
A Denotational Definition of the Semantics
of DRC, A Domain Relational Calculus

Georges Louis
Philips Research Laboratory

Bruxelles, Belgium

and

Alain Pirotte
Computer Corporation of America

Cambridge, Massachusetts, USA

ABSTRACT

This paper presents a semi-formal denota-
tional definition of the semantics of a version
of domain relational calculus called DRC. A sin-
gle basic design principle governs the semantic
definition: each predicate (or formula) of DRC
denotes a relation.

The definition obtained is precise, short,
and systematic. Generalizations of operations of
the relational algebra are suggested, which
correspond very directly with the semantics of
DRC formulas.

This work also suggests a more active role
of semantic considerations in the design process
of a query language, in order to simplify the
specification of the language and, eventually ,
the language itself.

1. INTRODUCTION

A relatively recent development in the evo-
lution of programming languages has been the use
Of formal specifications of language semantics,
in addition to the more classical formal specifi-
cation of syntax. This formal specification of
semantics has slowly begun to replace the usual
informal description in English. Thus, for exam-
ple, the classical disciplines of logic and
linguistics have given rise to the denotational
approach to
[STOY771.

programming language semantics

In contrast to the programming language
field, the field of database query languages does
not have a tradition of precise (let alone for-
mal) definition of semantics. This has created a
number of problems. It is not uncommon, for

A.Pirotte’s work was partially supported by the
National Bureau of Standards under Contracts
NB7 9SBCA0088 and NB7 9SBCA0086.

Authors’ present address: Philips Research La-

kx”’ , I’ 2 avenue Van Becelaere, 1170 Brux-
elgium.

example, to see an initial language design based
on an intuitively appealing idea, but with the
semantics left intuitive as well. Then, when more
advanced investigations reveal that the language
is not powerful enough, the initial design is
patched with new constructs. Such a design stra-
tegy in successive stages leads to layered
languages lacking conceptual unity. Other prob-
lems are created when implementors are not pro-
vided with completely precise specifications. It
is not uncommon to see the limits of a query
language actually defined by language processors
rather than by a reference document. This situa-
tion reduces portability and results in a more
difficult learning process for users.

There is no fundamental reason, however, for
database query languages to be defined less pre-
sisely than programming languages. Indeed, if
anything, the converse could be true, since typi-
cal query languages are simpler than typical pro-
gramming languages. For example, the mathemati-
cal foundations of the denotational definition of
programming languages involve sophisticated
mathematical concepts. Yet, precise definitions
of high-level relational query languages can be
produced with very little formalism. These
definitions can be remarkably concise and easy to
understand.

This paper illustrates the latter point by
presenting a semi-formal denotational definition
of a version of domain relational calculus called
DRC [LACR77, ULLM80, DATE811. For the clarity of
this paper, we preferred a semi-formal definition
to a formal one. It will be clear however that
constructing’bne from the other is easy.

A denotational definition of a language
describes the semantics of language constructs as
functions from syntactic structures to mathemati-
cal objects, in such a way that the semantics or
,“denotation” of a composite construct is
expressed as a combination of primitive objects
and of denotations of the immediate constituents
of the construct.

A single basic design principle governs the
semantic definition of DRC given in this paper:
each formula (or predicate) denotes
bll the detaxs of

a relation.
the definition follow from

that principle.
“bottom-up,“:

The semantics of DRC is strictly
for each formula F of DRC, the

structure and value of the relation denoted by E
do not depend on the context in which F occura in
a DRC query. In fact, the only formal structure

Proceedings of the Eighth International Conference
on Very Large Data Bases

3’18 Mexico City, September, 1982

needed is the definition of relations as sets of
tuples with selectors (or attributes).

The rest of this paper is organized as fol-
lows. Section 2 contains an informal definition
of DRC. Section 3 is a formal definition of
relations. Section 4 gives the precise semi-
formal definition of DRC, consisting of a svntac-
tic definition based on-a BNF gr&r, and-a set
of semantic rules. Section 5 relates the seman-
tic definition of DRC to a version of relational
algebra. Section 6 summarizes the results of
this paper, and advocates a more active role for
semantic specifications
design process.

in the query language

2. INFORMAL DEFINITION OF DRC

DRC is a version of domain relational cal-
culus [LACR77, ULLMSO, DATE811. It has the same
power as the tuple relational calculus or the
usual relational algebra [CODD72].

This section gives an intuitive definition
of the semantics of DRC. The definition proceeds
from the root to the leaves in the syntactic
structure of queries.
similar to a usual way

The definition is very
of understanding th’e

structure of the predicate calculus, where quan-
tifiers translate into coniunctions and disiunc-
tions, and predicates h&e a truth value; The
definition accounts for both .“list.” queries and
“yes-no” queries.

DRC variables are called domain variables:
each variable ranges on the elements of a domain
of elementary values of the database. The asso-
ciation of a variable with a domain is specified
by some form of explicit or implicit declaration.

A ouerv in DRC has one of two possible
forms:

- an)bPen query (or list query) has the form

{(xl ,...,xn) I P (xl,...,xn)J

where P(xl,...,xn) is a formula of DRC with
xl ,...,xn as free variables. Its value is the
set of labeled tu les <xl:al,...,xn:an> such
that P(al,...,an P is ,“trueJ’. For each i, ai
is an element of the domain associated with
xi. Note
(xl

that the target specification
,...,xn) in the prefix is redundant, if it

is assumed that the target is specified by the
set of free variables of P.

- a closed auerv (or yes-no query) is simply a
DRC formula without free variables. The value
of the query is the truth value (or Boolean
value) of the formula, “true” (or .“yes,“) or
“false.” (or “no.“) .

The atomic formulas (or atomic predicates)
of DRC are of two kinds:

- usual binarv comparison oredicates like =, f,
<, >, etc., whose arguments are constants and
domain variables. Constants are notations for
doma in elements. For each comparison predi-
cate, both arguments must be associated with
the same domain.

- 2”-1 relation Predicates are defined for each
relation with n attributes. They have between
1 and n arguments and correspond to all possi-
ble ways of selecting a non-empty subset in
the set of attributes of the relation. Each
predicate is in fact a membership predicate
for a projection of the relation and its argu-
ments are constants or variables of DRC.

The value of a predicate is .“true” if the
tuple made of its
associated relation

arguments belonns to the
ro jection. It i;l “false”

otherwise. For a re ation R(Al:Dl.....An:Dn)‘. P
the associated predicates are ‘written
R(Ai:ai ,...,Aj:a*) where
attributes of R

i.

of {Al ,...,An))
i.e., {Ai,. . . , t;r

’ 0;; $ubt=;

and ai,...,aj are the argu-
ments of the predicate constants or
variables). !‘name,”

(i.e.,
The of the predicate can

therefore be seen as ,“R(Ai: , . . .,Aj:)>‘I with
the attributes Ai , . . . ,Aj unordered just as in
the associated relation. The position or
arguments for the predicate is indicated by
blanks. Thus:

R(Ai:ai ,...,Aj:aj) = “true,” <=>

cAi:ai ,..., Aj:aj> 6 R[Ai ,..., Ajl

The formulas of DRC are defined as follows:

- Atomic formulas are formulas.

- If A and B are formulas, so are (not A), (A or
B) , (A and B), (A->B), and (A<->B). Instead
of a fully parenthesized form, usual priori-
ties can be used for the connectives. The
meaning of these propositional formulas is
computed from the meaning of A and B using the
usual rules of Boolean algebra.

- If x is a variable, then Yx and +x are quan-
tif iers containing x. If P(x) is a formula
that contains x but no
X¶ then (Vx P(x)) and (9

uantif ier containing
x P(x)> are formulas.

Their meaning is defined as follows:

4x P(x) = P(a1) and . . . and P(an)

+x P(x) z P(a1) or . . . or P(an)

where al, . . . ,an are the elements of the domain
associated with x.

3. FORMAL DEFINITION OF RELATIONS

A relational database comprises a collection
of finite domains of elementary values and a col-
lection of relations.

A relation has a fixed name, a fixed struc-
ture, and a time-varying value.

The structure of a relation (sometimes
called relation scheme) T:s specified by a set of
attribute-domain pairs. All the attributes of a
relation must be different. The domains refer-
enced in a relation are not necessarily all dif-
ferent. The collection of attribute-domain pairs
of a relation is not ordered.

Proceedings of the Eighth International Conference
on Very Large Data Bases 349 Mexico City, September, 1982

Formally, the structure of a relation is a
functional mapping from the attributes of the
relation to domains (more precisely, domain
names).
{(~l->~i)

This mappin
3

is noted as a set of pairs
,...,(Ai->Di(An->Dn)). where

Ai's are the attribites
the

and the Di's are the
domain names.

A relation R with n attribute-domain pairs
is denoted as R(Al:Dl,...,An:Dn). Sometimes,
B(A:D) or R(A) will be used as a shorthand nota-
tion.

The value of a relation R(Al:Dl,...,An:Dn)
(sometime7 -- called state of relation, or simply,
relation) is a set of n-tuples cdl ,...,dn> of
elementary values, where di belongs to Di for all
i such that l<i<n. More exactly, the value of R
is a set of ?zbeled n-tunles" (Al:dl.....An:dn>
of values. The order of vilues is not signifi-
cant, since each value is associated with an
attribute of R.

Formally, the value of a relation
R(Al:Dl ,...,An:Dn) is a subset of the generalized
Cartesian nroduct of its domains D = {Dl,...,Dn)
indexed by-its attributes A = {Al,...,An)-defined
as:

A1:Dl x . . . x An:Dn =

{t:A -> Dl U . . . U Dn 1 t is total and

t(Ai) 6 Di for 1 2 i L n)

The indexed Cartesian product will also be
noted X(Al:Dl ,...,An:Dn) or, for brevity, X(A:D).

The indexed Cartesian product generalizes
the ordinary Cartesian product in that the com-
ponent sets are unordered in the product and each
set is distinguished from the others by a unique
index. Thus, each relation tuple t of a relation
R with attributes A is described formally as a
total function on the set of attributes, having
values in the associated domains.

The operations of the relational algebra
[CODD72] can be defined precisely with this for-
mal description of relation values [PIR0821. For
example, projection and Cartesian product, which
are used in this paper, are defined as follows.

The ro'ection of a tuple t on its B attri-
butes is written t Brand F is the tuple t.::

t,':B->DB such that YbGB t:(b) = t(b)

Similarly, the proiection R[Bl of a relation
R(A), with B LA, on its B attributes-is the set
of all such tuples:

R[BI = {t[Bl 1 t6R)

= {t:.:B->DB 1 +t6R YbBB t'(b) = t(b))

The Cartesian roduct of two relations
Rl(A:DA) and R2(B:DB v with A and Disjoint is a
relation whose value is:

{t:A U B -> DA U DB 1 t[Al 6 Rl and t[Bl 6 R2)

The formal description of relation values
introduced in this section is similar to what
would be a description in terms of the
tional sets" of [BARD~~].

"posi-

4. DENOTATIONAL SEMANTICS OF DRC

A denotational definition of a language
essentially consists of a definition of the syn-
tax of the language, and of the definition of
functions which map syntactic constructions to
mathematical objects representing the objects
actually manipulated by the language.

4.1 Syntax of DRC

Denotational definitions start from an
"abstract" svntactic definition. similar to
descriptions with classical context:free (or BNF)
grammars. The abstract syntax of a semantic
definition is not necessaril
syntactic analysis. The a stract i3

the syntax used for
syntax simply

provides a way of manipulating the syntactically
analyzed programs. It may well be ambiguous, if
all the syntactic analyses of a program lead to
the same semantic interpretation.

An abstract syntax for DRC is shown in Fig-
ure 1.

The syntactic categories (or nonterminals)
are: V (variables or, more precisely, variable
symbols), R (names of database relations used as
predicate svmbols). C (constants), Q (queries), F
!f ormulas),-T (terms), OP (operators like =, -#,

, >, etc.). V.
specified.

R, C, and OP are not further
They essentially behave like terminal

symbols of usual BNF grammars. Rules 1, 3, 7, 8,
and 9 are rule schemas for n 1. 1. Indexed
occurrences of nonterminal symbols are used to
represent distinct instances of the corresponding
class of objects.

An abstract syntax is not necessarily a com-
plete syntactic specification of a language.
Thus, in the case of DRC, acceptable queries must
also verify the following additional syntax
rules, where numbers refer to rules in Figure 1:

2;’ ,...,Vn) 1 F)

R (~l:~l,..., An:Tn)
not F
Fl and F2
Fl or F2
v Vl ,...,Vn F

3: ::
,...,Vn Fl -> F2
,...,Vn F

(F)
V OP T

cv

Figure 1. Syntax of DRC

Proceedings of the Eighth International Conference
on Very Large Data Bases

350 Mexico City, September, 1982

(1) the free T;;iables of F rn;f: be exactly the
variables ,...,Vn); varrables
(Vl ,...,Vn) must be distinct; there must be :F
least one variable in (Vl,...,Vn);

(2) F may not have free variables;

(3) each variable or constant used as an argument
in a relation predicate must be associated with
the same domain as the domain associated with its
position as an argument in the predicate;

(5,6) either Fl and F2 have no free variables or
both have free variables;

(7,9) the variables in (Vl,...,Vn) must all be
distinct; they must all appear as free variables
of F; there must be at least one variable in
(Vl ,...,Vn);

(8) the variables in (Vl ,...,Vn) must all be dis-
tinct; each must appear as a free variable of Fl,
F2 or both; there must be at least one variable
in (Vl ,...,Vn);

(11) V and T must be associated with the same
domain; the oneration OP must be defined for the
domainWassociated with V and T.

4.2 Semantic Functions

4.2.1 Relations Denoted by Formulas

DRC is typed. Each . -. domain of the database - .
dekmes a type for varrables and constants. Sub-
types are not supported and domains are supposed
to be disjoint. Each variable is associated with
one domain. Several mechanisms are possible to
specify the association (such as an explicit pre-
fixed declaration); they are equivalent for what
concerns the semantic structure of the language,
and, therefore, they are not discussed in this
paper.

The central design principle of the semantic
definition is to re resent the value of each for-

F 1n the syn-xEaxa= mula or predicate +-----
ttributes are the free variables of

the formula. a f 0rmuiK
a relation). Thus, if a formula F has

free variables Vl , . . . ,Vk with types corresponding
respectively to domains Dl,...,Dk, then the deno-
tation of F will be a relation which is a subset
of the indexed Cartesian product

Vl:Dl x . . . x Vk:Dk

also noted X({Vl,...,Vk):D). That relation
depends on F alone and not on the context in
which F occurs in a query.

The same holds for “open,” or “list” queries,
whose value can be described as a relation.

Section 4.2.3 shows that the same formalism
extends to the description of the value of
“closed” or “yes-no” queries (and formulas)
without free variables, vhich denote a truth
value.

4.2.2 Semantics of DRC

The meaning of a query Q addressed to a
database schema is a function from database
instances of the schema to relations whose attri-
butes are the target variables of the query:

X(V:D)
=gQ : DB -> 2

where V is the set of target variables of Q if Q
is an open query,
closed query,

and the empty set if Q is a
and D is the collection of do ins

defining the types of the variables in V. “ft 2 is
the power set of X, that is, the set of all sub-
sets of x. DB is the set of possible database
instances of a database schema. Formallv. if the
schema has n relations Rl
attributes Al

,...,Rn with-sets of

the form:
,An respectively, then DB has

X(A1: D) X(An:D)
2 x . . . x 2

form:
A generic meaning function has the following

m : Q -> (DB -> Relations)

or more precisely

X(V:D)
m : Q -> (DB -> 2 1

To each query Q, it associates a function (mngQ
with the notation above) from database instances
to relations.

An equivalent function has the form:

m’
X(V:D)

: DB -> (Q -> 2 1

To each database DB, it associates a function,
that we will call mng, from queries to relations.
The latter function is described in Figure 2.
Thus, mng in Figure
database.

2 is defined for-a given
This particular form of definition is

chosen to simplify the notations. Making explicit
the dependency on the database DB is immediate
but complicates the notations. The database is
referenced only through “rel(R)“, which is the
relation value of the database relation R (in
rule 31, and through the domains D.

Numbers in Figure 2 refer to syntax rules in
Figure 1. Rules 1 and 2 are in a sense superflu-
ous : they define a special function mng’ that
presents the meaning of a list query as a rela-
tion and the meaning of a yes-no query as either
“yes” or “no.“.
function.

Rules 3 to 11 describe the mng
Only rules 3, 5, and 8 will be dis-

cussed in some detail. Rules 1 and 10 are obvi-
ous. Rule 2 is, covered in section 4.2.3, which
deals with truth-valued formulas. Rules-4 and 6
are similar to rule 5: rule 4 expresses negation
as a set difference between an indexed Cartesian
product of domains and the relation denoted by
the formula on which negation bears; rule 6
expresses disjunction as ,“bordered” union. Rule 7
is a case
than rule 8;

of universal uantif ication simpler
“Wx,” in “Vx F x>.” ? means “for all

values in the domain associated with variable x”.
Rule 9 expresses the usual eauivalence between
existential quantification ani projection. Rule

Proceedings of the Eighth International Conference
on Very Large Data Bases

351 Mexico City, September, 1982

11 describes the value of a comparison as a sub-
set of an indexed domain, or of an indexed Carte-
sian product of two domains.

Semantics of rule 3: f : := R (~l:~l....,~n:~n)

R is the name of a database relation, and
rel(R) is its value in the database. {Al
is a

,...,An)
subset of the attributes of rel(R).

{Tl ,...,Tn) is a set of terms, that is, of vari-
ables or constants. V is the set of variables in
{Tl ,...,Tn). Variables serve as attributes of the
value (a relation) of the formula. Constants
denote elements of database domains. A function
from constants to the union of domains is
assumed. Here, to simplify, we have done as if
constants were domain elements.

In algebraic terms,
R(A1: Tl ,...,An:Tn)

the relation denoted by
is obtained by (1) a restric-

tion of rel(R) corresponding to the constants in
{Tl ,...,Tn), followed by (2) a projection on the
-------------------------------,,,---------

(1) mng.’ ({(Vl,...,Vn):F}) = mng (F)

(2) mlg’ (F) = “no” if mng (F) = 0
“yes,” z mng (F) = (6).

m : F +x(1:&)

(3) mng (R(Al:Tl,...,An:Tn)) =
{t 6 X(V:F$(iiTtl B.rel(R).vi such that l&iln

= Ti If Ti is a constant
tl(Ai) = t(Ti) if Ti is a variable }

(4) mng (not F) = X(fr(F):D) - mng (F)

(5) mng (Fl and F2) =
mng (Fl) x X((fr(F)-fr(Fl)):D) n
mng (F2) x X((fr(F)-fr(F2)) :D)

(6) mng (Fl or F2) =
mng (Fl) x X((fr(F)-fr(Fl)):D) U
mng (F2) x X((fr(F)-fr(F2)):D)

(7) mng (rJVl,...,Vn F) =
(t 6 X((fr(F)-{Vl,...,Vn)):D) 1

{tl x X({Vl ,...,Vn):D) Cmng (F)).

(8) mng (4Vl ,...,Vn Fl->F2) =
{t~61~~~fr(F1)Ufr(F2)-{Vl,...,Vn)):D) 1

S ,...,Vn)l 1 8 6 mng(F1)
and s[fr(Fl)-{Vl,...,Vn)]

& {r[{Vl
= t[fr(Fl)-{Vl,...,Vn)1)

,...,Vn)l 1 r 6 mng(F2)
and r[fr(F2)-{Vl,...,Vn)l

= t[fr(F2)-{Vl,...,Vn)l))

(9) mng (+Vl,...,Vn F) =
mng(F)[fr(F)-{Vl,...,Vn)l

(10) mng ((F)) = mng (F)

(11) mn
‘i

(V OP T) =
t 6 X(V:D)

{t 6 X({V,T)

1 t(V) OP T) if T
is a constant

:D) I t(V) OP t(T)) if T
is a variable

Figure 2. Denotational Semantics of DRC

attributes associated with the variables V in
{Tl ,...,Tn), followed by (3) a renaming of attri-
butes, where each remainin attribute Ai is
replaced by the variable Ti In V) with which it $*
is associated.

In Figure 2, when a term Ti is a constant,
the denotation of F involves a restriction of
rel(R) to those tuples (formally: functions)
where the value of attribute Ai equals Ti.

When Ti is a variable, say Vi, the denota-
tion of F involves a renaming of Ai to Vi, which
thus becomes an attribute of the relation meaning
of F. When two (or possibly more) attributes Ai
and Aj are associated with the same variable Vk,
the operation is
attributes.

no longer a mere renaming of

restriction”
Instead, it becomes an “equi-
of rel(R) to those tuples that have

the same value for attributes Ai and Aj.

Semantics of rule 5: F ::= Fl and F2

Let fr(F) be the set of variables occurring
free in F. The attributes of the meaning of F
are the variables in

fr(F) = fr(F1) U fr(F2).

It would be interesting that, as usual, con-
junct ion correspond to set intersection. HOW-

ever, mng(F1) and mng(F2) cannot be intersected
directly, since in general fr(F1) # fr(F2) and
the intersection is empty. What is- needed is an
interpretation of both Fl and F2 as sets of
tuples in X(fr(F) :D) . Since Fl, for example,
does not constrain variables in fr(F)-fr(Fl), the
interpretation of Fl as a subset of X(fr(F):D) is
obtained by completing or ,“bordering.” each tuple
of mng(F1) by ali

P
ossible values for the attri-

butes fr(F)-fr(F1 . Thus. this intervretation
amounts to interpreting both Fl and F2,*. in the
context of the conjunction, as formulas with free
variables fr(F).

F2.”
In algebraic terms, the meaning of “Fl and
is thus the “bordered intersection” [PIRO~~I

of the meanings of Fl and F2. This operation has
a number of special cases. It reduces to ordi-
nary intersection if Fl and F2 have all their
free variables in common. If Fl and F2 have no
free variables in common, then the meaning of “Fl
and F2.” is equivalent to-the Cartesian product of
the meanings of Fl and F2. If Fl and F2 have
some but not all of their free variables in com-
mon, then the meaning of .“Fl and F2,” is
equivalent to the natural ioin of the meanings of
Fi and F2. If Fl and F2 do not have free vari-
ables, then “Fl and F2” is the Boolean coniunc-
tion of truth values represented by (6) (irue)
and 6 (false).

Because of a well-formedness rule, either
neither Fl nor F2 has free variables or both Fl
and F2 have free variables.

Semantics of rule 8: F ::= VVl.....Vn Fl -> F2

Vl
Rule 8 is a special case of rule 7 (u

.Vn Fl -> F2 is eauivalent to 4
v1- ,.i.;Vn (not Fl or F2)), and its semantics can
be deduced from the semantics of rule 7. The spe-
cial form of quantification described by rule 8

Proceedings of the Eighth International Conference
on Very Large Data Bases 352 Mexico City, September, 1982

is made available in DRC because it corresponds
to the most frequent use of universal quantifica-
tion.

If fr(F1) and fr(F2) are the free variables
of Fl and F2 respectively, then the formula
denotes a relation with attributes

fr(F1) U fr(F2) - {Vl,...,Vn)

that is, in general, a relation whose tuples are
constructed from values of the relations denoted
by both Fl and F2.

If fr(Fl), fr(F2), and {Vl,...,Vn) each
reduce to a single variable, then an example of
quantification described by rule 8 is:

Yx Fl(x,y) -> FZ(x,z)

In a set notation, the value denoted by that for-
mula is the set of pairs (2-tuples):

The usual division of [CODD721 describes the
relation values of a special case of universal
quantification, where fr(Fl)G{Vl,...,Vn). In that
case, if the relation denoted by Fl is not empty,
then the relation denoted by the formula is made
of projections of some tuples of F2, without con-
tributions from Fl.

This suggests a generalization of division,
which corresponds to the form of universal quan-
tif ication defined by rule 8. This new division
operation contains the usual division of [CODD721
as a special case. It is def.ined in tPIRO821.

4.2.3 Boolean-valued Formulas

DRC can express both list queries, which
denote a relation, and yes-no queries, whose
value is a truth value. The informal definition
of section 2 describes both Rinds of queries. The
same is true for the semantic equations of the
preceding section, if degenerate relation values
without attributes are interpreted as denoting
truth values.

For an empty collection of domains and an
empty set of attributes 0, the definition of sec-
tion 3 of the Cartesian product of the domains
indexed by the attributes becomes:

X(0:A) ={t :0->lJA>
9 y,: 0 -> 0)

In effect, {t : 0 -> 0) is the set of func-
tions from 0 to 0. There is only one such func-
tion, the empty function (the empty set of pairs
of values, if functions are viewed as sets of
pairs).

Thus, there are two degenerate relation
values of structure (@:A):

Q = “0”

(6) = “1”

which we interpret respectively as ,“false,” and
,“true”.

Applying the definition of section 3 for the
Cartesian product of two relations, we obtain:

For the projection of a relation on an empty set
of attributes :

RibI = 0 if R is the empty set of n-tuples

= (6) if R is not empty

Similarly, the set-theoretic union, intersection,
and difference of degenerate relations express
respectively the Boolean disjunction,
tion, and negation.

conjunc-

This is sufficient to cover all the cases of
truth-valued formulas in DRC. Those cases are as
follows: (1) relation predicates can

P
reduce a

truth value from an ordinary relation; 2) so can
universal and existential quantifications; (3)
conjunction, disjunction, and negation in DRC do
not produce truth values from ordinary relations:
instead, when their operands are degenerate rela-
tions, their effect is to apply the usual Boolean
operations with the same name on the truth values
represented by the degenerate relations.

In summary, the semantic rules of Figure 4.2
extend to queries and formulas without free vari-
ables by interpreting the empty set 0 as “false”
and (6) as ,“true,“. This result increases our con-
fidence in the adequacy of the semantic objects
and operations chosen to define DRC. We do not
suggest however that truth-valued formulas be
presented to users as denoting degenerate rela-
tions.

5. DRC, RELATIONAL ALGEBRA AND LOGIC

tion
The definition of DRC in the preceding sec-

establishes the following connections
between logical connectives and a version of
algebraic operations:

negation : complement
conjunction : bordered intersection
disjunction : bordered union
universal quantification : division

with implication
existential quantification : projection
predicate : projection,

equi-restriction

The denotational form of the definitions
suggests interesting generalizations of some
algebraic operations. Thus operations called
“bordered union”, Ibordered intersection,“, and
also a generalization of division have been
defined. A complete definition of a relational
algebra with- the new operations
[~1~0821.

is given in

Proceedings of the Eighth International Conference
on Very Large Data Bases 353 Mexico City, September, 1982

Bordered intersection contains as special
cases natural join, ordinary intersection and
Cartesian product,
lCODD721.

as they are defined e.g., in
Bordered union and the generalized

division contain respectively ordinary union and
division, but they are more general. For example,
all cases of universal quantification of the cal-
culus can be expressed as a generalized division.

The generalized intersection and generalized
union of [HALL751 are similar the corresponding
bordered operations.

The version of algebraic operations sketched
in this section (and defined in [PIR082]) and the
definition of DRC in the preceding section show
in a striking manner the fundamental unity of
relational algebra and calculus. In that
respect, the present work has similarities with
that described in [MERR78].

DRC has the same syntax as the first order
predicate logic, and the semantics have a similar
structure. Many equivalence rules from logic are
preserved in DRC. For example:

mng(F1 and F2) = mng(not((not Fl) or (not F2)))

or

mIlg(cTv1 ,...,Vn F) = mng(not ()Vl,...,Vn (not F)))

However, it is not true in general that if
ionic allows to deduce Fl<->F2 for formulas Fl
a& F2, then mng(Fl)wg(FZ) in DRC. For exam-
ple, in logic

Fl or (Fl and F2) <-> Fl

but, in DRC

mng(F1 or (Fl and F2)) # mng(F1)

if fr(F1) # fr(F2).

6. SUMMARY AND CONCLUSIONS

6.1 Language Description

The work reported in this paper is an exper-
iment with a precise (nearly formal) method for
specifying the semantics of relational query
languages. The language chosen, DRC, is a ver-
sion of domain relational calculus. It has the
same power of expression as the relational alge-
bra, This experiment produced several interesting
technical results.

First, we gave a purely “bottom-up,” denota-
tional specification of the semantics of DRC,
based on the single principle that every formula
(or predicate) of DRC denotes a relation. This
is an interesting result in itself, as it was not
obvious initially that such a definition was pos-
sible. The definition is precise, short, and sys-
tematic.

Second, the denotational definition of DRC
formulas involving logical connectives suggested
interesting generalizations of operations of the

relational algebra. The main result of this paper
is to exhibit a version of relational calculus
and a version of relational algebra which
correspond very directly to one another.

Third, a formal definition is given for
relations with unordered attributes where domains
determine the comparability of elementary values.
Algebraic operations operate on and produce rela-
tions thus defined. The denotational definition
of the semantics of DRC is such that the same
syntactic and semantic rules describe the meaning
of both “list queries”, whose value is a rela:
tion, and of “yes-no” queries, whose value is a
truth value.

A precise semantic definition enables fine
analyses of the structure of query languages.
Thus, several continuations of the present work
have been or are being investigated. One of them
investigates denotational definitions of other
query languages. For example, we have already
established that the application to relations of
a fairly general version of aggregate functions
can be described with basically the-same formal-
ism as the one used in this paver. This will be
reported in another paper. Another continuation
of this work consists in further theoretical
investigations of the relational algebra sug-
gested by DRC, and of the relationships of DRC
with predicate logic. An interesting result will
be to characterize precisely the equivalence
rules of the predicate calculus that are not
preserved in DRC. Another interesting subject
has been the characterization in query languages
of anomalies linked to the unrestricted use of
negation, universal quantification,
tion (see e.e.

or dis junc-
[DEM082. PIR076. ULLM801). The

association of-types with-the variables -of DRC
automatically solve5 the most serious problems
linked to negation and quantification in
languages without types. In addition, the regular
semantic structure of DRC enables a fine analysis
of “sensible” uses of negation, disjunction, and
conjunction. Results will be reported elsewhere.

6.2 Language Design

This work also suggests that judicious
semantic decisions made early in the design pro-
cess of a query language can simplify the specif-
ication of the language, and eventually, the
language itself.

We clearly realized in writing the denota-
tional definition of this paper that the central
idea in the original design of DRC [LACR77] was
more than anything else a decision about a uni-
form semantics-for its constructs. The terse and
precise definition produced for DRC can be rela-
tively easily translated into ordinary language,
while essentially preserving its terseness and
precision.

More generally, this work suggests a
“semantics-directed ’ method of language design
instead of what seems to be the typical
directed”

“syntax-
strategies of conventional query

language design. Thus, for example, the history
of the design of the SQUARE, SEQUEL and SQL
languages [CHAM76] could be summarized as inves-
tigations of how much functionality can be
expressed with the basic syntax of the “select
block”. The successive versions of the languages

Proceedings of the Eighth International Conference
on Very Large Data Bases 354 Mexico City, September, 1982

describe attempts to accommodate the limitations
of that syntax, for example, the fact that only a
few patterns of universal quantification or of
calls to aggregate functions fit in a straight-
forward way into that syntax mold. Similar1
the successive versions of 1’ Query-By-Examp e
[ZLOO751 describe how much can be done width the
basic syntactic idea of filling in examples in a
table. For the simplest patterns of
(equivalent I say, to projection and restri%%
in the algebra), that syntax nicely expresses the
intended semantics. But, this is much less true
when quantifiers or negation are involved, and
not at all when a “condition box” must be
introduced to express comparisons of values.

We find it interesting that no precise
definition of the semantics of SQL or Querv-Bv-
Example exists, which would be short and would
somehow reflect the impression of user-
friendliness that an initial contact with those
languages communicates. We conjecture that a
semantic definition with a few primitive opera-
tions like that of this paper is not possible for
SQL or Query-By-Example. We believe that precise
definitions would be large and complex, and that
they would probably suggest a redesign of parts
of those languages.

By contrast, a semantics-directed method of
language design specifies the basic semantics and
the exact limits of validity and of legal utili-
zation of a construct before (or, at least, at
the same time as) its syntactic appearance in
queries. This strategy has the advantage that,
whatever design decisions are made eventually, it
guarantees that a precise definition of the syn-
tax and semantics of the language is manageable,
that is, that it is of reasonable size and
involves semantic objects and operations chosen
by the language designers and manageable, at
least for them.

In other words, we believe that if the
designers of a language give a precise (maybe
formal) semantic definition of their language,
then the chances of having a “good” design are
increased, where precise semantic specifications
are not hopelessly complex, and match intuitive
perceptions of language constructs by users.
This is to be contrasted with situations where a
precise semantic definition is done, by implemen-
tors or formal language specialists, after the
“design” phase, It is interesting to note that
some programming language designers reached simi-
lar conclusions and expressed similar recommenda-
tions [ASHC82,LOND781.

As an example of semantics-directed design,
the design of aggregate function calls could be
integrated in the definition of DRC of this paper
as follows. First, the decision is made that a
new construct is made available to express f unc-
tion application. It expresses the application of
a function to a relation, and the repetition of
function applications to classes of a horizontal

P artition oi-a relation. It returns a relation
Possibly reduced to a value) as a result. Then,

a- choice-is made of the particular functions that
are to be made available, and a precise semantic
definition is specified for calls to each of
them, including computation of the result, dupli-
cate control, repeated applications, etc. Then
only, syntactic decisions have to be made, in the

best case on the basis of human factor studies,
about the exact form or forms of the new opera-
tion.

Note that we do not advocate semantic for-
malisms for the sake of using formalisms. We
believe that any formal definition is not
automatically interesting, and that simplicity
and economy of concepts (although we don’t -
gest that they are easily measurable) are equ%y
important.

7. ACKNOWLEDGEMENTS

We are grateful for valuable comments made
by Frank Manola, Michel Sintzoff, and Robert
Demolombe about previous versions of this paper.

8. REFERENCES

[As14~82 1
Ashcrof t, E.A., and Wadge, W.W., “R for
Semantics,” @J Trans. on Prozramming
LannuaPes & Systems, Vol. 4, No. 2, April
1982.

[CUM761
Chamberlin, D.D., et al., “SEQUEL 2: A Uni-
f ied Approach to Data Definition, Manipula-
tion and Control,” IBM Journal of Research
& Develonment, Nozber 1976.

[CODD72]
Codd, E.F., “Relational Completeness of
Database Sublanguages, ‘I In: Database SyB’
w, Courant Computer Science Symposium 6,
Prentice-Hall, 1972.

[DATE81 1
Date, C.J., An Introduction to Database &R=
m, Third Edition, Addison-Wesley, 1981.

[DEMO82 1
Demolombe, R., !‘I.Jtilisation du Calcul des
PrGdicats- comme Langage d.‘Interrogation des
Bases de Donnges ,,‘I Thi%e de Doctorat d?Etat,
Univ. Toulouse, February 1982.

LULL751
Hall, P.A.V., P. Hitchcock, S.J.P. Todd, !‘An
Algebra of Relations for Machine Computa-
tion,,” Proc. 2nd ACM Svmposium on Principles
of PronGG.nXaGGaP;es, Palo Alto, Calif.,
1975.

[RARDS~ 1
Hardgrave, T.W., “Positional Set Notation,”
In: Advances in Database Management, Vol.2,
Heyden and Son, 1981.

[LACR77 1
Lacroix, M. and A. Pirotte, “Domain Oriented
Relational Languages,” w. m Confer-
-, Tokyo, 1977.

[LOND78]
London, R.L., et al., “Proof Rules for the
Programming Language Euclid,” && Informa-
a, Vol. 10, Fast. 1, 1978.

Proceedings of the Eighth International Conference
on Very Large Data Bases 355 Mexico City, September, 1982

b4ERR781 iSTOY
Merrett, T.B., ."The Extended Relational

a Basis for Query Languages," In:
stay, J., Denotational Semantics : The

Algebra, Scott-Strachev to ProgrammE
Databases: ImDrovine Usabilitv and ResDon-

Awroach

siveuess, Shneiderman (Ed.), Acazic Press,
Lannuane Theory, The MIT Press, 1977.

1978. [ULLM80 1

[PIRO~~I
Ullman, J.D., Principles of Database _svS-
m, Computer Science Press, 1980.

Pirotte, A., "Explicit Description of Enti-
ties and their Manipulation in Languages for [ZLOO751
the Relational Data Base Model," Doctoral Zloof, "Query-By-Example,!' AFIPS
Thesis, Univ. Bruxelles, December 1976. Conferenc~*~;~ceebines, Vo1.44, 1975.

[PIRO~~ 1
Pirotte, A., ."'A Precise Definition of Basic
Relational Notions and of the Relational
Algebra,." to appear in ACM SIGMOD Record, --
1982.

Proceedings of the Eighth International Conference
on Very Large Data Bases 356 Mexico City, September, 1982

