
FORMALIZATION OF DATABASE SYSTEMS - AND A FORMAL DEFINITION OF IMS

DINES BJORNER & HANS HENRIK LBVENGREEN

DEPARTMENT OF COMPUTER SCIENCE, TECHNICAL UNIVERSITY OF DENMARK

DK-28C10 LYNGBY, DENMARK

ABSlXCI: Drawing upon an analogy between Program-
ming Language Systems and Database Systems we out-
line the requirements that architectural specifica-
tions of database systems must futfitl, and argue
that only formal, mathematical definitions may 6a-
tisfy these. Then we illustrate home aspects and
touch upon come ueee of formal definitions of data
models and databaee management systems. A formal
model of INS will carry this discussion. Finally
we survey some of the exkting literature on formal
definitions of database systems. The emphasis will
be on constructive definitions in the denotationul
semantics style of the VCM: Vienna Development Neth-
d. The role of formal definitions in international
standardiaation efforts is briefly mentioned.

searchers and practitioners aware of these facts,
of Mhat it takes to construct and use such defini-
tions, and what their aims are.

This introduction serves to delineate and othetise
relate the subject.

We start with an analogy. It mopares notions from
the field of (conventional) prograrmning languages
with notions fran the field of databases.

carpxrting Review w Classification & Keymrds

F.3.2 Semntics of Database System
D-3.1 Database System Formal Definitions & Iheory
D.2.1 Specification Languages, Methodologies, Tools
D.2.0 Database Standards
H.2.1 Data Models

(1) In the former we speak of prcgmmning langua-
ges . In the latter of data systems, i.e. of data
models, and data definition, manipulation, & query
languages (DDL, DML, resp. QL). We claim that the
tm sides relate: the data model (CM) aspects of
Pascal-like languages, are the data type aspects:
data structures (values) and their primitive opera-
tions. !lhe data definition aspects of these pro-
gramning languages are the data type and variable
definitions, respectively declarations. Finally,
the data mnipulatim & query aspects are the
statement & expression constructs.

H.2.3 D&a Description, Manipulation & Query langs.
F.3.1 Specifying, Reasoning about & Verifying DBNSs

Abstraction Techniques, Functional & Logic Program-
ming, me/Post conditions, Datastructure Invariant-s

0. Introductim
1. Specification Etequirements & Objectives
2. Formal Definitions h Their Uses
3. Related P&rk - An Annotated Bibliography
4. Conclusion
References

(2) This Was the first step of our analogy. In our
next step = relate programning language processors
to database management systems, DBMS. By a language
processor we understand either a canpiler + run-
time system, or an interpreter. lhe function of
a language processor is to execute (input) pro-
grams in the presence of (input) data (incl. files,
etc.). lhe purpose of a DBMS is to execute (input)
cattnands (of DDL/IML/Qls) in the presence of stored
(i.e. database) data.

AppendixI: AEtmmlModelofIMS
IIppenaix II: Meta-language (META-IV) survey

0. INrRmXTIoN

There is a grming and increasingly more Widespread
interest in mathematical semantics definitions of
various aspects of database systems.l'here is also
a grcming acceptance of such definitions inboth in-
ternational standardization work, in architectural
design, as well as as a basis for development of
correct i3t@ementations, and verification of cor-
rectness of uses of databases.

The aim of this invited paper is to make a larger
fraction of the database cammnitv of both re-

Proceedings of the Eighth International Conference

(3) In our final step we relate programs + input
data to input -ds + databases. Programs cor-
respond to amends, input data (primary input &
input fran files, etc.) correspond to databases.

(1) We shall mm exploit the analogy. Previously,
it was considered of utmost importance to secure
the correctness of language processors for the
follawing ream: all programs, including programs
in@ementing DMSs, on their way fran conception
to execution, muld pass through a canpiler or in-
terpreter. The programs might have been believed
to be correct, but if e.g. the canpiler was wrong,
then all muld be wrong. E'rcm considerations of
both program correctness and ccmpiler/interpreter
correctness arose the desire to construct precise
definitions of programning languages. Fran these,
it = expected, me could eventually prove cor-

on Very Large Data Bases
334

Mexico City, September, 1982

rectness both of proqrams and of compilers. m
our dependence & reliance on database systems is
such that m must require the same stringent re-
quirements as to their precise description. Just
like we define proqramninq languages precisely, we
must now require similar definitions of data nwdels
and the related (possibly abstract) DDLs, CMLS &
CD.

(2) In proqramminq lanquaqe processor, i.e. in in-
terpreter, ccm@ler and run-time system development
we use the form1 definition of the programming
lan=qe. Thus we systematically derive lanquaqe
processors fran language definitions. Correspond-
ingly, wa argue that DENS be rigorously derived
frcm formal definitions of data mdels & their
DDLS, IXLS & Qrs.

(3) In proqram development we use the formal def-
inition of the proqramninq lan?jKqe to verify its
correctness. Similarly we can use the formal def-
finition of a data rrcdel & its DDL, DML & QL, to
verify properties of any particular database and/
or any particulare use, throuqh a EML, DDL or QL
amend, of such a database.

We observe the follminq distinction: to specify a
data n-ode1 and its DDL, CML & QL (or: Proqramninq
Ianquaqe) is one thing. !tb specify a database
(resp.: program) is quite another thing. In this
paperwe focus on the former, but the techniques
for the latter n-bay be the same. C&mm to all spec-
ifications is their language, the meta-language.
'Ihe implementation lanquaqe for a DE?% (as derived
fran a data model + DDL/IBlL/QL specificatim) my
be Pascal, whereas the im3lementation lanquaqe for
a database usually is a DDL/EML/QL.

The specification language of this paper
notation language; it is called META-IV,
scribed very briefly in an appendix.

1. DE3?IRITIC93OE!JEKXIVES & REQUIFENENIS - -

is the VlZ4
and is de-

We outline the requirements that users must put on
database system definitions. We distinguish between
requiremants expected to be fulfilled by sane soft-
ware and the architectural definitions of the soft-
ware Eiictions: concepts & facilities. The latter
fulfill the former. Requirements definition speak
Of the software, whereas definition requirements
speak, at a m&a-level, of how we express defini-
tions including the way in which definitions ex-
press desired properties.

'Ihe objective of a definition of a data model &
its DDL/LML/C?L is that it specifies sanethinq for
both the intended users & developers of the *lied
family of DPNSs. The definition is a lesal contract
betwe& users & developers. The objecti;e of a def-
inition is also that it expresses the requirements
put on the data rmdel, i.e. the expectations laid
dam in uses thereof. We shall not further touch
upon this relationship to requirements analysis &
definition.

The cbjectives result in certain requiremnts.
For it to formally fulfill the r6le of "legal mm-
tract" a definition must be consistent & ccmplete,
and uses of what the definition defines must be
prov- correct w.r.t. the specification. E3y a
consistent definiticm we man one which ascribes
an un-anbiquous, precise, non-trivial semantics.
By a complete definition we mean one which ascribes
semantics to all applicable constructs. These pro-
perties can both be easily verified to hold (or
not hold) for denotational, e.g. VU+based, defini-
tions.

For it to usefully fulfill this r&e a definition
should furthermore not be unduly long, i.e. be
reasonably short, and it should be comprehensible
by the tw parties concerned: those who write ref-
erence & in&oducto~ manuals for uses of what is
defined, and those who develop mxntations of
what is defined. Cne could list, as a definition
objective that the object which has been defined,
in casu: the Data System is well-conceived: free
frcm mis-conceptions, conceptually clean and with
an optimum of notions: and that the defined data
system has properties which are either transparent-
ly defined or relatively easy to ascertain frcm
the definition.

A definition mst be accessible to reasonably skil-
led software enaineers, i.e. thev should bs able
to effectively &nd their way into & "around" the
internals of a definition. In addition to the def-
inition being (de facto) correct, definition users
must also believe it to be correct. I'CorrectnessM
of a definition, iii addition to consistency and
canpleteness, etc., also means that it is permis-
sible. Thus desired non-determinism, uuasi-paral-
a, concurrency and resource usaqe +timizaticn
mst be expressed by the definition.

It should not, per se, be a requirement or an &-
jective that a definition be formal, let alone
executable.

To smmmrize, the objectives & requirements of a
definition can be itemized:

(i) legal contract between user & developer,

(ii) consistent & cunplete,

(iii) canprehensible & concise (short & precise),

(iv) accessible & referencable,

(v) wrrect C believed correct,

(vi) permissive - where appropriate,

(vii) suitable for user manual technical writers,
implementors &validators

2. ?XBl%DEFINITICNS&THEIRUSES -- ---

We nm arque that only formal definitions will sa-
tisfythe above-stated objectives & requirements.

Proceedings of the Eighth International Conference
on Very Large Data Bases

335
Mexico City, September, 1982

By forxbal definition we rfaaan a definition about
which questions can be answered objectively. Math-
ematics then is our tcol to achieve this. Several
definitional styles are possible. They fall in tm
groups: the constructive models of either denota-
tional or operational semantics, and the *licit
definitions of either axianatic or algebraic seman-
tics.

Given a definition of the latter kind one is usual-
ly required to shaw that there exists a non-trivial
model for there to exist any sensible realization.
Current *licit definition styles achieve this
rrodel requirement at the expense of forcing rather
low-level abstractions resulting in rather volumin-
ous definitions. A drawback of algebraic definition
styles, as contrasted to denotational ones is their
apparent inability to cope with higher order func-
tionalabstractions.

Given suitably high-level abstractions denotational
semantics today appear to satisfy roost of the re-
quirements put to definitions of sequential, or de-
terministic systems. The rfore permissive aspects
can be expressed in either axiomatic or structured
operational semantics [Gordon 81al.

We Shall focus on the VIM approach to formalization
of database 8ysIzns. VIM, for Vienna Development
Methodology, is a denotational semantics based soft-
ware development methcd, which, however, permits
carefully controlled na?Cve set theoretic predicates
to achieve a high degree of expressability. VCM is
extensively d -ted in the literature: currently
four books [Bj&ner 78a, Jones 8Oa, Bj&ner 8Oa,
Bj&ner 82bl in addition to many papers. For data-
base-oriented introductions to VCM you may consult
[Bj&ner 8Ob].

The discussion which follu& will not be a tutorial
on hcrw to use VIM for purposes of e.g. formal def-
initions, nor on hw to read such VIM definitions.
Instead we shall outline sane of the methodological
steps in constructing such definitions, or models
as ws shall henceforth call them. The discussion
will be carried relative to the Formal Model of IMS
given as an appendix.

Mnantic canains

- The C&abase Structure:

InarchitectincanewDataModel (orvariantthere-
of) the roost &qortant thing to .first decide upon
is the s-tic obiects (or states): "that which ws
wish to speak abo&". In the case of I?& it was
given by others, and our fornxalization is hence a
recording of the results of a semantic analysis. We
found that IMS states couldbe abstractedas shown,
first in (l), subsequently, deccqos ing these into
constituent objects, defined in (2), (9), and (14).

The object defined by formulae (1, 2, 9, 14) are
representationally abstracted mathematical -ins.
Thatis:wehave abstracted away any ix@amentation
concerm to focusonwhattheuser sees.The Eunain

equations define the class of all objects (usually
too many, but see belaw).

Thus we do not believe in defining such object do-
mains by displaying one or two %napshot" pictures
of Mtypical" such objects in the form of drawings
with boxes and pointers, etc. Our major misgiving
about such drawings is that they are only snapshots,
too few to extrapolate the entire all& class.
Our subsidiary misgivings about drawings or tables
of example database constellations is that one is
not told exactly the semantics of the primitives
used in the drawings, let alone their ccanbination.

--The &&abase Invariants

But the d-in definitions (1, 2, 9, 14) sometimes
define too much. It is, in general, not possible
to express, in the form of domain equations, all
the internal consistency constraints which usually
must hold within and between sub-parts of objects.
These data model integrity constraints are instead
expressed in the form of predicate functions called
(data type or data structure) invariants. Invari-
ants apply to objects of defined dcxteins and are
defined to hold only for those objects which are
well-formed. The II% invariants are defined in
(4, 5, 6, 10, 11, 23).

-- Auxiliary Database Notions

Finally, before dealing with data manipulation, we
deal with a variety of auxiliary notions, usually
functionsof various kind - notions which are
either used in establishing invariants, or, subse-
quently, in establishing the meaning of guery/up-
date cunnands.

These ancillary functions are illustrated by form-
ulae (3, 7, 8; 12, 13, 15-22). The reader is en-
couraged to study these frcpn this point of view.

0000

We find that the process of establishing what "the
whole thing is all about", i.e. the semantic do-
mains, their invariants and auxiliary notions, is
themst crucial - and roost rewarding, hence the
rmst important. We find, in contrast, that many
database treatments alltcooftenbeginbyexplain-
ing conrete syntax, trying to cover the daMin of
applicable ccmnands as cxqletely as possible, arid
failing, invariably, to explain, to any acceptable
depth, the semantic dcxnains. Their structure Only
transpires indirectly fran explications of canrand
semantics.

We find that very manydatabaseproposals are con-
ceptuallyconstrainedbyunnecessary~lementaticn
concernsand by a lack of a suitable abstraction
medium. Ws find that denotational modellirq of
data aels very quickly brings one into interest-
ing generalizations. The abstractim language of
e.g. VIM relieves one fran many unwanted clerical
details, and thereby enables one to better exploit
ones' mental capability. In short: Agood, concise

Proceedings of the Eighth International Conference
on Very Large Data Bases 336 Mexico City, September, 1982

and well-founded notation is
for architectural design work.

very irrplortant, also

Syntactic DaMins

- The Database Cammnds

Inestablishing the s-tic danain the architect
naturally had certain data manipulation and query
capabilities in mind. Basic aspects of these are
normally reflected in scuw of the auxiliary func-
tions -- e.g. (8, 15-22). Thus the foundations
upon which design and explication of the database
amnands have already been laid. And we can pro-
ceedto architect&g these ccmw-& (24, 25, 27,
31, 39, 45, 50, 53).

-- The Cbntext Qndition Constraints of CcmMnds -

The cumends designate database objects by naming
sewant types and fields (25.0, 25.2, 25.3)*. In an
actual database sane of these names may not be, or
yet have been, defined. breover, the amnands
may contain data values (24.4, 24.6, 25.2-3). These
may not be of the kind described in the appropriate
parts of the Catalogue (2.2, 2.7). As part of can-
nxind elaboration one therefore have to check that
only appropriate names and values are used (26, 28,-
29, 30, 40, 46, 51, 54).

Semantic Functions

Finally we are ready to n&e precise the specific
s-tics of ccmnands. E'ormulae (32-38, 44, 4849)
can be considered auxiliary functions used in ex-
plicating the denotations of several CcmMnds; with
(4143, 47, 52, 55) being the actual, main semantic
functions.

0 0 0 0

We have cutqleted the denotational xodelling of a
non-trivial data Mel, the IMS. Granted, it is
an abstraction of IKS, but the definitions illu-
strate what it takes to construct such a defini-
tionand what one obtains: an abstract "realiz,a-
tion" - an easy and not too costly way of "playing
around with and exercising" an entire spectma of
IMS facilities. Instead of a lot of national and
natural language words one has sanething far nore
tractable: sa~~thing that can be objectively scru-
tinized, sanething which can seme as a very pre-
cise departure point for estimates of, and actual,
ixplwkentation, and for educational and training
purposes.

The illustrated IMS definition is of a nature which
can be *l-ted very guickly if one anits consi-
derations of resource efficiency. A n-r of exe-
cutable versions of the shown definitim can be
thought of. Either one has, once and for all, an
interpreter for the meta-language used; or one
transliterates the definition into for example ML

-e-p --------------------------
* NN.M refers to M'th line of formula NN, O-origin.

Proceedings of the Eighth International Conference

on Very Large Data Bases
337

(of ID? [Gordon 79a3) or SETL ([S&warts 73aJ).
Such "proto-typing" is by tw-~y considered useful.
We should like to point out, however, the important
clarifying rsle the construction and the existence
of a paper definition. In fact, we should like to
urge that architectural definitions such as the one
of the appendix, but for new concepts, new "inven-
tions", bs cumwnicated, circulated, read and dis-
cussed for years before serious, constly atteqts
berradeto inp3lementtiem.

2. RELATEDWWORK - An Annotated Bibliography --

In this section we first survey sore of our m
work, in section 3.0, and then, in sections 3.1-
3.7, that of others, all, ho&aver, restricted to
theVDlviewpoi.nt.

3.0 Bj+mer et al. --

The following references outline the general prin-
ciples for applying denotational, specifically VDl
tielling techniques to databases: [Bj$4mer 8Ob,
Bj4mer 8Od, Bjdmer 82cd]. The first tw represent
early versions of the latter two. [Bj+mer 82~1 de-
scribes relational, hierarchical and network data
nodels. Both relational algebra (procedural) and
predicatecalculus (EL-alpha, SEQUEL !XL) guery
languages are nodelled in detail. The latter, ba-
sically borrwed fran [Nilsson 76a1, formed the ba-
sis for [Hansen 8OaJ. The hierarchical date rrodel
is carefully formalized, first rather generally,
then with a bias tuuards System 2000. The net-k
data model formalization is oriented twards Bach-
mans ([Bachman 7Oal) IMa Structure Diagram, and
is very general. [Bjtimer 804 "sxroothtalks~ the
reader into understanding basics of VCM by first
nodelling very sin@e file system ideas; thus that
paper may serve as a sufficient entry into be'
able to read VPI definitions. In [Bjhmer 82c 7
it is not obvious hew the abstractions relate to
(i.e. injects into) database management SystemS
for respecture data tiels. This relationship,
except for tie case of the relational nodel, is
dealt with in [Bjdmer 82dl. For tie hierarch-
icaln&el is shown the socalled hierarchical se-
quential access method (hsam), hierarchical direct
access methods (hdam) with so-called "Qrild-twin"
pointers respectively entire file pointers. For the
network aode only a single step of develapnent is
shcwn:one tcwards 'chained pointer' realizations,
eventually leading to the 'current-of' ard 'area'
notions of the CXDLSYL/DBn; report [COlXSYL 71aJ.

3.1A. Hansal: A Mxlel of PRTV [Hansal 76al --- ---- --

This is the earliest kwwn application of VDl to
database specification. The actual wrk ww car-
riedout in the sunmer of 1974 when A. Hansalwas
an undergraduate student. The report gives a fair-
ly ca@ete and faithful node1 of the "Peterlee Re-
lational Test Vehicle" (PKJV) - otherwise knckJn as
IS/l. PF?IV is a relational algebra based Cams ac-
tuallyirqlanented bythe IIH UK Scientific Centre
in the early 1970s.

Mexico City, September, 1982

3.2 J.F.Nilsson: Formalization & Pealization
Database System-[Nilsson 76ai

of -

In this Ph.D.l%esis VIM nrxlelling techniques are
applied as a tcol in both semantic analysis of im-
knmm and novel relational database concepts, and
in the synthesis of a relational data model propo-
Sal.

3.3 J.Lindenau: "A Descriptive Qu
&eNetwrk Data v;tg -- --
Fbrrnal Semantics Definition in
META-IV” [Lindenau 81aJ -

This M.Sc. Thesis is in German. In its first part
(85 carefully annotated pages) is given a formal
VCMstyle mdel of the semantics of the CODASyL/
DBTG proposed CML for the netmrk data model. This
definition faithfully models crucial data mdel
aspects sudh as the currency notions, ard con-
straints among data model co-qonents (such as re-
cord types, set types arkd currency pointers). It
then mdels the semantics of 8 variants of the

connect' and 'mve' ccmnands. it is to be recon-
mended that this entire part of the thesis be pub-
lished in English.

In its second part a query language extension fea-
turing relational algebraic terms is super-imposed
on the system of part 1. The semantics of the new
constructs are given in terms of their translation
into "ordinary" CML constructs. Part 3 then docu-
ments an implemented translator.

3.4 Ths.Olnhoff: "Functional Semantics Descri ion
gmqelwf giii
-- - --

ibis Ph.D.Thesis is in German. The 200 page mrk
carefully analyzes the so-called ANSI/SPARC pro-
posal for a 3-level external/conceptual/internal
schema view of data bases. The specific model stu-
died is the relational. The approach is that of u-
sing VIX/MEXA-IV as a tool in this investigation.
Thus the 'relations' between the external and the
conceptual, and between the conceptual and the in-
ternal schemas are studied by synthesizing and stu-
dying the injection and abstraction (or retrieval)
functions for both the data objects and the cun-
imndoperations.

3.5 E.Neuhold et al. --

The work of section 3.4 also had a background in
work "pre-dating" m-influence: [Biller 74a, 75a,
76a]. The joint papers with Olnhoff [Neuhold 8Oa,
81al mmar izes at-d extends the work mentioned in
section 3.4. (xlr cwn work in applying VDM to data
bases was partly prompted by a desire to siqlify
the treatmants of the Biller et al. papers.

3.6 W.Lamersdorf et al.: Pascal/R - --

It was J.W.Schmidt of the Hamburg University who

Proceedings of the Eighth International Conference
on Very Large Data Bases 338

first suggested the idea of formalizing his very
elegant relational extensions to Pascal. Initial
work on this was done by W.Iamrsdorf as part of
a M.Sc. course. T+m reports, and Lmersdorf's Ger-
n-m Ph.D.Thesis, new documents this effort [Lam-
ersdorf 8Oabl. In one report the ideas of Pascal/R
are carefully introduced, hand-inland with their
formalization. The other report gives the cmplete
formal definition. Ihis work seems to have inspired
the proposal that a possible ANSI 'Relational Data
Model' standard also be formalized, in fact [X3/
ANSI/SPARC 81a] exgnplifies such a form1 (VCM) def-
inition.

3.7 B.S.Hansen & S.U.Palm: - A Model of - J?zE!yE ---
the PL I Users Interface
~sen 8m --

This is an internal, IBM Confidential, report of
the IBM San Jose Resa Laboratory, California,
and of the Ccmputer Science Department of the Tech-
nical University of Demmrk. It represents about
4 man-months of relatively in-experienced under-
graduate student work spread over half a year. Al-
though based only on a single reference manual and
no access to System/R designers nor a System/R it-
self, it remarkably accurately describes the mul-
tiple user, recovery based version of System/R as
iqlementedand operated by the IBM San Jose Re-
search Laboratory. Thus the model, besides defining
SQL with views etc., employs a n&a-process noticn
to capture, as abstractly and implemantation-inde-
pendent as possible, the notions of 'shared access'
to data as well as 'transaction cumrits' and 'back-
outs ' .

This is not the place to relate the very my, very
interesting experiences obtained in the process of
constructing this rodel, but only to say that in
our opinim IBM would do the entire database cun-
mnity a most valuable service in making a (Vor-
rect") update of this definition publicly available.

It appears that the IBM Scientific Center in Heidel-
berg, W.Germanyr is currently pursuing very inter-
esting end-user database system architectural design
work based on the above wrk.

4. amZL.USIoN -

We have presented three lines related to formliza-
tion of database systems: (1) rationales for doing
so; (2) an actual 'realistic' model of crucial a-
spects of IMS, the IBM Information Management Sys-
tem, by far the rrost wide-spread DBMS of the 1970s;
and (3) an annotated survey of related formliza-
tion work.

The work of e.g. Olnhoff & Neuhold point to a next
"generation" of database formalization efforts:
thoseof capturing the more recent proposals of
the data base architects: researchers & designers,
and the works of most of the researchers mentioned
insecticn 3 bears pranise to the hope that data-
base proposals in the 1980s will be carried by ma-
thematically clean formalizations.

Mexico City, September, 1982

B&BIBLIOGRAPHY -
hnSa1 76a1 A.Hansal: A Formal Definition of a Re-

[Biller 74a] H.Biller & E.J.Neuhold: Formal fliew 0~1 ZationatDatu Buse System, IBM (Peterlee,UK)

Schema-Subschem Correspondence, in: IFIP'74, .N-H, UKiCOO80, June 1976.

1974. b3~1~en 8Oa] B.S.Hansen & S.U.Palm: A Formal Model

[Biller 75a] H.Biller & G.Glatthaar: &z the Semcw- of System R, TUD, Aug. 1980 (IBM Confidential).
--

tics of Data Definition Languages, GI-5, Jahresta-
gung, LNCS 34, 1975.

CHardgrave 72a] W.T.Hardgrave: A Retried Lan-
guage for ?%eStructured Data Base Systems in:'In-

[Biller 76a1 H.Biller: On the Semantics of Data Ba-
-&ktions System COINS IV,ed.J.Ibu; Plenum

--
68s: The Semantics of Data Manipulation Languages,

Press, pp.137-160, 1972.

in: 'b&Yelling in Data Base Management 8ystems'
(ed.G.M.Nijssen), IFIP 'PC-2 Working Conf., N-H,

[IBM a] IBM Qrporation: IMS VS version 1, Applica-

1976.
tz&ogrammers Reference Manual SH20-9026.

[Bjqmer 78a] D.Bjbmer 6 C.B. Jones (eds.): The
[Jones 77a] C.B.Jones: Program Specification and

Vienna Deaopment Method: The Meta-Language, UJC8
Fa zelopment, in: Int'l.Ca+symP., IC8'77,

61, 1978.
F&th-Eblland, pp 537-554, 1977.

[Bibmer 7833) D.Bjbmer: Prog&ng in the M&u-
[Jones 79a] C.B.Jones: Constructing a Theory of 01

Language -- A Tutor&Z in: CBj4mer 78a].
Dwtzture as an aid to Program Development,
Acta Informatica 11, pp. 119-137, 1979.

[Bjhmer 8&l D.Bjbmer (ed.):
Specific&& lNC!S 86, 1980.

Abstract Softtxzre

[Bjdmer 80bl D.Bj4mer: Formaliaation of Data Base
Models i.rixBjbmer 8Oa], pp. 144-215.

[Bj4mer 8oC] D.Bj+mer: Formal Description of Pro-
grannning Concepts: a Software Engineering View-
point, MEC8 '80, LX8 88, pp. l-21, 1980.

[Bj4mer 8Odl D.Bjbmer:
I Application of Formal Mo-

dels, in: Data Bases', INFWTECH Proceedings, Get.
1980.

[Bjdmer 81al D.Bjdmer: The VIM Principles of
Software ?$&?ification and Program Design, in:
'Formalization of Programning concepts', lXC8
107, pp. 44-74, 1981.

[Bjbmer 82a] D.Bj$mer & S.Prehn: software En&+
eering Aspects of VDW Int'l.&aninar 'Software
Factory Experiences 2', Capri, Italy,: N-H, 1982.

[Bjdmer 82b] D.Bjbmer & C.B.Jones: Form& Spec-
ification and Software Development Prentice/Hall
Iw'l., tindon 1982.

[Bjdmer 82~1 D.Bjqmer & H.H.I&engr~: Formali-
s&ion of?& Models chapter 12 of [Bjdmer 82bl.

[Bj$bmer 82d3 D.Bj$bmer: Realization of Database
Management Systems chapter 13 of [Bjdmer 82bl.

[Bjdmer 83*] D.Bjbmer: Software Architectures
and Programmi?zg Systems Design, approx. 1000 Pages
lecture notes, TUD, 1983.

[CODXYL 71al Data Base Task Group fDB!Z'Gl, CODASYL
1971 Report A(E1, 1971.

[Gordon 79a] M.Gordon, R.Milner & C.Wadswrth: E-
dGh=F IK!S 78, 1979.

[Jones 8Cal C.B.Jones: Sofbare Development: A Ri-
geA=roach, Prentice-Hall International,
London 1980.

bmersdorf 80abl W.Lamarsdorf & J.W.8chmidt: Se-
mantic Definxn of Pascal R Reports 73-74, Inst.
of Informatics, Univ. of Hamburg, July i980.

[Lindenau 8l.a] J.Lindenau: Eine Deskriptive An-
frage8prachefUr das Netswerk-Datenmodell mit
formaler Definition der Semantik in Meta-IV,
M.8c. mesis (in German), Kiel Univ., Inst. fclr
Informal%, March 1981, 175 Pages.

[I.Lwis 82.a] G.bnis & A.Pirotte: A Denotation& --
Definition of the Semantic8 of DRC, A Domain
Relational Calculus VLdX Cunf. 1982, these proceed-
ings.

[Neuhold 8Oa] E. Neuhold & Ths. Olnhoff: The Vien-
na Development Method (VDM) and its Use for the
Specification of a Relational Data Base System,
IFIP'80 (ed.S.Lavington), N-H, 1980.

[Neuhold 81a] E.Neuhold 61 Th.Olrihoff: Building Data
Base Mana~e?at System6 Through Formal SpeCifiCU-
tione, TICS 107, pp 169-209, 1981.

[Nilsson 76a] J.F.Nilsson: Relational Data Base
Systems: %&aliaation and Realization, Ph.D.
lbesis, IUD, ID 641, 8ept.1976.

[Olnhoff Slal lb. Olnhoff: Funktionale Semantikbe-
schreibung van Anfrageoperationen in einem drei-
schictigen relationaler Datenbanksystem, Ph.D.
lbesis, Stuttgart/ Hauburg Univ.,Inst.f.Informatik,
by 1981,210 pgs.

[mlett 77a] J.oWlett:
Dze&:

Deferring and Defining in
'Architecture h Models in DBMS'S',

Proc.IFIP Vbrk. Conf. on Modelling in DE%%, N-H,
1977.

Proceedings of the Eighth International Conference
on Very Large Data Bases 339 Mexico City, September, 1982

[Pirotte 82al A.Pirotte: A Precise Definition of
Basic Relxonal Notion8 and of the Relational
Algebra PLM SIQ4OD Record, to appear, 1982.

[Plotkin =I G.D.Plotkin: Structured Operational
Semantic8 Lecture notes, Aarhus University muter
Science Deparhuent, Uemmrk, 1981.

[W 73al J-T-Schwartz: On Programing: The
SETL Lang* Caurant Institute of Mathematics,
Nsw York University, N.Y., 1973.

[X3/ANSI/SPARC Slal (eds.M.L.Brcxdie & J.W.S&nidt)
Relational Database Task Group Final Report Ibc.
SPmC 81-690, 1981.

Reference abbreviations:

N-H: North-Holland Publ., Amsterdam, The
Netherlands.

I&ES: Lecture Notes in Cmputer Science,
Springer-Verlag, Heidelberg, W.Germny.

TUD: Technical University of Denmark, Cun-
puter Science Department.

AP-IX I: A Formal &de1 of IMS - -----

A.1 Introducticn

Thisappendix contains an abstractmdeltichis
intended to describe the most fundamental concepts
Of Im's hierarchical database system, IMS (In-
form&ionManagemntSysten).

Then&e1 covers only the mst fmdamental con-
structs of the data manipulation language DL/l.
First of all, the catalogue and the data part is
modelled, and then the semantics is given for the
six fur&mental omnands: Get wgue, Set Next,
Get Next within Parent, Insert, Delete, arxl Ha-
place. IbE!VW, dy the rmst sinple form of
these are treated.

The made1 is based primarily on the user manual of
IMS [IBM a]. Readers familiar with IMS should be
awarethat the n&e1 is an abstraction and that
the follwing featuresare not modelled:

0

0

Gzntmnd Cedes
"Advanced Features": Multiple mitioning,etc.
Logical Databases
Accqq Dependent Features
m~tmning inwrong calls
'Wrap around" of position

(start of database = end of database)
Get-Hold calls
Insert Pules other than FIRST

It is believed, anyway, that the tie1 is a reason-
able description of "elemsntaq" I%.

A.2TheE&abaseStructure: SmanticI --

TheIMSHierarchicalU&abaseisconsideredtoan-

sistof a Catalogue (Schsm), a Eata Part, and
current Positions:

HDB :: CTLG DP POS

A.2.1 Catalogue

(1)

CTLG : : (SegmTp 3 SegmDescrl Ord (2)
SegmDeecr :: RecDescr CTLG
RecDescr ** (FieldId $, TYPE) Seqinf

'. SearchFields
Seqinf = Unique 1 Multiple 1 NON-SW
Unique ** FieldId
Multiple I: FieldId
SearchFields :: FieldId-set
OPd = . . .
TYPE = INT I . . .
SegmTp = TOKEN
FieldId = TOKEN

Ihe Catalogue defines a hierarchy of Seqmant Types
and their associated Record Descriptors. Sibling
SegnentTypes are ordered by the Order went
with tich we assutm a relation << indexed by the
ordering:

type:cc : Ord + (SegmTp Segmlp $ BOOL) (3)

The records of a segment type are described by the
required fields and their types, *ether the re-
cords must be ordered by a key field or not, and
tich fields may be used for selection.

No!%gmentTypemayappearmorethanonceinahie-
rarchy. We therefore have the following invariant
on the catalogue:

~CTLGf&CTLG(6dm,Ord)) 9 (4)
(Vmk-SegmDescr(recd,ctlg') cnsdm)

??.?.RecDescr(recd) h *-~~~~(ctlg'))
A(V8tp~,stp2 E &nEdnl

f8tp +6tp2 3
f$et 8tpsl = 8type8(8-CTLG(8dmfst&)) in
let 8tp82 = 8type8f~CTLGf8dmf8tp2!) 5
Stp8Z"8tp82 = 11 A
f8tp8lu8tp82)n&l8dm = III I

hino-Ordford,&nsdm)

inv-RecDe8crfmk-RecDe8crftpm,8eq,8earchJ@8~~ A
8earchf8 = domtpm --

A cage8 seq: fmk-Multipleffid) + fidEdomtpm,
vlfidl + fidermtpm,

+ truer
inv-Ordf,) p . . .

w: inv-CTLG: CTLG + BOOL
w: inv-RecDescr: RecDescr + BOOL
w: ino-ord: Ord SegmTp-set + BOOL

AIU~wsegmnt types of a (sub-)catalogue
:

stypesfmk-CTLGfsdn,)) $. .-

sdmfstpl)) 1 stpedomsdnl

(5)

(6)

I:;
(6)

are

(7)

Proceedings of the Eighth International Conference
on Very Large Data Bases

340 Mexico City, September, 1982

Sincethe segment types are uniquewithinthe cata-
logue, it is often convenient to have direct access
the associated record description:

get-RecDescr(stp,&CTLG(sdm,)) 4 (8)
if

type:

6tp E domsdm
-

then 6-ReCDe6Crf6dhf6tp)) --
else (let 6tp' E domsdm be 6.t. --

6tpe6type6fs-CTLGf6dmf8tp
get-RecDe6cr(stp,~&‘LGf6&n(stp

SegmTp CTLG q RecDescr

I’))) in
))) -

pre: - inv-CTLG(ctlgl A 6tpEGtypeG(Ctlg)

A.2.2 IZeta Part ---

DP = SegmTp 3 SEGMENT (9)
SEGMENT :: Record DP
Record = FieldId 3 VAL
VAL = Intg 1 --a

The Data Part associates a list of segments tc each
segment-type. F&h segment consists of a F&cord and
an associated sub-data-part. Thereby the Records
are arranged in ahierarchy where the records ofa
segment type under a given parent are ordered by
the list. A reccrd just associates a value to each
Field.

AData Part of an HDB mst follcw the structure
prescribed by the catalogue:

inv-DPfdp)&CTLGIsdn,) 4
domdp = domsdm

hi%pedosJ
(&cegml = dp(stp) in
tet mk-SegmDescr(mi,Zlg'I = sciW6tp) --
let mk-RecDescr(tpm,seq,) = xi --

(vmk-SEGMENT(rec,dp'I 6 elemasegmll
linv-Record(rec,tpmJ h-DP(dp'

&check-sequencel6egmZ, 6eq))-
m: DP + (CTLG 7 BOOL)
pre: inv-CTLGIctlg)

(10)

in
in -

)ctZg')

inu-Record(rec,tpm) 4
domrec=domtpm h

(11)

(vfidrdGec)'ftype-offrecffidll=tpmffid)l
e: Ret?% (FieldId fi TYPE) + BOOL

type-of(va1) 4 l&Intg(vatl -) E,...)
TV@: VAL -+ TYPE

(12)

The follming function will check that the records
of a segment list are ordered according to their
key field. In IbE mltiple records with the same
key may be allcwed.

check-6eque?acefsegml,seq) P
6eq=Nc+ss32

v f Vi, j&dsegmtl
f&Tyf = eFieldId(seq) in . = s-Recordfsegmlt~l) fkeyf)
tet i'$ = ~Record(segmt[j])(keyf)'~
((i-Q') 3 ca6e6 8eq:

f&Unique0 + ikeycjkey,
mk-Multiple0 + ikeyAjkey)

(13)

))

A.2.3 Fbsitioniq in the Data Base -VP-

POS = fs-current:Qathl r;-parent:[Pathl)
Path = (SegmTp NI) (14)

The JMS system maintains tm positions in the data-
base, each one identifying a unique segment. The
current position bughly speaking) identifies the
record last accessed, and the parent position iden-
tifies the segment under which the Get Next Within
Parentcamlandmaysearch.

A segment amd its associated record is uniquely
identified by a so-called Path, which gives the
segment type and au index in the associated list
of segments for each level on the way dawn fran the
rcctdataparttotheseqnenLAn~yPathmy
be thought of as denoting an imaginary "system
seqnent" which cannot be accessed.

If the current Path is missing (nil) the current
position is at "the end of the DaGTBase". If the
Parent Path is missing, no records can be selected
by "Get Next Within Parent".

Nw there follow sans useful Path operations to be
used later in the definitions of the m.
Firstly, all the possible paths in a data part.

all-paths(dpl 4 (15)
Q&=Cl

then {<>I
etse {<fstp,i)>^p I

stp6domdp A ieinddp(stp) h
pratt-paths(6-~dp(stpICillIj

&.,@: DP + Path-set
-

rcetrievalof the subdatapart, and the recorddem-
tedbyapati:

get-DP(path,dp) A (16)
cases path:
((> -, dp,

c(stp,i)>^path' -+

&@: Path DP 7 DP
get-DP(path',EDP(dp(stplCillll

pre: patheall-paths(dp)

get-Record(path,dpl d (17)
(let path'^<(stp,iT> = path .
let dp'
s-Record(dp'(stp)tiJ)l

= get-DPIstp,dp) % -

typz Path DP 1 Record
pre: pathrall-pcrths(dp)\[<>}

IWYte that the get-DP extends to the "system seg-
mt" (0). The follwing function tests whether
apath denotes a segtrentbelowthe segment denoted
bya parent path. If the parent path is missing
n0segmentcanbebelowit.

beneath(path,parent) p
parentsnit h

(18)

is-prefwparent,path) h lenpath>@arent
w: Path [Path1 -+ BOOL -

Proceedings of the Eighth International Conference
on Very Large Data Bases 341 Mexico City, September, 1982

A.2.4 Sequencing in the Data Ease ----

All the records of the data base are ordered in a
so-called hierarchical sequence corresponding to
a parent first, left-to-right traversal of the
data part tree. In our mdel this ordering is re-
flected by an ordering on the unigue path identifi-
cations of the records. In this way, the ordering
becanes a lexicographical ordering cm the paths.
Since the ordering depends on the ordering of
segment types at each level, the catalogue is
needed in the follcwing function, determining the
ordering:

precede6 (pl, p)&CTLG (6dm, or& p
i (pz=<> -) fa 6e2

PI’” -t true,
T +(E cfstpI,i)>^pI I = pl in

let c(stp2, j)>ApS~ = p2 3
(stpl*~tpZ -) *@I “or- 6tP2,
i*j + i-cj,

(19)

T
preceiee(pI f,pz f)6-CTLG(6dmfstp~)))))

a: Path Path + (CTLG 1 BOOD
pre: (3dprDPJ finv-DPfdpJctlg) A

Ipl, p2 1 2 att-path6 fdpl

For later use, we define a few operations using the
sequence concept.

first-path(p6)ctlg 4 (20)

SJz $-&
--
else (Apcpsl (Wp’eps\{p]) fprecedesfp,p’)ctlg)

typs: Path-set 1 (CTLG 3 CPathll

(21)

next-path(p) fctlg, dp) A
first-pathf Ip’ 1 p’ealt-pathsfdpl h

follow6(p’,p)ctzg1)

(22)

type: [Path] 7 fCTLG DP 7 CPathll

A.2.5 Well-fomsdness of the Data Base ----

At the endofourtreatmntofthe DataSaseSt~~ct-
ure we formulate the global conditions to be met by
the Data Base:

*HDBfctlg, dp, po6) 4
inv-CTLG (ctlg)

h=DP(dp) ctlg

(23)

hltet (current, parent) = pas in
(current=nit v currenteall-shhsfdpl)

h(parent=& v parenteall-paths(dp) \{<>I))
type: BDB + BOOL

A.3 IkkaManipulatim --

In this section we define the semantics of the six
fundamental ctxrmnds of IMS: Get Unique, Set Next,
Get Next within Parent, Insert, Delete, & Replace.
The full abstract syntax and distribution tictiOnS
are given bslow:

A.3.1 Syntactic Jbnains

Cmd = Gu 1 Gn 1 Gnp 1 Isrt 1 Dkt 1 Rep1 (24)
Gu :: CSsa+l
Gn :: [Ssa+l
Gnp :: [,%a+]
Isrt :: S6a+ Record
Diet :: 0
Rep1 :: Record

Ssa = (Se Tp CQuaZl)
Qua1 = Eq 9” . . .
Eq :: FieldId VAL
Record = FieldId a VAL

(25)

Precondition:

pre-CmdtcmdJhdb 4 (26)
case6 cmd:

(&Gu(Ol -rpre-Gu(cmd)hdb, . . . -) . . . !

The definition of the semantics of the ms is
divided into three parts. First we discuss the can-
tmn concept of Sequential Search Arguments (ssa's).
We then treat the data retrieval CcmMnds (the
Get's), and finally the data rrodifying amnands.
For each cunmnd we define the conditions in rela-
tion to the IZeta Base to be satisfied before appli-
cation of the canmrkd, and the interpretation func-
tion defining the semantics of the cmmand.

Note that the special Set-Hold caTmandsarenot
mxlelled as they are almost logically equivalent
to the Set calls except that they indicate that
the succeding ccmmnd my be a replacement or dele-
tion.

A.3.2 Segment Search Arguments

The

Ssa-tist = CSsa+l (27)
Ssa
Qua1

1 ,k$
r

Tp [QuaZlJ
. . .

Eq :: FieldId VAL

purpose of the Sea-list is to determine a set
of segments of a given type by giving qualifica-
tions which must be satisfied either w the seg-
ments of the type themselves, or by their ances-
tors. The qualification for a segment type is
given by a Seguential Search Argument (Ssa). In
IMS,hcwever, not all levels on the path to the
desired segment type need to be given in the list.
In this case the systan will assms so-called
inplied Ssa's (see below). Also, the list may bs
totally left out, in Vhic?n case all segmenti Of
the data base are selected. The qualification may
havemany form in IX. Since these are not our
primryccncern we cmly cover the case where a
field in a record is required to have a certain
value. 'Ihe gualification my be left out, in'
tich case all segments of the type apply.

For an &a-list to be valid in the oontext of a
HI& the Ssa's of the list, taken fran left to
right, must "lie" cn a path fran the root to the
desired segment type, givenbythelastssa:

Proceedings of the Eighth International Conference
on Very Large Data Bases

342 Mexico City, September, 1982

pre-Ssa-list(ssal)&HDB(ctlg,,I g
(ssal=nil + true
T -+ pre-Ssa-list'(ssaZ)ctlgI

type: [Ssa+l + (HDB 7 BOOLI

pre=Ssa-list'(ssal)m&CTLG(sdm,l A
cases ssal:
f- -+ true,
~lstp,qualJ>Assal' +

iJ stpqiomdm
then -

(let mk-SegmDescr(recd,ctlg') = -.-
(qual=nil v pre-Qual (qual)recd)
pre=SZlist'(ssal')ctlg'J I

(28)

(29)

sdm(stp) in -
A

eLse
(let stps = (stp' 1 stp'edomsdm h

stpestypes(s-~GfSdmfstp'II) &

YfFF,;t~~alse, -
-+

pre-Ssa-list'(ssal)s-CTLG(sdm(stp'))))
type: Ssa* + (CTLG % BooL)

pre-QualfqualIm~RecDescrftpm,,srchfsl $ (30)
cases qual: --
f&Eq(fid,val) -+ fidcrsrchfs A

tpmffid)=type-of(val),
. . . I

type: Qua1 + (Recdescr q BOOL)

The function type-of: vaL + TYPE is assumed to be
given.

Fbr an Ssa-list to be used, the missing levels must
be supplied by the system. Such Ssa's are qualified
by a special qualification indicating that the le-
vel was implied. We therefore introduce cunpleted
Ssa-lists as lists of:

Ssa ' = fSegnz!L'p [QuaZlIMpLl! (31)

W+I the Ssa-list may be ccqleted by:

completefssal)mk-CTLGfsdn,) A
cases ssal: -
f<> + <',
cfstp,q)>^ssal' -+

iJ stprdomsdm

(32)

then <(6tp,q)~Acomplete(8sal'I~CTLG~6dm(stp))
else (let 8tp' be 6.t. -- --

8tpe8t~pe8f~CTLG(sdm~stp'II) &
~(8tp',IMPL)>

~lete(6sal)~CTLGf8dmf8tp'))))
tElpe: Sea* 3 (CTLG r Ssa'*)

An Ssa-list may be evaluated in two ways. We give
the sir@e one first:

evat-Ssa-list(ssalI(ctlg,dp) e
tJ sscil=nil

(33)

then azpathe(dp)
else (let 88a.I' = complete(ssal)ctlg &
- ~rchfssal',dp))

type: i&a+] 7 (CTLG DP 7 Paths)

Proceedings of the Eighth International Conference
on Very Large Data Bases

343

searchfssal,dp) p
cases Ssal:
(0 + I-1,
cfstp,q)>Assat' +

I<fstp,i)>^p I
ieinddpfstp) A

(34)

(let mk-SEGMENT(rec,dp'I = dpplstp)tiJ in
fi[=nilvq=E v satisfiesfrec,q)) h -
pesearch(ssal',dp'))]I

w: Ssal'* DP 7 Path-set

satisfies(rec,q) _1
cases ,q: f&Eqffid,val) + recffid)=vaZ, . . . I

Q@: Record Qua1 3 BOOT,

We see that in this simple case, implied Ssa's are
treated like unqualified Ssa's.

In the Get Unique and Insert Commands, tie implied
Ssa's must 'be treated according to sow special
rules which we quote from [IBM al:

"(1) If the prior call established ,oosition on a
segment type that the current call is using
as an implie segment type, an SSA qualified
with current psition is assumed at that
level. (This is true even if the segment has
nonunique keys.) If a parent level qualified
SSA is provided for other than the parent's
current position, an unqualified SSA is as-
surwd by DL/I for all missing levels belw
that parent.

(2) If the prior call did not establish position
on any segment type implied in the current
call, then DL/I assumes an unqualified SSA
at that level."

It does not seem quite clear haw to interpret
these rules. One idea would be to follw the cur-
rent path "as long as possible", but it appears to
be tco restrictive. Instead, the interpretations
formalized below seem to conform better to the
rules.

The idea is to try hew far the current path can be
used still fulfilling the qualifications Of the
ccmpleted Ssa-list treating ix@ied Ssa's as
u qualified. This will result in a prefix of the
current path. FYcr6 this prefix wa take the part
dcwn to, and including, the last i.rt@ied level,
and use this part as the first part of the selected
path mere the rest is found by the usual search
given above.

eval-Ssa-list-P(s8al,cur)(ctlg,dp) $ (36)
i-f ssal = nil

then all~ths(dp)
else (let 8sal' = complete(ssal)ctlg in

zcur = nil
-

then seGh(ssal',dpl
else search-along-path(ssal', cur, dp)l

e: L~sa+l~thl 3 (CTLG DP 1 Path-&I

Mexico City, September, 1982

search-along-path(ssa2, cur, dp) 1 (37)
(let j = try-path(ssaZ,cur,dp) in
tet k = max({ k’l I<k’<j A -

--s~~ZCk’.J=(,~I~u~O~ in
let cur’ = ccurCi1 1 ieindcur A i<k> in
iZ seat I= ~ssal[i] I iZ&saZ A iTk> zi
tet dp’ = et-DPfcur’,dr 52
Icur’ A p pesearchfssaZ’,dp’) 1) - B

e: Sea+ Path DP + Path-set

try-path(ssa1, cur, dp) p (38)
iJ ssat=o v cur=0

then 0
else (let c(6tp,q)>As6al’ = 66al in
- tet c(stp’,il>Acur’ = cur zi

tet mk-SEGMENT(rec,dp’) = dp(stp’ICi7 &
~6~6tp’h(q=nilvq=IMFXvsati6fies(rec,q))

then I + try-p~(se~cur’,dp’)
else 0)

type: Ssa%th DP 1 No

Try-path will return the length of the longest pre-
fix of the current path that satisfies the gualifi-
cations in the Sea-list.

A.3.3 Petrie~l &mends

IMS has three cam-ends for data retrieval:

Gu :: [Ssa+l
Gn :: [Ssa+l
Gnp :: [Ssa+l

(39)

Get Unique retrieves the first record in the hie-
rarchical sequence which is selected by the Ssa-
li6t. Get Next retrieves the first record when
starting at the current position which is selected
by the Ssa-list g Get Next within Parent wxks as
Get Next except that the record must be a descen-
dantof the record denoted by the actual parent
position.

All Get cammnds will set the current position to
the record retrieved, but only Get Unique, and
Get Next will change the parent position.

Precondition:

J?Or all Get mmands, the Sea-list must be valid:

~“GET’r(~“GET’r(e6al)) hdb 9 (40)

&)-g%g$~;;;~~$gj? 3 B*(JL)
“‘GET”: Gu, Gn, Gnp

Interpretation:

*Gu(mk-Gu(ssal))mk-HDB(dp,ctlg,pos) A (41)
ftet (cup,) = poe in

I let paths = eval-Ga-list-P(ssal,cur) fctlg, dp) in
let p = first-path (paths) ctlg in
let fpo6’,re6) =

-

fp=?g + fpos,W-FCUNDJ.
T + ffp,p).get-Recordfp,dp)) &

(~HDB(dp,ctlg,pos’Irres)l

int-Gn(mk-Gn(
int-Gn(mk-Gn(ssa1)

Jmk-HDB (dp, ctlg, pas) & (42)
(let (Cup,) = po (let (Cup,) = pos in
tet paths t&t paths = ev = evalzsa-list(ssal1 (dp, ctlg)
let paths’ : let paths’ = ?flprpaths A

&

1 1 follow6(p,cur)ctlg1 in
J!& P = first-path(path6’) ctlg Tz -
let (pos’,res) =

fp=& -) fpos,KFX-FOUND),
T + ffp,p),get-Recordfp,dp)) in -

(mk-HDB(dp, ctlg, po6 ‘), resl)

int-Gnpfmk-Gnpfssal) Jmk-HDB(dp, ctlg, pas) & (43)
-ii&t -

‘let
let

I---
!

let
let

(cuF;parent) = pos in
paths = eval-Ssa-li~t(ssal) (dp,ctlgl
paths ‘= ‘vpepaths A

follow6(p,cur)ctl A

beneathfp, parent) B
P = first-pathfpaths’)ctlg
(~06 ‘, res) =

(p-nil + fpos,FKYT-FOUND/
T -* fp,parent), get-Recordfp, dpl I I in -

(mk-HDB(dp,ctlg,pos).res)l

m: “GET” + (HDB 3 HDE (Record 1 NOT-FCUND))

The exclamation marks indicate the points Where the
definitions differ. Note that many textbooks let
you have the impression that Get Unique uses the
simple form of S6a evaluation; this is mt the
case!

A.3.4 Modification C&mar&

IMshas three cxmnands which my modify the data
part of the data base. This section starts with
the definition of a m function, then follws
eachofthe ammnds separately, and at the end we
give sme auxiliary functions.

Modification:

Ccmmn to the mxlification cmmnds is that they
my change part of theData Part of the Data Base.
The following function performs the task of inser-
ting a new Sub-Data-Part at a given position.

modifytparent, subdp)dp 4 (44)
ca6e6 parent
f- + subdp,
C (stp,il >-parent' +

fl& segml = dpfstp) in
let mk-SEGMENT(rec,dp’) = segmlCi1 z --
let d
dp+ f

” = modify(parent’,eubdp)dp’ z
etp + segml+[: i-k-SEGMENT (rec,p”) 11))

type: Path DP 7 (DP 7 DP) -

Insertion:

Isrt :: Ssa+ Record (45)

me Insert cammnd inserts a record at the position
indicated by the Ssa-list. The last element Of
the list indicates the type of the record, and
must be unqualified:

Proceedings of the Eighth International Conference
on Very Large Data Bases 344 Mexico City, September, 1982

pre-Isrtf&<srt(66al, ret))&HDBfctlg,dp, 14 (46)
pre-Ssa-lz6t'(66al)cttg

h(let ssal’^<(stp,q)> = 66at in
q&A

-

inv-Record(rec,get-RecDecr(stp,ctlg)))
type: Isrt + (HDB 7 BOOL)

(47)
k.srtlmk-Isrt(ssa1, rec))mk-HDB(ctlg,dp,pos)A

(let 66aZ’^cstp,r&> = 66Xin
let (cur,parent) = PO6 z

let path6 = eval-Ssal-P fssa~cur) Idp, cttgl in
let in6po6 = first-path (paths) in
tmtp exit @ Imk-HDM(dp,ctlg,pos),FAILED) z
iJhzT+iz;&

etse (let subdp = get-DP (inspos, dp)
- let (subdp’,i) =

&

insert-rec(stp, ret, ctlgl (subdp) in
let dp’ = modify (inspos, subdp ‘) dp in
tet current ‘= inspos^ ((stp, i) > in
tet parent’ =

-

adjust-in6ertion(in6pos, 6tp, il parent in
let ~06' = (cur',parent'J z
(mk-HDBfctlg,dp’,po6’IrSUCCEEDED))) -

a: IwtT(HDB 7 (HDB fE%ILEZm) I)

me Int-Isrt function first identifies the subdata
partin which the record is to be inserted. Then
the record is inserted in this subdatapart which
is again inserted in the whole data part. Finally,
the positions are modified to reflect the inser-
tion.

find-position(segm1, ret, fidl A (48)
x segml=o v 6-Record(hd6egml) (fid)Lrec(fid)

then 1 - -
else 1 + find-position(tlsegmt,rec,fid)

w: SEGMENT* Ret Fid + 2

insert-ret Istp, ret, ctlgl dp 4 (49)
(let mk-RecDescr(,seq,) = get-RecDescr~stp,ctlg)in --
let segml = dp(6tp) in -
let i =
cases seqinf:

/pJDN-sw + 1,
Unique (f id) +

&f (3 j~~6egmlI
(s-Record(segmlCjl(fid)=rec(fidl)

then exit
else findposition(segm1, ret, fid),

Mu1 tiple(fidl +
find-position(segm1, ret, fid)) in

let 6e 1’ = insert-elemfmk-SEGMENT(rec,[:II,i) in
iTgi + stp -+ seginl’],i)) - 9”

-

&T&?: SegmTp Record CTLG 1 (DP 3 DP)

The insert-ret function inserts the record in the
subdatapart under the given segment type and at
tile right positim according to its key value.

Delete :

Dlet :: 0 (50)

‘Ihe Delete cxmmndremwes the record denoted by
the current position. The "system record" can, of

course, not be deleted.

pre-Dletfmk-DletOJmk-HDBf,, (cur,)) A
curmii? cur+o~-

(51)

type: Diet-r (HDB 7 BOOL)

int-Dletfmk-DletOJmk-HDB(ctlg,dp,posl e (52)
(let (cu~arentl Go6 in
tet del-parentA < (6tp, i)x- current in
tet 62&C+ = get-DP(parent, dp) zi
let segml = subdp(6tp) z
tet 6Ubdp' = 6Ubdp +

-

Cstp + remove-elem(segm1, i) 1 in
let dp’ = modifyIparent,subdp’)dp in
tet current ‘= next-path (cur) Ictlg, dp)
tet parent’ =

z

adjust-removal (del-parent, stp, i) parent a
(&HDB (ctlg, dp ‘, (current I, parent ‘)))

M: Dlet 1 (HDB 7 HDBI

First, the subdatapart inUhichthe current record
is situated is found, the record deleted and the
data part updated. Finally, the positions are ad-
justed.

Replace:

Rep1 :: Record (53)

The Replace camxmd updates saw fields of the cur-
rent record. me record provided must be sub-record
with values of right type, and the key field must
not be banged:

are-Rep1 (mk-Rep1 (ret) Imk-HDBfctlg,dp, (cur,))A (54)
curs nii7 cur + 0

hflet cur'w6tp,)> = cur in

tet mk-RecDescrftpm, 6eq,) = -
get-RecDe6cr(stp,ctlg) in

domrec = domtpm --
hi$idrdomrec) (type-of frecffidl) = tpdfid))
hcase6 G:

fmk-Uniqueffid) + f i& edomrec,
mk-Mul tiple f f id) +
T

f ic& <zrm)ec,
+ true)I

int-Rep1 Imk-Rep1 (reel)mk-HDBfctlg, dp, ~08) 9 (55)
f& frpT7<fstp,il>,I= ~06 in
let subdp = get-dpf rpo8, dpl
tet segml = sUbCip(6tp)

z

tet mk-SEGMENTf ret ‘, dp”) = sefl?iJ in --
mk-SEGMENT (ret ’ + ret, d

g :F’f subdp + [6tp

“) G
+segml+ i+segmllTi f

= modify (parent, 6ubdp)dp zi -
mk-HDBfctlg,dp’,pos))

ty=Repl 1 (HDB 7 HDB)

A.3.5 Adjustment of Parent path ---

After insertion or deletion of segments the current
and parent paths my no longer be valid. The cur-
rent path is changed explicitly as shawn in the
formulas, Whereas the parent pati must be adjusted
if it passes through the modified subdata-part.

Proceedings of the Eighth International Conference
on Very Large Data Bases

345 Mexico City, September, 1982

a~ju8t-in8ertion(in8po8, stp, i)parent A (56)
(parent=nil + nit,
-beneath(parent, inspos)

-t parent,
T

(let reit =
cparentCj1 I leninsposc jclenzarent, in

let <(stp’, j!>Are8t’ = rest
--

zi
Istpestp’ + parent,

-

jci -t parent,
T + ins-po8~(18tp’,j+l)>~rest’!)

w: Path SegmTp .??I 3 ([Path1 q [Path])

adjust-detetion(delpo8, stp,i)parent p (57)
(parent=niZ + niZ,

7 -beneatn(parent,delpos)
-+ parent

T
(& reZt =

cparentt jl 1 lendelposcj+arent> in
let ((stp’, j)>Are8t’ = rest - Gi
Istp+stp’ -t parent,

-

j& +niz,
jci -+ parent,
'> -

type:
-+ det-pod ((stp’, j-il>^rest’)l

Pat; :egmTp Nl 7 ([Path] N + [Path])

R&e that if a segment of the parent path is
deleted (j=i) the parent path is set to undefined
CniZl.

A-3.6 Auxiliary List Functions

Insertion of an element just before the i'th posi-
tion of a list:

insert-elemla,al, i) A
iJ i=l

then ca>^al
else hdal^insert-elemla,i-I,tlatl

e:A”NI 7 A+
pre: - icI1: lend+1 I

I&xmval of the i'th element of a list:

remove-etem(al, i) J&
iJ i=l

then tlal --
else hdal^remove-elem(i-l.tlaZ) ~-

type: JI;~I~ q A*
pre:

Test whether a list is a prefix of another:

is-prefix:(l
-:A* A

p2 = 1) !I (31’eA*l(l~=l~al ‘)
-+BOOL

(58)

(59)

(60)

APPENDIXII:Meta-Languag e - (META-IV1 Sunrey

DATA TYPES --

_INTG, 5, Q Integers and Natural Nurrbers (larger
than or equal to 0 respectiuvely 1)

with the usual operators: +, -, X, =, *, <, 2, etc.

BOOL Fkolean truth values: true and false with the
usual operators: h,v,-,D. EYedicate expres-

sions involve use of existensial, 3, unique exist-
ensial, 3!, and universal, d, quantification.

gUoT Quotations are emmerated atomic objects, e.g.
FAILED, SUCCEEDED, NOT-EWND, denoting thm-

selves. Only operators are: = and f.

TOKEN Non-enumerated at&c objects denoting them-
selves. Cnly operators are: = and *.

Sets Finite sets of "finite" (e.g. not functional)
objects: -set (suffix) applied to domain A

yields dcmin ofinite subsets of domain A. Set
forming expressions are: (al,az, . . . ,a,) and
(a I P(a) 1: the set of elements satisfying 2.
Usual operators:
Il.

u,n,=,~,e,\,cad, etc. Bnpty set

Tuples Finite length sequences, or lists, of ob-
jects : * and + (suffix) applied to dcsmin A

yields dmin of tuples whose elements are A ob-
jects, * also generates the empty, 0, tuple, +
does not. Tuple forming expressions are: <al,az,
. . .,a,> and cf(i)lP(i)>: the tuple of all those
gtfi;rpnts,.ordered as by ordering of i, sa-

. A Izst operators: hd, tl, &I, COI,
, elems, indis .- denote "heady "tail", length,

selection, concatenation, elements and indices.
Also (in)equality: (+) =.

Maps Finite damin functions (from A into B) deno-
ted by: A 3 8, with A elements being simple,

i.e.non-functional finite objects. Map fomiq
expressions are: [a +bl,a2+b2, . . . a+b 1 and
[d(x)+r(y) 1 P(x,yl 5: the map from >Jtz bi> re-
spectively d(x) to r(y) for all P(x,y). Cperators:

striction, application and cornposition. Also (in)-
equality: (*) =. l3qky map: [I.

Function8 LaxMa-functions defined either as f(a)g
expression or ha.expression. &mains of

total, or partial A to B functions written: A + B,
respectively A 7 B. Qnly operation is applica-
tion: ().

Tree8 IXxmin of A-named, resp. anonymous, trees o-
B; objects defined by: A :: B1 B2 . . . BN, 6r

(Bl B2 . . . BN); which defines named, resp. anony-
mous, tree constructor (decmposer) functions:
mk-Al ... I, resp. (. . .), and selector func-
ss : s-Bl, ~Bz, . . . =BN. -

ABsrRAcl! SYNTAX

(or Domain Quations) are of either the A=D-expres-
don or A: :D-expression form, where D-expression
my involve the set, tuple, map, funct*ion,+or tree
domin constructing operators: -set,
3 respectively :: and (. . .). GZtioZlal' 2!LZ
operators are: I (non-discriminated union), and
c . . .] (optional damin).

Proceedings of the Eighth International Conference
on Very Large Data Bases 346 Mexico City, September, 1982

WETA-IV in addition to conventional, applicative --
anMxucts (iJ then else etc.) makes heavy use of
the following: -- I_-

(1~ id = expr & body)

Iandin sugar for (hid. body)(expr):
id bound to all free occurrences in
body and denoting substitution of
expr for all these. Multiple, po-
tentially mutually recursive let
definitions are camnon.

(let mk-Afx,y, . . . ,zl -1 atree & body)

deccqoses atree into its constitu-
ent ccqonents. Otherwise as above.

(bl -t el,bz -+ “2, . . . ,bn -t en)

I%Carthy (LISP) conditional, bnroay
be T denoting true. --.-

cases e: (vz + el, v2 -+ “2, J L’n -+ en)

Ordinary cases construct. Often u-
sed with vi being mk-3;(. . .) and
then denoting decomposition of e-
tree with identifiers being
bound in e;.

(Aid&S) (Plid)

Unique descriptor expression: the u-
nique object, in S, which satisfies
P, undefined if not unique.

f(&A(x,y, . . . ,z)l 4 body

Function definition equivalent to:

f (atree)A
(let mk-A (x, y, . . . ,a)=atree in -- -
body)

ACKNOWLEDGEMENT
We gratefully acknowledge the work
done by Bo Stig Hansen, Jan Storbank
Pedersen and Lennart Schulz on ear-
lier versions of the IMS model.

Proceedings of the Eighth International Conference
on Very Large Data Bases 347 Mexico City, September, 1982

