
Obtaining Progressive Protocols for a Simple Multiversion Database Model1 

Gael N. Buckley 

A. Silberschatz 

Department of Computer Sciences 
The S’niversity of Texas at Austin 

. . Austin, Texas 78712 
Abstract 

MO>! database systems ensure the consistency of 
the data by means of a concurrency control scheme 
that USE a polynomial time on-line scheduler. 
Papadimirrlou and Kanellakis have shown that for the 
most general multiversion database model no such 
effective scheduler exists. In this paper we focus our 
attention 0~ an efficient multiversion database model 
and derive necessary and sufficient conditions for 
ensuring serializability and serializability without the 
use of transaction rollback for this model. It is shown 
that both t,hese classes yield additional concurrency 
through t.he use of mu!tiple versions. This 
characterization is used to derive the first general 
multiversion protocol which does not use transaction 
rollback as a means for ensuring serializability. 

1. Introduction 

User response time in database systems can be 
improved by concurrent execution of user transactions. 
If each user transaction maintains the consistency of 
the database when executed alone, the database 
system must guarantee that any allowed concurrent 
execution of a set of transactions also maintains the 
consistency of the database. A system which 
guarantees this for any set of transactions is said to be 
serializable [l]. 

One recent method to increase concurrency is the 
use of the multiversion data item concept. This 
concept enhances concurrency by retaining individual 

‘This research was supported in part by the Office of Naval 
Rwwch under Contract !WDO14-80-K-0987, and by the National 
Science Foundation under Grant 81-04017. 

updates of a data item as separate versions, and 
allowing a transaction to read one of several versions 
of a data item. The concurrency control must ensure 
that the versions read and written maintain 
serializability. This was used in the Honeywell FMS 
system [2], and has been formally developed and 
exra;i;d in the work of Reed [3], Stearns et al 141. 

and Rosenkrantz 
Silberschatz (71. 

[5], Bayer [G], and 
Complexity results and necessary and 

sufficient conditions for the most general multiversion 
schemes were recently presented by Bernstein and 
Goodman [8] and Papadimitriou and Kanellnkis 191. 

There are some problems associated with the 
various multiversion database model proposals [IO]: 

1) The result in [S] states that there is no 
polynomial time on-line scheduler that 
maintains serializability and yet exploits 
maximum concurrency for t.he most general 
multiversion database model. This result 
makes study of the various multiversion 
models more interesting; for unlike sing!r 
version database, the several multivcrsion 
protocols existing are not even uniformly 
baaed on the same database model. 

2) In many models reading a data item also 
requires the updating of information in the 
data-item header, resulting in potentially 
two disk I/O rather than one. 

3) In many models some of the conflicts 
between transactions are resolved through 
rollbacks rather than waits. If it is 
detected that a transaction may not be 
serializable upon transaction completion, 
then consistency is maintained by rolling 
back (removing) some number of 
transactions from the system and restarting 
them at a later time. Gray has observed 
that transaction restarts are very expensive 

It is our aim here to develop a multiversion 
database model that does not suffer from the above 
deficiencies. In particular, in section two we present 
an efficient multiversion database model, and derive 

74 



nrccssary and sufficient conditions for ensuring 
serializability and serializability without the use of 
transaction rollback for this model. In section three 
we present a new general protocol which fits this 
model. This protocol requires that each transaction 
prcdeclare its writeset. In this protocol a read does 
not result in updating of information in the database 
syst,rm. Also, no transaction rollbacks are required in 
order to assure serializability and deadlock freedom, 
implying that restarts occur only due to process or 
bardware failure. In section four we compare our 
protocol with the concurrency available with other 
protocols of this model. Finally, in section five we 
present optimizations for read-only transactions, an 
algorithm for version discarding, and methods for 
avoiding the need for a transaction to predeclare its 
writ.eset. 

2. The Multiversion Database Model 

Since there is no efficient method to maximize 
concurrency for the most general multiversion model, 
we must develop and characterize models which have 
effective concurrency controls and yet still make use of 
the availability of multiple versions of a data item. 
There are several important considerations when 
designing a restricted model. 

a) It is crucial that a transaction can easily and 
quickly determine which version of a data item 
should be read. 

b) Transactions should not be restarted often, if at 
all, and every transaction submitted to the system 
should eventually complete. 

c) It is useful to have a number of readable versions 
of a data item available to allow interesting 
variation in scheduling of read-only transactions. 

The multiversion database model described below 
easily meets all these objectives, and the behavior is 
discussed fully in the section on the new progressive 
protocol. 

We now present the multiversion model, which is 
a simple generalization of Reed’s model [3]. The 
database system is composed of data items, 
t.rsnsnctions, and the concurrency control. Each of 
these entities are defined by the following restrictions: 

1. A transaction Ti consists of: 

a. a time ordered sequence of accesses to 
data items, which may be either read 
or write accesses. The items written 
need not be a subset of the items 
read. 

b. a static timest.amp, denoted TS(Ti). 

This is assigned by the database 
system before or at the time a 
transaction accesses its first data 
item. If Ti and Tj both write data 
items, then TS(Td# TS(Tj). 

2. A data item d has a sequence of versions 
<d ,,...,d,> arranged in ascending order of 
timestamp, where version di has timestamp 
i. If transaction Tj creates version di, then 
TS(Tj)=i. 

3. A concurrency control must satisfy the 
following criteria: 

a. 

b. 

C. 

At the first read access of a 
transaction Tj to data item d, it reads 
the version of d with timestamp 
closest to but less than TS(Tj). All 
future read accesses are to the same 
version. (As a special case, a 
transaction that only reads data 
items can read a version with a 
timestamp equal to its timestamp. 
This case is explicitly covered in the 
proofs.) 

A transaction creates at most one 
version per data item, and this 
version is added to the sequence only 
when the transaction which created it 
will no longer update its contents. 

The protocol cannot use a global 
dependency graph to detect possible 
nonserializability. It must decide to 
accept or reject an access to d using 
any information derivable from the 
transactions which have accessed or 
will access d at some time, or 
derivable from the set of data items 
accessed by these transactions. 

Several concurrency controls [0,12] have the protocol 
maintain dependency graph of the active transactions 
in the system. The protocol uses this graph to 
determine which version of a data item to read, and 
also to maintain serializability. We believe that this 
technique is expensive and slow when the number of 
interacting transactions in the system is large, and 
becomes prohibitively expensive when attempting to 
maintain a current global dependency graph in 
databases distributed over a number of different sites. 
To eliminate the expense of such a graph, by rule 3c 
we restrict the model to use information directly 
related to the access of a data item. 

75 



In order to present a complete characterization 
of the model several definitions and notational 
cC,nvcniences are now introduced that will be used 
throughout the remainder of the paper. 

A protocol is said to be safe if it assures 
qcrializability. If a safe protocrdoes not use 
transaction rollback as a means for assuring 
serializability, then it is termed progressive. A version 
1s uncommitted if it may later be removed due to 
rollback of the transaction that created it; otherwise it 
IS csl!ed committed. A transaction which only read 
~W~SAW data items is termed a read-only transaction; 
all other transactions are referred to as update 
transactions. A history H is the trace, in the 
chronological order, of a concurrent set of transactions 
1’ = {T,,T, ,..., T,J 

We define a precedence relation + on a history 
H by writing Ti -+ Tj if and only if there exists a data 
ltcm d, accessed (i.e., read or written) by Ti and Tj, 
such that either one of the following holds: 

a. Tj created version dj and Ti read or 
created version d,, m < j. 

b. Tj read version d, and T, created version 
d,, i 2 n. 

We say that Ti and Tj interact in the system if they 
are related via the + relation. If Ti + Tjl then we 
SS;V Ti precedes Tj. Since the versions ordered by 
increasing timestamp will be shown to be the 
sorislizable order, the definition of transaction conflict 
can be made as follows: 

4 

bl 

A 

Ti read-write (or write-write) conflicts with Tj if Tj 
creates a version, and Ti reads or creates a version 
with timestamp less than TS(Tj). 

Ti write-read conflicts with Tj if Ti created a 
version with timestamp less than TS(Tj). 

transaction can always access the value it has 
created for a data item, and does not come under the 
restrictions of reading a data item as defined by our 
model. 

Using the multiversion model above, we now 
present the necessary and sufficient conditions that 
any protocol in this model must meet to be either safe 
or progressive. The conditions are simple and are 
based only on the respective timestamps of the 
t,ransactions accessing a single data item. For brevity 
we have omitted the correctness proofs; they can be 
found, however, in [13]. 

We first present the necessary and sufficient 
condition t.o ensure serializability for any set of 
bransactions execut,ing in a multiversion database 

system model as described above. 

Sl: Let T, and Tj be two transactions that interact in 
the system, where TS(Ti) 5 TS(Tl). We shall say 
that Ti and Tj satisfy condition Sl if and only if 
the both of the following requirements are met: 

a. If TS(Ti) < TS(Tj), then Ti + Tj* 

b. If TS(Ti)=TS(Tj), then without 1OSS Of 
generality, let Ti be the read-only 
transaction. (Recall that update 
transactions are required to have 
unique timestamps.) Then either 
Ti -+ Tj on all data items accessed by 
both transactions, or Tj + Ti on all 
data items accessed by both 
transactions. 

Theorem 1: A database system that satisfies 
our multiversion database model is serializable if and 
only if every pair of transactions satisfy condition S1.0 

Although Sl maintains serializability, it is 
possible to construct protocols fulfilling Sl which 
require transaction rollback. Hence, we introduce a 
new condition S2, which together with condition Sl 
preserves serializability without the use of transaction 
rollback. If no transaction reads a data item, it is 
trivial to show that Sl is sufficient to ensure 
serializability without rollbacks, since a version can be 
put in the proper place in the sequence of a data item 
at any time. If there exists at least one transaction 
which reads the value of a data item, then we must 
create a stronger condition than Sl. As before, this 
new condition is necessary for both structured a.nd 
unstructured databases. To ensure that a protocol will 
not require transaction rollback, we must enforce the 
following condition: 

S2: Let Ti and Tj be two transactions which interact 
on data item d, where Tj reads a version of d 
and T, at some time creates the version of d with 
highest timestamp that is readable by Tj, aa 
specified by Sl and rule 35. We shall say that Ti 
and Tj satisfy condition S2 if and only if Ti 
appends its version of d before the first access of 
Tj to d. 

Condition S2 implies that a transaction may 
need to wait to read the appropriate version of a data 
item. Therefore we must prove both that S2 ensures 
deadlock freedom, and that Sl and S2 are necessary 
and sufficient for serializability without transaction 
rollback. 

Theorem 2: A database system that satisfies 
our multiversion database model is serializable without 

76 



transaction rollback if and and only if every pair of 
tranhnctions satisfy conditions Sl and S2. El 

3. The New Progressive Protocol 
Any progressive protocol in this database model 

must mcrt conditions Sl and S2. This implies that a 
t rnnsn.ction Ti must delay a read request of data item 
tl until the version d, with timestamp closest to but 
1~~s than TS(T,) has been inserted. Since we do not 
require write ~CCPSS to be a subset of read access, this 
may be well before all earlier versions have been 
in-rrlcd. ;Ience, it is easy to see that this 
charactrrization makes use of multiversions by 
eliminating entirelv the need to delay for two of the 
thr~c types of trnr:saction conflict: 

l the writcwrite conflict, and 

l the read-write conflict. 

Only a restrict.ed form of the writeread conflict 
requires delay, when the transaction with higher 
t.lmrst,amp wishes read access before the appropriate 
v&on has been inserted. These savings are a 
significant gain in the use of multiple versions. 

This exposition allows the development of a new 
grncrnl progressive protocol that fits our model. It is 
nrccssary for a transaction to wait only for read 
access, and only until the transaction with lower but 
closest timestamp has been inserted. To accomplish 
this. we associate the following two data structures 
with each data item: 

a. a sequence of versions of the data item, in 
&ascending order of timestamp, and 

b. a sequence of timestamps (in ascending 
order) of active transactions which create a 
version of this data item, but have not yet 
inserted the version into the sequence of 
versions. 

When assigning a timestamp to a transaction, 
the model requires only that timestamps for update 
transactions must be unique. To obtain the flexibility 
necessary for an optimal protocol, we maintain an 
ava.il list of available timestamps. When an update 
transaction enters the system, it chooses the smallest 
unmarked timestamp in the avail list if it issues read 
reqursts; otherwise it can select any arbitrary 
unmarked timestamp. The transaction then marks the 
timc>stamp to prevent duplicate issues, inserts its 
timc~stamp into the sequence of each data item in its 
writeset, and then removes its timestamp from the 
avail list. A read-only transaction can select any 
~imrstamp bet.ween 1 and one less than the smallest 
nunrhc~r in t.hc avail list. After this preprocessing is 
cornpl~l rd, a t,rnnsact.ion begins execution. The rules 

to read or write a data item d are as follows: 

1. A transaction Ti updates data item d b> 
performing its fina.1 write of d, inserting it,s 
version with timestamp TS(Ti) int,o the 
correct order in the version sequence, and 
then deleting TS(Ti) from the timestamp 
sequence of d. 

2. When transaction Ti performs its first read 
of any data item it must wait until all 
timestamps less than TS(T,) have been 
removed from the avail list. It t,hen 
performs its first read of data item d by 
finding the timcstamp (denoted by j) in the 
timestamp sequence of d closest to but less 
than TS(T;), if there is one. If none exists, 
then all previous versions have been 
inserted, and Ti may select the a.ppropriate 
version by the rule given in the 
concurrency control. If some timestamp j 
exists, then Ti determines if there is some 
version d, in the sequence such that 
j < k < TS(Ti) (or j < k 5 TS(Ti) if Ti 
is a read-only transaction), and which Ti 
can immediately read, by the given rule. 
Otherwise, Ti must wait until transaction 
Tj with timestamp j creates the intended 
version. 

Theorem 3: The new multiversion protocol is 
progressive; that is, it ensures serializability and 
deadlock freedom without the use of transaction 
rollback. 

Proof: We show that any precedence relation 
between transactions Ti and Tj imply S2. Assume, 
without 10~s of generality, that TS(Ti) < TS(Tj). We 
separate the proof into four cases, the first three cases 
specify TS(Ti) < TS(Tj), and the last case haa 
TS(Ti) = TS(Tj). 

1. Ti and Tj both create versions of data item 
d. By the definition of the precedence 
relation, Ti -+ Tj. 

2. Ti reads a version of d, and Tj creates a 
version of d. By rule 3a, Ti must read a 
version with a timestamp less than or equal 
to its own timestamp, and SO Ti + Tj, by 
definition of the precedence relation. 

3. T, creates a version of d, and Tj reads a 
version of d. The protocol states that Tj 
must wait until all smaller timestamps have 

77 



been removed from the avail list., and 
consequently Ti had added its timestamp to 
the timestamp sequence of d. The protocol 
delays Tj until some version d, has inserted 
its version, where i 5 k 5 TS(Tj). This 
directly implies condition S2. 

4. For the cases where TS(T,) = TS(TI), ru!e 
lb stipulates that only one transaction can 
create versions. Without loss of generality 
we assume T, creates a version and Tj 
reads a version, where Tj only read 
accesses data items. The protocol specifies 
that Tj does not read until Ti removed its 
timestamp from the avail lit, which is 
after it added its timestamp to the 
timestamp sequence of data item d. Hence, 
Tj must wait to access d until after Ti 
created its version, if T, consistently 
precedes Tj; or else Tj consistently precedes 
Ti. 

We present a short example to illustrate 

Cl 

the 
brhavior of the new protocol. Th6 database consists of 
the data items a, b, and c, each with a base version 
available to read. There are two update transactions, 
T, and T,, and one read-only transaction, T,. T, will 
read a and write a version of b, T, will read a and b 
a.nd write a version of c, and T, will read a and c. T, 
enters the database, is assigned TS(T,)=l, appends 1 
to the timestamp sequence of b, and reads a. T, 
enters, is assigned a timestamp of 2, appends 2 to the 
timestamp sequence of c, reads a, and waits for T, to 
insert its version of b. T, inserts its version and 
completes, and T, reads b. T, enters, and can select a 
timesta.mp of 1 or 2. T3 can proceed without delay if 
it selects TS(T,)=I, or can wait for more current 
results by selecting TS(T3)=2. It chooses a timestamp 
of 2, reads a, and waits until T, inserts its version of 
C. 

This very simple protocol avoids many of the 
performance drawbacks of .other published 
multiversion protocols. First, there is no wasted 
execution time or system overhead due to transaction 
rollback. This absence of rollback guarantees 
completion of all transactions entering the system, and 
also decreases the waiting time to read an individual 
version. This is due to the fact that every execution 
completes, so once a transaction inserts a version it 
can be considered committed and read immediately. 
This differs from most other multiversion protocols, 
whrrr c4,hrr w. transaction reads an uncommitt*ed 
version and may be involved in cascading rollback, or 

waits until the transaction creating a version has 
finished its execution. In addition, there is no need to 
maintain a transaction dependency graph, nor USC a 
cycle detection algorithm to determine eit.her 
serializability or selection of the appropriate version t,o 
read. Finally, a read operation can be executed 
without any updates. a 

4. Comparison 

We now compare the new 
other two existing protocols 
multiversion database model. 

protocol with the 
using thr same 

The first protocol is a safe protocol proposed by 
Reed [3]. The protocol assigns unique timestamps to 
each transacbion in the order they enter the database. 
When a transaction issues a read request, it reads the 
most current version less than its own timestamp if the 
version is committed, otherwise it delays until the 
version is committed or removed. A read operation 
may result in the updating of information concerning 
the latest time that version has been read. A new 
version with timestamp t is installed after version p, 
where p is the largest number less than t. Version t is 
installed only if no transaction with timestamp greater 
than t has read p, otherwise the transaction creating 
version t must be rolled back. However there is no 
cascading rollback, since transactions are restricted to 
reading only committed versions. Thus, Reed’s 
protocol also suffers from only one case of write-read 
conflict, which occurs when transactions writing 
versions with smaller timestamps have not yet 
completed. If the version has been inserted, the read is 
delayed until transaction completion; otherwise, the 
read is processed immediately but causes the abortion 
of the transaction when it attempts to insert it,s 
version. 

We now contrast the performance of Reed’s 
protocol using the example given above. T, enters the 
database, is assigned a timestamp of 1, and reads 
a. T, enters, is assigned a timestamp of 2, and reads a 
and b. Now T, attempts to update item b, but is 
rejected due to the read issued by T,. T3 enters, is 
assigned the next unique timesta.mp (3), and reads a 
and c. T, now attempts to update c and must also be 
rolled back. 

In general, Reed’s protocol allows read requests 
for transactions to be granted earlier than in our 
protocol only when it will indeed cause earlier 
transactions to be rolled back. This is due to the fact 
that our protocol only delays a read when a version 
will indeed be inserted. Our protocol also allows a 
version to be read as soon as c is created, since it will 
alwavs be committ&whilexeed’s protocol must wait 
rlntil the transaction creating the version has 
complet.cd. La&y, our protocol does not require the 
upda.ting of information in the database, while Reed’s 

78 



protocol does. The disadvantages of our scheme are 
the initial overhead for timestamp assignment, and 
that a transaction must declare its writeset. 

The new protocol can be easily shown to 
c’:lcompass the tree multiversion protocol in [7] as a 
spcbcial case. That protocol operates in a database 
structured as a tree, where all update transactions 
starts at the root, and are given timestamps in 
a.scrnding order when each successfully locks the root 
of the tree. Read-only transactions may begin 
anywhere in the tree. Update transactions issue only 
S locks. and may overtake any read-only transaction’s 
S locks as it traverses down the tree, but read-only 
transactions may only overtake X locks with higher 
(imcst.amp. Hence, no transaction with a higher 
t,imcst.amp int.ending to read some data item can 
overtake an update transaction which may create a 
version of lower timestamp. and this behavior thereby 
maintains the write-read delay required by S2. 
C’onsequently, all transactions with higher timestamps 
will follow the update transactions of lower timestamp 
down the tree. Using this description of the 
multivcrsion tree protocol, one can extend the 
performance in several small ways. Considered in the 
light of our new protocol, this progressive protocol is a 
spcGa1 c.aae that exchanges the time needed for the 
mutual exclusion of the update timestamp assignment 
for the delay time of access to the lower portions of 
t.he graph. 

5. Discussion 

We now discuss three questions related to 
performance of our scheme. We first discuss optimal 
choices when selecting a timestamp for a read-only 
f rnn~action. Since a transaction can seiect a 
timesta.mp from a wide range of values, the tra.nsaction 
cau avoid being delayed by selecting a timestamp less 
than the minimum value over all TM’s associated with 
the data items it accesses. If the timestamp is much 
less than the minimum, the versions read may be quite 
old and have been superseded by many more current 
vrrsions. If the timestamp is the minimum value 
minus one, this gives the desirable property of reading 
the most current version of the set of contiguous 
completed transactions at the time the read 
transaction enters the database. Finally, if a read-only 
transaction wishes to read the most current values 
possible, it would select the largest timestamp assigned 
to an update transaction. Thus it would read the most 
current update of any transaction currently active in 
t,he system. This may cause delay. However, since no 
update transaction need be restarted. this delay may 
br acceptable for many systems. 

The second issue involves the question of when 
old versions of a data item can be discarded. This 
ntgnrithm was previously presented in [7], and we 
prcsrnt a short summary here. If the concurrency 
cont,rol can det.ermine some minimum timestamp n 

that any active or future transaction is assigned, it can 
delete all versions d, of d such that there exists some 
version d, with k < m < n. The minimum timestamp 
for an update transaction is the earliest active 
transaction, since the timestamps are assigned in 
ascending order. This is easily found by keeping a 
sequence of the timestamps of all active updat.e 
transactions. The minimum timestamp assigned to a 
read-only transaction must be artificially set by the 
system. The system must determine when the active 
read-only transactions with smaller timestamp have 
finished; this can be done using several counters 
counting the number of read-only transactions within 
designated ranges that have entered and not yet left 
the system. When the value of the counters with 
ranges less than n has gone to zero, n becomes the 
minimum active read-only timestamp. 

The third issue involves the question of what can 
be done if it is not possible to estimate the writeset of 
a transaction. There are two possible answers: 

a) Use a multilevel granularity of data items 
solution. A transaction declares its writeset 
to include the highest needed data item in 
the hierarchy. A scheme that can be 
effectively used with our protocol was 
recently proposed by Carey [14]. 

b) Redefine our protocol as follows: The 
system maintains a new list, called 
Undeclared-Update, which contains the 
time stamps of all the active update 
transactions that cannot estimate their 
writeset. When a transaction Ti obtains its 
time stamp, TS(Ti), it is checked whether 
TS(Ti) < Min[Update]. If SO, then the 
execution proceeds as before. Otherwise, 
every read by transaction Ti can proceed 
only when there exists a version of X with 
time stamp Y such that Y is the closest 
time stamp to TS(TJ in either the version 
sequence, the time stamp sequence, or the 
Undeclared-Update list. 

6. Conclusion 

This paper presents the first complete 
characterization for an effective multiversion database 
model. We demonstrated that this model has effective 
protocols that ensure both safety and progressiveness. 
Using these characterizations, we developed a new 
general progressive protocol which has useful behavior 
characteristics not offered by any other protocol 
applicable to a general database system. The 
flexibility of assigning timestamps allows performance 
tuning and algorithms for discarding old versions based 

79 



only on the respective timcstamps of the transactions. 

lve reemphasize that the elimination of the use 
of tra:.saction rollback in the new protocol serves two 
important purposes. First, it eliminates the 
bookkeeping overhead, the wasted processing, and the 
rrstart. delays connected with rollback. Second, it 
removes the restriction that a read must occur only on 
a committed version, since all versions a transaction 
crcsates or reads will maintain serializability and 
deadlock freedom. Hence, there is no need to delay 
,ccess to a version until the execution of a transaction 
proceeds past a certain point. Most other multiversion 
protocols in the literature require this in order to avoid 
cascading rollback. We note, however, that cascading 
rollbacks can occur in our scheme in case of process or 
hardware failure. Thus in order to assure atomicity, a 
commit prot,ocol must be used in conjunction with our 
protocol. 

References 

1. Eswaran, K.P., Gray. J.N., Lorie, R.A. and 
Traiger, IL. The notions of consistency and 
predicate locks in a database system. CACM 10, 
11 (Nov. 1976), 624723. 

2. Honeywell File Management Supervisor, Order 
Number DB54, Honeywell Information Systems 
Inc., 1973. 

3. Reed, D.P. Naming and synchronization in a 
decentralized computer system. Ph.D. Thesis, 
M.I.T. Dept. of Electrical Engineering and 
Computer Science, Sept. 1978. 

4. Stearns, R.E., Lewis, P.M and Rosenkrantz, D. J. 
Concurrency control for database systems. 
Proceedings IEEE Symposium 2 Foundations of 
Computer Science (Oct.. 197(i), 19-32. 

.5. Stearns, R.E. and Rosenkrantz, D. Distributed 
database concurrency control using before 
values. Proceedings ACm-SIGMOD 
Int.ernational Conference s MGement of 
Data (April 1981). 

6. Bayer, R., Elhardt, E., Heller, H. and Reiser, 
A. Distributed concurrency controls in database 
systems. Proceedingg Sixth International 
Conference on Very Largexta Bases (Oct. -- 
1980) 275-284. 

7. Silberschatz, A. A Multiversion Concurrency 
Control Scheme with No Rollbacks, Proceedings 
_ SIGACT-SIGOPS ACN Symposium g 

Distributed Computing (August 1982), 216223. 

8. Bernstein, P. and Goodman, M. Concurrency 
Control .4lgorithms for Multiversion Database 
Systems, Proceedings ACM SIGACT-SIGOPS 
Symposium s Distribuaomputing (August 
1982), 209-215. 

9. Papadimitriou, C. and Kanellakis, P. On 
Concurrency Control by Multiple Versions, 
Proceedings ACM SIGACT-SIGOPS Symposium 
on Principles-atabase Systems (March 1982), 
76-82. 

10. Gray, J.N. The Transaction Concept: Virtues 
and Limitations, Proceedings 7th International 
Conference z Very WeData Bases, 
(September 1981), 144-154. 

11. Gray, J.N. *A Discussion of Distributed 
Systems,* Invited Lecture at the Congress0 
Annuale of Associazione Italiana per il Calcolo 
Automatico, Bari, Italy (August 1979). 

12. Muro, S., Kameda, T., and Minoura, T. Multi- 
version Concurrency Control Scheme for a 
Database System, Technical Report 82-2, 
University of Toronto, (February 1982). 

13. Buckley, G.N. and Silberschatz, A. A Complete 
Characterization of a Multivcrsion Database 
Model with Effective Schedulers, Technical 
Report TR-217, The University of Texas at 
Austin, March 1983. 

14. Carey, M. Granularity Hierarchies in 
Concurrency Control, Technical Report, 
University of California at Ber!<elcy, January 
1983. 

80 


