
A SURROGATE CONCEPT FOR ENGINEERING DATABASES 

Andreas Meier and Raymond A. Lorie 

IBM Research Laboratory 
San Jose, CA 95193 

ABSTRACT: Relational database systems are attract- 
ing interest from users outside the commercial ar- 
eas for which such systems were initially designed. 
This paper describes a surrogate model for engi- 
neering data (CAD, VLSI, geographical data, etc.) 
which allows the user to define structural re- 
lationships among semantically related data. A 
binding mechanism between system-controlled surro- 
gates and user-defined keys avoids the introduction 
of two independent identifier concepts. Finally, an 
implicit join with two built-in functions can be 
used to query and manipulate structured data in an 
efficient and flexible way. 

1. USER KEYS VERSUS INTERNAL IDENTIFIERS 

The need for some unique and permanent identifiers 
of database entities is clear. By definition, a 
primary key in the relational model uniquely iden- 
tifies the contents of a tuple as well as the tuple 
in a relation. When employing such user-defined 
primary keys in an engineering environment, prob- 
lems arise in three areas: 

- Structure: With most relational database systems 
mapping of highly interrelated data into tuples 
in one or more relations has to be done entirely 
by the user. For instance, when a tuple of a hi- 
erarchical structure is deleted, it is the appli- 
cation program which has to delete all its 
children. 

- Semantics: The user has to choose a special at- 
tribute (or attribute combination) as the primary 
key. This choice may either be artificial or may 
bear some semantic meaning (e.g., part serial 
number). The actual values of these keys are de- 

termined by the user and therefore may change. 
For instance, if two inventory databases are 
merged, some or all of the serial numbers may, 
have to be changed. 

- Performance: To access clustered tuples effi- 
ciently via their primary keys, a clustered index 
on the key fields may be defined. However, most 
relational systems do not maintain structural in- 
tegrity constraints or cannot fetch a complex ob- 
ject with a single call to the database 
management system. As a result, engineering data 
has traditionally been organized as sets of files 
with the inherent disadvantages of high redundan- 
cy and poor data independence in order to gain 
better performance for the operations. 

In the following, we define a surrogate concept as 
the basis for an engineering database system which 
alleviates the above drawbacks. 

2. A SURROGATE MODEL 

2.1. A Binding Mechanism with Two Built-in Func- 
tions 

System-generated internal identifiers or surro- 
gates /HAL 76/ are introduced for columns having 
the new type IDENTIFIER. Each internal IDENTIFIER 
value is system-wide unique (e.g., concatenation of 
processor number, database identification, and 
clock time) in order to allow for the merging of da- 
tabases from different sites. Furthermore, the va- 
lues of an IDENTIFIER attribute cannot be changed. 
The user has no control or access to the IDENTIFIER 
values although they may or may not be made avail- 
able to him (e.g., it seems appropriate to return 
identifier values to the application program). 

When a user creates a tuple containing an IDENTIFI- 
ER column, the system automatically generates the 
IDENTIFIER value and returns it to the user in the 
variable associated with the IDENTIFIER column. 
This identifier value may then be used to establish 
links between tuples of different relations (see 
2.2 and 2.4). Obviously, it is never null. 

An internal IDENTIFIER acts as an invariant value 
for each tuple, and no special attribute needs to 

30 



be chosen as the primary key. On the other hand,‘the 
user often likes to use a primary key that has some 
semantic meaning for him (e.g., social security 
number). The question arises of how to dealproper- 
1Y with system-generated and user-defined 
identifiers. The professional user (designer, data- 
base administrator, application programmer) might 
wish to know some system-generated identifiers, 
whereas the casual user should not have to worry 
about them. 

To avoid introduction of two independent identifier 
concepts, we propose a binding mechanism by intro- 
ducing an index. This index is restricted to a 
single column, i.e. unique key, and implies its 
corresponding IDENTIFIER column. With the new 
index, the user can retrieve data by user key rath- 
er than internal identifier. Furthermore, two 
built-in functions are defined to map the 
system-generated identifier onto the user-defined 
key and vice-versa: 

KEY (identifier) retrieves the user key corres- 
ponding to an internal identifi- 
er if one exists. 

ID (user key) retrieves the internal identifi- 
er of a specific user key value. 

A one-to-one mapping between internal identifier 
and user key is guaranteed if the attribute of the 
indexed column was specified with the NOT NULL 
option. In this case, both functions KEY and ID 
yield a unique value which is never null (a 
non-existing operand produces an error message). 

2.2. Hierarchical Relationships between Relations 

In order to define and implement complex objects, 
the system-generated ,internal identifiers (type 
IDENTIFIER) are used. Besides technical reasons 
(clustering, non-composite keys, performance 
aspects, etc.) internal identifiers have a semantic 
meaning and may reference relations: component 
relations are distinguished by a COMPONENT-OF 
column that contains identifiers pointing to tuples 
in a corresponding parent relation. 

We consider the definition of a simplified elec- 
tronic module as an example. A MODULE is composed 
of several PARTS where each PART may contain some 
FUNCTIONS: 

CREATE TABLE MODULE 
(MID IDENTIFIER, 
NUMBER INTEGER, 
PRIZE DECIMAL(Z), 
. . . 

CREATE TABLE PART 
(PID IDENTIFIER, 
MID COMPONENT-OF(MODULE), 
QUALITY INTEGER, 
. . . 

CREATE TABLE FUNCTION 
(FID IDENTIFIER, 
PID COMPONENT-OF(PART), 
CODE CRARACTER(10), 

The new column types IDENTIFIER and COMPONENT_OF 
are extensions to System R /BLA al/ and allow for 
the declaration of complex objects as molecular 
entities. 

2.3. Implicit Hierarchical Joins 

To retrieve structured data, a user would have to 
define several join predicates along particular 
branches involving IDENTIFIER and COMPGNENT-OF 
columns. This drawback may be eliminated by bring- 
ing the whole implicit structure of a complex 
object up to the user interface as in the following 
sample query: 

Ql: List all FUNCTION codes of MODULE 100. 

SELECT DISTINCT FUNCTION.CODE 
FROM MODULE-FUNCTION 
WHERE MODUIE.NUMBER=lOO; 

The linear implicit join from MODULE to FUNCTION is 
an equi-join between the columns of type IDENTIFIER 
in the parent relation MODULE (rasp. PART) and the 
columns of type COMPONENT_OF in the direct child 
relation PART (resp. FUNCTION). Whenever an 
implicit join touches a relation which is not 
explicitly declared in the FROM clause (e.g., PART 
in MODULE-FUNCTION), it is involved in the multiple 
join by definition and the user may formulate 
restrictions on it in the WHERE clause. 

The notation for implicit join is quite general and 
allows specification of every possible choice of 
hierarchical or linear subschemas. Precise defi- 
nitions and several illustrative examples are given 
in /ME1 831. 

With the introduction of implicit join, queries on 
complex objects become simpler and more intuitive. 
Instead of having one or more join predicates along 
particular branches of a complex object specified 
explicitly, the system recognizes the operator and 
automatically joins component tuples with their 
corresponding ancestor tuples. Moreover, the 
system knows both the structure and the internal 
representation of these special joins (1) from the 
system catalogs and can therefore optimize the 
operations accordingly. 

2.4. Non-hierarchical References 

Internal identifiers are very convenient for 
expressing hierarchical structure. However, surro- 
gates may also be used to build non-hierarchical 
references: a tuple can refer to another tuple 
using a REFERENCE column. To refer to a root or a 

(1) Our implementation of complex objects illus- 
trates an interesting example of the class of 
t-acyclic hypergraphs; see /FAG B2/, p.43. 

31 



component tuple of the same or different complex 
object, the IDENTIFIER value of the referenced 
tuple is put into the REFERENCE column of the 
referring tuple. 

As soon as several relations refer to each other 
(e.g., by the COMPONENT-OF or REFERENCE values), we 
are again concerned about joining along these 
links. To avoid writing down all joins for this 
particular case, the built-in.function KEY can be 
used. The argument of the KEY function is the 
column name of type COMPONENT-OF or REFERENCE which 
refers to an internal identifier column. 

It may be noted that, even if the key value is null, 
the 'join' (actually, we only evaluate the built-in 
function KEY) can still be performed since only 
identifiers are needed. Al.& some of the selected 
REFERENCE values may be null depending on the 
semantics chosen. 

The proposed KEY concept is minimal and it helps to 
avoid writing additional joins to retrieve a user 
key. It does not help when more than the user key 
is desired from the referenced relation. To 
retrieve other columns via the binding mechanism 
would destroy the First Normal Form property. 

2.5. Data Manipulation Considerations 

First, we turn our attention towards insertion of a 
tuple into a complex object. If the tuple to be 
inserted contains a COMPONENT-OF or REFERENCE type 
value, one needs to know the identifier of the 
component or referenced tuple. Very often this 
value will have been created in the same program 
and is therefore known. If not, a query is needed to 
retrieve this identifier from the database. To 
simplify the task of the programmer or the casual 
user, we have introduced a built-in function ID: 
It returns as value the internal identifier corre- 
sponding to the supplied key. 

The deletion of tuples which belong to a complex 
object has special semantics. For instance, when a 
tuple is deleted, all tuples which are the children 
of the tuple must be deleted together with all 
their descendants (cascaded deletion). This is the 
only way tuples from different relations can be 
deleted by a single statement. Allowing another 
form of a single delete statement involving more 
than one relation could destroy the structure of 
the complex object, for example, by introducing 
orphans. However, as soon as we restrict a 
deletion to a single relation, an implicit join may 
be appropriate. Deleting through an implicit join 
is possible by specifying a subschema (given by a 
join operator) and naming the relation from which 
deletions should occur. 

Implicit joins can be used advantageously in update 
statements. Here, because of the clean semantics 
of the complex object and implicit join, there is 
no ambiguity. 

3. IMPLEMENTATION ASPECTS 

System R has been extended to generate and support 
uniform IDENTIFIER values which are used for both 
external links (type COMPONENT-OF and REFERENCE) 
and internal links (with compression for first 
child, previous and next siblings). Therefore, one 
may quickly fetch all tuples under a parent without 
scanning the rest of the database. 
System catalogs have been modified to capture the 
structure of a complex object. This structure 
information allows the system to analyze the 
implicit join operator and to find all necessary 
links in order to materialize the query. Also, a 
special system table is maintained for each hierar- 
chy of relations in order to implement a fast 
intra-object access path. This path is used to 
enforce parent-child integrity constraints and 
provides better performance for clustered access 
and manipulation of tuples which belong to the same 
complex object. 

,The query optimizer (the subsystem which generates 
an optimal plan for evaluating a given query) has 
been modified to take advantage of that special 
access path. We have also evaluated the perform- 
ance of the enhanced system. 

4. CONCLUSION 

In this paper, we described a surrogate model for 
relational databases to better support engineering 
and design applications. A binding mechanism 
provides a powerful tool to both the professional 
programmer and the casual user. An implicit join 
operator and two built-in functions simplify the 
query language and allow the user to retrieve and 
to manipulate structured data or part of it as a 
whole rather than assembling different relations 
and thinking about all known interrelationships. 
By defining the structure of objects to the system, 
structural integrity, ease of application program- 
ming, and improvements in performance can be 
achieved. 

References. 

/BLA 811 Blasgen M.W., et al.: System R: An Archi- 
tectural Overview. IBM Systems Journal 
20, No. 1, 1981, pp. 41-62. 

/FAG 82/ Fagin R.: Types of Acyclicity for Hyper- 
graphs and Relational Database Schemes. 
IBM Research Report: RJ3330(39949), 
November 1981, San Jose, California (to 
appear: J. ACM). 

/HAL 761 Hall P., Owlett J., Todd S.: Relations and 
Entities. Nijssen G.M.(ed.): Modelling 
in Data Base Management systems. 
North-Holland, Amsterdam 1976, pp. 
201-220. 

/MEI 831 Meier A., Lorie R.A.: Implicit Hierarchi- 
cal Joins for Complex Objects. IBM 
Research Report RJ 3775, January 1983. 

32 


