
Active Databases as a Paradigm
for Enhanced Computing Environments

Matthew Morgenstern

USC Information Sciences Institute
4676 Admiralty Way, Marina del Rey, CA. 90292’

Abstract
Active databases emphasize the notion that a body of
information is dynamic and should respond intelligently and in
non-trivial ways to the user. It provides a paradigm for research
and development which combines aspects of both database
and artificial intelligence technologies. A prototype system has
shown the viability of this approach.

We focus on the following database issues: (1) Descriptions are
used as semantic templates for associatively accessing and
manipulating data objects. (2) Dynamic views minimize the
typical distinctions between queries and retrievals, and between
views and real data, and thereby increase the perceived
immediacy of the user interface. (3) Constraint Equations are
developed as a declarative representation for semantic
constraints. The uniform approach they provide for expressing
database integrity, consistency, and more general semantics
derives its power from the rule-based framework of recent A.I.
expert systems. The efficiency of constraint maintenance also
is considered. Lastly, (4) The notion of binding time of data
associations and reference is discussed relative to both the
choice of data model and to the method of data access.

1. Int reduction
The working environment for computer scientists, managers,
and office workers has in common the need to dynamically
organize and keep consistent a large complex of interrelated
information. Whether the information involves messages,

articles, and files, or programs, data structures, and
specifications, the need for flexible organization, browsing, and
maintenance of consistency is similar.

Active databases provide a paradigm for uniformly addressing
the information handling activities that are central to one’s
computer work environment. The activeness of a database is a
behavioral metaphor which involves several dimensions, and
emphasizes the dynamics of the user’s interactions and the
desirability for system intelligence in dealing with consequences
and implications of these interactions.

Consider an analogy to the evolution of text editors. In the older
line-oriented systems, a set of commands were formulated, sent
to the editor, and then the results were viewed separately. By
comparison, interactive screen oriented editors (such as Emacs
[Stallman79]), have commands which serve more as direct
extensions of one’s human capabilities. One moves a finger not
only to enter a new character, but also to physically move a
piece of text. The command is evidenced by Its effect, and the
feedback is immediate. There is no significant distinction
between what one sees and what really is. The level of
graphical interaction and responsiveness provided by
sophisticated personal workstations afford another example of
this kind of immediacy.

Similarly, one would like to reduce or eliminate the distinction in
databases between queries and results, and between views and
the real database. One should not need to form a complete
correct query for a complex question before there is any
response; rather, one should be given dynamic feedback as the
qualifying conditions are refined.

Views should be dynamically modifiable as to the data which
they display. This would enable one to incrementally shift the
focus of attention and to browse interactively through the data
as is more naturally done in libraries. Related approaches to
user interaction have been explored in [Goldstein80],
[RobertsonBl], [Stonebrake&?], and [Tou&Williams821.

The derived view should be as real as the underlying data.
When the view leaves ambiguity as to how an update should be
executed, additional information may be brought to bear.

34

Diiigueting the updete mey utilize the recent focus Of
attention [Davldsone2], semantic rulee, or interactivY
acquiring more information from the user.

Modelling complex applications such as office systems regUireS
a representation for the semantics of the data. The apparent
complexity of many applications is due in part to the complex
interactions which erlee between a lerge number of rules or
requirements -- rules that indivkiualiy often are relatively easy to
specify. Kunin &serves that “the besic structure of the office
procedure is often relatively eesy to comprehend and describe,
given the appropriate set of primltives. The ‘compiexll’ . . . is
often an artifact . ..” [Kunin&Z].

For example, changing a secretary’s office may change her
phone number, which may change the backup extension for
people on the same project, end also may reguire a change tc
the allocation of telephone charges to projects. Each of these
changes is simple when stated individually, yet their combined
effect appears complex.

The active databass can assume responsibility for managing the
complex interactions between these rules. PleviWS
approaches to representing databaes semantics have relied
upon additional schema representation primitlves and/or
procedural repmsentations (aee [Hfunmer&McLeodRl] end
[MyiopoulosEiO]). The representation of semantics utllbsd here
is derived from the rule based methodology of expert systems,
and emphasizea declarative expression of semantic constraints,
wlth an executable interpretation that provides for maintenance
of these constraints.

The work described herein has taken place as part of the
Information Management (IM) Project at ISI. This project
provides a framework for database and artificial intelligence
research. The original high level goals of this project were
presented in [Saber@] and include: (a) providing to the user
greater freedom of interaction: (b) managing a broad range of
information in a uniform manner, including messages, program
specifications, and code modules; (c) coordinating
interdependent data to maintain integrlty and consistency: and
(d) providing a hiph level means of expressing frequently
performed activities which are to be automated 80 as to extend
the functionality of the system.

In the subseguent sections we present the concept of
Descriptions as the basis for data access and for the creation of
new entries. Descriptions also provide the defining criteria for
Dynamic Views, which facilitate browsing and interaction with
the system. The concept of Constralnr EQu8tions is developed
as our declarative representation of semantics, which can bs
used to augment typical database schemata. Efficient
maintenance of thess constraints also is considered. The
relevance of binding times to methods of data accsss and to the
choice of data model are highlighted. We conclude with a
review of the implementation features for the current IM
prototype system.

2. Descriptions and Browsing
Descriptions are expreesed in terms of the data model, which
for our purposes can bs cleeslfied as an entity-relationship deta
model. The entities or objects are classRied into a type fattics
that eupports inheritance of attribute end reiationehip
definitions from one or more parent object types. The type
bee b dynamkally modifiabb. CWects may have multi-valued
attributes and may patticlpete in n-ary refetfonships invdving
othwobjacts.

Descriptions provide a eemantkally based form of associetivs
accees. AslmpleDescrffHionreferstoatypeofobjectencl
provides a skeleton of the attribute and reietionship names for
that object. (A Description eiso may refer to a relation (eimpis
or derived) and its roles.) Specific values end mstdctions may
be entered to characterixe a subset of object instances. For
example, a Description may bs formed for an EMPLOYEE object
type, and may specify the IM Project for the Works-on attribute.

This may be represented as:

[EMPLOYEE Works-on:IM 1.

where the square brackets denote a Description, and the first
entry is the type of the object, followed by one (or more)
Attribute-name:Value pair. In the system, a Deacriptlon usually
is built interactively.

A compound Description is a set of simple Descriptions which
participate in common relationships. To locate Employses who
are Researchers working ‘on a Project funded by DARPA, one
forms a Description of Project having the Funded attrlbute value
of DARPA, and relates this Description to an Employee
Description whose job title is Researcher. To express this
syntactically, the Employee Description below has for its Works-
on attribute an embedded Description for Project:

[EMPLOYkE JobTitle:Researcher
Works-on:[PROJECT Funded:DARPA]]

Alternatively, two or more Descriptions may be related by
linkingvariables so es to express the fact that several different
attributes have the same value. The use of linking%uiables has
additional power in that more than one association can bs
established. In the example below, we are interested in
Employees who are Researchers and who both Work-on and
are the Principal for a Project Funded by DARPA. *PROJO is the
linking variable which denotes a value for both the Works-on
and the Principal attributes (in the first Description), as well as
an inetence of a PROJECT object (in the eecond Description). If
there are multiple values for *PROJO, then there are multiple
ways of satlsfyfng the following compound Deecrlptlon:

[EMPLOYEE JobTitle:Researcher
Works-on: l PROJ* Principal :*PROJ* J

[PROJECT:*PROJ* Funded:DARPA]

Deecriptbns provMe frameworks or templetes for objects into
which velues and relationships to other objects may be sntered.
This is analogous to Query By Example’s use of relation table

35

skeletons for two dimensional entry of relational queries
[zkjcp7,2lod82]. Sfnce our cbjecte are defined relative to the
application domain, the objsct Descrlptlon skeletons used to
formulate interactions with the database reflect the semantics of
the application rather than some partitioning into underlyfng
component relations.

A compound Description which relates eeveml simple
Dsscriptions may serve to widen one’s focus of attention to
include other related objects, or to provide sddftfonal
qusliflcations in the context so as to filter the set of object
instances which satisfy the Description. If paris of the
compound Description are designated as not being visible, then
they serve only as a fflterfng context for the objscts and
attributes which are visible. Deacriptlons are utilized for
Deacrlptlve Reference, and are the basis for the notion of
Dynamic Views, as described below.

2.1. Descriptive Reference
Descriptive reference emphasizes the u8e of context in
selecting and qualifying the set of objects of interest, in contrast
to name based and access path based modes of reference
oommon to some traditional database systems. Partial
specification of related information in the Deecriptions serves to
select the objects which are desired for access.

The objects in our database can include rather general typea of
information, including electronic messages, program
specifications, snd subroutine code. Thus Descriptive
reference provides a possible tool for categorizing msssagea,
forming a mailing list based on common interests, and sven for
function selection and invocation baaed upon types of inputs,
outputs, and behavioral features associated with the stored
functions.

Descriptive reference provides for not only explicit retrievaf, but
slso retrieval by analogy, object creation, and modification. For
example, one might wish to use an abstraction or generalization
of one object to find similar objects. This capability is realized in
our system by being able to form a Description that matches a
given object, and then using this Description, with
modifications, to select objects of interest. As the user explicaly
removes restricting conditions, such ss specific attribute values,
similar objects that satisfy the more general Description are
brought automatically into focus.

Obiects may be created based upon similarities to exiatfng
objects, utilizing a concise differential description of the new
0bbCt relative to an existing object, Speclffcally, a Description
of that existing object is formed, and the differences for the new
object are expressed by changes to this Description. The new
object is created by instantiating this modified Description.

Instantiation of a Description is one example of the act of
anchoring a Description to a specific object -- here a new
object. A Description is considered unsnchored when it is used
ss criteria for selection of the objects in focus. Anchoring the

Description serves to freeze [Baker&J] the binding to the
object. Then subsequent modifications affect this object
directly.

2.2. Dynamic Views and Browsing
bteractions with the database begin by establishing a focus of
mention -- that is, locating specific objects of interest. For
example, a Description selects and brings into the user’s focus
of attention those Employess which satlsfy certain criteria.
However, a Description goes beyond the notion of a query and
retrkval. It can define a Dynamic View of the database -- a
modifiable window on the real data. The Dynamic View has a
timevarying extension consisting of those object instances
which satisfy the Description.

Changes to this Deacrfption are automaticaffy refkted in the
satisfying set of object instances which are in focus -- without
explicit steps of retrieval. Updates to visible objects will be
shown as they occur, and modified objects will be mtested
against the current view Description to determine if they should
appear in the current focus.

This spontaneousness of effect reduces the distinction between
queries and retrievals, and provides an interface which is more
active in response to the user. These capabilitii are
implemented by coordinating the Description with the set of
object instances which satisfy it (using the triggering
capabilities described below). Some or all of these objects in a
Dynamic View may be displayed in summary form, and the set ls
scrollable if the number of instances is large. Instances may be
selected by a pointing gesture (via a mouse or screen
commands) and expanded to see a larger set of attributes and
relationships to other objects.

One also may browse to related objects and information by
following relationships that emanate from one’s focus and
extend beyond it. Doing so augments the focus. Thus if while
viewing an Employee, one points to the Livesat relationship,
psrl of which extends outside the current field of view, then the
relevant instance(s) of the Residence object will be brought into
the view.

The schema itself may be interactively inspected and
augmented. When one is focused on the definition for the
Employee object type; one can browse to the definition for other
related object types, such ss the definition of the Office object.
Or one can focus on selected Employee instances. Similarly,
from an Employee instance one can move to the definition, or to
other object instances

Thus the schema can be used not only for its definitional
properties, but afao for the pathways it provides between
classes of objects. The schema becomes, in some sense, an
additional dimension along which one’s Mention may be
directed.

In summary, Descriptions provide the bask for Dynamic Vii

36

end for DeecripfW Reference. Compound DesCMtfoM ckfine
an in~omeCbd met d information which is to be kept in v&v.
1168~ripth8 can be epdfied intenctivdy and/or derived by
~aiogy to an exieting object. Seth simple data and more
c~mpiex Mjects such as program epecifkattons are acu&bte
via Descriptions. In dditbn to retrieval, Descriptive Reference
also provides for modffkation and creation of objects and
relationships.

3. Expressing and Maintaining Consistency and
Semantics

The integrity and consfstency of a database require that a
variety of implicit and explicit constraints be rnaintak-red among
the data. Examples of such constmints include whether a
dependency is functional or multi-valued, whether the extstence
of one object requires the extstence of another object (e.g. can
an empfoyee extst wfthout a representation for the company he
works for), whether an attribute or relationship is mandatory or
optional, and whether an attribute is of limited cardinaiity or
arbitrary in number.

A large class of consfstency constmints arise from semantic
interdependence between several relationships. This may take
the form of equivalences of data that are reiated by a chain of
associations; or tt may take the form of a computational
derivation, such as an aggregate value, a conditional value, or a
one-to-one transformation of values (e.g. Carte&n versus polar
coordinates or Department Number versus Department Name).
Consistency constraints need not always provide a complete
derivation of the allowed or desired data, but may constrain the
allowed set of values (eg. the State oonstrains the U.S. Zip
codes that are possible for that address).

Various data modeis incorporate certain constraints (eg.
existence dependency, uniqueness, etc.) while other
constraints are more difficuit, or impossible, to represent in the
schema. Data models differ with respect to their coverage of
these constrafnts and the defaults they assume. Typicafiy,
these constraints are embedded in the declaration of the keys of
a relation, or in the parent and chiid segments of a one to many
relationship, for example. By making these constraints and
dependencies explicit and separable, the perceived differences
between these data models may bs reduced [Morgenstem81].
Furthermore, the ability to declaratively represent additional
semantic constraints wouM be a natural extension to existing
database schema declarations.

Perhaps the earliest approach for augmenting schema
descriptions with additional semantics wets the databass
procedures of the CODASYL network database [Wierhoid77],
which provide a means of invoking procedures to derive data or
perform limited additionai actions. More robust approaches
include provkling additional primitives in the data model
representation [Hammer&McLeod81], utilizing semantic nets
end/or attached procedures, or a combination of these (see the
TAXIS system in [MyiopoulosGD]). Recent extensions to the

INGRES databass system use a QUEL-like syntax for expreestng
ruiss [ston ebher83]. A rule is selected whsn it syntactkaily
matches a ueer query, which is then modifW by the rule.

The alternative utilized hem draws upon Production rulm
(condition-action rules) which form the comemtone of recent
expert systems that have been developed in the ArDficiai
intelligence community [Suchanan82]. Also relevant are
studies of constmint-based systems, including [Soming and
[Goidstein80].

Condttton-action rules have the advantage of being modular
andeasytospecify,yetascrtofcwchruiescsnexpresscomplex
knowledge and actions. For example, a consistency constratnt
expressed as a condition-action rule would state the change or
combination of changes to the data base that serve as the
condition for activating the rule. And it woufd state the action to
be taken when that condition is sattaft& -- typically an
expression of how to reinetate consfstency given thtt change to
the data. Other forms of action mfght be to dfiow the change,
provide information to the user, or invoke a more general
procedure to execute an arbibary action.

A simple example is the triggering of a rule for matntaining
aggregate data based upon a change, say, to an empioyee’s
salary. This change triggers the rule and binds tt to the
particular employee instance. The action part of the
consistency rule utilizes this employee instance to locate the
employee’s department and updates the associated average
salary attribute accordingly.

3.1. Constralnt Equation8
A Constraint Equetion (CE) is a declaration of sn inverient
relationship that is to be maintained among specified data
objects -- in contrast to a more procedural statement of what
actions to take under what conditions. A CE proties a
declarative representation for a set of retaM condition-action
rules. As an analogy, the algebraic equation X = Y + 2
declares an equivalence between its two sides. if this is to bs

treated as a constraint which is to be maintained by the system,
then there is an executable interpretation which may be thought
of as two condition-action rule% (1) if Y and/or i! change, then
revise the value of X accordingly, and (2) if X changes, obtain
more information so as to seiect between the aitematives of
disallowing the change, revising Y, or 2, or both.

The language of Constreint Equations provides a declarative
representation for commonly occurring kinds of semantic
relationships. For example, the above semantics of a
Department’s Average salary can be expressed as

DEPT.AVG-SALARY n =
AVERAGE [DEPT.EMPLOYEE.SALARY J

The brackets denote a Description, which here contains a path
expression. This path expression describes the ssquence of
associations from a Department (same binding as on the left
side of the CE) to its Employees and then to the set of ail their

37

8ahris8, which is the resuii produced by the Description -- thus
this Description is for objects of type salary. This path
expresslon~meathatthereisasingbretaBonbetween
oepartment and Employee, and a single relation between
Employeeandsalary. Whenthlslsnotthecase,theretatton
name must be given to eliminate ambiguity. in the above path
expression, the dot may be thought of as a form of ellipsts for
the refation name.

Note that if an Employee had more than one 8alary then aft of
them would be included here. This constraint is to bs
maintained for all satisfying Department instances. in this
example, an attempt to change the Average salary directly
would be ambiguous 89 to its effect on each selsry, and thus
would be disallowed, unless further information is given in the
rule or interactively by the user.

A semantic consistency rule which does not involve aggregate
data is the rule which states that an employee’s backup phone
for messages is the phone of that employee’s project%
secretary. it could bs expressed by several simple production
rules, or by one rule whose condition part is a diiunction of
tests for each of the changes which may arise: an employee
moves to a new project, a new secretary takes over for the
project, or the telephone number of the secretary is changed
(perhaps as the consequence of other actions which are
reflected in the database, such as the secretary moving to a new
office).

This semantic relationship may be concisely and naturally
expressed as a Constraint Equation which states that an
Employee’s BackupPhone is equivalent to following the path
expression (sequence of associations between objects) from
that Employee to his/her Project, to the associated Secretary’s
Phone:

EMPLOYEE.BACKUP-PHONE ==
EMPLOYEE.PROJECT.SECRETARY.PHONE

Though this Constraint Equation is declarative in nature, lt has
an executable interpretation similar to that of the condition.
action rules described above. in particular, a change to any of
the three associations described on the right would 56N8 as the
triggering condition. The association which changed binds part
of the Description represented by the right hand side. Each
possible way of binding the remainder of thb Description
identifies sn Employee instance whose Backup phone is to bs
revised.

For example, changing the Project’s Secretary would bind the
Project and the (new) secretary. For each Employee on that
Project, the Backup-Phone due to the old Secretary is replaced
by the new Secretary’s Phone. It is the rightmost components
of the two sides of the CE that are being equated. If there are
multiple Secretaries, then the default meaning here is that the
set of Backup-phones of an Employee is to bs the sams as the
set of Phones for all the Secretaries associated with that
Employee.

For the executable interpretation of the above CE, we have
treated the rlght side as independent and the left side as
dependent, thus far. Changing this directlonallty of
interpretation is valid, but there is not yet sufficient information
to make this update unambiguously. That is, given a change to
the asaootatlon betwaen an Employee Instance and hther
Backup-Phone, which one (or more) of the three associations
on the right should we change, or do we disallow the initial
update to the Backup-phone?

This is a special caee of the view update problem [Dayal78] in
that the update is not functionally determined. Here there are a
small number of alternatives which are a consequence of the
schema and the form of the constrsint. in some cases, one
might say that one of these afternatives is far more natural than
the others, and should bs taken as the default unless further
information is explicitly provided. Or perhaps the context of the
query can help to rule out some of these altematives
[DavidsorW].

khii ambiguity can be resolved, when there is a specific intent,
by separating the right side of this CE into two parts by denoting
a “weak bond” association which is subjact to revision. (The
two parts on either side of this weak bond each can be
considered as a tightly bound cluster of information, and could
be bracketed ss subDescriptIons to emphasize this.) lt is this
weak association which is to be revised when that side is
peatsd as the dependent side.

.

The above Constraint Equation is rewritten below with the
relationship between Project and Secretary denoted by *. 1” to
indicate it as the weak association on the right side:

EMPLOYEE . ! BACKUP-PHONE ==
EMPLOYEE.PROJECT.!SECRETARY.PHONE

Thus directiy updating an Employee’s BackupPhone means
that the association from the Employee’s Project to the
Secretary is to be revised. The Secretaries to remove and to
add for this update are determined by the old and new values
for the Secretary’s Phone. In the above CE, the weak
association on the left side is also made explicit. in general
when there is a single association on a side which is being
treated ss dependent, it is assumed to be a weak association
_. unless indicated otherwise.

if the dependent side is enclosed in one set of brackets to
denote a single tightly bound cluster of information, then there
is no weak association, and the change which triggered the
Independent side should be disallowed if it violates the
invariant. Multiple weak associations on the dependent side
mean that the ambiguity is limited to just these weak
associations, but the other relationships are not candidates.
The user could be queried to resolve the remaining ambiguity.

Constraint Equations represent an important part of the
8tructural Semantics of the application, in that they can
augment common data base schemata with additional
relationships and constraints expressed declaratively. It is

38

anticipated that a large portion of integrity, consistency, and
other commonly occurrtng constminta can be exprwssd in thii
manner.

Using CE’s has soveml de&able propsrtie~~ the asmantks of
the application are rspmssntsd modulsrly and in a form which
&I indkxtiw of Thor msening. They are spscifbd non.
procedurally and wlthout concern over order. The modularfty is
two-fold: additional Constmlnt Equations can be added
incrementally, snd each such equation ia specified wlth rwpect
to a local context of releMH objects and relationships.

Furthermore, the dsclarstive form for Constraint Equations
makes them amenable to analysis and symbolic transfotmationa
(under development) which preservs the intended semantic
invariance but which give rise to sltemative interpretstions for
domain modelling and for implementation. (For a discussion of
compatibility between different data models ses
[Morgenstem81 I.) Since the CEs represent logical assertions,
they can bs used to resson about the application domain and to
prove other assertions.

The system manages the potentially complex set of interactions
which can occur ss one constraint creates other database
changes, activating other constraints, and triggering a
succession of related actions. The active database, thin, can
perform rather complex responses to a user’s interaction, yet
each semantic constraint and action can be specified
separately with rsther locsliied information.

3.2. Constraint Maintenance
Straightforward maintenance of the Constraint Equations
utilizes a triggering mechanism that invokes specific
procedures, called demons, when database changes occur
(described below). As the number of constraints increases, the
efficiency of this maintenance becomes important, and the
range of alternative strategies needs to be explored. One
spectrum for constraint maintenance may be characterized by
when the constraint is enforced -- that is, the binding time for
the dependent side of the Constraint Equation.

Most obviously, the maintenance of the constraint may bs done
immediately when the original change occurs -- the earliest time
of binding (immediate propagation). Alternatively, maintenance
can bs delayed until the dependent attribute is retrieved -- a late
time of binding (propegefion when used). When timeliness of
the date is not criticftl to the user, maintenance can bs delayed
even further.

Along the spectrum between thess afternatives is an
intermediate strategy of delayed constraint propagation and
maintenance -- in which the time of propagation and binding is
determined based upon other criteria. This option has bsen
referred to as opportunistic evaluation -- both in the senee of
doing the work of constraint propagation when the computer is
idle [Balzer82], and in the ssnse of using priority ranking of the
constraints to select the order in which they should be

considered for propagation.

When maintenance of the constraint is delayed UfItil uW, then,

ls the edditional option of whether to store the depsndsnt valus
or aeeociation which has been derived. If not etored, then we
have the common approach for derived data, in which the
derivation is done anew for each reference -- a viable chokse if
updatee are expected more frequently than retrievals.

When maintenance of the constraint is done opportunistically
(delayed propagation), the occurrence of a change must alert
all dependent constraints and users that any previously stored
data may bs dirty -- this can bs a difficult problem if the chain of
dependencies is long. When recomputation is done, the
resultant value will bs remembered for future use -- in effect a
memo is msde of this result.* If old data can bs tolerated by
the application, then additional flexibility is possible for delaying
ihe propagation of constraints further based upon relative
priorities. Both the eemantics if the application end operational
&at&tics -- frequency of use, selectivity, and sparseness -- can
bs used to improve the efficiency of constraint propagf&ion and
maintenance.

It is interesting to relate these distinctions to the notions of
forward chaining and backward chaining, which arise in A.I.
Inference work. The latter characterize the direction with which
a chain of associations or logical inferences is followed.
Forward chaining starts from the updated data, following the
chain of associations or inferences forward to the
consequences. Backward chaining characterizes the process
of following the chain of associations from the dependent
consequent object (or goal) which is being accessed, back to
the source data to determine if changes might affect this
dependent object (and rederiving information as needed). Thus
immediate pfopegetion of constraints is in effect forward
chaining, while (re)calculation of derived data upon use may bs
thought of as a form of backward chaining.

The efficiency of constraint maintenance also is affected by the
efficiency of access to objects, attributes, and relationships.
Software caching of relevant indexes, and of object instances
which sre retrieved from secondary storage, can be helpful.
Very promising are several forms of compile time aggregation
which can avoid duplicated access to the same data. For
example, several separately specified Constraint Equations can
be aggregated into one demon or procedure bssed upon either
(a) @ common triggering pattern -- parallel aggregation, or (b)
b&d upon a chain of constraints such that one constraint
takes an action which serves as a trigger for another constraint
-- chained aggregation. More elaborate compile time analysis
could determine which user programs have the potential of
triggering specific constraints, and then expanding the code for
these consqaints in the user’s programs.

*lltheNbavsHd-wll”em/aHabk!whansccemle~lhmkis
used, otlwmim mcslculstion occurs. In aHher cm the muIts me the eeme,
buttheHflciancymrydiffer. Theae~ofmemovalueammybethoughtofmr
memo tunct&n.

39

The richer the semantic model and the more dynamic and
responsive we wlsh a system to be, the more important is
efficiency in the face of increased complexity. The alternatives
just discussed include the relative time at which constraint
propagation is executed, the direction of such propagation,
maintenance of newly derived results, caching of information
when cost of re-access and likelihood of reuse are high, and
aggregation of constraints to reduce net overhead. In the long
term, the system should be taking an active role in choosing
among these altematlves.

4. Binding Time of an Association
The time varying nature of the set of objects which satisfy a
fixed Description highlights an already existing phenomenon:
the time at which an association is evaluated (the Binding Time)
can alter the meaning of that asr%xMion. For example, if one is
interested In the set of students taking course CS-503, does one
mean the snapshot of those students registered at some fixed
point in time, or does one mean the possibly time varying set of
students satisfying the predicate “students registered for
CS-508.”

Typically database query languages retrieve a copy of data
which satisfies the query, thereby providing only a snapshot of
the data. However, many applications sre better served by
viewing the dynamic set of information which satisfies the
predicate. Examples include the set of overdrawn accounts or
the set of ships entering a critical zone. Our use of active
Descriptions provides this dynamic interpretation of a query.
Snapshots of data become an option when timeliness of
information is of lower priority, rather than snapshots being the
only option.

The notion of binding time. of an association also applies to
assumptions in the data model, and sometimes to the
implementation chosen for the database. (An independent
discussion of binding in information systems may bs found in
[Wisderhold81].) Typically, relational databases consider each
normalized relation as being stored separately. Combinations
of information are created when requested by taking joins of the
relevant relations. A tuple resulting from a join represents an
association by description -- that is, a dynamic association
bassd upon the join attributes of the component tuples
satisfying the join description.

On the other hand, object-based data models typically maintain
explicit associations by /inked reference between objects
utilizing links (either pointers or explicit relationships between
the object id’s). Theae links are establiied when the
association is first explicitly crested, rather than when use of
data values indicates that this aasoolation is relevant. These
associations by /inked reference are comparatively static, In that
they require explicit revision when the data no longer justifies
the sssociatton. (This distinction is minimized in thoss cases
where stored dats is not redundant wlth the association, and
thus the association itself is essential information.)

Data models in both the Database world and the Artificial
Intelligence world, tend to explain their semantics partly in
terms of their implementation, rather than solely in terms of
functionality. This tendency in A.I. systems is discussed in
[Brachmar@S]. The functionality of a repmsentatfon woukf
make explicit the binding time of associations regardfess of
whether these associations are maintained symbolically by
description or physically by pointers. Another example of this
tendency to describe semantics partly in terms of
implementation is the common A.I. represention of lnherltance
in terms of a tree or lattice of nodes and pointers, rather than in
terms of a functional description of which characteristics are to
be inherited along possibly different kinds of inheritance
relationships.

The time at which an association or derived relationship is
(evaluated has an analogy to the way programming languages
&ablish the association between formal and actual parameters
ior subroutine invocation. Call by Reference utilizes an address
.or pointer which is bound at invocation time to a particular
‘location -- compare association by linked reference between
objects as done here. This parameter binding occurs before the
!use of the variable. A more delayed form of binding is Call by
Name -- which utilizes the name or description provided as the
actual parameter to determine, at each use, the location and
value to bs used for that parameter -- compare association by
description between objects as done here.

The spectrum of possible binding times highlights one of the
dimensions along which data model representations may differ,
and it also highlights the degrees of immediacy possible at the
user interface.

5. Prototype Development
In this section, the current implementation status of the IM
prototype is reviewed. As noted earlier, the data model is based
upon typed objects and their relationships. An object instance
Ls represented by an internal identifier and a set of relation
tuples which have this identifier in common. These relations are
normalized and are stored in sn inverted index database.
Typically objects are accessed associatively rather than by
name. Currently all attributes are indexed, though the option
exists to reduce update costs by selective indexing. Many to
many relationships between objects are naturally provided by
this system.

The database supports triggering of demons upon insertion,
deletion, and/or update to the database relations which
comprise an object, A demon consists of a predicate filter and
arbitrary action code. When modification occurs to a relevant
relation, the demon is awakened, its predicate is applied, and if
it is satisfied the demon is considered activated. Since multiple
demons can be activate, they are placed on a priority
scheduling queue for execution.

Demons are specified modularly with respect to the object types

40

-

involved. Since the actions of a demon may cause changes to
the database, an interrelated set of demon activations may
result. A collection of user actions and consequent demon
activations may be treated as a transaction which must SLJCC~~~
in its entirety before it becomes permanent.

This demon mechanism provides the implementation beSiS for
maintenance of constraints and semantic rules. It also can
initiate more general database coordination such as CalCUlatlng
next month’s sale’s quota given this month’s actual sales. And
it can invoke arbitrary procedures for aiAOmatiOn of aCtiOnS
which can affect the outside world (eg. printing a report,
sending a message, etc).

The inverted index relational database facilfty snd handling of
demons are provided by the AP3 software system developed by
Neil Goldman [Goldman82]. The IM prototype runs on the
DEC-29, VAX Unix, snd Symbolics 3699 systems.

The application areas which have been addressed or are under
development include employee records: a personalized
database for notes, mail, and articles; and a database of
program specifications and code segments. Rather than
treating each such service separately, IM is providing a uniform
interface to an integrated set of capabilities.

6. Conclusion
Interaction with the database utilizes Descriptions to express
the selection criteria for queries, updates, and the creation of
new entries, as well ss to form Dynamic Views for browsing
through the database. Constraint Equations are a concise
declarative representation for modularly expressing semantic
constraints, including integrity and consistency. These
Constraint Equations have an executable interpretation that
enforces the domain specific semantics as the information base
changes.

The concept of active databases emphasizes the notion that
what the user sees instantaneously reflects what exists,
including changes and consequences of those changes.
Commands are evidenced by the actions that they accomplish
rather than by a separate syntactic expression of the commands
and later inspection of the results. That the system
automatically maintains the consistency and semantics of the
data furthers the reality that the database is an active body of
information that responds intelligently to the user.

Acknowledgments
The work described herein is an outgrowth of the Information
Management (IM) system at ISI. Special recognition goes to
Robert Balzer, Dave Dyer, Neil Goldman, and Robert Neches,
who, together with the author, have developed the prototype IM
system. Michael Fehling also contrfbuted to earlier work on this
project.

In addition to the above people, I also wish to thank Jeff BarnOtt,
Don Cohen, Jack Mostow, Bill Swartout, and Dave Wfk for thdr
comments.

References
[Balzer82] R. Balzer, D. Dyer, M. Fehling, 8 S.Saunden,

Specification Based Computing Environments, Proc. 8th
Very Large Data Bsse Conf., Mexico City, Sept. 1982,
pp.273.279.

[Balzer83] Robert Balzer, private communication, March 1983.

[Boming79] Alan Boming, Thinglab . A ConstraintCriented
Simulation Laboratory, Stanford Univ. report STAN-
CS-79-746, July 1979, Ph.D. thesis.

[Brachman83] Ronald J. Brachman, R.E. Fikes, 8 H.J.
Levesque, KRYPTON: A Functional Approach to
Knowledge Representation, Feb 1983 Draft, submitted to
IEEE Computer, 18pp.

[Buchanan821 Bruce G. Buchanan, & Richard 0. Duda,
Principles Cf Rule-Based Expert Systems, Dept. of
Computer Science, Stanford Univ., Aug. 1982. Report No.
STAN-CS.62.926, also as No. HPP-82.14. (To appear in
M. Yovits (ed.) Advances in Computers, ~01.22, Academic
Press, New York.)

[Dayal78] U. Dayal & P.A. Bernstein, On The Updatability 01
Relational Views, Proc. 4th Very Large Data Base Conf.
West Berlin, Sept. 1978.

[Davidson821 Jim Davidson and S. Jerrold Kaplan, Natural
Language Access To Databases: Interpreting Update
Requests, Stanford Univ. Computer Science Dept., 1982
(submitted to the Amer. Jour. of Computational
Linguistics).

[Hammer&McLeod81] Michael Hammer, 8 Dennis McLeod,
Database Description with SDM:, A Semantic Database
Model, ACM Trans. on Database Syst., v.6, no.3, Sept 1981,
pp.351 306.

[Goldman82] Neil M. Goldman, AP3 Reference Manual, June
1982, USC Information Sciences Institute, Marina del Rey.
CA.

[Goldstein&I] I.P. Goldstein B D.G. Bobrow, Descriptions for a
Programming Environment, Proc. First Annual Conf. Nat’1
Assn for A.I. (AAAI-80), Stanford, CA, August 1989.

[Kunin82] Jay S. Kunin, Analysts and Specification of Office
Procedures, M.I.T. LCS TR-275, Ph.D. thesis 1982, p.39.

[Morgenstem81] Matthew Morgenstem, A Unifying Approach
for Conceptual Schema to Support Multiple Data Models,
Proc. 2nd Int’l Conf on Entity-Relationship Approach,
Washington, D.C., October 1981, pp.281 -299.

[Mylopoulos8Ct] John Mylopoulos, Philip .A. Bernstein, 8 Harry
K.T. Wong, A Language Facllfty for Designing Database.
Intensive Applications, ACM Trans. on Databsse Syst., v-5,
no.2, June 1989, pp.185297.

[Robertson811 G.D. Robertson. McCracken, and A. Newell, The
ZCG Approach to Man-Machine Communication, Int.
J. Man-Machine Studies, 14, pp.461-488,198l.

[Stallman Richard M. Stallman, EMACS:D$ayExtensfble,
Customizabfe, Self-Documenting Editor,
Massachusetts Instltute of Tschnology, A.I. Lsb Memo 519,
June 22,1979.

41

[StonebW] Michael Stonebraker end Joseph KakM,
TIMBER: A SuphietkMed Relation Browser, Proc. Eighth
Int’l Conl on Very Large Data Baaes, Mexico City, Sept.
1982, pp.1 -10.

[8tonebraker83] Michael Stombmker, etal., Implementation of
Rules in Relational Date Baee Systems, Univ. of Calffomh,
Btwkeby, CA., Electronics Research Lab, Memo No.
UCB/ERL83/10, June 13,lg83,1Opp.

[Tou&William&2] F.N. Tou, M.D. Williams, R. Fikes,
A. Hendemon, 8 T. Malone, RABBIT: An Intelligent
Database Aesiebnt, Proc. of the AAAI 1982 Nat’1 Conf. on
Artificial Intelligence, Aug 1982, ~11.314-18.

wygyd77] Gio Wiederhold, Database Design, McGraw Hill,

[wierholdsl] Gio Wiederhotd, Binding in Information
Proceeeing, Depattment of Computer Science, Stanford
Univemity, May 1981, Report No. STAN&S-81 -881.

[Zloof77] MM. Zloof, QI~IY-By-Example: A Date Beee
Language, IBM Syetems Jour., v.16, no.4, lgTI,
pp.324343.

[Zloof82] MM. Zloof, Office by-Example: A Bueiness Language
that Unifbe Data and Word Processing and Electronic Mail,
IBM Syeteme Jour., 2l,3,1982

42

