Solving the Phantom Problem by
Predicative Optimistic Concurrency Control

Manuel Reimer

ETH Zurich, Institut fiir informatik
CH-8082 Zurich, Switzeriand
and
Universitét Hamburg, Fachbereich informatik
D-2000 Hamburg 13, Schliiterstr. 70, Fed. Rep. of Germany

Abstract

Database programming languages provide powerful relational
structures and operators based on, for example, first-order
predicate calculus. Language constructs for database
programming, including a transaction concept, require therefore
a predicate-oriented approach to concurrency control. A
predicative optimistic concurrency contro! is presented that
attacks problems inherent in predicate locking. Only those
conflicts that actually occurred between transactions are
detected, and well-known query evaluation aigorithms are applied
instead of algorithms testing the disjointness of certain restricted
classes of predicates. For that reason, this approach is an
elegant solution to the phantom problem.

1 Introduction: Programmers are Afrald of Phantoms

Data in a database are often subject to integrity constraints that
require, one way or ancther, that statements are executed
conditionally. Therefore, a very common situation in database
programming is the test of preconditions that depend on the
actual state of the database prior to actions accessing a
database. If preconditions are not fulfilled altemative operations
have to be executed indicating some exceptional situation. The
following statement sketches such a conditional operation :

IF (e precondition)
THEN (e« database action)
ELSE (e exception)

This work was supported in part by the Deutsche
Forschungsgemeinschaft (DFG) under grant no. Schm 450/3
(principal investigator: J. W. Schmidt).

81

The semantics of this conditional statement are precisely defined
in sequential programming (cf., e.g., [Grie81]). The database
action guarded by the precondition is executed if and only if (iff)
the precondition is fulfilled; otherwise, the exception Is
performed. However, if objects are shared by concurrent
programs, additional semantic issues have to be considered.
Before or during execution of a guarded command (i.e., database
action or exception), the values of shared objects that determine
the value of the precondition may be subject to changes by
programs running in paraliel. Obviously, the value of the
precondition may be changed as a consequence, and database
actions may have manipulated a database that would not be
executed if the precondition would be reevaluated. Therefore, it
must be required that the value of the precondition remains
constant during the execution of the conditiona! statement. This
requirement must be met if nothing is known in advance about
the programs running in parailel [Casa81]. This scenario is
assumed throughout the whole paper.

The semantic definition of the conditional statement must capture
also the very common precondition testing the existence
(respectively the non-existence) of objects in a shared database.
Subsequently, the relational approach will be used for data and
transaction modeiling. With this approach, the precondition may
be a membership (non-membership) test for some relation
element. The following example will illustrate this kind of
precondition. It is based on a library database containing
information about lendings of books by persons. Borrowing a
book may be modelled through the subsequent conditional
statement. (The programming notation adopts concepts of the
database programming language Pascal/R [Schm77].)

IF {« precondition e)
NOT SOME le IN lendings (le.booknr = booktolend)
THEN (- database action «)
lendings :+ {{booktolend, borrowingperson] }
ELSE (¢ exception e)
Writel.n ("Book already lent.”)
END

if two of the above statements referring to the same book are
executed concurrently, the scheduler may decide to first test the
two preconditions. Both tests are fulfilled if the book is not lent at
the beginning. Then, both conditional statements perform their
database action. Nevertheless, the final database state will be
inconsistent since the same book is lent twice. This

inconsistency resulting from concurrent insertions has been
observed as the phantom problem {cf. [Eswa76]) and results from
instable preconditions.

The notion of a transaction refers to a protected simple or
composite statement for which the above requirements must be
satisfied. A transaction transforms a database from one
consistent state to another consistent state ([Eswa76], [Gray81)).
In addition, the definition of a transaction specifies the shared
database objects that are accessed by the transaction with a
certain access mode (read, write, readwrite). The above example
can be rewritten by means of the transaction concept introduced
in [Mali83].

TRANSACTION Borrow
(booktolend: . . . ; borrowingperson:.. .);

IMPORT lendings READWRITE;

BEGIN
IF NOT SOME e IN lendings (le.booknr = booktolend)
THEN lendings :+ {[booktolend, borrowingperson] }
ELSE WriteLn ("Book already lent.”)
END

END Borrow;

Transactions do not operate in general on whole relations (e.g.,
lendings), but on subrelations fulfilling some selection predicate.
The notion of a selected relation, introduced in [Mall83] and
[Schm83a), defines a selector containing a selection predicate
and applies selectors to database relations. The example
illustrates these concepts.

SELECTOR LentBook (booktolend:...) FOR Iret...;
BEGIN

EACH e IN Irel: le.booknr = booktolend
END LentBook;

TRANSACTION Borrow
(booktolend: . . . ; borrowingperson: ...);
IMPORT sublendings = lendings [LentBook(booktolend)]
READWRITE;
BEGIN
IF sublendings = {}
THEN sublendings :+ { [booktolend, borrowingperson] }
ELSE WriteLn ("Book already lent.”)
END
END Borrow;

With the transaction concept, the requirement for a stable
precondition of a conditional statement can now be reformulated.
For a transaction to be scheduled consistently, their imported
database objects (i.e., selected relations) must remain constant
during execution of the transaction.

To solve conflicts raised by the concurrent execution of
transactions, accesses to shared objects must be synchronized.
Execution models have been proposed that guarantee consistent
scheduling of concurrent transactions based on various
concurrency control methods including predicate flocking
[Eswa76]. Predicate locking solves the above consistency
problems including that of preventing phantoms.

This paper proposes a different concurrency control method,
called predicative optimistic concurrency control. R is based on
the optimistic approach of [Kung81]. Section 2 introduces and

82

definus the idea of the predicative optimistic concurrency control.
Its advantages compared to other concurrency control methods
are discussed in Section 3. Algorithms for a possible
implementation of the predicative optimistic concurrency control
are given in Section 4, including optimizations of the proposed
method.

2 Predicative Optimistic Concurrency Control

2.1 The Method

The predicative optimistic method to concumrency control is
based on the optimistic assumption that conflicts between
concurrent transactions will occur rather seidom. The method is
founded on concepts of the original optimistic approach of
[Kung81]. The idea of the predicative optimistic method is
summarized in the following.

Each transaction is divided into three phases. During the read
phase, the operations of a transaction are executed. Database
objects can be read unrestrictedly, however, write operations are
performed on local copies. In the validation phase, it is tested if
the requirements introduced above are fulfilled. This means that
the objects imported by a transaction must not be changed by
other transactions. Hf validation succeeds, the local copies are
made global during the write phase. Otherwise, the transaction is
aborted and restarted.

For each transaction, two sets are maintained: a read set and a
write set. The read set consists of all selected relations accessed
by a transaction. The name of the database retation of which the
selected relation is part of and the selector defining the selection
predicate are kept in the read set. The write set determines the
objects written by a transaction. Since selected relations are
defined by means of predicates, the objects manipulated through
a certain selected relation can be described by the values of the
selected relation before and after access. When accessed first, a
copy of the selected relation local to the transaction is made, and
all further read and write operations are directed to this copy.
This means that writes to the global database do not occur during
the read phase.

To verify the correct execution of concurrent transactions the
criterion of serializability is generally accepted [Eswa76).
Serializability is achieved by assigning unique numbers to
transactions and by guaranteeing that whenever i < j, then
transaction 7(i) comes before transaction T() in the equivalent
serial schedule. The transaction numbers are assigned at the
end of the read phase.

Transactions T(i) can be divided with respect to transaction T()
with I <] into three classes (T(i) before T() in the equivalent serial
schedule) :

(1) each T(i) that finishes before T()) starts;

(2) each T(i) that finishes when T(j) is in its read phase;

(3) each T(i) that finishes after T(/) has begun its validation

phase.

Transactions T(i) with / > | don't have to be considered, only the
role of T(i) and T(j) has to be changed.

Transactions of class (1) cannot conflict with T), so validation
against transactions of class (1) is not necessary. For class (2), it
must be confirmed that the objects written by 7(i) have not been
read by T{). Thisisdnckedbybstinge@writosctofﬂi)
against the read set of T() on disjointness. For class (3), the
additional requirement has to be met that the objects written by
(i) will not be written by 7() in paraliel. Therefore, each write set
of T(i) must be disjoint from the read set and from the write set of
T(). 1 the validation for transaction 7() fails, 7() is aborted and
restarted from its beginning. if validation succeeds all local
copies are transfered to the database in the write phase.

2.2 Formal Definition

Before the predicative optimistic method will be defined precisely,
a formal model of the database concepts used in this paper is
introduced.

A relational database consists of a set of relation variables. A
relation variable R has some type < D1, ..., Dd >. Di is called a
domain, and d specifies the degree of R. A relation element of R
is denoted by re(R), and it has a value, < v1, ..., vd 3, with vi in Di.

A subset of the universe of R may be assigned to a relation
variable R. The universe U(R) is defined by D1 x D2 x ... x Dd. The
actual value of relation variable R at some point in time is
determined by a finite subset V(R,time) C U(R).

Transactions operate on subrelations fulfilling some selection
predicate [Mali83]. Selected relations are defined as SR =
< R, pred > ; pred specifies an arbitrary first-order predicate
applicable to relation variable B. The universe of SR is defined by
U(SR) = { re | re € U(R) and pred(re) }
and the value of SR at a certain time by
V(SRtime) = { re | re € V(R,time) and pred(re)).
The set N(SR.time) denotes relation elements that are not
materialized. It is the set difference between the universe and the
actual vaiue:
N(SRtime) = U(SR) - V(SR,time).

Let T be the set of all active and of all finished transactions ¢
(t € T) A transaction consists of a sequence of database
operations transforming a database from one consistent state to
another consistent state [GrayB1]. A transaction operates on
selected relations with some access mode specifying the
transaction’s access right (readonly, writeonly, readwrite) on
selected parts of relations. An access a = < SR, m > defines a
selected relation SR that may be accessed through access mode
m ¢ { read, write, readwrite }. The set of all accesses of
transaction t is given by A(t). The first time at which a transaction
performs a certain access a is denoted by b(a) (i.e., beginning of
access). Respectively, the last time at which a transaction
performs a certain access a is denoted by efa) (i.e., end of
access).

Granting an access to a selected relation SR implies that not only
V(SR,b(a)), but aiso N(SR,b(a)) may be changed by t. To describe
the manipulations on N(SR.b(a)) performed by transaction t, a set
called materializations Is introduced :
M(SR.t) = N(SR.bla)) - N(SR.e(a))
= V(SR,e(a)) - V(SR,b(a)).

83

The phantom problem arises for transaction t with respect to
access a with a € A(t), iff

Irer-{1
({ re | re € M(SA,I) and re inserted into M(SR,t")
betweenbl(a)andefa) } # (3).

The read set of a transaction t consists of all database objects
accessed by t. The cbjects accessed by t are determined through
Aft). For each access a € A(t), the read set contains < SR, m).
These read set entries determine U(SR).

The write set contains the selected relations written by a
transaction . Written selected relations can be determined by
their values at the beginning of access and their values at the end
of access. Therefore, the write set contains the elements of
V(SR,b(a)) and V(SR,e(a)) for each access a € Alt) with access
mode different from read. Notice, that each access that is
element of the write set is also member of the read set.

Validation. of transaction ¢ must consider all transactions ¢’ that
are members of the classes (2) and (3) introduced in the previous
subsection. These transactions are determined by the set
W = {¢|eT and
t* finished between beginning andend of t }.

Validation of a transaction ¢ is performed only against finished
transactions t’. For that reason, the materializations M(SR’,t') are
known explicitly for each access a’ € A(t) :

M(SR't') = V(SR'efa’)} - V(SR'b(a’)).

With consideration of U(SR) and with the knowledge of the
materializations, the following definition of validation for the
predicative optimistic approach guarantees serializability. This
definition resolves any consistency problems due to concurrent
execution of transactions including the phantom problem.

Predicative validation of transaction t succeeds, if

VacAl) vreT(v a cAl)
(U(SR) " V(SR',b(a’)) = {} and U(SR) N V(SR'e(a’)) = {}
or m’ = read).

The objects written by t cannot be in conflict with the objects read
by ¢ since the objects are written by t only on local copies and ¢t
is already finished.

3 Comparison with Other Predicative Concurrency
Control Methods

3.1 Preventing Phantoms: Predicate Locking

The concurrency control method most commonly used In
database scheduling is locking. To solve the phantom problem
predicate locking must be used ([Bemn81], [Eswa7e], [Jord81],
[Kiug83], [Schi78]). Subsequently, predicate locking is defined in
terms of the formal model introduced in Section 2.2.

An access a grants a transaction t to operate on selected relation
SR with access mode m. The concurrency control component
will lock, accordingly, each element accessible through the
selected relation (i.e., each relation element fulfilling the selection
predicate). A lock may be granted if and only if there is no other

active transaction holding a conflicting lock. The decision is
made at the beginning of the access b(a) performed by t. At this
time, the set of active transactions with respect to t and a is
determined by :

T'(ta) = {t"| €T and t' # t and t"activeatbfa)).

Since locking must be done before an access to a selected
relation is performed, M(SR,t") cannot be determined in advance.
M(SR.t’) is a subset of N(SAR.b(a)). Therefore, the whole set
N(SR.b(a)) must be locked in addition to V(SR.b(a)). The
concurrency control component may grant a predicate lock on
access & to transaction t, iff

v e (ta) v a'cAlt)
((V(SR.b(a)) UN(SR.b(a)) N
(V(SR'.b(a)) U N(SR'b(a)) = {}
or (m = read and m’ = read)).

This is equivalent to

Vv UET(ta) v a’'€Alt)
(USR} N U(SR) = {} or (m = read and m’ = read)).

U(SR) must be constant between b(a) and e(a). This means that
the predicate defining SR must be constant between b(a) and
e(a). To guarantee this property, additional read locks must be
set on all quantified relations occurring in the predicate [Kiug83].

The test on disjointness of U(SR) and U(SR'} is the basis for the
detection of a conflict between two accesses of transactions.
Therefore, the predicates defining the selected relations must be
tested on disjointness. Unfortunately, this is a hard algorithmic
problem, decidable only for certain classes of first-order
predicate calculus (cf. e.g., [Eswa76], [Hunt79), [Kiug83],
[Munz79}, [Rose80]). In general, arbitrary selection predicates
must be generalized to simpler predicates fitting into some
common class of decidable predicates. This may increase the
locking granularity and, consequently, may reduce the degree of
concurrency.

A serious problem arises through the fact that disjointness tests
are based on the intension of database operation. Therefore, all
possible conflicts are detected independently of their actual
occurrence. For that reason, the reachable degree of
concurrency may be restricted severely.

Predicate locking is a concurrency control method that applies
prevention to the phantom problem. By locking the whole set of
relation elements possibly fulfilling the selection predicate,
conflicts occurring through the materialization of phantoms are
completely prevented. This is achieved on the expense of
serializing transactions that are not really in conflict.

Apart from the problem of disjointness testing of predicates, the
locking approach to concurrency control has some additional
disadvantages (cf. [Bada79)], [Kung81]) :

(1) Setting and releasing of locks is necessary only in cases,
when transactions are really in conflict. Locking assumes that
conflicts will be frequent. This is called the pessimistic
assumption of locking.

(2) Each lock request of a transaction requires compatibility
tests relative to the locks already set. Accesses to the global
data structures representing the locks must be synchronized

between paraliel transactions. This may heavily reduce the
degree of concurrency, even if conflicts do not occur.

(3) Al locks must be held until the end of a transaction to
enable an independent backup of transactions.

{4) Due to incrementally requesting locks, deadlocks may
occur. i deadlocks are prevented by preclaiming of locks,
concurrency is heavily reduced.

3.2 The Basic Optimistic Method

The database model used in the original optimistic method of
[Kung81] assigns a unique name to each database object. A read
set contains the names of all objects accessed by a transaction.
In terms of the above model, only V(SA,b(a)) is stored in the read
set for each selected variable. Therefore, validation in the
original optimistic method can be defined as follows.

Validation of transaction t in the original optimistic method of
[Kung81] is successful iff

VacAlW vteTW) v acAl)
(V(SR,ble)) N V(SR'b(a”)) = {} and
V(SR,b(a)) N V(SR',e(a’) = {}
or m' = read).

V(SR,b(a)) captures only the relation elements existing at time
b(a). Relation elements created by a transaction ! are not
considered during validation of t. However, the manipuiation of
N(SR,b(a)) performed by t must also be validated. For that
reason, the optimistic approach of [Kung81] has inherited the
phantom problem out of reasons similar to those applying to the
physical locking approach.

3.3 Certitying Phantoms:
Predicative Optimistic Concurrency Control

Relative to the disadvantages of locking, the optimistic method
gains the following advantages :

(1) The optimistic method affects concurrency only if a conflict
has really occurred. With the optimistic assumption of a low
possibility for conflicts, restarting a transaction is necessary
only in the worst case.

(2) Only write sets must be known to afl transactions. They
must be contained in a global data structure; read sets,
however, which are in the average much larger than write sets
can be kept locally. Each write set is inspected only once
during validation and not with each lock request. These two
improvements are resulting in fewer accessss to global data
structures thus increasing the degree of concurrency.

(3) Any object may be accessed at any time; the optimistic
method does not have the notion of exclusiveness as enforced
by exclusive locks.

(4) No transaction is ever waiting, 380 deadlocks cannot occur.
There is, however, the problem of repeated restart of
transactions in heavily loaded systems.

in addition to these advantages, the predicative optimistic
approach is superior to predicate locking for the following
reasons.

(1) The access intension of a transaction is not tested against
other intencions, but against the objects actually manipulated
by other transactions. Thereby, only real/ conflicts are
detected, and fewer transactions are serialized.

(2) Predicates don’t have to be tested on disjointness. The
tests, U(SR) N VISR'.bla’)) = {3 and U(SR) N V(SR",e(a’)) = {3,
are an evaluation of the predicate defining SR with respect to
the sets of relation elements contained in V(SR"....). In other
words, the intension is tested against extensions. For this test,
well-known algorithms can be used that perform an evaluation
of first-order predicates. These query evaluation aigorithms are
obviously available In every relational database system.
Therefore, any predicate may be used for the definition of
selected relations specifying the accesses of transactions.
Neither restricted classes of predicates, nor generalizations of
predicates must be introduced as with predicate locking.

in contrast to predicate locking, phantoms are not prevented, but
their absence is certified during validation of transactions. This
cerlification is the main characteristic of the predicative
optimistic approach to concurrency control.

4 Algorithms for Predicative Optimistic Concurrency
Controtl

Subsequentty, the algorithms required for the predicative
optimistic concurrency control are presented. The notation used
for the algorithms is an extension of the programming language
Modula-2 [Wirt82] by constructs of the relational database model.
Most of the relational constructs are adopted from the database
programming language Pascal/R [Schm77]. They consist of a
data type relation and operators defined on relations, in
particular, relation altering operators (i.e., insert (: +), delete (: -))
and logical and relational expressions based on first-order
calculus.

Concurrency control requires certain data that must be
accessible (i.e., global) to all running transactions. These data
structures constitute the module G/obalData. 1t contains the write
sets of transactions that are finished or in their write phase.
Transaction sets contain information about active transactions
(actives), about transactions that are in their validation phase
(validaters), and about transactions that are in their write phase
(writers). A clock is maintained in ctime, and the currently
highest transaction identifier is stored in ctransid. The body of
the module initiatizes the global data structures.

An entry of the write set consists of fields specifying the
transaction responsible for the entry (fransid; i.e., t with respect to
the formal definitions of Section 2), the name of the access
through which the writes are performed (accname; Le., 8 € Aft)),
the name of the relation manipufated (relname; l.e., R), the values
of the selected relation at the beginning of access (o/dvalues: i.e.,
V(SR.b(a))), the vaiues at the end of access (newvalues; iLe.,
V(SR,e(s))), end the time at which the new values have been
written to the database {time).

85

MODULE GlobalData;

TYPE
Transldent = CARDINAL;
TransSet = SET OF Transldent;
GlobalWSEntry = RECORD
transid : Transldent;
accname : AccessName;
relname : RelationName;
oldvalues,
newvalues : Relation;
time : TimeType
END;
GlobalWSType = RELATION transid, accrame OF
GlobaIWSEntry;
VAR
globalws : GlobalWSType;
actives,
validaters,
writers : TransSet;
ctime : TimeType;
ctransid : Transldent;
BEGIN
globaIWs := {};
actives := {};
validaters := {}:
writers := {};
ctime := StartTime;
ctransid := @

END GlobalData.

The module ConcurrencyControl contains the data structures
and algorithms required to control one transaction . Additionally,
it operates on the global data structures of module GlobalData.
An AccessEntry represents an access a € Aff), especially it
contains the predicate and the access mode. The predicate set
{predicates) contains all accesses on which the transaction has
operated on. The write set consists of the accesses to which the
transaction has written. Write operations are performed on the
field newvalues of the write set.

MODULE ConcurrencyControl;

TYPE
AccessEntry = RECORD
accname : AccessName;
reiname : RelationName;
pred : Predicate;
mode : (READ, WRITE,
READWRITE)
END;
PredSetEntry = RECORD
accname : AccessName;
retname : RelationName:
pred : Predicate;
time : TimeType
END;
PredSetType = RELATION accname OF
PredSetEntry;

WriteSetEntry = RECORD

accname : AccessName;
relname : RelationName;
oldvalues,
newvaluyes : Relation
END;

WriteSetType = RELATION accname OF

WriteSetEntry;
VAR

predicates : PredSetType;

writeset : WriteSetType;

owntransid : Transldent;

begintrans : TransSet;

The procedure BeginTransaction is executed at the beginning of
a transaction. It assigns a new transaction identifier, defines the
transaction to be active, and initializes the local data structures.
Operations on global data structures that must not be interrupted
by paralie! operations are guarded by critical sections (denoted
by< ... M)

PROCEDURE BeginTransaction;
BEGIN
<¢ ctransid := ctransid + 1;
owntransid := ctransid;
begintrans := actives;
actives :+ {owntransid};
predicates := {};
writeset := {}
END BeginTransaction;

i a read access is performed by a transaction, the procedure
RequestRead is executed. It inserts the access specified as
parameter into the predicate set in case it is the first operation on
this access. The time of this operation is remarked. The
subsequent read operation is performed on the database, except
if the access is already member of the write set. In that case, the
read access operates on the new values contained in the write set
entry.

PROCEDURE RequestRead (accentry: AccessEntry);
VAR predentry : PredSetEntry;
BEGIN
WITH accentry DO
IF NOT SOME p IN predicates
(p.accname = accname) THEN
predentry.accname := accname;
predentry.relname := relname;
predentry.pred := pred;
predentry.time := ctime;
predicates :+ {predentry}
END
END
END RequestRead;

The procedure RequestWrite inserts an access into the predicate
set and into the write set. Thereby, the old values and the new
values are evaluated and stored in the write sst. Subsequent
write operations are directed to the new values of the

corresponding write set entry.

»

86

PROCEDURE RequestWrite (accentry: AccessEatry);
VAR writeentry : WriteSetEntry;
BEGIN
WITH accentry DO
IF NOT SOME w IN writeset
(w.accname = accname) THEN
RequestRead(accentry);
writeentry.accname := acchame;
writeentry.relname := relname;
writeentry.oldvalues :=

{EACK r IN relname : pred(r)};
writeentry.newvalues :=
{EACH r IN relnsme : pred(r)};

writeset :+ {writeentry)}
END
END
END RequestWrite;

The function NoConflict is used during validation. 1 retums the
value TRUE, if there is no conflict between a predicate p and the
entries of transactions tset contained in the global write set. The
tests, U(SR) N V(SR'.b(a’)) and U(SR) N VI(SR'e(a’)), ere
performed. A conflict can only occur, If the time of the read
access was before the time at that the new values have been
written to the database.

PROCEDURE NoConflict (p: PredSetEntry;
tset: TransSet): BOOLEAN;
BEGIN
<< RETURN NOT SOME w IN globalWws
((w.transid IN tset) AND
(w.relname = p.relname) AND
(w.time > p.time) AND
(SOME e IN w.oldvalues (p.pred(e)) OR
SOME e IN w.newvalues (p.pred(e)))) >
END NoConflict;

The procedure EndTransaction performs the validation phase,
and aiso the write phase if validation succeeds. The result of
validation is returned through the parameter.

PROCEDURE EndTransaction (VAR valid: BOOLEAN);
VAR finishedtrans,

validatingtrans,
waittrans : TransSet;
conflict : BOOLEAN;

BEGIN

First, the local write set is transfered to the global write set. Since
the write operation to the database s performed some time in the
future, a default time is remarked.

FOR EACH w IN writeset :
WITH w DO
<< globalWs :+
{ [owntransid, accname, relname,
oldvalues, newvalues, MaxTime] } >>

TRUE DO

END
END;
The concurrently running transactions are evaluated to
determine the classes of transactions against that validation must
be performed. The set finishedtrans collects the finished or
writing transactions; validatingtrans contains the transactions
being in their validation phase.

<< begintrans :+ {owntransid+i .. ctransid};
validatingtrans := validaters;
finishedtrans :s

begintrans - actives + writers;
validaters :+ {owntransid}; >>

valid := TRUE;

Validation against finished transactions is carried out repeatedly
until there are no transactions that have finished their validation
phase.
WHILE (finishedtrans # {}) AND valid DO
valid := ALL p IN predicates
(NoConflict(p, finishedtrans));
<< finishedtrans :=
validatingtrans - validaters;
validatingtrans :- finishedtrans
END:
Validation of transaction t is performed separately against each
validating transaction ¢*. If a conflict is detected, ¢ is only invalid if
t’ becomes valid. To come to this decision, t must await the end
of the validation phase of t. The procedure WaitTrans delays a
transaction untit all transactions of waittrans have finished their
validation phase, and the parameter valid retums TRUE if all
transactions of waittrans are invalid, otherwise FALSE.

waittrans := {};
IF valid THEN
FOR EACH t IN validatingtrans : TRUE DO
conflict := NOT ALL p IN predicates
(NoConflict{p, {t}));
IF conflict THEN waittrans :+ {t} END
END
END;
IF waittrans # {} THEN
WaitTrans(valid, waittrans)
END;

i validation succeeds, the write phase is executed, otherwise the
transaction will be aborted. During writing the changed database
parts, the time information is updated in the global write set. The
procedures SendValid and SendNonValid are delivering the
commesponding information to the procedure WaitTrans.

IF valid THEN
Sendvalid(owntransid);
<< validaters :- {owntransid};
writers :+ {owntransid}; >>
FOR EACH w IN writeset : TRUE DO
(Write w.newvalues to relation w.relname);
<< globalWS[owntransid,w.accname].time :=

>»

ctime D>
END;
<< writers :- {owntransid};
actives :- {owntransid} >>
ELSE

SendNonValid(owntransid);

<< globalW§ :- { EACH w IN globalWs :
w.transid = owntransid };
validaters :- {owntransid};
actives :- {owntransid} >>
END

END EndTransaction;
END ConcurrencyControl.

The complete algorithms proposing several additional
optimizations can be found in [Brég83].

87

8§ Concluding Remarks

The paper presents a predicative method to concurrency control
that is based on the optimistic approach. Predicative optimistic
concurrency control solves the consistency problems due to
concurrent execution of transactions including the phantom
problem. It has some advantageous properties compared to
predicate locking.

The presented method has been implemented at the University of
Hamburg in a multi-user database system supporting the
implementation of database programming languages [Schm83b).
The system is written in the programming language Modula-2
[wirte2] and is running on a VAX-11 computer. A second
implementation is in development at the ETH Zurich. 1t will be
part of an extension of the personal database system LIDAS
[Rebs83] towards a database system operating on a network of
personal computers.

The predicative optimistic concurrency control proposed in this
paper relies on the optimistic assumption that the probability for
conflicting transactions is rather low. This assumption should
hold for large databases and transactions that modify only small
parts of a database. in environments of frequently conflicting
transactions, combined methods should be used that schedule
transactions with just the right amount of locking instead of
validation [Laus82]. Applied to the approach presented, those
selected relations frequently accessed are locked, while those
selected relations for which the probability of conflict is low are
validated. The scheduler may decide upon the appropriate policy
by collected information about the access frequence to certain
selected relations or by measuring the predicted selectivity of the
selection predicates. Ideas in this direction are proposed in
[Brag8a).

Acknowledgments

The author is grateful to J. W. Schmidt and C. A. Zehnder for their
continuous support of this work, and to R. P. Briigger, J. Koch, W.
Lamersdorf, M. Mall, and P. Putfarken for the encouraging
discussions and their comments on earlier versions of this paper.

References

[Bada79)] .
Badal,D.Z.: Correctness of Concurrency Control and
Implications in Distributed Databases. Proc. IEEE COMPSAC
Conf., Chicago, November 1979

[Bern81]
Bemstein,P.A., Goodman,N., Lai, M.-Y.: Laying Phantoms to
Rest (By Understanding the Interactions Between Schedulers
and Translators in a Database System). Harvard University,
Aiken Computation Laboratory, Cambridge, 1981

[Briges]
Bréagger,R.P., Reimer,M.: Predicative Scheduling: Integration
of Locking and Optimistic Methods. ETH Zurich, Institut fiir
Informatik, Report 53, 1983

[Casas1]}
Casanova,M.A.:. The Concurrency Control Problem for
Database Systems. Lecture Notes in Computer Science 116,
Springer-Verlag, 1981

(Eswa76]
Eswaran,K.P., Gray,J.N., Lorie,R.A., Traiger,l.L.: The Notions of
Consistency and Predicate Locks in a Database System.
CACM, Vol.19, No.11, November 1876

[Gray81]
Gray,J.N.: The Transaction Concept: Virtues and Limitations.
Proc. 7th Conf. on Very Large Data Bases, Cannes, September
19881

[Grie81]
Gries,D.: The Science of Programming. Texts and
Monographs in Computer Science, Springer-Veriag, 1981

[Hunt79]
HuntH.B., Rosenkrantz,D.J.: The Complexity of Testing
Predicate Locks. Proc. Int. Conf. on Management of Data,
Boston, May 1879

[Jords1]
Jordan,J.R., Banerjee,J., Batman,R.B.: Precision Locks. Proc.
Int. Conf. on Management of Data, Ann Arbor, May 1881

[Kiugs3]
Klug,A.: Locking Expressions for Increased
Concurrency. JACM, Vol.30, No.1, January 1983

[Kung81]
Kung,H.T., Robinson,J.T.. On Optimistic Methods for
Concurrency Control. ACM TODS, Vol.6, No.2, June 1881

{LausB2}
Lausen,G.: Concurrency Control in Database Systems: A Step
Towards the Integration of Optimistic Methods and Locking.
ACM Annual Conf., Dallas, October 1882

[Mal3]
Mall,M., Reimer,M., Schmidt,J.W.: Data Selection, Sharing, and
Access Control in a Relational Scenario. In: Brodie,M.L.,

Database

Mylopoulos,J.L.., Schmidt,JW. (Eds.): Perspectives on
Conceptual Modelling, Springer-Verlag, 1983

[Munz79)

Munz,R., Schneider,H.-J., Steyer,F.. Application of

Sub-Predicate Tests in Database Systems. Proc. Sth Conf. on
Very Large Data Bases, Rio de Janeiro, October 1979

[Rebs83]
Rebsamen,J.,, Reimer,M., Ursprung,P., Zehnder,C.A.,
Diener,A.: LIDAS - The Database System for the Personal
Computer Lilith. Proc. INRIA Workshop on Relational DBMS

Design, Implementation, and Use on Micro-Computers,
Toulouse, February 1983
[RoseB0]

Rosenkrantz,D.J., HuntH.B.. Processing Conjunctive

Predicates and Queries. Proc. 6th Conf. on Very Large Data
Bases, Montreal, October 1980

[Schi78)
Schlageter,G.: Process Synchronization in Database Systems.
ACM TODS, Vol.3, No.3, September 1978

[Schm77]
Schmidt,J.W.: Some High Level Language Constructs for Data
of Type Relation. ACM TODS, Vol.2, No.3, September 1977

88

(Schm83a]
Schmidt,J.W., Mall,M.: Abstraction Mechanisms for Database
Programming. Proc. ACM SIGPLAN Symp. on Programming
Language lssues in Software Systems, ACM SIGPLAN Notices,
Vol.18, No.8, June 1883

[Schm83b}
Schmidt,J.W., ReimerM., Putfarken,P., Mall,M., Koch,J.,
Jarke,M.: Research in Database Programming: Language
Constructs and Execution Models. To be published in IEEE
Database Engineering

[wirtg2]
Wirth,N.: Programming in Modula-2. Springer-Veriag, 1682

