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Abstract 
Active databases emphasize the notion that a body of 
information is dynamic and should respond intelligently and in 
non-trivial ways to the user. It provides a paradigm for research 
and development which combines aspects of both database 
and artificial intelligence technologies. A prototype system has 
shown the viability of this approach. 

We focus on the following database issues: (1) Descriptions are 
used as semantic templates for associatively accessing and 
manipulating data objects. (2) Dynamic views minimize the 
typical distinctions between queries and retrievals, and between 
views and real data, and thereby increase the perceived 
immediacy of the user interface. (3) Constraint Equations are 
developed as a declarative representation for semantic 
constraints. The uniform approach they provide for expressing 
database integrity, consistency, and more general semantics 
derives its power from the rule-based framework of recent A.I. 
expert systems. The efficiency of constraint maintenance also 
is considered. Lastly, (4) The notion of binding time of data 
associations and reference is discussed relative to both the 
choice of data model and to the method of data access. 

1. Int reduction 
The working environment for computer scientists, managers, 
and office workers has in common the need to dynamically 
organize and keep consistent a large complex of interrelated 
information. Whether the information involves messages, 

articles, and files, or programs, data structures, and 
specifications, the need for flexible organization, browsing, and 
maintenance of consistency is similar. 

Active databases provide a paradigm for uniformly addressing 
the information handling activities that are central to one’s 
computer work environment. The activeness of a database is a 
behavioral metaphor which involves several dimensions, and 
emphasizes the dynamics of the user’s interactions and the 
desirability for system intelligence in dealing with consequences 
and implications of these interactions. 

Consider an analogy to the evolution of text editors. In the older 
line-oriented systems, a set of commands were formulated, sent 
to the editor, and then the results were viewed separately. By 
comparison, interactive screen oriented editors (such as Emacs 
[Stallman79]), have commands which serve more as direct 
extensions of one’s human capabilities. One moves a finger not 
only to enter a new character, but also to physically move a 
piece of text. The command is evidenced by Its effect, and the 
feedback is immediate. There is no significant distinction 
between what one sees and what really is. The level of 
graphical interaction and responsiveness provided by 
sophisticated personal workstations afford another example of 
this kind of immediacy. 

Similarly, one would like to reduce or eliminate the distinction in 
databases between queries and results, and between views and 
the real database. One should not need to form a complete 
correct query for a complex question before there is any 
response; rather, one should be given dynamic feedback as the 
qualifying conditions are refined. 

Views should be dynamically modifiable as to the data which 
they display. This would enable one to incrementally shift the 
focus of attention and to browse interactively through the data 
as is more naturally done in libraries. Related approaches to 
user interaction have been explored in [Goldstein80], 
[RobertsonBl], [Stonebrake&?], and [Tou&Williams821. 

The derived view should be as real as the underlying data. 
When the view leaves ambiguity as to how an update should be 
executed, additional information may be brought to bear. 
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Diiigueting the updete mey utilize the recent focus Of 
attention [Davldsone2], semantic rulee, or interactivY 
acquiring more information from the user. 

Modelling complex applications such as office systems regUireS 
a representation for the semantics of the data. The apparent 
complexity of many applications is due in part to the complex 
interactions which erlee between a lerge number of rules or 
requirements -- rules that indivkiualiy often are relatively easy to 
specify. Kunin &serves that “the besic structure of the office 
procedure is often relatively eesy to comprehend and describe, 
given the appropriate set of primltives. The ‘compiexll’ . . . is 
often an artifact . ..” [Kunin&Z]. 

For example, changing a secretary’s office may change her 
phone number, which may change the backup extension for 
people on the same project, end also may reguire a change tc 
the allocation of telephone charges to projects. Each of these 
changes is simple when stated individually, yet their combined 
effect appears complex. 

The active databass can assume responsibility for managing the 
complex interactions between these rules. PleviWS 
approaches to representing databaes semantics have relied 
upon additional schema representation primitlves and/or 
procedural repmsentations (aee [Hfunmer&McLeodRl] end 
[MyiopoulosEiO]). The representation of semantics utllbsd here 
is derived from the rule based methodology of expert systems, 
and emphasizea declarative expression of semantic constraints, 
wlth an executable interpretation that provides for maintenance 
of these constraints. 

The work described herein has taken place as part of the 
Information Management (IM) Project at ISI. This project 
provides a framework for database and artificial intelligence 
research. The original high level goals of this project were 
presented in [Saber@] and include: (a) providing to the user 
greater freedom of interaction: (b) managing a broad range of 
information in a uniform manner, including messages, program 
specifications, and code modules; (c) coordinating 
interdependent data to maintain integrlty and consistency: and 
(d) providing a hiph level means of expressing frequently 
performed activities which are to be automated 80 as to extend 
the functionality of the system. 

In the subseguent sections we present the concept of 
Descriptions as the basis for data access and for the creation of 
new entries. Descriptions also provide the defining criteria for 
Dynamic Views, which facilitate browsing and interaction with 
the system. The concept of Constralnr EQu8tions is developed 
as our declarative representation of semantics, which can bs 
used to augment typical database schemata. Efficient 
maintenance of thess constraints also is considered. The 
relevance of binding times to methods of data accsss and to the 
choice of data model are highlighted. We conclude with a 
review of the implementation features for the current IM 
prototype system. 

2. Descriptions and Browsing 
Descriptions are expreesed in terms of the data model, which 
for our purposes can bs cleeslfied as an entity-relationship deta 
model. The entities or objects are classRied into a type fattics 
that eupports inheritance of attribute end reiationehip 
definitions from one or more parent object types. The type 
bee b dynamkally modifiabb. CWects may have multi-valued 
attributes and may patticlpete in n-ary refetfonships invdving 
othwobjacts. 

Descriptions provide a eemantkally based form of associetivs 
accees. AslmpleDescrffHionreferstoatypeofobjectencl 
provides a skeleton of the attribute and reietionship names for 
that object. (A Description eiso may refer to a relation (eimpis 
or derived) and its roles.) Specific values end mstdctions may 
be entered to characterixe a subset of object instances. For 
example, a Description may bs formed for an EMPLOYEE object 
type, and may specify the IM Project for the Works-on attribute. 

This may be represented as: 

[ EMPLOYEE Works-on:IM 1. 

where the square brackets denote a Description, and the first 
entry is the type of the object, followed by one (or more) 
Attribute-name:Value pair. In the system, a Deacriptlon usually 
is built interactively. 

A compound Description is a set of simple Descriptions which 
participate in common relationships. To locate Employses who 
are Researchers working ‘on a Project funded by DARPA, one 
forms a Description of Project having the Funded attrlbute value 
of DARPA, and relates this Description to an Employee 
Description whose job title is Researcher. To express this 
syntactically, the Employee Description below has for its Works- 
on attribute an embedded Description for Project: 

[ EMPLOYkE JobTitle:Researcher 
Works-on:[PROJECT Funded:DARPA] ] 

Alternatively, two or more Descriptions may be related by 
linkingvariables so es to express the fact that several different 
attributes have the same value. The use of linking%uiables has 
additional power in that more than one association can bs 
established. In the example below, we are interested in 
Employees who are Researchers and who both Work-on and 
are the Principal for a Project Funded by DARPA. *PROJO is the 
linking variable which denotes a value for both the Works-on 
and the Principal attributes (in the first Description), as well as 
an inetence of a PROJECT object (in the eecond Description). If 
there are multiple values for *PROJO, then there are multiple 
ways of satlsfyfng the following compound Deecrlptlon: 

[ EMPLOYEE JobTitle:Researcher 
Works-on: l PROJ* Principal :*PROJ* J 

[ PROJECT:*PROJ* Funded:DARPA ] 

Deecriptbns provMe frameworks or templetes for objects into 
which velues and relationships to other objects may be sntered. 
This is analogous to Query By Example’s use of relation table 
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skeletons for two dimensional entry of relational queries 
[zkjcp7,2lod82]. Sfnce our cbjecte are defined relative to the 
application domain, the objsct Descrlptlon skeletons used to 
formulate interactions with the database reflect the semantics of 
the application rather than some partitioning into underlyfng 
component relations. 

A compound Description which relates eeveml simple 
Dsscriptions may serve to widen one’s focus of attention to 
include other related objects, or to provide sddftfonal 
qusliflcations in the context so as to filter the set of object 
instances which satisfy the Description. If paris of the 
compound Description are designated as not being visible, then 
they serve only as a fflterfng context for the objscts and 
attributes which are visible. Deacriptlons are utilized for 
Deacrlptlve Reference, and are the basis for the notion of 
Dynamic Views, as described below. 

2.1. Descriptive Reference 
Descriptive reference emphasizes the u8e of context in 
selecting and qualifying the set of objects of interest, in contrast 
to name based and access path based modes of reference 
oommon to some traditional database systems. Partial 
specification of related information in the Deecriptions serves to 
select the objects which are desired for access. 

The objects in our database can include rather general typea of 
information, including electronic messages, program 
specifications, snd subroutine code. Thus Descriptive 
reference provides a possible tool for categorizing msssagea, 
forming a mailing list based on common interests, and sven for 
function selection and invocation baaed upon types of inputs, 
outputs, and behavioral features associated with the stored 
functions. 

Descriptive reference provides for not only explicit retrievaf, but 
slso retrieval by analogy, object creation, and modification. For 
example, one might wish to use an abstraction or generalization 
of one object to find similar objects. This capability is realized in 
our system by being able to form a Description that matches a 
given object, and then using this Description, with 
modifications, to select objects of interest. As the user explicaly 
removes restricting conditions, such ss specific attribute values, 
similar objects that satisfy the more general Description are 
brought automatically into focus. 

Obiects may be created based upon similarities to exiatfng 
objects, utilizing a concise differential description of the new 
0bbCt relative to an existing object, Speclffcally, a Description 
of that existing object is formed, and the differences for the new 
object are expressed by changes to this Description. The new 
object is created by instantiating this modified Description. 

Instantiation of a Description is one example of the act of 
anchoring a Description to a specific object -- here a new 
object. A Description is considered unsnchored when it is used 
ss criteria for selection of the objects in focus. Anchoring the 

Description serves to freeze [Baker&J] the binding to the 
object. Then subsequent modifications affect this object 
directly. 

2.2. Dynamic Views and Browsing 
bteractions with the database begin by establishing a focus of 
mention -- that is, locating specific objects of interest. For 
example, a Description selects and brings into the user’s focus 
of attention those Employess which satlsfy certain criteria. 
However, a Description goes beyond the notion of a query and 
retrkval. It can define a Dynamic View of the database -- a 
modifiable window on the real data. The Dynamic View has a 
timevarying extension consisting of those object instances 
which satisfy the Description. 

Changes to this Deacrfption are automaticaffy refkted in the 
satisfying set of object instances which are in focus -- without 
explicit steps of retrieval. Updates to visible objects will be 
shown as they occur, and modified objects will be mtested 
against the current view Description to determine if they should 
appear in the current focus. 

This spontaneousness of effect reduces the distinction between 
queries and retrievals, and provides an interface which is more 
active in response to the user. These capabilitii are 
implemented by coordinating the Description with the set of 
object instances which satisfy it (using the triggering 
capabilities described below). Some or all of these objects in a 
Dynamic View may be displayed in summary form, and the set ls 
scrollable if the number of instances is large. Instances may be 
selected by a pointing gesture (via a mouse or screen 
commands) and expanded to see a larger set of attributes and 
relationships to other objects. 

One also may browse to related objects and information by 
following relationships that emanate from one’s focus and 
extend beyond it. Doing so augments the focus. Thus if while 
viewing an Employee, one points to the Livesat relationship, 
psrl of which extends outside the current field of view, then the 
relevant instance(s) of the Residence object will be brought into 
the view. 

The schema itself may be interactively inspected and 
augmented. When one is focused on the definition for the 
Employee object type; one can browse to the definition for other 
related object types, such ss the definition of the Office object. 
Or one can focus on selected Employee instances. Similarly, 
from an Employee instance one can move to the definition, or to 
other object instances 

Thus the schema can be used not only for its definitional 
properties, but afao for the pathways it provides between 
classes of objects. The schema becomes, in some sense, an 
additional dimension along which one’s Mention may be 
directed. 

In summary, Descriptions provide the bask for Dynamic Vii 
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end for DeecripfW Reference. Compound DesCMtfoM ckfine 
an in~omeCbd met d information which is to be kept in v&v. 
1168~ripth8 can be epdfied intenctivdy and/or derived by 
~aiogy to an exieting object. Seth simple data and more 
c~mpiex Mjects such as program epecifkattons are acu&bte 
via Descriptions. In dditbn to retrieval, Descriptive Reference 
also provides for modffkation and creation of objects and 
relationships. 

3. Expressing and Maintaining Consistency and 
Semantics 

The integrity and consfstency of a database require that a 
variety of implicit and explicit constraints be rnaintak-red among 
the data. Examples of such constmints include whether a 
dependency is functional or multi-valued, whether the extstence 
of one object requires the extstence of another object (e.g. can 
an empfoyee extst wfthout a representation for the company he 
works for), whether an attribute or relationship is mandatory or 
optional, and whether an attribute is of limited cardinaiity or 
arbitrary in number. 

A large class of consfstency constmints arise from semantic 
interdependence between several relationships. This may take 
the form of equivalences of data that are reiated by a chain of 
associations; or tt may take the form of a computational 
derivation, such as an aggregate value, a conditional value, or a 
one-to-one transformation of values (e.g. Carte&n versus polar 
coordinates or Department Number versus Department Name). 
Consistency constraints need not always provide a complete 
derivation of the allowed or desired data, but may constrain the 
allowed set of values (eg. the State oonstrains the U.S. Zip 
codes that are possible for that address). 

Various data modeis incorporate certain constraints (eg. 
existence dependency, uniqueness, etc.) while other 
constraints are more difficuit, or impossible, to represent in the 
schema. Data models differ with respect to their coverage of 
these constrafnts and the defaults they assume. Typicafiy, 
these constraints are embedded in the declaration of the keys of 
a relation, or in the parent and chiid segments of a one to many 
relationship, for example. By making these constraints and 
dependencies explicit and separable, the perceived differences 
between these data models may bs reduced [Morgenstem81]. 
Furthermore, the ability to declaratively represent additional 
semantic constraints wouM be a natural extension to existing 
database schema declarations. 

Perhaps the earliest approach for augmenting schema 
descriptions with additional semantics wets the databass 
procedures of the CODASYL network database [Wierhoid77], 
which provide a means of invoking procedures to derive data or 
perform limited additionai actions. More robust approaches 
include provkling additional primitives in the data model 
representation [Hammer&McLeod81], utilizing semantic nets 
end/or attached procedures, or a combination of these (see the 
TAXIS system in [MyiopoulosGD]). Recent extensions to the 

INGRES databass system use a QUEL-like syntax for expreestng 
ruiss [ston ebher83]. A rule is selected whsn it syntactkaily 
matches a ueer query, which is then modifW by the rule. 

The alternative utilized hem draws upon Production rulm 
(condition-action rules) which form the comemtone of recent 
expert systems that have been developed in the ArDficiai 
intelligence community [Suchanan82]. Also relevant are 
studies of constmint-based systems, including [Soming and 
[Goidstein80]. 

Condttton-action rules have the advantage of being modular 
andeasytospecify,yetascrtofcwchruiescsnexpresscomplex 
knowledge and actions. For example, a consistency constratnt 
expressed as a condition-action rule would state the change or 
combination of changes to the data base that serve as the 
condition for activating the rule. And it woufd state the action to 
be taken when that condition is sattaft& -- typically an 
expression of how to reinetate consfstency given thtt change to 
the data. Other forms of action mfght be to dfiow the change, 
provide information to the user, or invoke a more general 
procedure to execute an arbibary action. 

A simple example is the triggering of a rule for matntaining 
aggregate data based upon a change, say, to an empioyee’s 
salary. This change triggers the rule and binds tt to the 
particular employee instance. The action part of the 
consistency rule utilizes this employee instance to locate the 
employee’s department and updates the associated average 
salary attribute accordingly. 

3.1. Constralnt Equation8 
A Constraint Equetion (CE) is a declaration of sn inverient 
relationship that is to be maintained among specified data 
objects -- in contrast to a more procedural statement of what 
actions to take under what conditions. A CE proties a 
declarative representation for a set of retaM condition-action 
rules. As an analogy, the algebraic equation X = Y + 2 
declares an equivalence between its two sides. if this is to bs 

treated as a constraint which is to be maintained by the system, 
then there is an executable interpretation which may be thought 
of as two condition-action rule% (1) if Y and/or i! change, then 
revise the value of X accordingly, and (2) if X changes, obtain 
more information so as to seiect between the aitematives of 
disallowing the change, revising Y, or 2, or both. 

The language of Constreint Equations provides a declarative 
representation for commonly occurring kinds of semantic 
relationships. For example, the above semantics of a 
Department’s Average salary can be expressed as 

DEPT.AVG-SALARY n = 
AVERAGE [ DEPT.EMPLOYEE.SALARY J 

The brackets denote a Description, which here contains a path 
expression. This path expression describes the ssquence of 
associations from a Department (same binding as on the left 
side of the CE) to its Employees and then to the set of ail their 
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8ahris8, which is the resuii produced by the Description -- thus 
this Description is for objects of type salary. This path 
expresslon~meathatthereisasingbretaBonbetween 
oepartment and Employee, and a single relation between 
Employeeandsalary. Whenthlslsnotthecase,theretatton 
name must be given to eliminate ambiguity. in the above path 
expression, the dot may be thought of as a form of ellipsts for 
the refation name. 

Note that if an Employee had more than one 8alary then aft of 
them would be included here. This constraint is to bs 
maintained for all satisfying Department instances. in this 
example, an attempt to change the Average salary directly 
would be ambiguous 89 to its effect on each selsry, and thus 
would be disallowed, unless further information is given in the 
rule or interactively by the user. 

A semantic consistency rule which does not involve aggregate 
data is the rule which states that an employee’s backup phone 
for messages is the phone of that employee’s project% 
secretary. it could bs expressed by several simple production 
rules, or by one rule whose condition part is a diiunction of 
tests for each of the changes which may arise: an employee 
moves to a new project, a new secretary takes over for the 
project, or the telephone number of the secretary is changed 
(perhaps as the consequence of other actions which are 
reflected in the database, such as the secretary moving to a new 
office). 

This semantic relationship may be concisely and naturally 
expressed as a Constraint Equation which states that an 
Employee’s BackupPhone is equivalent to following the path 
expression (sequence of associations between objects) from 
that Employee to his/her Project, to the associated Secretary’s 
Phone: 

EMPLOYEE.BACKUP-PHONE == 
EMPLOYEE.PROJECT.SECRETARY.PHONE 

Though this Constraint Equation is declarative in nature, lt has 
an executable interpretation similar to that of the condition. 
action rules described above. in particular, a change to any of 
the three associations described on the right would 56N8 as the 
triggering condition. The association which changed binds part 
of the Description represented by the right hand side. Each 
possible way of binding the remainder of thb Description 
identifies sn Employee instance whose Backup phone is to bs 
revised. 

For example, changing the Project’s Secretary would bind the 
Project and the (new) secretary. For each Employee on that 
Project, the Backup-Phone due to the old Secretary is replaced 
by the new Secretary’s Phone. It is the rightmost components 
of the two sides of the CE that are being equated. If there are 
multiple Secretaries, then the default meaning here is that the 
set of Backup-phones of an Employee is to bs the sams as the 
set of Phones for all the Secretaries associated with that 
Employee. 

For the executable interpretation of the above CE, we have 
treated the rlght side as independent and the left side as 
dependent, thus far. Changing this directlonallty of 
interpretation is valid, but there is not yet sufficient information 
to make this update unambiguously. That is, given a change to 
the asaootatlon betwaen an Employee Instance and hther 
Backup-Phone, which one (or more) of the three associations 
on the right should we change, or do we disallow the initial 
update to the Backup-phone? 

This is a special caee of the view update problem [Dayal78] in 
that the update is not functionally determined. Here there are a 
small number of alternatives which are a consequence of the 
schema and the form of the constrsint. in some cases, one 
might say that one of these afternatives is far more natural than 
the others, and should bs taken as the default unless further 
information is explicitly provided. Or perhaps the context of the 
query can help to rule out some of these altematives 
[DavidsorW]. 

khii ambiguity can be resolved, when there is a specific intent, 
by separating the right side of this CE into two parts by denoting 
a “weak bond” association which is subjact to revision. (The 
two parts on either side of this weak bond each can be 
considered as a tightly bound cluster of information, and could 
be bracketed ss subDescriptIons to emphasize this.) lt is this 
weak association which is to be revised when that side is 
peatsd as the dependent side. 

. 

The above Constraint Equation is rewritten below with the 
relationship between Project and Secretary denoted by *. 1” to 
indicate it as the weak association on the right side: 

EMPLOYEE . ! BACKUP-PHONE == 
EMPLOYEE.PROJECT.!SECRETARY.PHONE 

Thus directiy updating an Employee’s BackupPhone means 
that the association from the Employee’s Project to the 
Secretary is to be revised. The Secretaries to remove and to 
add for this update are determined by the old and new values 
for the Secretary’s Phone. In the above CE, the weak 
association on the left side is also made explicit. in general 
when there is a single association on a side which is being 
treated ss dependent, it is assumed to be a weak association 
_. unless indicated otherwise. 

if the dependent side is enclosed in one set of brackets to 
denote a single tightly bound cluster of information, then there 
is no weak association, and the change which triggered the 
Independent side should be disallowed if it violates the 
invariant. Multiple weak associations on the dependent side 
mean that the ambiguity is limited to just these weak 
associations, but the other relationships are not candidates. 
The user could be queried to resolve the remaining ambiguity. 

Constraint Equations represent an important part of the 
8tructural Semantics of the application, in that they can 
augment common data base schemata with additional 
relationships and constraints expressed declaratively. It is 
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anticipated that a large portion of integrity, consistency, and 
other commonly occurrtng constminta can be exprwssd in thii 
manner. 

Using CE’s has soveml de&able propsrtie~~ the asmantks of 
the application are rspmssntsd modulsrly and in a form which 
&I indkxtiw of Thor msening. They are spscifbd non. 
procedurally and wlthout concern over order. The modularfty is 
two-fold: additional Constmlnt Equations can be added 
incrementally, snd each such equation ia specified wlth rwpect 
to a local context of releMH objects and relationships. 

Furthermore, the dsclarstive form for Constraint Equations 
makes them amenable to analysis and symbolic transfotmationa 
(under development) which preservs the intended semantic 
invariance but which give rise to sltemative interpretstions for 
domain modelling and for implementation. (For a discussion of 
compatibility between different data models ses 
[Morgenstem81 I.) Since the CEs represent logical assertions, 
they can bs used to resson about the application domain and to 
prove other assertions. 

The system manages the potentially complex set of interactions 
which can occur ss one constraint creates other database 
changes, activating other constraints, and triggering a 
succession of related actions. The active database, thin, can 
perform rather complex responses to a user’s interaction, yet 
each semantic constraint and action can be specified 
separately with rsther locsliied information. 

3.2. Constraint Maintenance 
Straightforward maintenance of the Constraint Equations 
utilizes a triggering mechanism that invokes specific 
procedures, called demons, when database changes occur 
(described below). As the number of constraints increases, the 
efficiency of this maintenance becomes important, and the 
range of alternative strategies needs to be explored. One 
spectrum for constraint maintenance may be characterized by 
when the constraint is enforced -- that is, the binding time for 
the dependent side of the Constraint Equation. 

Most obviously, the maintenance of the constraint may bs done 
immediately when the original change occurs -- the earliest time 
of binding (immediate propagation). Alternatively, maintenance 
can bs delayed until the dependent attribute is retrieved -- a late 
time of binding (propegefion when used). When timeliness of 
the date is not criticftl to the user, maintenance can bs delayed 
even further. 

Along the spectrum between thess afternatives is an 
intermediate strategy of delayed constraint propagation and 
maintenance -- in which the time of propagation and binding is 
determined based upon other criteria. This option has bsen 
referred to as opportunistic evaluation -- both in the senee of 
doing the work of constraint propagation when the computer is 
idle [Balzer82], and in the ssnse of using priority ranking of the 
constraints to select the order in which they should be 

considered for propagation. 

When maintenance of the constraint is delayed UfItil uW, then, 

ls the edditional option of whether to store the depsndsnt valus 
or aeeociation which has been derived. If not etored, then we 
have the common approach for derived data, in which the 
derivation is done anew for each reference -- a viable chokse if 
updatee are expected more frequently than retrievals. 

When maintenance of the constraint is done opportunistically 
(delayed propagation), the occurrence of a change must alert 
all dependent constraints and users that any previously stored 
data may bs dirty -- this can bs a difficult problem if the chain of 
dependencies is long. When recomputation is done, the 
resultant value will bs remembered for future use -- in effect a 
memo is msde of this result.* If old data can bs tolerated by 
the application, then additional flexibility is possible for delaying 
ihe propagation of constraints further based upon relative 
priorities. Both the eemantics if the application end operational 
&at&tics -- frequency of use, selectivity, and sparseness -- can 
bs used to improve the efficiency of constraint propagf&ion and 
maintenance. 

It is interesting to relate these distinctions to the notions of 
forward chaining and backward chaining, which arise in A.I. 
Inference work. The latter characterize the direction with which 
a chain of associations or logical inferences is followed. 
Forward chaining starts from the updated data, following the 
chain of associations or inferences forward to the 
consequences. Backward chaining characterizes the process 
of following the chain of associations from the dependent 
consequent object (or goal) which is being accessed, back to 
the source data to determine if changes might affect this 
dependent object (and rederiving information as needed). Thus 
immediate pfopegetion of constraints is in effect forward 
chaining, while (re)calculation of derived data upon use may bs 
thought of as a form of backward chaining. 

The efficiency of constraint maintenance also is affected by the 
efficiency of access to objects, attributes, and relationships. 
Software caching of relevant indexes, and of object instances 
which sre retrieved from secondary storage, can be helpful. 
Very promising are several forms of compile time aggregation 
which can avoid duplicated access to the same data. For 
example, several separately specified Constraint Equations can 
be aggregated into one demon or procedure bssed upon either 
(a) @ common triggering pattern -- parallel aggregation, or (b) 
b&d upon a chain of constraints such that one constraint 
takes an action which serves as a trigger for another constraint 
-- chained aggregation. More elaborate compile time analysis 
could determine which user programs have the potential of 
triggering specific constraints, and then expanding the code for 
these consqaints in the user’s programs. 

*lltheNbavsHd-wll”em/aHabk!whansccemle~lhmkis 
used, otlwmim mcslculstion occurs. In aHher cm the muIts me the eeme, 
buttheHflciancymrydiffer. Theae~ofmemovalueammybethoughtofmr 
memo tunct&n. 
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The richer the semantic model and the more dynamic and 
responsive we wlsh a system to be, the more important is 
efficiency in the face of increased complexity. The alternatives 
just discussed include the relative time at which constraint 
propagation is executed, the direction of such propagation, 
maintenance of newly derived results, caching of information 
when cost of re-access and likelihood of reuse are high, and 
aggregation of constraints to reduce net overhead. In the long 
term, the system should be taking an active role in choosing 
among these altematlves. 

4. Binding Time of an Association 
The time varying nature of the set of objects which satisfy a 
fixed Description highlights an already existing phenomenon: 
the time at which an association is evaluated (the Binding Time) 
can alter the meaning of that asr%xMion. For example, if one is 
interested In the set of students taking course CS-503, does one 
mean the snapshot of those students registered at some fixed 
point in time, or does one mean the possibly time varying set of 
students satisfying the predicate “students registered for 
CS-508.” 

Typically database query languages retrieve a copy of data 
which satisfies the query, thereby providing only a snapshot of 
the data. However, many applications sre better served by 
viewing the dynamic set of information which satisfies the 
predicate. Examples include the set of overdrawn accounts or 
the set of ships entering a critical zone. Our use of active 
Descriptions provides this dynamic interpretation of a query. 
Snapshots of data become an option when timeliness of 
information is of lower priority, rather than snapshots being the 
only option. 

The notion of binding time. of an association also applies to 
assumptions in the data model, and sometimes to the 
implementation chosen for the database. (An independent 
discussion of binding in information systems may bs found in 
[Wisderhold81].) Typically, relational databases consider each 
normalized relation as being stored separately. Combinations 
of information are created when requested by taking joins of the 
relevant relations. A tuple resulting from a join represents an 
association by description -- that is, a dynamic association 
bassd upon the join attributes of the component tuples 
satisfying the join description. 

On the other hand, object-based data models typically maintain 
explicit associations by /inked reference between objects 
utilizing links (either pointers or explicit relationships between 
the object id’s). Theae links are establiied when the 
association is first explicitly crested, rather than when use of 
data values indicates that this aasoolation is relevant. These 
associations by /inked reference are comparatively static, In that 
they require explicit revision when the data no longer justifies 
the sssociatton. (This distinction is minimized in thoss cases 
where stored dats is not redundant wlth the association, and 
thus the association itself is essential information.) 

Data models in both the Database world and the Artificial 
Intelligence world, tend to explain their semantics partly in 
terms of their implementation, rather than solely in terms of 
functionality. This tendency in A.I. systems is discussed in 
[Brachmar@S]. The functionality of a repmsentatfon woukf 
make explicit the binding time of associations regardfess of 
whether these associations are maintained symbolically by 
description or physically by pointers. Another example of this 
tendency to describe semantics partly in terms of 
implementation is the common A.I. represention of lnherltance 
in terms of a tree or lattice of nodes and pointers, rather than in 
terms of a functional description of which characteristics are to 
be inherited along possibly different kinds of inheritance 
relationships. 

The time at which an association or derived relationship is 
(evaluated has an analogy to the way programming languages 
&ablish the association between formal and actual parameters 
ior subroutine invocation. Call by Reference utilizes an address 
.or pointer which is bound at invocation time to a particular 
‘location -- compare association by linked reference between 
objects as done here. This parameter binding occurs before the 
!use of the variable. A more delayed form of binding is Call by 
Name -- which utilizes the name or description provided as the 
actual parameter to determine, at each use, the location and 
value to bs used for that parameter -- compare association by 
description between objects as done here. 

The spectrum of possible binding times highlights one of the 
dimensions along which data model representations may differ, 
and it also highlights the degrees of immediacy possible at the 
user interface. 

5. Prototype Development 
In this section, the current implementation status of the IM 
prototype is reviewed. As noted earlier, the data model is based 
upon typed objects and their relationships. An object instance 
Ls represented by an internal identifier and a set of relation 
tuples which have this identifier in common. These relations are 
normalized and are stored in sn inverted index database. 
Typically objects are accessed associatively rather than by 
name. Currently all attributes are indexed, though the option 
exists to reduce update costs by selective indexing. Many to 
many relationships between objects are naturally provided by 
this system. 

The database supports triggering of demons upon insertion, 
deletion, and/or update to the database relations which 
comprise an object, A demon consists of a predicate filter and 
arbitrary action code. When modification occurs to a relevant 
relation, the demon is awakened, its predicate is applied, and if 
it is satisfied the demon is considered activated. Since multiple 
demons can be activate, they are placed on a priority 
scheduling queue for execution. 

Demons are specified modularly with respect to the object types 
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involved. Since the actions of a demon may cause changes to 
the database, an interrelated set of demon activations may 
result. A collection of user actions and consequent demon 
activations may be treated as a transaction which must SLJCC~~~ 
in its entirety before it becomes permanent. 

This demon mechanism provides the implementation beSiS for 
maintenance of constraints and semantic rules. It also can 
initiate more general database coordination such as CalCUlatlng 
next month’s sale’s quota given this month’s actual sales. And 
it can invoke arbitrary procedures for aiAOmatiOn of aCtiOnS 
which can affect the outside world (eg. printing a report, 
sending a message, etc). 

The inverted index relational database facilfty snd handling of 
demons are provided by the AP3 software system developed by 
Neil Goldman [Goldman82]. The IM prototype runs on the 
DEC-29, VAX Unix, snd Symbolics 3699 systems. 

The application areas which have been addressed or are under 
development include employee records: a personalized 
database for notes, mail, and articles; and a database of 
program specifications and code segments. Rather than 
treating each such service separately, IM is providing a uniform 
interface to an integrated set of capabilities. 

6. Conclusion 
Interaction with the database utilizes Descriptions to express 
the selection criteria for queries, updates, and the creation of 
new entries, as well ss to form Dynamic Views for browsing 
through the database. Constraint Equations are a concise 
declarative representation for modularly expressing semantic 
constraints, including integrity and consistency. These 
Constraint Equations have an executable interpretation that 
enforces the domain specific semantics as the information base 
changes. 

The concept of active databases emphasizes the notion that 
what the user sees instantaneously reflects what exists, 
including changes and consequences of those changes. 
Commands are evidenced by the actions that they accomplish 
rather than by a separate syntactic expression of the commands 
and later inspection of the results. That the system 
automatically maintains the consistency and semantics of the 
data furthers the reality that the database is an active body of 
information that responds intelligently to the user. 
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