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ABSTRACT manticl data models which often is 

For the conceptual level of database schemes a described can be completely specif 

structured algebraic specification is presented. all algebraic types can be used to 

Within a uniform framework it comprises database base schemes directly. 
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abstractions, static and dynamic constraints, and 
a functional programing language for queries and 
updates. The specification is analysed w.r.t. syn- 
tactic and semantic aspects. Then the behaviour 
and the implementation of database specifications 
are discussed. Furthermore, algebraic conditions 
are presented that guarantee a sound specification 
according to criteria evolved from database theory. 

necessary 
defini- 
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For every specification technique it is 
to develop criteria for a sound database 
tion (/Casanova et al. Sl/). One guide1 
syntactic and semantic analysis of database speci- 
fication in order to check whether the class of ad- 
mitted models Indeed meets the informal ideas in 
mind. 

0. INTRODUCTION 

The algebraic specification technique offers a uni- 
form framework for various subjects for which in 
database theory different mathematical tools, e.g. 
set theory, relations (/Codd 70/), logic (/Gallaire 
81/), are used side-by-side. Many of the concepts 
developed as part of this technique seem to ade- 
quately meet the requirements of database spec- 
ifications: 

In the field of database specifications there is 
a growing interest in rigorous formal specifica- 
tions (/Bjbrner 80/, /Brodie, Zilles 81/, /Neu- 
hold, Olnhoff 81/) which support a structured data- 
base desian (/Ehrio. Fev 81/l. Such specifica- 
tions may-essentiaiiy bi classified according to - 
the techniques used: 

In constructive approaches a database scheme is 
specified by defining an abstract model,t&t is a 
specific mathematical structure onto which the uni- - 
verse of discourse is mapped. 

In axiomatic approaches the behaviour is direct- _ 
ly specified by means of a logic theory without re- 
sorting to a particular model. The abstract models 
of a constructive approach then provide for a con- 
crete implementation, 

The algebraic specification technique which com- 
bines tools from logic and universal algebra has 
proved to be a powerful and flexible tool for the 
formal definition of data structures (/Bauer, Wiiss- _ 
ner 82/) and programming language semantics. There- 
fore the development of algebraic database speoi- 
fioations(/Ehrig et al. 78/, /Paolini 81/) seems to 
be quite promising. 

The algebraic specification technique may be em- 
ployed for both approaches: It can serve to define 
specific abstract models (/Lockemann et al. 79/, _ 
/Hupbach 81/) . In this way the meaning of (se- 
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The signature of an algebraic type specifies 
a syntactic interface by naming the available 
sorts, , for example attributes or entitiesAnd 
the operations with their arities. 

The axioms of an algebraic type, being arbi- 
trary first order formulas, provide flexibility 
in expressing static and dynamic constraints. 

The use of partial functions captures finite 
errors, which may be induced by constraints, 
and infinite errors, that is the non-termination 
of queries or updates. 

In a hierarchy of algebraic specifications 
the visible behaviour of the nonprimitive 
parts Is described by mapping them into prim- 
itive types. 
By an encapsulation mechanism the representa- 
tion of the objects and operations can be hid- 
den from the user. 

Algebraic specifications allow full parameter- 
ization. In this way the specification of 
database schemes gets possible with full gener- 
ality. 
Algebraic specification languages, like CLEAR 
(/Burstall, Goguen 80/), and ASL (/Wirsing 
82/j, give precise semantics ta flexible mani- 
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pulations with theories. For example,the spec- 
ification of a large database scheme (/Albano, 
et al. 81/, /Hammer, Berkowitz 80/, /Ehrig et 
al. 78/) can be decomposed into parts of man- 
ageable complexity and, vice-versa, theories 
for small parts, like views of different users, 
may be put together to get an overall specifi- 
cation. 

The paper is organized as follows: Section 1 con- 
tains a short overview on some basic notions of 
algebraic specifications. In section 2 external 
and conceptual database schemes are defined and re- 
lated to each other by an abstract domain equation. 

,In section 3 a conceptual database scheme is spec- 
ified by a hierarchy of algebraic types using al- 
gebraically defined database abstractions. In 
section 4 a syntactic analysis of the specification 
leads to a classification of query and update op- 
erations as well as static and dynamic constraints. 
Section 5 to 7 provide tools for a semantic ana- 
lysis: In section 5 criteria for the existence of 
Armstrong models are presented. In section 6 the 
behaviour of databases is formalized and the ex- 
istence of behaviour models is discussed. In sec- 
tion 7 the implementation of database schemes is 
defined and some characteristic implementation 
steps are outlined. In section 8 a functional 
programing language for updates and queries is 
introduced. Finally in section 9 a notion of re- 
cursion complete language for updates and queries 
is algebraically defined, its equivalence to the 
"extended completeness ' of Khandra, Hare1 80/ is 
outlined and the recursion completeness of the 
functional programning language (over set-like 
data structures) is shown. 

This completes the aim of the paper to provide an 
abstract programming language model for database 
schemes. Several examples accompany the presenta- 
tion. In the notation we largely follow the wide 
spectrum language CIP-L (/Bauer et al. 81/). 

1. BASIC DEFINITIONS 

Below we summarize some basic notions of algebraic 
specifications which extend the wellknown theory 
to partial algebras. For a more detailed treat- 
ment see for example /Wirsing et al. 80/ and /Wir- 
sing 82/. 

Readers .interested in an informal survey of 
this paper may skip this section. I __. -- -. 

1.1 SIGNATURES 

A signature IX EI 6, F> comprises a set S of 
sorts and a Set F Of operation symbols to- 

or, both defined and equal t$ = ti E A,. 

A tvsx : P iff for all a E A, : A h P[a/xl. 

1.5 ALGEBRAIC TYPES 

gether with their arlties of S* x S. The uni- An algebraic type T * 4, E> consists Of a Sig- 
on of signatures di,Fi> means <S, U S2, F, u F2>. nature f and a (countable) set E of closed r- 
A pair ax, B> forms a signature morphism formulas, called axioms. Its semantics Mod(T) 
0 : I;1 + & if a : Sl -, SO is a total mapping is the class of all x-algebras where all axioms 
for sorts and B : Fq + Fa a family of mappings @E E. are satisfied and A /= true * $a&. A 
for operation symbols compatible with a, For a consistent type , that is a e T with 

S-indexed family X of variables Wp;, X) de- 
notesthe set of all (finite) X-terms 
the ground terms W(x) = W(z, @). 

including 

1.2 PARTIAL ALGEBRAS 

In d (partial) X-algebra A = <(s A )sEs, (fA)& 

with each sort s of S a carrier set A and 
with each operation symbol f : six.. .xsk +'s E F 

a (possibly partial) function 

is associated. 

fA:Aslx . . .xAsk -P A, 

A is finitely generated if eve- 
ry element of its carrier sets can be obtained by 

the interpretation tA of a ground term tE W(f). 
The term algebra W(Z, X) and the ground term 
algebra W(z) are total finitely generated r-alge- 
bras. For a signature morphism u : & + & and 
a &-algebra Aa the o-restriction As/u is 

the x,-algebra A1 with Ai = A2 fA' = 

WA2 (s,f E c,) . 
u(s) and 

1.3 HOMOMORPHISMS, EXTREMAL ALGEBRAS 

A family (rp, : A; + A;)scs of total mappings is 

called (strong) I-homomorphism cp : A1 4 A2 be- 
tween two t-algebras Al, A2 if (o preserves the 
definedness (and undefinedness) of functions and 
is compatible with them. 

In a class C of r-algebras the isomorphism clas- 
ses I resp. Z of (strongly) initial resp. 
(strongly) terminal algebras are characterized by 
the existence of (strong) homomorphisms v : I -) A 
resp. cp:A+Z forall AE-C. 

1.4 FORMULAS 

x-formulas are all first-order formulas built from 
the definedness predicate Ds(t) and the strong 

equality t, =s tl as atomic formulas using'the 

quantifiers v, 3 and the connectives A , v , -, , 
I, . The satisfaction A t= @ of a x-formula o 
in a x-algebra A is defined as usual“where for 
atomic formulas and allquantification 

A I= DsW iff there exists an aEA,: tA =a 

A t t, =s to iff tt and t$ are both undefined 
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Mod(T) 8 0, is called monomorphic, if Mod(T) 
comprises only isomorphic algebras,and polymor- 
phic elSeWiSe. For a type T a I-formula @ 
is provable (T I- 0): ifal,m,o~~l~e~~ci~les,'~~~ 
E, valid 
fy @ . A f:;;,:)'vs:f : e(x) where @ is quanti- 
fier-free is called maximal if for all ground 
terms t T 
T c 7 O(t), 

t D(t) implies T b o(t) or 

1.6. HIERARCHICAL ALGEBRAIC TYPES 

To structure the specification in a hierarchical 
algebraic type T = <f, E, Tl> a primitive (sub-) 
type T' = <I:', El, T% is designated consisting 
Of a primitive signature X1 s 1 of primitive 
sorts S' ES and primitive operations Fl E F, 
a subset El E E of primitive axioms and a 
(possibly empty) primitive subtype Ta. 

The primitive terms W(9, X,') and the terms of 
primitive sort form subsets of W(Z, X). In a 
hierarchical type the non-primitive objects are 
specified by their visible behaviour under out- 
put operations, that is by operations leading 
from a nonprimitive sort into a primitive sort. 

The visible behaviour should be specified suffici- 
ently precise, T is called weakly sufficiently 
complete, if for all ground terms tc W(Z) 
of primitive sort there exists a primitive term 
p E W(Z~) with Tt D(t) *T I- t = p, and suffi- 
ciently complete, if furthermore T c D(t) or 
T ~9 D(t). A related model-oriented notion is : 
A type T = <I, E, Tl> is hierarchy persistent 
if for every model A 1 of the primitive type 
T' there is a model A of T such that A/z, 

is Al, and for every model B of T the reduct 

e/P is a model of T' . 

1.7 STRUCTURED ALGEBRAIC SPECIFICATIONS 

In an algebraic specification language for the 
manipulatian of algebraic types composed type 
expressions can be built from signatures and sets 
of axioms as atomic expressions using 

- the quotient T : E of a type expression T 
and a set E of axioms, 

- the cum Tl+ Ta of two type expressions T', 
T=, 

- the restriction T/ of a type expression and 
a signature morphism'a;'C' + C . If I' C_ C' 
and u is the inclusion operation, we Write 
T/e, insteadof T/d . 

- the abstraction (PAR :T of a type expression 
and a type variable b AR yielding a parameter- 
ized type 
type PAR 9 

or type scheme with parameter 

- the application (instantiation) T(ARG) of a 
type scheme T to an argument type ARG, 

- the constraint data(T) to finitely ener- 
ated and minimal~efined models of B. 

This kernel language can be extended by notational 
variants like 
riching a typ~~;r T$ I !ypt;; en- 

type T' =<t u I', E IJ El:,. A type T is data- 
enriched by <Z', El> if for every model A' of T1 
the reduct A'lc is a finitely generated mini- 

mally defined model of T . 

The precondition notation 

funct (s x : pre(x)) 2 f 
- -1 

in the signature of a type is an abbreviation 
for the declaration 

(. funct 

and the axiom 

prdx) 

2,) sf 

= false r) D(f(x)) = false . 

2. EXTERNAL AND CONCEPTUAL LEVEL OF DATABASES 

At the external level a database (scheme) may be 
seen as a black box. The only way to talk about 
the information contained in it is to put queries 
to it. There are different (groups of) users each 
interacting with the database using a specific set 
of queries and updates. In this situation,both the 
complete database DB and the view Vi of a user 

may be described by hierarchical algebraic types. 
For each user there is a signature ti naming the 

available sorts and operations. From the conceptual 
level DB an external view Vi is obtained by re- 

stricting DB to xi ; conversely a database is 

the sum of its views where certain interferences 
among the views Vi are respected. 

Definition A conceptual database scheme DB and 
an external database scheme or view Vi .are 

parameterited hierarchical algebraic types such that 

(1) DB = (V, + . . . t Vn) : Interference(V,,...,V,) 

(2) Vi = DB/,i for i = 1,2,...,n holds, 

where xi = Sig(Vi) are signatures and 

Interference(V1,...,V,) are c, u .., u c, - axioms. 

This definition reflects two directions in the con- 
ceptual design: 

a) First the external view Vi and their interfer- 

ences are specified separately and then inte- 
grated into a conceptual database scheme OB. 
Algebraically this means to solve the abstract 
domain equation 

(3) DB = (DB/r, t . . . t OS&.,) : 

Interference(DB/ ,..., DB/ 
for the unknown type kriable DB. % 

) (n r 1) 
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b) First the conceptual level DB is specified aggregation, generalization, and correspondence. 
and then the different external views V. are 
derived from it according to equation (1). 

As it is well known from fixpoint theory of recur- 
sive functions the domain equation (3) in gener- 
al has a lot of solutions. When using the method 
b) the specified conceptual scheme often contains 
more detailed information than needed for the dif- 
ferent external schemes, then DB is not a mini- 
mal solution of equation (3). furthermore when 
using database abstractions to construct a concept- 
ual scheme, in general not a minimal solution of 
(3) is obtained. 

3.2.1 AGGREGATION 

Definition An aggregqtion is the type scheme 

a AGGREGATION = (OBJT,...,OBJn, u, PRE, c, E) : 

data-enrich PROD(OBJ ,...,OBJn)/o : PRE & t, E 
1 

endoftype , 

where the type scheme PROD forms the Cartesian 
product of its parameter types (/Bauer,kliissner>2/) 

w PROD m (OBJ,, . . . . OBJ,) : 

data-enrich OBJ 7' . . . . OBJ,, BOOL & 

sort prod , 
3. SPECIFICATION OF THE CONCEPTUAL LEVEL 

Below we specify the conceptual level of a 
database scheme by defining a hierarchy of alge- 
braic types for its components. 

3.1 OBJECT TYPES 

The conceptual database specification as well as 
the views are modular composed (/Schiel et al. 82/) 
of various subtypes such as several object types 
OBJ,, . . . . OBJ, that define the data structures 

of the data items. 

In general the basic object types OBJi are not 

monomorphic. Nevertheless the following require- 
ments should be fulfilled: 

Claim The hierarchical types OBJi for the basic 

objects should be specified such that 

1) the definedness predicate is model-independent, 

2) they are hierarchy persistent, 

3) for their semantics only finitely generated 
models are regarded. 

Condition 1) ensures that the definedness of 
terms is model independent, 2) allows to imple- 
ment the overall type by using implementations of 
its primitive types, 3) ensures that every ob- 
ject has a finite denotation and can be finitely 
computed, i.e., there is "no junk" in the models. 

3.2 DATABASE ABSTRACTIONS 

In general the basic object types OBJi are them- 

selves obtained in a hierarchical way based on 
other primitive types. To abbreviate type schemes 
frequently occurring in the construction of data- 
base specifications database abstractions have 
been introduced (/Hammer 76/, /Smith, Smith 77/, 
/dos Santos et al. 80/, /Brodie 81/). They are 
similar to generic mode constructors in programm- 
ing languages (/Schmidt 80/). Below we specify 

funct (ob& x,, . . . . obj, x, : 

pre(x , . . . . 

funct (prod) ai seli , 

x,)) prod mk, 

' 

funct (ob.& . . . . a,) bool pre , 

pre(x,,..., X,)* seli(mk(x,,...,xn)) = Xi 

endoftype 

If the precondition pre is constant true, 

PRE = ipre(x,, . . . . xn) = true 1 

then mk is a total operation; in this case we 
omit pre and PRE and write TPROD for PROD . 

Example 

A secretary may be characterized by the components 
name, age (over 18) and typing speed. Furthermore 
an operation to increase the age is provided. 

E SECRETARY =: 

data-enrich (seer, mksecr, sname, sage, speed, 

isadult) l 

PROD(NAME, AGE, TYPING-SPEED) : 

isadult(n, a, s) = (a 2 18) 

& funct (seer) seer incrage , 

incrage(mksecr(n, a, s)) = mksecr(n, a+l, s) 

endoftype 

Here the notation 

(seer, mksecr, . . . . isadult)= 

PROD(NAME, AGE, TYPING-SPEED) 

abbreviates the signature morphism 
by establishing the correspondence 

u of PROD& 

seer *J&, mksecr + mk, . . . . pre -, isadult . 
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Similarly one may specify a type DIRECTOR con- 
sisting of the component types NAME, AGE, and 
TELEPHONE. 

3.2.2 GENERALIZATION 

Definition A generalization is the type scheme 

type GENERALIZATION E(OBJ,,...,OBJ,,U, PRE, C, E): 

data-enrich SUM(OBJ,,...,OBJ,)/d : PRE & L E 

endoftype y 
where the type scheme SUM defines the direct sum 
(disjoint union) of itso;;rjmeters: 
w SUM = (OBJ , l **, : 

data,-enrich ;BJ 
1 

* **a, ~BJ,. BOOL & 

sz, 

fund (obji Xi: prei(Xi)) s mki , 

funct (sum) bool isi , m- 
funct (sum s : m- isi( obji pri 9 

funct (ai) bool prei , 

prei(xi) T [isi(mki(xi)) = true , 

iSj(mki(Xi)) = false , (i *j) 

Pri(m+(xi)) = XJ, 1 
endoftype 

Example 

The staff of a company consists of either secre- 
taries with excellent typing speed or directors 
older than 40 years. It additionally may have an 
operation to access the name of the staff directly. 

$y& STAFF = : 

data-enrich ( staff, 

sstaff, issecr, seer, quicktype, 

dstaff, isdir, dir, matureage ) = 

StJM(SECRETARY, DIRECTOR) : 

quicktype - (speed(s) 2 300) , 

matureage = (dage(d) 2 40) 

& funct (staff) name stname , --- 
issecr(st) * stname(st) i sname(secr(st)) , 

isdir(st) * stname(st) = dname(dir(st)) 
endoftype 

3.2.3 CORRESPONDENCE 

Many (semantic) data models widely use sets but 
nevertheless do not support the data structure set 
explicitly. Sets as objects are required in the 
conceptual modelling whenever sets have specific 
properties exceeding the properties of their ele- 
ments. 

Definition A correspondence is the type scheme 

e CORRESPONDENCE = (OBJ ,u, PRE, c, E) : 

data-enrich FINSET(OBJ)/o : PRE 9f, E 

endoftype , 

where the type scheme FINSET defines finite sets 
of a member type OBJ (cf. /Wirsing et al. BO/) : 

e FINSET = (OBJ) : 

"data-enrich OBJ, BOOL & 

funct finset emptyset , -- 
funct (finset s, obj x : -- 

preins(s, x)) finset insert , 

funct (finset s, obj x : -- 
predel(s, x)) finset delete , 

funct (finset) boo1 isempty , --- 
funct (finset, obj) boo1 iselem , P--P 
funct (finset s -- : -,isempty(s)) obj choose , 

funct (finset, obj) -- preins, predel , 

iselem(emptyset, x) = false , 

preins(s, y) I, 

iselem(insert(s,y), x)= (eq(x,y) v iselem(s,x)), 

predel(s, y) * 

iselem(delete(s,y), x)= (-, eq(x,y) A iselem(s,x)), 

isempty w)-, 3 obj x : iselem(s, x), 

7 isempty - iselem(s, choose(s)) = true 

endoftype 

Here eq denotes an equality operation on.083. 
Note that the result of the partial operation 
choose ("Give me some element of the set") is 
undefined for the empty set, uniquely determined 
for sets with one element, and ambiguously for 
sets with two or more elements.. Furthermore, de- 
lete is specified as a constructor (cf. also sec- 
tion 5). 

Example 

A secretary belongs to a set of candidates when 
she submits to work and is no longer a candidate 
when she withdraws. This has to'respect the fol- 
lowing constraints: A secretary withdrawing (sub- 
mitting) must (not) be a candidate. 

* CANDIDATES f (SECRETARY) : 

data (cands, emptycand,csubmit,cwithdraw,cisempty, -- 
iscand,cchoose, precsubmit, precwithdraw) 

I FINSET(SECRETARY) : 

precsubmit(c, s) = -, iscand(c, s) , 

precwithdraw(c, s) = iscand(c. s) 

endoftype 
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3.2.4 AN EXAMPLE: EMPLOYMENT AGENCY 

In this section for the well-known example of an 
employment agency (/Veloso et al. 81/) a conceptu- 
al scheme is specified by a hierarchy of algebraic 
types using database abstractions. It is based 
on the primitive types SECRETARY and COMPANY 
for secretaries and companies. 

A secretary working for a company is an employee. 
The following type assumes no constraints, that 
is every secretary may work for every company. 

e EMPLOYEE E (SECRETARY, COMPANY) : 

(emJ&< .,. >, seer, camp)= 

TPROD(SECRETARY, COMPANY) 

endoftype 

In the next step the set of employees is speci- 
fied with the following constraints: 

- A secretary cannot be hired by a company when 
she is already working for any company, 

- She only can be fired by a company when she is 
working for this company. 

e MPLOXEES = (EMPLOYEE) : 

data (empls, emptyempls, ehire, efire, eisempty, 

worksfor, echoose, preehire, preefire) = 

FINSET(EMPLOYEEj : 

preehire(e, <s, r >) = 

(Vcomp r,: -rworksfor(e, <s,r,>)) , 

preefire(e, <s,r>) = worksfor(e,< s,r>)) 

endoftype 

Then an employment agency consists of a set of 
candidates and a set of employees respecting the 
following integrity constraint : 

(PRE) No secretary can simultaneously be a can- 
didate and an employee. 

Moreover there are the following constraints: 

(PRES) A secretary submitting can neither be a 
candidate nor be working for a company. 

(PREH) A secretary can only be hired by a compa- 
ny if she is a candidate and does not work for 
any company. 

(PREF) A secretary getting fired by a company 
must work for this company, 

m EMPUGENCY s (CANDIDATE, EMPLOYEE) : 

data-enrich (a~, c.,. >, cands, empls, preag)= 

PROD(CANDIDATES, EMPLOYEES) : 

(PRE) preag(c, e)= V ~ecr s, s r : 

[ (iscand(c, s)* 7 worksfor(e,<s,r>))~ 

(worksfor(e, <s,r>)* 7 iscand(c, s)) ] 
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& funct (3 a, s : presubmit(a, s)) 

ag submit, - 
funct (a~, seer) boo1 presubmit , -- 
funct (3 a, empl e : prehire(a, e)) a~ hire, 

funct (3 a, empl e : prefire(a, e)) 2 fire, 

funct (a~, empl) 

prw(c, e) - 

(PRES) [ presubmit(c c, e>, s) = 

Vcompr : -, worksfor 

(S) presubmit(<c, e>, s) I, 

re, prefire, 

( -I iscand(c,s) A 

(e,< s, r>)J , 

submit(<c, e>, s)= < csubmit(c, s), e >, 

(PREH) prehire(<c,e>, cs,r >) =(iscand(c,s) A 

Vcomp r, : 7worksfor(e,<s,r,>)) , 

(HI prehire(<c,e>,<s,r>) * hire(<c,e>,<s,r>) = 

<cwithdraw(c,s), ehire(e, <s,r>)>, 

(PREF) prefire(<c,e>,<s,r>) = worksfor(e,<s,r>) , 

(F) prefire(<c,e>,<s,r>)- fire(cc,e>,<s,r>) = 

e csubmit(c,s), efire(e, <s,r>)> I 

endoftype 

For the consistency proof it is necessary to check 
that the update operations submit, hire, and 
fire preserve the integrity constraint (PRE): 

presubmit(<c,e>, s) I, preag(csubmit(c,s), e) , 

1 s 

prehire(cc,e >,<s,r>) r, ., 

preag(cwithdraw(c,s), ehire(e, cs,r.>) 

prefire(<c,e>, <s,r>) I, 

preag(csubmit(c,s), efire(e, <s,r>)) 

This can be proved u,;;ng the preconditions IPRE), 
(PRES), (PREH), 
the application of 

(PREF). For example, 
submit keeps the integrity 

whereas csubmit may violate it. For the final 
specification of the employment agency all updates 
have to be hidden which possibly destroy the inte- 
grity: 

w EMPLOYMENT-AGENCY = (CANDIDATE, EMPLOYEE) : 

EMPL-AGENCY(CANDIDATE; EMPLOYEE& 

endoftype where 

I: I sig(EMPL-AGENCY) ' 

I csubmit, cwithdraw, ehire, efire I 

For this type requirements of /Veloso et al. 81/ 
are provable (as postconditions), for example: 

(POSTS) a = submit(a1, s) * iscand(cands(a), s) A 

vcompr: -,worksfor(empls(a),<s, r>).. 
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More complex operations like 

funct (9, seer) boo1 works -- 

('Does a secretary work?') may be specified at 
this level by an enrichment using descriptive 
formulations like 

Definition 

An operation f E sig(OBJi) is called object op- 

eration, and an operation f E I-DB is called 
holding operation. 

works(a,s) = 3comp r : worksfor(a, <s,r>) 

or structural induction 

works(<c, emptyempls>,s) = false , 

prWcs ehire(e,<s,,r>)) 4 

works(<c, ehire(e, cs,,r>)>, sn) = 

(eqsIsqt,s,l v works(<c,e>, So)), 
preag(c, efire(e, <s,s r>)) - 
works(<c, efire(e, <s,s r>)>, sz) 5 

(-!eqs(s,, sn) A works(<c, e>, s,)), 
Alternatively these operations may be detined in 
the next level using a programing language, see 
section 8. 

These two definitions allow a two dimensional 
classification of the database operations into 
holding updates and holding queries as well as in 
object updates and object queries. 

Example 

In the EMPLOYMENT-AGENCY there are the ob- 
ject queries sname, sage, speed, the object 
update incrage, the holding queries iscand 
and worksfor, and holding updates submit, 
hire, and fire. 

This classification of the operations may also be 
used to discriminate two kinds of constraints. 

Definition 

4. SYNTACTIC ANALYSIS 

In this section algebraic specifications for data- 
base schemes are analysed under syntactic aspects. 

In a database specification DB a formula @ with 
DB C o is called static constraint iff there 
does not occur any operation f in 4, which is a 
hclding update. Otherwise 0 is'called dynamic 
constraint. 

Example 

The hierarchical structure of algebraic types in- 
duces a syntactic classification of the operations 
as well as of the axioms: 

In the EMPLOYMENT-AGENCY the (provable) formula 

mksecr(sname(s), sage(s), speed(s)) = s 

as well as the axiom (PRE) are static constraints, 
whereas the preconditions (PRES), (r'REH), (PREF) 
and the postcondition (POSTS) are dynamic . . . 

Definition 

For a database specification DB=<I;E,OBJ,,...,OBJ,> constraints. 
with primitive subtypes OBJi we call an opera- 

In the following sections the specification for 
database schemes is semantically analysed with 
respect to notions evolved from database theory. 
These notions are also related to algebraic 
concepts. 

tion symbol f of arity funct (s - -,’ l **, Sk) 2 

query operation if the range 2 of f 

primitive sort, that is 2 E \21 sig(OBJi 
i=l 

and update operation otherwise. 

Example 

is a 

1 ' 

In the type SECRETARY sname, sage, speed, and 
isadult are query operations, whereas mksecr 
and incrage are update operations. 

In the type EMPLOYMENT-AGENCY for example iscand 
and worksfor are queries whereas hire, fire, 
and submit are updates. 

Now let D8 be a hierarchical algebraic type 
specifying a (view of a) conceptual database 
(scheme) which is based on the primitive object 
types OBJ , . . . . OBJ,. Then the signature 

1 

&-DB = sig(DB) xdsI sig(OBJi) 
= 

contains all sorts and operation symbols of DB 
without the sorts and operations of the primitive 
object types. 

1' es of 

5. ARMSTRONG MODELS 

In order to get an overview of the propert 
a specification special models are studied 

Definition 

An algebra A is called Armstrong model (/Ma- 
fica- kowsky 81/, /Fagin 82/) of a database speci 

tion DB, if all first order formulas which 
are provable in DB and which only contain 
terms the definedness of which is provable, are 
valid in A and no others. 

The existence of Armstrong models is often accept- 
ed as a criterium for a sound specification since 
they help the database designer to see what he 
has Implied by the axioms of his specification. 
Thus~a major concern of research in database the- 
ory is to characterize the class of formulas for 
the description of data dependencies which allow 
or guarantee Armstrong models. For algebraic 
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types with partial functions there is the result: 

Theorem 

Let a database be specified by a consistent hier- 
archical type DB = <x:, E, OBJ > where all axioms 
in E have positive oonditional form 

Vsx, ‘,. ~Xn : i=l A D(Pi) A Pi = qi *C 3 

where C is an atomic formula p = q or D(p). 

(1) DB has an Armstrong model, iff DB is 
weakly sufficiently complete. 

(2) Every Armstrong model is initial in DB. 

(3) An Armstrong model is strongly initial in DB 
if for all ground terms t E W(z) either 
DB I= D(t) or DB k I D(t). 

Proof 

See /Wirsing et al. 80/. 0 

For the database abstractions presented in section 
3 the existence of Armstrong models is ensured 
whenever the preconditions and the parameter types 
behave well. 

Proposition 

For the database abstraction AGGREGATION (GENER- 
ALIZATION; CORRESPONDENCE) there exist Armstrong 
models, iff the operations pre (prei; preins, 

predel, choose) specified are weakly sufficiently 
complete and their parameter type(s) OBJ,,..., 
OBJ, (OBJ 

1 
,**a, OBJ,; OBJ) allow an Armstrong 

model. 

9 !fcC Ooseis specified weakly sufficiently 
complete, then CANDIDATES has an Armstrong mo- 
del I, where for example 
(*) csubmit(emptycand, s) + 

csubmit(cwithdrwaw(csubmit(emptycand,s),s),s) 

holds. More gegerally, Armstrong models of, 
type FINSET (if .they exist) are.based on se1 
quences where multiplicity and ordering of the se- 
quence elements is relevant for the equality. 
Also for implementing delete(s, x) the element x 
must be appended to the sequence s with a marker 
for bein 

Yl 
no longer present. Thus in I the can- 

didate's istory is completely reflected. 

Also the type EMPLOYMENT-AGENCY has a (strongly 
initial) Armstrong model if cchoose and echoose 
are specified sufficiently complete. Similar to 
CANDIDATES in an Armstrong model of EMPLOYMENT, 
AGENCY the equality between objects of sort 3 
is determined by the sequence of updates submit, 
hire, fire leading to them. Thus Armstrong mod- 
els contain redundant information which cannot be 
retrieved by queries. 

In the partial algebra approach Armstrong models 
are minimally defined and defined terms are inter- 
preted as different as possible. Thus the exist- 
ence of Armstrong models is not endangered when 
adding inequalities such as (*) to a database 
specification as long as it remains consistent. 

6. BEHAVIOUR OF DATABASES 

In a view point dual to Armstrong models a data- 
base is significantly characterized by its beha- 
viour, that is by all effects which are visible 
in the primitive types. Thus a model of a data- 
base specification is called a behaviour model 
if two elements are distinguished in the model 
only if they can be discriminated by queries. 
Such models can be defined using the behaviour 
view of a database which abstracts from the equa- 
tions holding on its nonprimitive sorts. 

For simplicity throughout section 6.1 and 6.2 let 
DB = <X, E, OBJ> be a database specification with 
exactly one nonprimitive sort db ET where the 
primitive type OBJ contains o= sort obj. 

Definition 

The hhaviour view Beh(DB, V) of a database 
scheme DB = cf, t, OBJ > w.r.t. a subsignature 
V E t Is given by 

Beh(DB, V) = ’ + DB/sig(OBJ) t OUT(V) : EQU(V) 

where 

OUT(V) = {funct obj to [ tE W(V) of sort obj 1 

EQWV = {t = to [ t E W(V) of sort obj 1 

Thus in a behaviour view of a database scheme 
DB the axioms of the sort & are neglected and 
all terms of W(V) of primitive sortg are 
added as constants. 

6.1 BEHAVIOUR MODELS 

The identity of the nonprimitive parts of a data- 
base specification may be completely determined by 
their visible behaviour in the primitive object 
type OBJ. On the term level, one gets a visible 
behaviour of a nonprlmitive object by putting the 
corresponding term into a context of a primitive 
sort. 

Definition 

a) A X-algebra A of a database specifjcation 
DB =<t, E, OBJ> is called fully abstract, 
If. for all t, t'E W(r) of sort * 

(1) A b D(t) iff there exists a context 
c[x] E W(DB,lxl) of sort obj with 
A k D(c[tl). 

(2) A I= t * t' iff there exists a context 
c[x] E W(DB,{x)) of sort obj with 
A k c[tl $ c[t']. 
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For the database abstractions AGGREGATION and 
GENERALIZATION Armstrong models and behaviour mod- 
els coincide if the precondition operations pre 
resp. Prei are sufficiently complete. In this 

case, AGGREGATION and GENERALIZATION are par- 
ameter monomorphic. 

For the database abstraction CORRESPONDENCE all 
behaviour models are isomorph ic if the operations 
preins, predel, and choose are sufficiently 
complete. 

3) A fully abstract model of Beh(DB, 1:) is 
called behaviour model of DB. 

Proposition 

a) If a database specification DB = <z, E, OBJ> 
is sufficiently complete, then all behaviour 
models of DB are isomorphic. 

b) If furthermore all axioms of DB are of pos- 
itive conditional form with maximal premihes 
and the definedness predicate D is model in- 
dependent in .DB, then the following is equi- 
valent for an algebra A with signature of 
Beh(DB, 1) : 

(I) A/, is a strongly terminal model of DB . 

(2) A is a strongly terminal model of Beh(DB, t) 

(3) A is a behaviour model of DB . 

corollarr 

Example 

The types SECRETARY and STAFF are parameter 
monomorphic. 

The type CANDIDATES has behaviour models satis- 
fying (in contrast to Armstrong models) for exam- 
ple the formula 

csubmit(emptycand, s) = 

csubmit(cwithdraw(csubmit(emptycand,s),s),s) 

since its left and right hand side are not dis- 
tinguishable by contexts of primitive sort. 

6.2 DISTINCTION BY QUERIES 

In a database specification the effects of update 
operations are visible to a user only by the change 
of results of queries. Thus internal states with 
different behaviour should be distinguishable by 
query operations only. 

Definition 

For a set Q of query operations a database spec- 
ification OB = <x, E, OBJ > is called query dis- 
tinctive, if any two states db, db' E W(X) 
of sort 2 are distinguishable by queries, that 
is 

Beh(DB,x)/,, = DB' 

where X' is the signature of 

DB' = Beh(DB, c{&, objl, 9~). 

-dings of the Eighth International Conference 

For'database specifications that are sufficiently 
complete and query distinctive, behaviour models 
are completely characterized by queries. 

Proposition 

Let DB = <I:, E, OBJ > be a database specifica- 
tion which is sufficiently complete and query di- 
stinctive. A X-algebra A is a behaviour model 
of DB iff for all db, db' E W(T) of sort 2 

A + db * db' c) there exists a holding query q E c 
with DB.t qfdb) 4 q(db') 

A k D(db) * there exists a holding query q E c 
with.DB I= D(q(db)) l 

For the database abstractions of section 3 we get 
in particular: 

Proposition 

AGGREGATION, GENERALIZATION, and CORRESPONDENCE 
are query distinctive if the signature morphism 
u does not forget any query operation. 

Example 

The type SECRETARY is query distinctive, since 
two objects of sort seer are different whenever 
they differ in at leamne component NAME, AGE, 
or TYPING SPEED. 

The distinction by queries is transitive with re- 
spect to parameter passing in parameterized types: 

Proposition 

If the database scheme DB(PAR) is query distinc- 
tive (w.r.t..its parameter type PAR) and ‘ARG is 
query distinctive b.r.t.its primitive type OBJ), 
then the database DB(ARG) is query distinctive 
(wx. t. OBJ) . 

Corollary 

If a database specification DB is built only by 
database abstractions then it is query distinctive 
if no query operations are forgotten by the sig- 
nature morphisms used. 

Example EMPLOYMENT AGENCY is query distinctive. 

Finally, all composed data structures which do not 
allow to access all their components directly by 
a single operation are, in general, not query dis- 
tinctive. 

Example 

Let the type FILE with parameter OBJ spe- 
cify .files using the updates emptyfile; rest3 
put, and the query operations get, eof. Then 
FILE is not query distinctive since files differ- 
ing in the second, third, . . . element cannot be 
distinguished by the queries get and eof. 
Note that the procedure get of PASCAL corres- 
ponds to the compositian get.rest'(see section 9): 
PASCAL-files are not query distinctive. 
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6.3 KEYS 

In a database specification DB=<t,E,OBJ ,.., ,OBJ,> 
with various primitive types OBJi the &eries 
leading to a distinguished primitive type OBJi 
may be sufficient to discriminate the nonprimityve 
objects: 

Definition 

A primitive type of a database specification 
DB = 

OBJib 
<I, E, OBJ, , . . . , OBJ, > is called key if 

DB is query distinctive w.nt.all operations with 
range in a sort of OBJio. 

Example 

Let secretaries be uniquely distinguishable by 
their names. Then NAME may serve as key since 

SECRETARY'sig(SECRETARY)+sage, speed,isadultl 

is query distinctive, whereas 

SECRETARY/ sig(SECRETARY)9snamel 

will, in general, not be query distinctive. 

7. IMPLEMENTATION AND BEHAVIOUR EQUIVALENCE 

OF DATABASES 

At the beginning of a database design there stands 
the requirement analysis formalized as external or 
conceptual scheme. The conceptual scheme then is 
the starting point for a joint development towards 
an internal scheme. This development can be done 
for example by a stepwise refinement technique 
(cf. /Ehrig, Fey 81/) or by a series of transfor- 
mation steps meliorating coherently algorithms ano 
data structures (cf. /Bauer, WUssner 82/). The 
correctness of such refinement or transformation 
steps can be expressed and formalized by the no- 
tion of implementation. Each subsequent specifi- 
cation is an implementation of the previous one. 
The algebraic definition of an implementation does 
not depend on the structure of the specified data- 
base but only takes its behaviour into account 
(cf. /Ausiello et al. 80/). 

Definition 

A database specification DB = < E,g E , OiJ > As 
called an Implementation 0; DB, 

1 
= .<z 3, E.: OBJ?> 

via a signature morphism 

K: OUTa -, OUT 
1 

if 0 + Mod(Beh(DB,,Z,)/, c., Mod(Beh(DB2,x2)/OUT ) 
a 

where OUTi e Sig(OBJi) U-OUT(xi) 

(see also section 6) . 

oa, and DB are called behaviourally equiva- 
lent if the! implement each other. 
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Informally DB, implements DB, if the visible 
parts of the models of DB agree (after renaming) 
with the visible parts of iodels of DB,. There- 
fore the semantics of queries is not affected by 
an implementation whereas the semantics of updates, 
in general, is. 

When building hierarchies of data abstractions com- 
posite objects often share common components. In 
an implementation step these components are sepa- 
rated. : The sum of two products with common 
subtypes can be implemented by the product of the 
comnon subtypes and the sum of the other components. 

Proposition. 

Let OBJ, s PROD,(OBJ, OBJ;) and 

OBJos PRODb(OBJ, OBJ;) . 

Then SUM(OBJ OBJ,) 
PROD(OBJ,SUM’1iBJ; 

is implemented by 

morphism 
OBJA)) via the signature 

K induce; by 

KW,(mka(xs Y,)) = Wx, mk;(y 1) 

K (mk2(mkb(X, Y2 )) = mW .,;(yl)) 

Of course the'implementation is more economic 
since the ob'-component occurs only once in the 
product. ti owever, as can be easily seen, both 
types are behaviourally equivalent. 

Example 

The type STAFF can be implemented by 

PROD(NAME, AGE, SUM(TYPINGSPEED, TELEPHONE)) . 

A quite different implementation step usually is 
applied to the set-like database abstraction 
CORRESPONDENCE. After introducing a key, tables 
(specified by the type scheme GREX below) may 
be used to implement the correspondence. 

Definition An association is a type scheme 

w ASSOCIATION = (KEY, OBJ, Q, PRE,Z, E) : 

data-enrich GREX(KEY, OBJ)/o : PRE & Z, E 

endoftype where 

E GREX = (KEY, OBJ) : 
data-enrich KEY, OBJ, BOOL & 

funct grex init , 

funct (E g, kc-y k, obj x : 

preput(g, k, x)) ~rex put , 

funct (,m g, & k : isin(g, k)) obj get , 

funct (~g,ks k : predel(g,k)) grew cancel , 

funct (grex, &) bool isin, predel , 

funct (grex, &, a) bool preput , 
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isin(&n& 1) = false , 

preput(g, k, x) - 

isin(put(g,k,x), l)= (eqk(k,l) v isin(g,l)), 

isin(put(g,k,x), 1) *get(put(g,k,x), 1) = 

if eqk(k,l) then x else get(g,l) fi , 

predel(cancel(pz, kX)t 1)) - 

cancel(put(g, k, x), 1) = 

if eqk(k, 1) then if isin(g, 1) -- 
then cancel(g, 1) 

fi - 
else put(cancel(g,l),k,x) fi 

endoftype 

Proposition 

Let OBJ s PROD(KEY, OBJI) such that for all 
& k, finset s there exists at most one 

o E ob" 
Ed 

with iselem(s, <k, o>). Then 
CORR ONDENCE(KEY, OBJ) can be implemented by 
ASSOClATION(KEY, OBJ) via the signature 
morphism K induced by 

K(insert(g, x)) = put(lc(g), sel,(x), %) 

K(delete(g, x)) = cancel(r(g), sel,(x)) 

K(iselem(g, x)) = isin(K(g), sel,(x)) 

and some particular operations getsome and isinit 
for w(choose) and K(iSempty). 

The particular choice of getsome such as "get an 
object with minimal key" often implies that COR- 
RESPONDENCE and ASSOCIATION are not behaviour- 
ally equivalent. 

Example 

The type CANDIDATES can be implemented by the 
following type 

* CANDIDATES' 1 (NAME, SECRETARY) : 

data-enrich (cand', einit', csubmit', cget', 

cwithdraw', iscand', precwithdraw', precsubmit') 

l GREX(NAME, SECRETARY) 

& precsubmit'(g, i, x) = 7 iscand'(g,i) , 

precwithdraw'(g, i) = iscand'*(g, i) 

& funct (cand') boo1 cisinit --m 
funct (cand'c: -isin 

. . . 

epdoftype 

via the morphism-induced 

K(cSUbl’dt(g, x)) = csubm t’(K(g), sname(x)r x), 

K(iscand(g, x)) = iscand'(ic(g), sname(x)) . 
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8. AN ABSTRACT PROGRAMMING LANGUAGE MODEL 

To express and perform complex database oderations 
a database language is needed. The queried and 
updates of the database scheme serve as its prim- 
itive operations. Below we define a schematic im- 
plementation of a conceptual-database scheme by a 
simple but adequate programming language. This 
completes an aim of this paper to propos 
stract programming language as a x 

an ab- 
sema tic data- 

base model. The programming language should be a 
scheme language :'its semantics should-be completely' 
defined relative to an arbitrary database scheme 
providing the primitive operation symbols. The 
axioms for the programing language model are sim- 
ple translations from the axioms of the database 
specificationenriched by the axioms of the pro- 
graming language constructs. 

As an example we define a functional language 
(/cf. Buneman, Frankel BO/), in the FP-style of 
Backus to obtain recursion complete query and up- 
date languages. 

Throughout this section for simplicity let DB = 
<Z, E, OBJ >be a database specification with exact- 
ly one nonprimitive sort db and one primitive 
type OBJ with primitive sort pr . 

8.1 THE BASIC DATABASE LANGUAGE 

The basic database language B-DB-L is based on 
the types DB for the database specification and 
SEQU(OBJ) specifying sequences of objects. It 
comprises the sorts query_ and + for query 
resp. update operations. 

e B-DBI = (DB, OBJ) : 

data-enrich DB(OBJ), SEQU(OSJ) & 

sort query, Icpd 

Then the database scheme DB is "lifted" by the 
signature mapping a : sig(DB)+ sig(B-DBI) 
which relates sorts 

a(db) =I& 

a(obj) = query 

a&r) =guery 

and function symbols 

a(funCt(s,, . ..) &J 2 f) = funct a(z) T . 

Depending on its range s, a function symbol f 
yields an object 'f eitTier of sort uer or 
II d. 
P 

v Remembering the syntactic class1 lcation 
n section 4 we thus get by definition of a the 

following correspondence: 

holding query f of-DB c, funct query 7 

object query f of OBJ w funct query If 

holding update f of DB * 

object update f of OBJ - funct query f 
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Example 

In B-DBL(CANDIDATES, SECRETARY) the operations 
csubmit, cwithdraw, iscand, and precsubmit 
of the database CANDIDATES are translated into 

funct upd csubml't, cwithdraw 

funct query iscand, precsubmit . 

8.2 A FUNCTIONAL DATABASE LANGUAGE 

The basic database language is enriched by the ,an- 
guage constructs z and axioms E describing a 
functional programming language. 

E DB-L = (DB, OBJ, ID) : 

data (NAT + ID t CONFIGURATION(DB, OBJ)j+ 

enrich B-DB-L by z, E 

endoftype 

Functional orosrams are constructed usinq the con- 
ditional if .-then else fi the fu&tional 
compositioii- .Qy a tu6le'c&tructor [.,.I 
with corresponding selector functions se1 and 
(possibly recursive) function definitions recv 
and function calls call. For this purpose a type 
ID of identifiers is assumed. Thus for v E 
{query, updl the signature 1 comprises 

funct (query, 1, v) v if , then . else . fi , 

funct (I, 1') upd -0. -(updz, VT 

funct (query, query) query .0., [.,.I , 

funct (nat) query se1 , -- 
funct (id, v) v recv , - - 
funct (id) v call . --- 

In the signature above function symbols with dif- 
ferent arities are overloaded; for example there 
are actually four compositions 

funct 

funct 

funct 

funct 

(query, upd) upd .o. , 

(upd, query) upd .Q. , 

(upd,llJgupd.o., 

(query, query) query .o. , 

three of which yield updates; they may change 
the state of DB. Note that (recursive) defini- 
tions of queries resp. updates have to be dis- 
criminated. 

To define the semantics let a eonfiguration con- 
sist of a database scheme and a sequence of input/ 
output data: 

type CONFIGURATION = (DB, OBJ) : 

db, io) = TPROD(DB, SEQU(OBJ)) 

endoftype 

The following axioms of the semantic function 

funct (1, conf) conf apply -- v E iwry, upd) 

taken as left to right term rewrite rules describe 
an innermost (call-by-value) text substitution 
machine. The auxiliary function subst denotes 
the usual substitution, that is subst(x, f, g) 
replaces all free occurrences of call(x) in f 
by g ; its straightforward definition by struc- 
tural induction is omitted. 

apply(pdb,<o,,...,ok>>)=< f(db,o,,...,ok),c= 

for holding updates funct(db,obj ,...,c&&)g f, -em, 

apply(fj<db,<o,,...,~~>>)= <db$f(db,o,,...,ok)>> 

for holding queries funct(db,obj ,...,objk)04Ji,+If ---, 

app'ly(T,~b,<o,,...,ok>,)= <db,<f(O ,,..., Ok) >> 

for object operations funct(obj,,...,ob&)obj,,I f 

io(apply(c,a)) = <true> M 

apply(if c then v, * v, c, P) = apply(v,, 71) 

io(apply(c,s)) = <false > r, 

apply(if c then v, * va fi,n) = apply(vl,n), - 

jsk* 

apply(sel(j),<db,<o,,...,ok>>) =<db,<oj>> , 

atvly([q, 9 q21d 1 = 
<db(r), io(apply(q,,= ))a io(apply(qz,* ) )> 9 

apply(v, 0 v2, 71 ) = wly(v, , awly(v,~ r 1) s 

apply(recupd(f, v), ") = 

apply(subst(f, v, recupd(f, v)), fl) 9 

lT 
2 

= apply(subst(f, v, recquery(f, v)), v,) - 

apply(recquery(f, v), *,) = <db(n,), io($)> 

For brevity the axioms for context conditions like 

j>k* 

D(apply(sel(j), <db,< 0, ,..., ok>> )) = false 

have been omitted. These axioms also specify 
that basic operations can only be applied accord- 
ing to their arity. 

The functional database language has the follow- 
ing semantic properties: 

Theorem 

The type DB L is weakly sufficiently Complete 
and admits minimally defined behaviour models. 

Proof See /Bray, Wirsing 801. a 

Note that the minimally defined models correspond 
to least fixed points and provide a mathematical 
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semantics for D&L. The following example shows 
some properties of these models. 

Example 

In DB-L E DB-L(CANDIDATES, SECRETARY,ID) the fol- 
lowing equations hold (cf. section 3.2.3): 

apply(precsubmit, a) = apply(not 0 iscana, 7~) 

apply(precwithdraw, V) = apply(iscand, 71) 

The operation apply is the only operation in 
DB-L with range in the primitive type CDNFIGU- 
RATION; therefore all contexts of primitive sort 
for functional programs have the form 
apply(c [xl,r). An induction on the minimally 

defined models of DB-.L shows that precsubmit 

and ndt 0 m as well as precwithdraw and 

m are not distinguishable by contexts of 
primitive sort. Thus 

precsubmit = m om 

precwithdraw = m 

holds in all minimally defined behaviour models 
M of DBI. Furthermore nonterminating queries 
or updates are undefined, for example 

M I= D(recquery(x, call(x))) = false . 

Note that a database specification is implement- 
ed by its database language. 

Proposition 

For every database specification DB' the type 
DB-L(DB1) is an implementation of DB1 via the 
signature morphism K, for example induced by 

K(f(db,o,,..., ok)) = io(apply(T, <db,(o,,...,ok>>) 

for all holding queries f of DB . 

The following example shows how to use the funct- 
ional database language. 

Example 

In DB-L e DB-L(EMPLOYEES, EMPLOYEE, ID) the query 
works (cf. section 3.2.4) can be expressed by 

recquery(w, body) , 

where 

else call(w)oefireosecroeEhoose 

fi 
fi 

body 'if eisempty 

then false 

else if eq 0 [sel(l), GZFoeS 1 -- 
then true 

Then in DBJ it is provable that 

apply(recquery(w, body),<db,< s>>) = 

<db, <works(db, s)>> . 

where works is the operation specified in sec- 
tion 3.2.4. 

Proposition 

The application of recquery does not change the 
state of the database, that is 

DB 1 apply(recquery(f,q), <dbt, i,>) = <dbz, i2> 

e db,= db . 

From the full databaie languages an update language 
and a query language can be derived. 

Definition 

For a database language DB,L=DB-L(DB,ID,SEQU(OBJ)) 
a query language QQL may be given by 

w Q-L = 

[data-enrich DB-L & (v E (query, updl) 

funct (v , conf) seq(obj) qappfy , -_- 
qwply( v , 71) = io(apply( v , n ))l/my 

endoftype 

where 

m = (recquery(f, v)l fE g x v E W(DB-L)1 

U~Efunct (db, conf) sequ(obj) qapply 1 . --- -m 

An update-language UPD-L may be given by 

a UPD-L = 

[data-enrich DB-L by - 
funct (v , __ _ -- conf) db updapply ,(v E (query, updl) 

updapply(v , r) = db(apply(v , n))l/mr 
endoftype 

where 

m = sig(DBL) u {updapply 1~ Capply 1 . 

Thus programs of the query 
the state of the database, 
the update language do. 

language do not change 
whereas programs of 

9. RECURSION COMPLETENESS 

It has been advocated (/Chandra, Hare1 80/) that 

have full computational power, i.e. that every 
the language to manipulate the database should 

partial recursive function can be computed. 
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Definition 

A sig(DB L)-algebra A is called recursion 
complete, - if there exists a surjective recursive 
mapping a :lN xlN + Adb x Aobj such that for eve- 

ry partial recursive fxctioii-f :lN xIN +lN xlN 
there exists v E W(DB) of sort uery or update 
such that A + apply(v, a(n, m)) % = a 
that is the diagram 

n, m)), 

wdyW 
Adb ' Ases(obj) - dAdJ ' &(obj) 

i 

a a 

f 
IN x IN - 

, T 
IN xlN 

commutes. A is called query resp. update re- 
cursion complete, if analogously for every par- 
tial recursive f :IN x IN *IN there exists 
q E W(DB) of sort query such that 

A k qapply(q, a(n, m)) = a(f(n, m)) 
resp. an u EW(DB) -of sort .upd such that 

A I= updapply(u, a(n, m)) = a(f(n, m)) 

holds. 

Then for every database DB', DB L(DB1) is called 
query resp. update recursion &plete if all 
minimally defined behaviour models of DB L(DB1) 
are query resp. update recursion compTete. 

Proposition 

DB-L(FINSET) is query and update recursion com- 
plete. 

DB-L is weakly sufficiently complete. Therefore 
the semantic operation apply - and thus also 
vwly - is a partial recursive function in every 
minimally defined model of Q L(FINSET). Converse- 
ly the recursion completenes3 implies that every 
partial recursive relation can be simulated using 
rawly by 

qapply(q) : ob& X... x obj, + {a(O), a(l)1 . 

Both properties together show that Q L(FINSET) 
is complete in the sense of /Chandra,%arel 80/. 

Thus our notion of recursion completeness gener- 
alizes the completeness of Chandra, Hare1 ; it 
also generalizes their "extended completeness" 

since FINSET is parameterized with arbitrary ob- 
ject types. 

10. CONCLUDING REMARKS 

Algebraic types seem to be an interesting tool for 
the specification and analysis of database schemes. 
Such a specification may be considered as a step- 
wise development process where requirement analy- 
sis, external, conceptual, and internal schemes 
mark significant levels: 

The transition from the requirement analysis to an 
external scheme can be seen as a refinement pro- 
cess where in each step the requirements are pre- 
cized. The conceptual scheme is a solution of an 
"abstract domain equation" where the views of the 
external scheme have to be integrated. Then a 
joint development of data structures and algorithms 
leads to an internal scheme. In this step, for 
example keys are introduced and recursion can be 
removed. 

The formal correctness of these transformations 
can be uniformly defined by an algebraic notion 
of implementation and thus algebraic methods can 
be used to support the specification of databases. 

On the other hand for a sound database specifica- 
tion at each level it is necessary to analyse the 
properties of the algebraic types. Such an ana- 
lysis may comprise the structure and behaviour of 
admissible models, the completeness of the speci- 
fication, the complexity of the operations and the 
redundancy of information. This gives a guideline 
for the further development and a feedback with 
the informal ideas in mind. 

When working with and reasoning about database 
specification a specification language seems to be 
needed to express flexibly various operations with 
algebraic types. But it would be very uneconomic 
(and to difficult for non-experts) to write down 
arbitrarily complex axiom systems. Therefore com- 
plementary to a specification language elaborated 
database abstractions may build the "skeleton" of 
a database-specification for which standard solu- 
tions and high level implementations are available. 
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