
THE MULTIPURPOSE PRESENTATION SYSTEM"

Gerald A. Wilson, Eric A. Domeshek, Ellen L. Drascher, Jeffrey S. Dean

Advanced Information & Decision Systems (AI&DS)
201 San Antonio Circle, Suite 286

Mountain View, CA 94040

ABSTRACT

This paper describes a knowledge-based user-
oriented interface system which is unique in its
combined use of data base, graphics, and AI tech-
nologies. All of the data presented to the user,
as well as all of the data input by the user, is
maintained and used as abstract “objects” using
an AI object-oriented knowledge representation
approach. However, the system employs a rela-
tional data base as both the storage media for
all of the object information, and as the inter-
face between the application and interface sys-
tems. The object-oriented approach allows both
the application system and the user interface to
operate upon the data, describe image layouts,
manipulate viewing windows, and build display
images using high-level commands. The use of the
relational data base provides a ccmmon interface
between many types of application systems and the
user interface, and helps to maintain a clean
separation between the functions of the applica-
tion system and the user interactions.

1. INTRODUCTION

Computers are being used more every day by
people who have a job to get done but who have
little or no desire to be programmers. This has
helped to increase the need for “user friendly”
interfaces: computer interfaces which are easily

* This work was supported by the Office of Naval
Research under contract number N00014-82-C-0602.

used and difficult to confuse. Substantial
effort has been expended on developing mechanisms
for displaying information in novel and easily
perceived manners, and for using a variety of
non-keyboard input devices. Good interfaces are
time consuming and difficult to develop. Inter-
faces also tend to become intimately errneshed in
the application systems which they support. A
problem which has received little attention is
how to design interfaces which have both good
human user versatility and are easily integrated
into application systems. To truly reduce the
time and cost of developing custom user inter-
faces, an interface must provide display hardware
independence, as well as being user and applica-
tion system friendly. The Multipurpose Presenta-
tion System (HPS) described in this paper is a
versatile user-oriented interface which directly
addresses the problems of rapid system develop-
ment by an integrated use of graphics, data base
managanent, and artificial intelligence concepts.

The objective of MPS is to provide a utility
through which a wide variety of application sys-
tems can accept and present data by describing
the data as objects and object attributes. One
part of this objective is to make the interaction
between the application system and MPS clean,
well defined, and implementation language
independent. At the same time, MPS must have
multi-media input and output capabilities, and be
as device independent as possible. The other
part of this objective is for MPS to also be ver-
satile and easy to use from the user’s viewpoint.

The MPS approach frees the application sys-
tems from the details of handling nlrmerous user
interface devices, yet allows full use of the
capabilities of these devices. MPS allows a
natural, object oriented, declaration of the
information which is to be transmitted between
the application system and the human user, thus
facilitating separation of the interface func-
tions from the application system functions. By
minimizing and isolating the communication
between the interface and the application system,
the HPS and the application system are logically

56

distributed, and thus can easily be phyrically
distributed. By incorporating a library of gen-
eric layouts, objects, and operators, the appli-
cat ion progrmer is relieved of much of the
urual difficulty in building good data presenta-
t iona.

A conscious choice of the term ‘bultipur-
pose” rather than “general purpose” was made in
naming MPS. We neither claim nor intend that PIPS
be an interface system to support all types of
application systems. The choice of an object-
oriented approach to interaction between the
application systen and WPS limits sanewhat the
type of control and low-level graphical device
control which can be accomplished rapidly. Thir
means that WPS would not be appropriate for
highly interactive tools such as screen editors
or animation systems. There are likely to be
other large classes of application systems which
PIPS will have difficulty supporting. Bowever, we
believe that the class of application systems
which can be supported by PIPS is quite large and
important.

WPS consists of four major components: a
relational DBWS, a presentation surface builder,
presentation surface effector, and a library of
generic objects. Presentation surfaces are
detailed descriptions of information to be
entered by a user and/or presented to the user.
PIPS treats presentation surfaces as blackboards
on which both the user and the application system
may write and which both may read. Presentation
surfaces are represented internally as a collec-
tion of relations maintained by a relational
DBMS. Communication between the application sys-
tem and the PIPS is done through the relational
DBMS. The contents of presentation surfaces are
described in terms of combinations of objects.
Communication between the human user and the WPS
is handled by the presentation surface ef fector,
which adapts to the capabilities of the interface
hardware. Each of these is described in more
detail below.

2. SYSTBn OVERVIEW

The MPS provides an extension to the normal
programming enviromuent through which application
systems can achieve a broad variety of interac-
tions with users. Given our objective of an
easily used and elegant interface, great care
must be taken on both the application system and
human user sides of the interface. Our approach
is to allow both the human users and the applica-
tion system to reference and manipulate data
items as ,‘objects” and “object attributes”, where
our notion of an object is analogous to that of

sHIPI PLA)(wIffi SYSTEM

CHASE SHIPMT

NEN SHIPNENY

REMOVE StIIPREWI

NEUTRUCK

CHAWGE WCK AVAILARILITV

Figure 1: Route Planning Example --
Top Level Wenu

I

object-oriented progranraing languages such as
SWALLTALK[31. A better understanding of thir
approach can be gained by examining a brief
scenario.

2.1 AN HIAMPLE OF WPS USAGE

Suppose that you, our applications expert,
have developed a very fast and efficient route
planning system for transportation networks.
Your system uses a combination of linear program-
ming and heuristic control methods to provide a
highly efficient solution which can be dynami-
cally replanned after partial execution (e.g.
when a new shipment must be added or an old one
deleted the original plan can be altered rather
than completely redone.). Now you would like to
make your system more usable by adding a con-
venient user interface. Let us examine a possi-
ble scenario of interface behavior from the
user’s perspective.

To begin you want the system to present a
simple menu of operations such as that shown in
Figure 1. The user selects an operation from the
menu by moving the cursor to the desired opera-
tion and pushing the “execute” button on the key-
board. To highlight the operation currently
selected, the text on the line pointed to by the
cursor is shown in reverse video. Bach time the
user pushes the space bar on the keyboard the
cursor is moved to the next operation on the
screen, or moved to the first item if it prwi-
ously pointed to the last item.

Having selected an operation, “new ship-
ment.“, the user is given a form to fill out such
as the one shown in Figure 2. The user can enter
information in the fields in any order, using the
right, left, up, and down arrows on the keyboard
to move from field to field. Completion of an
entry is indicated either by pushing the return
key or by moving the cursor outside the field.

57

WJtT MWE CLEAR 6 RESTRNT

ORIGIN cusTcMER j-1

DRlGlN LOCAlloW I-1

MSTINATIal
CUSTL-MEA I I

RROIRNDISE I I

WT.f I 1

UEllitrT 1 I

SNIFUENT DATE 1-j

ARRIv# DATE I 1

CDs1 1 I

Figure 2: Route Planning Example --
Eew Shipment Specification

Sweral interesting things are happening as ou
user is entering data into this form.

Each time data is entered into a field, a
collection of associated integrity constraints
specified by the application system are checked.
These checks vary from simple ones, such as veri-
fying that the data is in the proper form, to
complex ones, such as checking that the name of
the shipment destination is one known to the
application system. If an integrity constraint
fails the application system could request either
simple actions, such as showing an error message
and returning the user to the incorrect field for
editing, or complex actions. For exsmple, in
response to an integrity constraint failure on
the shipment destination entry, MPS might ask the
user if this is a destination not previously
served. If the answer is “yes”, the user would
be presented with another form on which the
details about the location and nature of this new
customer were to be entered. Because the appli-
cation system can provide these integrity con-
straint specifications as a part of the def ini-
tion of the desired user interface characteris-
tics, all of this run-time interaction with the
user can happen without intervention from the
application system.

When the user enters the shiplPent destina-
tion, the location field is immediately filled in
by the interface as long as it is unambiguous
(for example, a company with only one location).
If the party receiving the shipment needed
delivery at another location, the user could move
to the location field of the form to modify the
default value inserted. Upon moving to that
field on the form the user would be presented

wi th another display consisting of a map of the
region served overlayed with a grid, as shown in
Figure 3. Here we are assuming that the applica-
tion system needs locations in terms of grid-cell
identifiers, rather than street addresses. The
user can enter the desired delivery location by
moving a cursor on the screen, using a ‘hrouse”
type of pointing device, to the correct grid cell
and then pushing the button on the top of the
mouse to confirm the selection.

SOUTH-EAST CLEbNVlLLE

Figure 3: Route Planning Example --
Location Map

If the user moved to the “weight of ship-
ment” field of the form and pushed the “help”
key, the interface would present any guidance
specified by the application system for that
entry. If none had been provided it would
present the guidance for the form in general.
Similarly, if no help information had been speci-
fied for the form, MPS would attempt to present
the help information for that operation, as
selected at the top menu level.

Throughout this scenario fragment, none of
the menus, forms, text, pictures, or constraints
were built into EPS. All of that information was
provided either from the MPS object library or by
the application system. Material to be presented
to the user is stored in a relational data base
available to both the application system and EPS.
Data entered by the user is returned by MPS to
the application program by means of appropriate
relations in the data base. The means by which
this is accomplished is the subject of the sec-
tions which follow.

58

OR

PRESENTATION

SURFACE

EFFECTOR

r-71

Figure 4: PIPS System Architecture

2.2 THE STRUCTURE OF NPS

The major components of MPS, together with
their data and control flow relationships, are
illustrated in the system diagram of Figure 4.
Most of the data flow shown in the Figure deals
with objects of various types. There are three
types of objects used by MPS: generic, instance,
and display. Figure 5 illustrates the relation-
ship8 amongst these object types. Generic
ob jecte are essentially parameterized deecrip-
tions of items which might be used to construct
images to be shown to and manipulated by the
u8er. Specific instance8 of generic object8 are
called instance objects. Generic objects are
thue declaration8 of object8 and instance object8
are instantiation8 of those declarations.
Display objects are device independent represen-
tations of object8 in a form appropriate for out-
put. They are the presentable form of instance
object8 and are created by MPS using special
knowledge a88oCi.8ted with the corresponding gen-
eric object. These can be presented to a user on
any given output device using the device depen-
dent knowledge contained in the device context to
map the display objects into electronic images.

Many activities are performed by the MPS in
support of the bi-directional interacti.on between
u8er8 and applicatiou systems. These activities
fall into four groups: generic object defini-
tions, inetance object specification, display
object building, and interaction handling. A
general underetanding of these activitiee can be
gained by examining what would be required to
construct a picture such as Figure 4.

Definition of the generic objects to be used
includes both the use of existing generic object8
in the MPS library and new objects built upon the
library objects. Because a presentation surface

Figure 5: gelationshipe among MPS Object Types I

is just a type of generic object, the definition
of generic objects include8 the definition of the
contents and organization of each of the general
presentation surfaces required. In building Fig-
ure 4, the generic objects are squares and rec-
tangle8 and cylinder8 containing text, two types
of arrow8, and a presentation surface, which we
will call “eysten-diagram”, consisting of boxes
and cylinder8 and arrows which are to be arranged
in locations to be specified later. A constraint
which might be added to the ,“system-diagram”
object definition would be that no lines should
be positioned such that they cross.

The eecond activity ia to create the
specific instance8 of boxes and cylinders, one
for each box and cylinder to be shown on the
final figure, and the specific arrows connecting
thoef items. This is done by storing the com-
plete specification of each of these instance
objects in the data base, and associating each
with an instance of the “system-diagram” object.
This create8 a specific instance of a presenta-
tion surface which constitutes a high level
description of the desired picture.

59

The third activity is to create a display-
able form of the presentation surface instance in
a display device independent manner. This is
done by using the instance objects and graphical
layout templates associated with the generic
objects. These provide the mapping of the
required instance objects composing the presenta-
tion surface instance into display objects. To
actually show this presentation surface instance
to a user we must send it to a userviewable
media.

The fourth set of activities, interaction
handling, involves the direct, device dependent,
I/O with the human users. Pictures are created
by mapping the display objects onto the desired
device under the guidance of the device context.
Inputs from the user are accepted by mapping the
device specific actions taken by the user into
selections of and modif ications to object
inetancee. The results of user inputs are then
stored into the data base, thus making them
available to the application system.

Generic and instance object definition
activities of MPS are described in Section 3.
Activities related to presentation surfaces and
display objects are discussed in Section 4. Sec-
tion 5 covers the various aspects of interaction
handling.

3. EVERYTHING IS AN OBJECT

The concept of an object is central to MPS.
Everything which is preeented to a user and
everything which a user presents to the interface
is an object. The notion of an MPS object thus
is modelled after the more generic concept of
data abstraction, and employs many of the princi-
pals of structured semantic networks.

3.1 GENERIC OBJECTS

Let us consider first the formal definition
of an MPS generic object.

A generic obiect is a data structure
which includes : a description of the
attributes and components which collec-
tively comprise instances of the
object; the structure of
objects

display
which represent the external

presentation of the instance objects;
and constraining properties which apply
to instance and display objects. It
must satisfy exactly one of the follow-
ing :

a. It is a primitive object.

b. It is a compound object composed
of two or more generic objects
which are combined using well
defined operators.

A primitive obiect is a generic object
which is fully defined without refer-
ence to other objects.

The slight circularity of these definitions
is intentional. While we believe that there is
probably a set of primitive objects which could
be defined from which all other objects of
interest could be built, there does not appear to
be any advantage to fixing the set of primitive
objects. In fact the advantage of this defini-
tion of primitive object lies with the ability to
define the most advantageous set of primitive
objects for a particular use of the MPS. Note
that primitive objects can still have parameters
and use operators. This allows us to declare a
square to be a primitive object, and yet to leave
open the length, color, and line-widths of this
object until a specific instance of a square is
desired.

Consider the partial definition, illustrated
graphically , of the object SHIP shown in Figure
6. There are six portions of this definition:
attributes, component 6, constraints, graphical
properties, graphical layout template, and sub-
objects. Each portion captures important infor-
mation used by MPS.

3.1.1 Attributes and Components of Objects

Attributes are properties of the object as a
whole. Attributes, pictured in Figure 6 in the
single rectangle, are typically what makes one
instance of an object different from another.
Attributes are also objects, and can thus be
addressed, examined, and modified by either the
application system or the user. Swe attributes
will be quite simple objects having only a single
runner ic or textual value and possibly an aseoci-
ated specification of units. Others may take
sets of one or more values. Still others may be
complex structures composed of other attribute
objects. For example, the location of a ship
might be described as a single attribute of the
SEIP object, with location being an object com-
posed of a latitude and a longitude cwponent.
To simplify our examples we have not used any
complex attributes.

It is sometimes useful to think of the col-
lection of attributes which describe an object as
one ,“view” of the object. Another somewhat dif-
ferent view of an object is the description of

60

Figure 6: A Conceptual Illustration
of MPS Objects

the component parts (shown in Figure 6 by the
double walled rectangle) which together compose
the object. Bach of these cakponent parts is
itself an object with its own description. Not
all components of a generic object description
necessarily correspond directly to physical com-
ponents of the real-world object. This occurs
because each icon presented to the user must have
a corresponding object. For example, the cau-
ponent WARE, though not physically part of a
real-world ship, is used to represent the speed
and direction of the ship graphically.

3.1.2 Constraints

To assure that all of the real-world seman-
tics of the object are captured we must add the
third portion of the object description, the con-
straints. Constraints specify conditions of, and
relationships between, attributes and/or com-
ponent part 8 of an object which must be main-
tained. MPS attempts to provide good constraint
checking capabilities, but not to remove all need
for constraint checking from the application sys-
tem. Constraints not handled, or not desired to
be handled, by RPS can always be addressed by the
application system.

Although constraints, illustrated in Figure
6 by the hexagon, are logically thought of as a
distinct part of an object definition, they are,
as shown in Figure 7, directly associated with
the attributes and components of an object. MPS
currently includes five types of constraint
specifications : mode, umber, generic object,
default, and semantic. These five appear to sup-
port the current MPS applications; addit ional
types of constraints can be added if the need
arises.

rquirtd.text

rquired.iatc;er 1 LOlMXNDa as-5
--

rquired.intqmr 1 LAIlrnDE SC-6

smmtric
SIP. wde I default wk.obj. wnatraimt

I.D. rquired,protutad 1 SBI?-ID m-7

wl.L rquired.p?otcctad 1 MULL mIr-YulJ# w-8
--

SUP19
SISUCIIJSE rquired.protqted 1 nil SYl?-TOP a-9

PLAG optioml.prot~cted 0 SAIIOIULIII
--

WAKE optional,updatabh 1 SSIP-U)“ISE

P-P

Figure 7: MPS Attribute and Component
Representations for Objects

The ‘bode” constraint specifies whether a
given attribute or component of an object is
required or optional, its type (integer, real,
textual, cuaplex, . ..). and whether or not it may
be altered by the user. The “number” constraint
specifies the number of values which the attri-
bute may take at any one time. A “generic
object” constraint is a pointer to the deecrip-
tion of the generic object which fully defines
this attribute or ccnnponent of the current
object. In our example, SPEED is an optional
attribute which can take on only one value, while
NATIONALITT is a required textual attribute which
can take on multiple values (i.e. ships may fly
more than one flag), but must have at least one
value.

The “default” constraint is used primarily
as an aid to ease the burden of defining an
instance object. When an object instance is
described to include a given attribute or corn-
ponent, but with no value given for that attri-
bute or cauponent, MPS can use the “default” con-
straint to assign an appropriate value. Thus if
the nationality of a ship was not given, MPS
could use the default value of “US”; if the type
of hull was not specified MPS would use the
default of “cargo-ship-hull”. As shown in Figure
7, the “default ” constraint is empty for those
components or attributes which are required, but
have no possible default and thus must be

61

provided by the application system or the user.
When the attribute or component is not required,
it is “nil” for those cases for which the default
is an empty symbol, thus indicating that a value
exists in the real-world, but is unknown at
present. An smPtY entry in default is used in
this case to mean that the attribute or casponent
should not be used in creating display objects
unless it is explicitly given a value in the
instance object.

The constraints discussed above deal only
with the specific attribute or component to which
they were attached. Semantic constraints deal
both with rules about single attribute or com-
ponent values and with relationships among attri-
butes and components. In our example SHIP object
definition we might restrict WATIONALITT to one
of the known countries, restrict SPEED to less
than 30 knots when not in port and zero other-
wise, and require that the HULL component be con-
sistent with the type of the ship. Semantic con-
straints such as these will require a rich
language for their specification. The nature of
such a language is too lengthy a topic to discuss
in this paper. MPS employs a language based upon
an extension of first-order predicate logic which
was developed in earlier work by Wilson[ll] deal-
ing with semantic integrity of data bases.

3.1.3 Graphical Properties and Layout Templates

The ccmbination of all the attributes plus
all the component parts plus all the constraints
fully describe an abstract object. They do not,
however, describe how that object may be
displayed. The description of the graphical
representation of the object is specified by the
graphical properties of the object. The graphi-
cal properties provide a mapping between the
attributes of the generic object and the desired
collection of device-independent display objects
which may be used to represent instances of the
generic object . The approach used in MPS is to
consider the displayable form of an object as
consisting of one or more display icons which are
assembled using graphical operators in accordance
with the specifications of the graphical layout
template, and placed upon a rectangular surface
with a clear background.

3.1.4 Object Relationships

The relationships between objects, illue-
trated in Figure 6 by the double line arrows and
the generic object pointers to attributes and
components, are both quite important, and are
often exploited in WPS by means of inference.
The later relationship is that of a generic
object appearing as a component or attribute of
another generic object. This was discussed above

as a form of constraint upon the larger object,
where the component of the larger object must be
constrained according to the definition of the
generic object which fully defines the component.
The former relationship is that of “super-
object”. This is precisely a set relationship
where if “A” is the super-object of “S”, then all
of the instances of “B” are a subset (not neces-
sarily proper) of the instances of “A”. HPS
requires that immediate sub-objects (i.e. ones
with no intervening super-object relationships)
be formed from the super-object by restricting
the values of one or more of the super-object
attributes. The attributes so used are termed
the “discriminator” for the sub-objects.

3.1.5 Uses of Implication

Some or all of the attributes, cauponents,
and constraints of an object may be inferred from
its super-object. Two types of inference are
employed in MPS. The first type of inference is
that of inheritance. Inheritance is the process
of passing down the definition tree, from super-
objects to the more restricted objects, all- of
the attributes and components of the super-
object. The only exceptions to inheritance are
those attributes or components specifically
excluded from inheritance. This is illustrated
in Figure 6 by the relationships between “air-
craft carrier” and ,“ship” and between “sub” and
“ship”. All of the attributes and ccmponents
which apply to “ship” apply equally as well to
both “aircraft carrier” and “sub”. The discrimi-
nation made in these different objects is that
the “type” attribute of “ship” has been res-
tricted in each of the other two objects, thus
“ship” is the super-object of “aircraft carrier”
and “sub”. This use of inference provides a
great simplification in the description of gen-
eric objects. We need only specify attributes
and components of a sub-object when they are dif-
ferent from those of the super-object. Great
advantage is taken of this in providing aids to
the application system in the definition of new
objects.

The second type of inference used by HPS is
a slightly different form of inheritance:
attribute/component inheritance. This is used to
capture the relationships between the attributes
and the components of a given object. For exam-
ple, for our “ship” object its nationality,
speed, and location attributes apply both to the
ship as a whole and to each of the component
parts of the ship. MPS knows not to apply the
TYPE attribute directly because the semantic con-
straints associated with each of the components
of the SHIP object explicitly specify the rela-
tionship between the ship TYPE and the TYPE of
each of the components. As with the first type
of inheritance, this approach reduces both the

62

Figure 8: Examples of MPS Instance Objects
for the SEIP Object

fort and space required to specify the proper-
ties of each of the MPS objects. This type or
inference is termed belief satisfaction in MPS.

3.2 INSTANCE OBJECTS

Having fully described generic objects, we
must address instance objects.

An instance obiect is a generic object
in which all of the required parameters
have been filled with specific values.

Instance objects are thus simply instantiation6
of generic objects. Instance objects are
represented in HPS as entries in the relational
table of the relation corresponding to the
appropriate generic object. Some examples of
instances of ships are shovn in Figure 8.

The values of the attributes of any instance
object may be specified by either the application
system or the user. This unique uniformity in
the handling of user and application system
inputs is made possible by the object oriented
approach together vith the use of the data base
as the caumunication medium.

3.3 OBJECT RlIPRESENTATION

While the type of graphical representations
of objects used in Figures 6 and 7 are convenient
for paper presentations, they are difficult to
capture and use in a computer system. Even more
importantly , a cornerstone of the MPS approach is
that MPS and the application systems should be
equally able to reference and build the generic
and instance object descriptions, even if dif-
ferent programming languages and different
machines are used. The approach which we have
employed to make all of the object descriptions
universally available is to represent all of the
objects, attributes, casponents, etc. in a col-
lection of relations managed by a relational
DBMS. The collection of relations which capture
the object descriptions of Figures 6 and 7 are
shown in Figure 9.

Attribute Object Ilode

SItED SPLID

--

llA~IOul.IIy NAfIONALItl
--

Mm NAW

TYPS TYPE rquired.text

‘ONcINDd LONCllVDE rquirsd.iot*S*r

IA’fINDC LATINDE rquired.inte:ar

SC-26

SC-11

SC-20

C-r-b) OfObj lloda hfaultobj DaflD # Con*rrainr

I I ID ID 8UlP rquired,protest

SlllP rquir~d.prot~ct

SHIP rquired,protect

SUIP rquired,protect

SHIP rquired

8UlP rquired,protest 1 SC-3 1

SlllP rquir~d.prot~ct HULL 31154 1 SC-33

SHIP rquired,protect SUIP-TOP nil 1 SC-J*

1 SC-3 1 ---- UULL 31154 1 SC-33

l---r
SUIP-TOP nil 1 SC-J*

(3 SC-35
-- -

1 SC-36
-- -

OBJECT Rrlatiori: Obj rrF- T-pIat*

SHIP mJEcI SUIP-IENP

ID nm ~IIJLOCI

HULL ICOY UUL~IEUP

SUPER
61luJcnlPc ICON ssgHP

PLAG ICON YLAc~w.NP
_~

NAYa USJSCI wAKls_rKNP

Figure 9: Example MPS Object Representations

Our approach employs standard relationa
calculus descriptions of the MPS objects, with
the exception of the templates to define the phy-
sical icon construction corresponding to an
object. The relational tuples describing generic
objects are maintained permanently in the data
base, maintained in our current implementation by
the Troll relational DBMS[61. The templates used
to describe the physical icons and operations for
combining icons are maintained in a separate dic-
tionary indexed by the names of the individual
object tenplates. As instances of objects are
created, they are also stored in the appropriate
relational tables in the data base.

63

While the bandwidth required for information
transfer between the application system and the
data base is fairly low, the bandwidth between
MPS and the data base must be quite high as the
icons to be presented to the user are being con-
structed or modif ied. This would place a great
strain on the DBMS if all of this communication
required disk access to the data base. Thus it
is essential that the relevant portions of the
data base be maintained in an in-core working
area for rapid access. To further improve the
efficiency of use of the generic object descrip-
tions, it is important that the implied links,
represented in the relations by joins between
tuples, be made explicit. Much more rapid
traversal of the explicit links can be made than
would be possible with a series of joins.

In the current implementation the in-core
working area is maintained by an in-core data
base facility called PEARLIll, which is an AI
knowledge representation aysteal intended to
incorporate a full DBMS. We have combined PEARL
and Troll into what appears to MPS to be a single
system by providing a mapping between the inter-
nal structures of PEARL and the external rela-
tions defined for Troll. Thus, from the view
point of MPS, the combined Troll/PURL system is
an efficient relational DBMS capable of
representing limited forms of semantic networks
directly. A few special purpose additions to
the DBMS have been made to allow the efficient
handling of signals passed between the applica-
tion system and MPS to indicate such conditions
as the completion of an update of an object on
the screen. Such extensions to standard rela-
tional DBMS’s would be required to support UPS
with reasonable computation times during the
building of presentation surfaces. These exten-
sions clearly do not violate the nature of the
relational model.

4. PRESENTATION SURPACES AND DISPLAY OBJECTS where :

Having defined the concepts of generic and
instance objects, and described their representa-
tion in MPS, we can describe how to construct
scenes to be presented to the user. We use
“scenes” here to mean logical descriptions of
images to be presented on saue form of display.
Scenes are constructed in WPS in the form of
presentation surfaces, vhich are a special type
of generic object.

4.1 DEFINITION OF A PRESENTATION SURFACE

The specification of the potential contents
of a presentation surface (in terms of generic
objects camposing the presentation surface) and

organization (in terms of the physical layout of
the objects) can be fully described using the
representations presented in Section 3. The gen-
eric object specifications provide a recipe for
constructing a scene for display. To create an
actual scene we must add the required types of
ingredient a and then mix them according to the
recipe. Adding the ingredients is the process of
creating an instance of the presentation surface
plus instances of each of the objects cwpoaing
the presentation surface. Mixing the ingredients
is the process of creating display objects by
caabining the ingredients in accordance with the
instructions provided by the graphical layout
template.

Instance objects are created, as described
in Section 3, by storing tuplea into the rela-
tional tables of the appropriate generic object.
However, these tuplea specify only the values of
the attributes of the generic object. For
instance objects which are not presentation sur-
faces, such as instances of SRIP, MPS normally
uses default component a. This is possible
because the default components are typically
primitive objects existing in the MPS object
library. There cannot be default components for
presentation surface components. The component 8
of a presentation surface instance
instance

are normally
objects created during the execution of

the application system, often after the creation
of the presentation surface instance.

Therefore, to complete the specification of
the presentation surface instance, each of the
instance objects composing the presentation sur-
face instance must be linked to the appropriate
presentation surface instance component. This is
done by storing tuples in the Presentation
Instance Component (PIG) relation in the data
base. PIC is defined as:

PIC (pid, pres-obj, goid, gen-obj, protection)

pid -The unique id of the presenta-
tion object instance being
built.

prea-ob j =The name of the generic preaen-
tation object.

goid -The unique id of the instance
object to be included in this
presentation object instance.

gen-ob j =The name of the generic object
of which goid is an instance.

protection =The flag indicating whether the
user may modify this object at
this time.

64

Figure 10: The CHART Presentation Object
‘

Before specification of the ingredients iS

complete, we must add sase information about the
way in which the instance objects are to be
displayed. Instance objects are created by
instantiating the attributes of the generic
object. This leaves the graphical attributes
unspecified, except for defaults. The graphical
attributes for all instance objects are
represented in a single relation named “DISPIAY”
in the Troll data base. The DISPLAY relation is
defined as :

DISPLAY (unique-id,property,value)

where:

unique-id=The unique internal identifier of
the instance object.

property=The name of the display property
being addressed.

value =The value to be assigned.

Using the unique id of the instance object, HPS
uses the description of the property associated
with the corresponding generic object to check
that the property is appropriate, and the value
acceptable. Some of the display properties which
are currently used by MPS objects are:

x-p0 8 =The x coordinate of the instance object
within the next higher level object of
which it is a coxponen t . Usually not
updated by the application system.

y-pos =The y coordinate of the instance object
within the next higher level object of
which it is a component. Usually not
updated by the application system.

BJtCT: Obj Lqour Tmp1.t. VP*

CapID CapOb j Of ID OfObj

11508 SNIP 31507 WART

31509 8111) 31507 UABT

-H-l

31510 SUIP 31347 WART
--

31511 NAP 31507 WANT

31511 CNID 31507 WART
-- .-

Figure 11: Relational Representation of CllAgT
Generic and Instance Objects

x-size =The width of this display object in basic
MPS units.

y-size =The height of this display object in
basic HPS units.

color =The central color value to be used in
creating this display icon.

PIPS automatically creates a set of DISPLAY tuples
for each instance object with default parameter
values when the instance object is created. The
application system has the obligation to alter
any values required to achieve the desired
display object .

65

BLIP Layout Template:

ONTOP(SUPRRSTRUCTURE,BULL)
ONTOP(SUPEBSTRUCTURK,FLAG)
BlZlIND(SUPERSTRUCTURE,FLAG)
BEHIND(BULL,WAKE)
ATTACH(BOTTOM(EULL) ,WAKE)
EQUAL(NATIONkLITY, “US”) =->

COLOB@LAG, “BLUE”)
EQUAL(NATIONALITY, ‘USSR”) -->

COLOR(FLAG, “RED”)

ZlART Layout Template:

OVERLAYY(GRID,WAP)
OVERLAY(SHIP,GRID)
MERGE(DgTECTION-PROBABILITY,WAP)

Figure 12: A Graphical Layout Tewplate

An example of the definition of a presenta-
tion surface called CHART is shown in graphical
form in Figure 10. This is a surface which
displays a partial map of the world including
longitude and latitude lines, and shows the loca-
t ion of various SHIP objects on that map,
together with same high-level information about
the status of each of those ships. Figure 11
shows the relational tables of WPS corresponding
to the WART object after all of the desired
instance objects have been specified by the
application system. Note that the generic
description of the CHART object has not changed,
we have simply attached information about the
specific object instances which are to be used in
creating the display for the user.

Although the object QlART contains the
specification of only objects of type SHIP, all
of the generic definitions associated with SHIP
objects apply. Thus when the application system
stores the description of the Kennedy in the
relation AIRCRAFT-CARRIER and specifies that it
is to be included in the presentation surface
object CHART, the WPS can derive the proper asso-
ciation from its knowledge of the super-object
relationship between SHIP and AIRCRAFT-CARRIER.

4.2 DISPLAY OBJECTS

Given the description of an instance of a
presentation surface, MPS can be requested to
create a display object and show it to the user.
This is a two step process. A device independent
display object is first created for the presenta-
t ion surface instance. This is then passed to
the presentation surface effector (as described
in Section 5) for actual presentation to the
user. Creation of the device independent display
object is the processes of ‘Inixing the
ingredients” mentioned above.

The ingredient mixing is done in accordance
with a recipe, one specified by the graphical
layout template. WPS uses a simple but powerful
language called the High-level Positioual
Language (XPL) to capture the layout recipe. The
details of this language, its representation, and
its use in WS are the subject of a separate
paperIl21. Because of the complexity of perfom-
ing graphical layout using high-level positional
Specifications, we illustrate here only the gen-
eral nature of HPL by example.

Figure 12 contains the graphical layout tern-
plate for the SHIP and (;IIART objects. Note that
the statenents in BPL consist of three types:
attribute mappings, positional operators, and
combinational operators. The attribute mappings
epecify what changes to the icon templates are to
be made to capture the values of the attributes
of the instance object. These are used to cause,
for example, the selection of the USSR flag when

the NATIONALITY attribute of the SHIP instance is
USSR. Positional operators specify where, within
the clear surface upon which the display object
is constructed, the icon for each component is to
be placed. The required knowledge is built into
MPS so that. it properly handles the intended
relationships, such as placing the SUPERSTRUCTURE
of the SHIP centered directly above the HULL.

The combinational operators specify the way
in which the component display objects are com-
bined to form the desired effect. For example,
the SHIP objects are laid on top of the underly-
ing MAP so that they obliterate the MAP portions
underneath, while the DETECTION-PROBABILITY icons
are combined with the rest of the scene as a
transparent overlay, thus allowing the underlying
icons to be seen through a “filter”.

In our example the use of the super-object
relationship between SHIP and AIRCRAFT-CARRIER
allowed WPS to properly determine that the graph-
ical layout template to use for construction the
icon to represent the “Kennedy” were those asso-
ciated with the generic object AIRCRAFT-CARRIER.
This same type of inference allowed MPS to deter-
mine that the actual location of each SEIP object
could be canputed by mapping the latitude and
longitude position of the SHIP into the coordi-
nates of the aART object.

5. INTFEACTIWG WITH A PRESENTATION SURFACE

Having described how HPS builds an instance
of a presentation surface and the associated dev-
ice independent display object, we can now
describe how the display object is shown to a
user and how the user may modify the presentation

66

surface. This is all handled by the presentation
surface effector, which is responsible for adapt-
ing the display objects for viewing and modifico-
tion on given devices. The key concepts involved
are viewing window8 and display contexts.

We have used the name “presentation surface
ef fector” to capture the fact that logically it
is the presentation surface instance which is
being displayed and vith which the user can
interact. The display object is only representa-
tion from vhich actual icons on a display device
can be created. These icons simply represent the
objects of the presentation surface in a con-
venient medium. The objects and their associated
attributes are the only things which carry mean-
ing for either the application system or the
user. This is the reason we started with the
objective of allowing both the users and the
application sy8tfm to converse in terms of
objects, and why we have worked so hard to carry
this through all portions of the MPS.

MPS places no restriction8 on the logical or
physical site of 8 presentation surface, nor on
the number of presentation surfaces which can
exist at any one time. However, there is a lim-
ited size to both the physical devices for
displaying graphical images and a limited nllmber
of such devices available to the application sye-
teal. Therefore MPS treats a display device as a
‘window” which looks out onto the presentation
surface, in the same way that earlier systems
like SDMS[3,131 use windows. Principal control
of the positioning of the viewing window lies
with the application eysten, but control can be
given to the user to support panning and zooming.
Thus a viewing window in HPS is simply a means by
which information from a part of a presentation
surface can be visually shared with the user.
Like Star171 and Lisa[lOl, the HPS window does
not necessarily cover the entire screen of the
display device. Thus there can be multiple win-
dows displayed on a single device, and each is
associated with a presentation surface. Window8
can also share presentation surfaces.

Two parameters are needed to determine the
relation of the window to its contents: its loca-
tion and the portion of the presentation surface
to be shown. These parameters are established
using the WINDOW relation as follows:

WINDOWCsurface-id,object-id)

where :

surface-id -The unique id of the presenta-
tion surface instance.

object-id =The unique id of the instance
object associated with that
presentation surface.

The tuples of this relation thus specify which
instance objects are to be included in the window
for a given instance of a presentation surface.
‘WS is responsible for determining the scaling
required to include all of the required object
instances. It similarly determines the position-
ing of the window. The final scaling must of
course be determined by the properties of the
display device.

User inputs and movement of the windov are
passed by the presentation surface effector to
the application system through the data base.
The application system can move the window by
changing the tuples of the WINDOW relation. The
user can change it through any of a variety of
input device (joystick, mouse, tablet, touch BUT-
faces, etc.) supported by the display device.
User movement8 (panning and zoom ing) are
reflected by appropriate change8 to the WINDOW
relation tuples by MPS.

Any attribute or component of an object
which is to be user updatable is given an
appropriate ‘bode” using the mode constraint.
When the display object corresponding to the
instance object is created, the value of such an
attribute or component is displayed as given by
the application program, or default value from
the generic object description. To display noth-
ing, the appropriate value need only be left
unspecified (that is left with a default of
“empty “1 . When the user (either at his own ini-
tiative or in response to an application system
request) provides an input starting at a given
cursor locat ion, the object being changed is
identified by the MPS through its mapping of the
display object locations on the presentation sur-
face to the window coordinates. The data input
is stored in the appropriate argument of the
tuple for the,object that was changed. When the
user select8 an instance object, such as a menu
item, by moving the cursor, HPS inform8 the
application system of the object which was
selected by storing the unique id of the object
instance in the appropriate tuple of the data
base. Thus user inputs are uniformly reported to
the applications system in terms of the objects
pointed at or altered.

The representation of the instance object in
the data base can also be used to save the
responses of the user for later reference, as
when the user provides the application program
with a number of parameter values to try.
Redisplay of old values require8 only the
appropriate reference to the desired object
instance to request its display.

The actual creation and modification of the
scene corresponding to the presentation surface
instance is handled by the display context
mechanism. A display context is a description of
the device dependent characteristics of a given
display medium, including all of the information

67

required to form a vievable coL$ectiou of icons
from the device independent display objects.

The mechanism to create displays is
straightforward. Given an instance of a presen-
tat ion surf ace, the application system requests
that the presentation surface instance be
displayed on a given device. This is done by
storing a tuple into the SROU relation as fol-
lovs :

SEOW(generic-object,pid,device)

where :

generic-objectq’he name of the presentation
surface of which an instance is to
be shown.

pid -The unique identifier of the presen-
tation surface instance (created by
HPS if not given).

device =The specific display device context
to be used. An error return will
result if the specified device is
not compatible with the requirements
of the generic presentation object.

MPS then uses the device dependent charac-
teristics specified in the device context to map
the display objects corresponding to the presen-
tation surface instance into the appropriate
icone for the display. For example, if the
presentation instance was defined using multiple
colors and the device context specified that the
device is monochrome, MPS would appropriately
create the icons to correspond to a monochrome
image.

6. SUMMARY AND CONCLUSIONS

We have described a powerful user interface
system which has several unique features. The
system utilizes object oriented description8 of
the information to be exchanged between the human
user and the application system’. This allows a
clean demarcation between the functions of the
application system and those of the user inter-
face. The MPS interface uses a relational data
base as the medium of communication. In addition
to the data about specific objects to be
displayed, MPS maintains generic descriptions of
objects. These are used directly in the verifi-
cation of the construction of instance objects,
in the cqnetruction of objects to be displayed,
and in the description of the contents of presen-
tation surfaces. Thus MPS is maintaining and
.using a high level semantic model of the objects
to be displayed. This semantic model is stored
.directly in the relational data base, and is thus
available to both the application systes and MPS.
Because the interactions between the application
system and MPS are cleanly defined and use high
level object descriptions, relatively low

bandwidth communications are needed betveen the
tw0 syst8m for many types of applications.
Therefore WPS can be used in both single
processor and multiple distributed processor
architectures.

There are two key differences between the
object oriented approach employed in the Star171
and those of MPS. First, Star requires that the
application system be implemented within the
Star/Mesa envirorrment. While this is a powerful
environment, it requires many operating system
and programming language facilities not available
or implementable on general purpose machines.
MPS attempts to relax many of these constraints
SO that it may be used in a much broader collec-
tion of applications. Second, Star does not pro-
vide a clean division between the interactions of
the interface and the computations of the appli-
cation system. We believe that the clean defini-
tion of the interaction medium ’ greatly
strengthens the power of the object oriented
approach. It is difficult to tell from the early
descriptions of Lisa[lOl, but it appears that
their modifications to the Star object oriented
approach lie in the hardware capabilities and not
it the areas of interaction between the applica-
tion system and the interface tools.

Like WPS, the TIMBER[91 system uses a data
base to contain all of the information on the
screen. An interface to the application programs
is provided to allow the specification of the
items to be presented by storing them in the data
base. However, TIMBER has no built in semantics
about the objects to be displayed, and thus
forces the application system to work at a fairly
low level, and does not provide the nice inheri-
tance features of the object oriented approach.
WPS is not simply a browsing tool or an access
tool for data bases, such as GUIDE[141. It is
also not just an exercise in knowledge based
representations of graphical descriptions, euch
as APE[16]. Like the PLAIR[lSI system, the
approach in HPS emphasizes the need for high
level tools to aid the development and use of
interfaces. The FLAIR effort, however, has con-
centrated on a language for the specification of
interface dialogues, and provides very little
built-in knovledge to aid the developer in
transforming the concepts used by the application
system into appropriate interface activities.

More attention was paid to the interaction
between the application system and the interface’
in the TIGER151 system work, but TIGER concen-
trated on a programming language to allow the
application system to build dialogs and interact
in a device independent way. This still requires
the application system to embed all of the user
interface activities and code within the applica-
tion system code, rather than making the clean
division used in WPS. The technique of utilizing
the data base to maintain the data to be
presented and also as the interaction medium with
the application system was employed by Foley and

68

Garrettl21. Their work dealt only with very low
level epecif ications of the icons to be
presented, and the associated problems of
correrpondence between the icons and the data
base tuples. They did not provide any general
meant3 for two way interactions.

HPS is currently being implemented and ueed
at AILDS in several different applications. The
implementation of the first version with a subset
of the capabilities described above has been cw-
pleted. More powerful versions will be ccrmpleted
during the next few years. The unique features
of MPS allow us to utilize it in a number of
fairly diverse applications, including menu-based
controls, geographic maps with over lay 8, radar
images with overlay 8, and interactive AI expert
systems using both text and graphics.

7. REFERENCES

1. Deering, M., Faletti, J. and R. Wileneky
“Using the PEARL AI Package,” Technical
Report, Department of EECg, University of
California, Berkeley, Berkeley, California,
February 1982.

2. Garrett, M.T. and J.D. Foley “Graphics Pro-
gramming Using a Database System with Depen-
dency Declarations, ” ACM Transactions on
Graphics, vol. 1, no. 2 (April 19821, pp.
109-128.

3. lierot, C.F., “Spatial Management of Data, ”
ACM Transactions on Database Management,
Association for Computing Machinery, 1980.

4. Ingalls, D.
System,”

“The Smalltalk- Programming
Fifth Annual ACM Symposium on Prin-

ciples of Programming Languages, January
1978, pp. 9-16.

5. Kasik, D.J. “A User Interface Management
System,” SigGraph-82, Computer Graphics,
Association for Computing Machinery, vol.
16, no. 3 (July 19821, pp. 99-106.

6. Kersten.’ M.L. and A.I. Wasserman, “The
Architecture of the PLAIN Data Base
Handler, ” Software -- Practice & Exueri-
encee,
175-186.

y&. ll, gg. 2 (February, 19811, pp.

8. Rosenthal, D.S.R., Hichener, J.C., Pfaff,
G Keseener, R., Sabin, M. “The Detailed
&antics of Graphics Input Devices, ”
SigGraph-82, Caaputer Graphics, Aesociation
for Computing Wachiner, vol. 16, no. 3 (July
19821, pp. 33-38.

9. Stonebraker, M. and J. Kalash “TImER: A
Sophieticated Relation Browner,” Proceedings
of the Eight International Conference on
Very Large Data Bases, Mexico City, Sep-
teaber, 1982, pp. l-10.

10. Williame, G. “The Lisa Computer System,”
BYTE, BYTE Publications Inc., vol. 8, no. 2
(February 19831, pp. 33-50

11. Wilson, G.A. “A Conceptual Model for Senan-
tic Integrity Checking,” Proceedings of the
Sixth International Conference on Very Large
Data Bases, Montreal, Canada, October, 1980.

12. Wilson, G.A., Domeshek, E.A., Dean, J.S.,
Drascher, E.L., ‘HPL -- A Righ-level
Language for Describing Graphical Layout of
Objects,.” Advanced Information 6 Decision
Systene, paper in preparation.

13. Wilson, G.A. and C.F. Herot, “Semantic vs.
Graphics -- To Show or Not to Show,”
Proceedings of the Sixth International
Conference on Very Large Data Bases, Mont-
real, Canada, October, 1980.

14. Wang, K.T. and Ivy Kuo, “GUIDE : Graphical
User Interface for Database Exploration,”
Proceedings of the Eight International
Conference on Very Large Data Baeee, Mexico
City, Mexico, September, 1982,pp. 22-32.

15. Wong, P. C.S. and E.R. Reid “FLAIR -- User
Interface Dialog Design Tool,” SigGraph-82,
Computer Graphics, Association for Computing
Machinery, vol. 16, no. 3 (July 19821, pp.
87-97.

16. Zdybel, P., Greenfeld, N., Yonke, M. ‘Appli-
cation of Symbolic Processing to Command and
Control: An Advanced Information Preeenta-
tion System,” BBN Technical Report 4371,
Bolt Beranek and Newman, Inc., April, 1980.

7. Lipkie, D.E., Evans, S.R., Newlin, J.K.,
Weissman, R.L. “Star Graphics: An Object-
Oriented Implementation, ” SigGraph-82, Can-
puter Graphics, Association for Computing
Machinery, vol. 16, no. 3 (July 19821, pp.
115-124.

69

