsectiom with just the riQht amount of iockin~ hrstead of
validation [LeusQ2]. Applied to the eppro& plsaented those
eeiected relations frequehtiy (Lcc85s8d are kcksd, whib thoeo
eelectsd relations for which the probabiiity of cohfiicf is iow are
validated. The scheduler may decide upon the ep~ro@efe policy
by coibctsd ihformetioh about the aax4ss fmquemx to certain
selectsd febtiona of by measufinQ the pdkted ssbctivity of the
aebctioh prwdicatwa. &us in this dimcticm are propoasd ln

@r&=1.

Acknowledgments

The author is grateful to J. W. Schmidt Md C. A. Zehnder for their
continuous support of this work, and to R. P. Br&gger, J. Koch, W.
Lamemdorf, M. Mail, end P. Putfadwn for the encourcycling
discussions arid their commwr~ts oh eariier versions of this paper.

References

[-JaTQl
Badal,D.t: ‘Cone&wss ofconcurMncycontroland
impiicetiohs in Distributed DaMesee. Proc IEEE COMPSAC
Cod, Chicago, November 1979

[-M
Bemstein,P.k, Goodman,N., Lat. M.-Y.: Laying Phantoms to
Rest@yUndwstad ing ths intemctiona Betwsmn schedubra
and Translators in a Database System). Haward University,
Aiken Computation Leboretory, Cembrkf~e, 1981

IBriig831
&&gger,F?.P., Reimer,M.: Predicative Scheduling: Integration
of Locking and Optimistic Methods. t3t-t Zurich, lnstitut filr
Informatik, Report 53,l B3

87

casanwaM.A: The co4Icumsflcy control Problem for
DatabaseSystem% LectureNotOSinc0mput0r~bnce116,
springer-verlag, 1901

[Eswa76J
Eswaran,KP., Omy,J.N., La’b,R.A.,Tmiger,lL:TheNotlamof
Consistency and Predicate Locks in a Databaw System.
CACM, Vo1.19, No.11, November 1976

[Gray811
Gmy,J.N.: The Transaction Conwptz Virtues and Limttations
Proc7thConf.onveryLaRJeDataBase&ckllme#~
1981

[GriaU]
Gries,D.: The Science of Programming. Texta and
Monographs In computersc&nce, springer-vertag, 1981

[Hunt791
Hunt,H.B., Rosenkrantz,D.J.: The Complexity of Testing
Predicate Locks. Proc. InL Conf. on bhmgemmt of Data,
Boston, May 1979

[J0rd81]
Jordan,J.R., Banerke,J., Batman,R.B.: Precision Locks. Proc
Int. Cont. on Management of Data, Ann Arbor, May 1981

iKlug83]
Klug,A.: Locking Expmssions for Incmased Databaw
Concurrency. JACM, Vo1.30. No.1, January IQ88

[KungEll]
Kung,H.T., Robinson,J.T.: On Optimistic Methods for
Concurrency Control. ACM TODS, Vol.6 No.2 June 1981

[Laus82]
Lausen,G.: Concum~lcy Control in Database Systenw A Step
Towards the Integration of Optimistic Methods and Locking.
ACM Annual Cork, Dallas, October 1982

[Mall88]
Mali,M., ReimerM., Schmidt,J.W.: Data Seisction, Sharing, and
Access Control in a Relational Scenario. In: Brodk,M.L,
Mylopoulos,J.L., Schmidt,J.W. (Eds.): Pempectives on
Conceptual Modelling, Springer-Verlag, 1983

[Munr7Q]
Munz,R., Schneider,H.J., Steyer,F.: Application of
Sub-Predicate Tests in Database Systema Proc. 5th Conf. on
Very Large Data Bases, Rio de Janeiro, October 1979

[Rebs88]
Rebsamen,J., Reimer,M., UrsprungP., 26hnder,C.A,
Diener,A.: LIDAS - The Database System for the Pwmnai
Computer Lilith. Proc. INRIA Workshop on Relationai DBMS
Design, Implementation, and Use on Micro-Computers,
Toulouse, February 1983

[R-l
Rosenkrantz,D.J., Hunt,H.B.z Processing conJlJnotlve
PredicatesandQueriea Proc6thConf.onvafyLargeData
Bases Montreal, October 1980

t-4781
Bchiageter,G.: Process Syrxhronization in Datrhrv Systema
ACM TODS, Vol.B, No.Q, Ssptemtmr 1978

[=mV
Bchmidt,J.W.: Some High Level Language Cowbwts for Data
of Type Relation. ACM TODS, Vol.2, No.8, Septembar 19TI

Schmkit,J.W., Ma&U: Abstmction Mechanlams fw Database
Programming. Proe ACM SIGPLAN Symv. on Progmmmbq
LanguagefsaueainSoftwamSysMms,ACMSfGPLANNotices,
Vol.18, No& June lQ88

t--1
Schmktt,J.W., Reimer,M.. Putfarlw,P., Mali,M., Kazh,J..
Jarke,M.: Reman& In lihtabw Prwmmmfngz Language
ckmmcts and Execution Modela To be published In IEEE
-Engm

[WitW
Wirth,N.: Progmmmlng In Mod&-2 Spdngsr-Verbs, 1982

88

