
FORMALIZATION OF DATABASE SYSTEMS - AND A FORMAL DEFINITION OF IMS 

DINES BJORNER & HANS HENRIK LBVENGREEN 

DEPARTMENT OF COMPUTER SCIENCE, TECHNICAL UNIVERSITY OF DENMARK 

DK-28C10 LYNGBY, DENMARK 

ABSlXCI: Drawing upon an analogy between Program- 
ming Language Systems and Database Systems we out- 
line the requirements that architectural specifica- 
tions of database systems must futfitl, and argue 
that only formal, mathematical definitions may 6a- 
tisfy these. Then we illustrate home aspects and 
touch upon come ueee of formal definitions of data 
models and databaee management systems. A formal 
model of INS will carry this discussion. Finally 
we survey some of the exkting literature on formal 
definitions of database systems. The emphasis will 
be on constructive definitions in the denotationul 
semantics style of the VCM: Vienna Development Neth- 
d. The role of formal definitions in international 
standardiaation efforts is briefly mentioned. 

searchers and practitioners aware of these facts, 
of Mhat it takes to construct and use such defini- 
tions, and what their aims are. 

This introduction serves to delineate and othetise 
relate the subject. 

We start with an analogy. It mopares notions from 
the field of (conventional) prograrmning languages 
with notions fran the field of databases. 

carpxrting Review w Classification & Keymrds 

F.3.2 Semntics of Database System 
D-3.1 Database System Formal Definitions & Iheory 
D.2.1 Specification Languages, Methodologies, Tools 
D.2.0 Database Standards 
H.2.1 Data Models 

(1) In the former we speak of prcgmmning langua- 
ges . In the latter of data systems, i.e. of data 
models, and data definition, manipulation, & query 
languages (DDL, DML, resp. QL). We claim that the 
tm sides relate: the data model (CM) aspects of 
Pascal-like languages, are the data type aspects: 
data structures (values) and their primitive opera- 
tions. !lhe data definition aspects of these pro- 
gramning languages are the data type and variable 
definitions, respectively declarations. Finally, 
the data mnipulatim & query aspects are the 
statement & expression constructs. 

H.2.3 D&a Description, Manipulation & Query langs. 
F.3.1 Specifying, Reasoning about & Verifying DBNSs 

Abstraction Techniques, Functional & Logic Program- 
ming, me/Post conditions, Datastructure Invariant-s 

0. Introductim 
1. Specification Etequirements & Objectives 
2. Formal Definitions h Their Uses 
3. Related P&rk - An Annotated Bibliography 
4. Conclusion 
References 

(2) This Was the first step of our analogy. In our 
next step = relate programning language processors 
to database management systems, DBMS. By a language 
processor we understand either a canpiler + run- 
time system, or an interpreter. lhe function of 
a language processor is to execute (input) pro- 
grams in the presence of (input) data (incl. files, 
etc.). lhe purpose of a DBMS is to execute (input) 
cattnands (of DDL/IML/Qls) in the presence of stored 
(i.e. database) data. 

AppendixI: AEtmmlModelofIMS 
IIppenaix II: Meta-language (META-IV) survey 

0. INrRmXTIoN 

There is a grming and increasingly more Widespread 
interest in mathematical semantics definitions of 
various aspects of database systems.l'here is also 
a grcming acceptance of such definitions inboth in- 
ternational standardization work, in architectural 
design, as well as as a basis for development of 
correct i3t@ementations, and verification of cor- 
rectness of uses of databases. 

The aim of this invited paper is to make a larger 
fraction of the database cammnitv of both re- 
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(3) In our final step we relate programs + input 
data to input -ds + databases. Programs cor- 
respond to amends, input data (primary input & 
input fran files, etc.) correspond to databases. 

(1) We shall mm exploit the analogy. Previously, 
it was considered of utmost importance to secure 
the correctness of language processors for the 
follawing ream: all programs, including programs 
in@ementing DMSs, on their way fran conception 
to execution, muld pass through a canpiler or in- 
terpreter. The programs might have been believed 
to be correct, but if e.g. the canpiler was wrong, 
then all muld be wrong. E'rcm considerations of 
both program correctness and ccmpiler/interpreter 
correctness arose the desire to construct precise 
definitions of programning languages. Fran these, 
it = expected, me could eventually prove cor- 
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rectness both of proqrams and of compilers. m 
our dependence & reliance on database systems is 
such that m must require the same stringent re- 
quirements as to their precise description. Just 
like we define proqramninq languages precisely, we 
must now require similar definitions of data nwdels 
and the related (possibly abstract) DDLs, CMLS & 
CD. 

(2) In proqramminq lanquaqe processor, i.e. in in- 
terpreter, ccm@ler and run-time system development 
we use the form1 definition of the programming 
lan=qe. Thus we systematically derive lanquaqe 
processors fran language definitions. Correspond- 
ingly, wa argue that DENS be rigorously derived 
frcm formal definitions of data mdels & their 
DDLS, IXLS & Qrs. 

(3) In proqram development we use the formal def- 
inition of the proqramninq lan?jKqe to verify its 
correctness. Similarly we can use the formal def- 
finition of a data rrcdel & its DDL, DML & QL, to 
verify properties of any particular database and/ 
or any particulare use, throuqh a EML, DDL or QL 
amend, of such a database. 

We observe the follminq distinction: to specify a 
data n-ode1 and its DDL, CML & QL (or: Proqramninq 
Ianquaqe) is one thing. !tb specify a database 
(resp.: program) is quite another thing. In this 
paperwe focus on the former, but the techniques 
for the latter n-bay be the same. C&mm to all spec- 
ifications is their language, the meta-language. 
'Ihe implementation lanquaqe for a DE?% (as derived 
fran a data model + DDL/IBlL/QL specificatim) my 
be Pascal, whereas the im3lementation lanquaqe for 
a database usually is a DDL/EML/QL. 

The specification language of this paper 
notation language; it is called META-IV, 
scribed very briefly in an appendix. 

1. DE3?IRITIC93OE!JEKXIVES & REQUIFENENIS - - 

is the VlZ4 
and is de- 

We outline the requirements that users must put on 
database system definitions. We distinguish between 
requiremants expected to be fulfilled by sane soft- 
ware and the architectural definitions of the soft- 
ware Eiictions: concepts & facilities. The latter 
fulfill the former. Requirements definition speak 
Of the software, whereas definition requirements 
speak, at a m&a-level, of how we express defini- 
tions including the way in which definitions ex- 
press desired properties. 

'Ihe objective of a definition of a data model & 
its DDL/LML/C?L is that it specifies sanethinq for 
both the intended users & developers of the *lied 
family of DPNSs. The definition is a lesal contract 
betwe& users & developers. The objecti;e of a def- 
inition is also that it expresses the requirements 
put on the data rmdel, i.e. the expectations laid 
dam in uses thereof. We shall not further touch 
upon this relationship to requirements analysis & 
definition. 

The cbjectives result in certain requiremnts. 
For it to formally fulfill the r6le of "legal mm- 
tract" a definition must be consistent & ccmplete, 
and uses of what the definition defines must be 
prov- correct w.r.t. the specification. E3y a 
consistent definiticm we man one which ascribes 
an un-anbiquous, precise, non-trivial semantics. 
By a complete definition we mean one which ascribes 
semantics to all applicable constructs. These pro- 
perties can both be easily verified to hold (or 
not hold) for denotational, e.g. VU+based, defini- 
tions. 

For it to usefully fulfill this r&e a definition 
should furthermore not be unduly long, i.e. be 
reasonably short, and it should be comprehensible 
by the tw parties concerned: those who write ref- 
erence & in&oducto~ manuals for uses of what is 
defined, and those who develop mxntations of 
what is defined. Cne could list, as a definition 
objective that the object which has been defined, 
in casu: the Data System is well-conceived: free 
frcm mis-conceptions, conceptually clean and with 
an optimum of notions: and that the defined data 
system has properties which are either transparent- 
ly defined or relatively easy to ascertain frcm 
the definition. 

A definition mst be accessible to reasonably skil- 
led software enaineers, i.e. thev should bs able 
to effectively &nd their way into & "around" the 
internals of a definition. In addition to the def- 
inition being (de facto) correct, definition users 
must also believe it to be correct. I'CorrectnessM 
of a definition, iii addition to consistency and 
canpleteness, etc., also means that it is permis- 
sible. Thus desired non-determinism, uuasi-paral- 
a, concurrency and resource usaqe +timizaticn 
mst be expressed by the definition. 

It should not, per se, be a requirement or an &- 
jective that a definition be formal, let alone 
executable. 

To smmmrize, the objectives & requirements of a 
definition can be itemized: 

(i) legal contract between user & developer, 

(ii) consistent & cunplete, 

(iii) canprehensible & concise (short & precise), 

(iv) accessible & referencable, 

(v) wrrect C believed correct, 

(vi) permissive - where appropriate, 

(vii) suitable for user manual technical writers, 
implementors &validators 

2. ?XBl%DEFINITICNS&THEIRUSES -- --- 

We nm arque that only formal definitions will sa- 
tisfythe above-stated objectives & requirements. 
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By forxbal definition we rfaaan a definition about 
which questions can be answered objectively. Math- 
ematics then is our tcol to achieve this. Several 
definitional styles are possible. They fall in tm 
groups: the constructive models of either denota- 
tional or operational semantics, and the *licit 
definitions of either axianatic or algebraic seman- 
tics. 

Given a definition of the latter kind one is usual- 
ly required to shaw that there exists a non-trivial 
model for there to exist any sensible realization. 
Current *licit definition styles achieve this 
rrodel requirement at the expense of forcing rather 
low-level abstractions resulting in rather volumin- 
ous definitions. A drawback of algebraic definition 
styles, as contrasted to denotational ones is their 
apparent inability to cope with higher order func- 
tionalabstractions. 

Given suitably high-level abstractions denotational 
semantics today appear to satisfy roost of the re- 
quirements put to definitions of sequential, or de- 
terministic systems. The rfore permissive aspects 
can be expressed in either axiomatic or structured 
operational semantics [Gordon 81al. 

We Shall focus on the VIM approach to formalization 
of database 8ysIzns. VIM, for Vienna Development 
Methodology, is a denotational semantics based soft- 
ware development methcd, which, however, permits 
carefully controlled na?Cve set theoretic predicates 
to achieve a high degree of expressability. VCM is 
extensively d -ted in the literature: currently 
four books [Bj&ner 78a, Jones 8Oa, Bj&ner 8Oa, 
Bj&ner 82bl in addition to many papers. For data- 
base-oriented introductions to VCM you may consult 
[Bj&ner 8Ob]. 

The discussion which follu& will not be a tutorial 
on hcrw to use VIM for purposes of e.g. formal def- 
initions, nor on hw to read such VIM definitions. 
Instead we shall outline sane of the methodological 
steps in constructing such definitions, or models 
as ws shall henceforth call them. The discussion 
will be carried relative to the Formal Model of IMS 
given as an appendix. 

Mnantic canains 

- The C&abase Structure: 

InarchitectincanewDataModel (orvariantthere- 
of) the roost &qortant thing to .first decide upon 
is the s-tic obiects (or states): "that which ws 
wish to speak abo&". In the case of I?& it was 
given by others, and our fornxalization is hence a 
recording of the results of a semantic analysis. We 
found that IMS states couldbe abstractedas shown, 
first in (l), subsequently, deccqos ing these into 
constituent objects, defined in (2), (9), and (14). 

The object defined by formulae (1, 2, 9, 14) are 
representationally abstracted mathematical -ins. 
Thatis:wehave abstracted away any ix@amentation 
concerm to focusonwhattheuser sees.The Eunain 

equations define the class of all objects (usually 
too many, but see belaw). 

Thus we do not believe in defining such object do- 
mains by displaying one or two %napshot" pictures 
of Mtypical" such objects in the form of drawings 
with boxes and pointers, etc. Our major misgiving 
about such drawings is that they are only snapshots, 
too few to extrapolate the entire all& class. 
Our subsidiary misgivings about drawings or tables 
of example database constellations is that one is 
not told exactly the semantics of the primitives 
used in the drawings, let alone their ccanbination. 

--The &&abase Invariants 

But the d-in definitions (1, 2, 9, 14) sometimes 
define too much. It is, in general, not possible 
to express, in the form of domain equations, all 
the internal consistency constraints which usually 
must hold within and between sub-parts of objects. 
These data model integrity constraints are instead 
expressed in the form of predicate functions called 
(data type or data structure) invariants. Invari- 
ants apply to objects of defined dcxteins and are 
defined to hold only for those objects which are 
well-formed. The II% invariants are defined in 
(4, 5, 6, 10, 11, 23). 

-- Auxiliary Database Notions 

Finally, before dealing with data manipulation, we 
deal with a variety of auxiliary notions, usually 
functionsof various kind - notions which are 
either used in establishing invariants, or, subse- 
quently, in establishing the meaning of guery/up- 
date cunnands. 

These ancillary functions are illustrated by form- 
ulae (3, 7, 8; 12, 13, 15-22). The reader is en- 
couraged to study these frcpn this point of view. 

0000 

We find that the process of establishing what "the 
whole thing is all about", i.e. the semantic do- 
mains, their invariants and auxiliary notions, is 
themst crucial - and roost rewarding, hence the 
rmst important. We find, in contrast, that many 
database treatments alltcooftenbeginbyexplain- 
ing conrete syntax, trying to cover the daMin of 
applicable ccmnands as cxqletely as possible, arid 
failing, invariably, to explain, to any acceptable 
depth, the semantic dcxnains. Their structure Only 
transpires indirectly fran explications of canrand 
semantics. 

We find that very manydatabaseproposals are con- 
ceptuallyconstrainedbyunnecessary~lementaticn 
concernsand by a lack of a suitable abstraction 
medium. Ws find that denotational modellirq of 
data aels very quickly brings one into interest- 
ing generalizations. The abstractim language of 
e.g. VIM relieves one fran many unwanted clerical 
details, and thereby enables one to better exploit 
ones' mental capability. In short: Agood, concise 
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and well-founded notation is 
for architectural design work. 

very irrplortant, also 

Syntactic DaMins 

- The Database Cammnds 

Inestablishing the s-tic danain the architect 
naturally had certain data manipulation and query 
capabilities in mind. Basic aspects of these are 
normally reflected in scuw of the auxiliary func- 
tions -- e.g. (8, 15-22). Thus the foundations 
upon which design and explication of the database 
amnands have already been laid. And we can pro- 
ceedto architect&g these ccmw-& (24, 25, 27, 
31, 39, 45, 50, 53). 

-- The Cbntext Qndition Constraints of CcmMnds - 

The cumends designate database objects by naming 
sewant types and fields (25.0, 25.2, 25.3)*. In an 
actual database sane of these names may not be, or 
yet have been, defined. breover, the amnands 
may contain data values (24.4, 24.6, 25.2-3). These 
may not be of the kind described in the appropriate 
parts of the Catalogue (2.2, 2.7). As part of can- 
nxind elaboration one therefore have to check that 
only appropriate names and values are used (26, 28,- 
29, 30, 40, 46, 51, 54). 

Semantic Functions 

Finally we are ready to n&e precise the specific 
s-tics of ccmnands. E'ormulae (32-38, 44, 4849) 
can be considered auxiliary functions used in ex- 
plicating the denotations of several CcmMnds; with 
(4143, 47, 52, 55) being the actual, main semantic 
functions. 

0 0 0 0 

We have cutqleted the denotational xodelling of a 
non-trivial data Mel, the IMS. Granted, it is 
an abstraction of IKS, but the definitions illu- 
strate what it takes to construct such a defini- 
tionand what one obtains: an abstract "realiz,a- 
tion" - an easy and not too costly way of "playing 
around with and exercising" an entire spectma of 
IMS facilities. Instead of a lot of national and 
natural language words one has sanething far nore 
tractable: sa~~thing that can be objectively scru- 
tinized, sanething which can seme as a very pre- 
cise departure point for estimates of, and actual, 
ixplwkentation, and for educational and training 
purposes. 

The illustrated IMS definition is of a nature which 
can be *l-ted very guickly if one anits consi- 
derations of resource efficiency. A n-r of exe- 
cutable versions of the shown definitim can be 
thought of. Either one has, once and for all, an 
interpreter for the meta-language used; or one 
transliterates the definition into for example ML 

-e-p -------------------------- 
* NN.M refers to M'th line of formula NN, O-origin. 
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(of ID? [Gordon 79a3) or SETL ([S&warts 73aJ). 
Such "proto-typing" is by tw-~y considered useful. 
We should like to point out, however, the important 
clarifying rsle the construction and the existence 
of a paper definition. In fact, we should like to 
urge that architectural definitions such as the one 
of the appendix, but for new concepts, new "inven- 
tions", bs cumwnicated, circulated, read and dis- 
cussed for years before serious, constly atteqts 
berradeto inp3lementtiem. 

2. RELATEDWWORK - An Annotated Bibliography -- 

In this section we first survey sore of our m 
work, in section 3.0, and then, in sections 3.1- 
3.7, that of others, all, ho&aver, restricted to 
theVDlviewpoi.nt. 

3.0 Bj+mer et al. -- 

The following references outline the general prin- 
ciples for applying denotational, specifically VDl 
tielling techniques to databases: [Bj$4mer 8Ob, 
Bj4mer 8Od, Bjdmer 82cd]. The first tw represent 
early versions of the latter two. [Bj+mer 82~1 de- 
scribes relational, hierarchical and network data 
nodels. Both relational algebra (procedural) and 
predicatecalculus (EL-alpha, SEQUEL !XL) guery 
languages are nodelled in detail. The latter, ba- 
sically borrwed fran [Nilsson 76a1, formed the ba- 
sis for [Hansen 8OaJ. The hierarchical date rrodel 
is carefully formalized, first rather generally, 
then with a bias tuuards System 2000. The net-k 
data model formalization is oriented twards Bach- 
mans ([Bachman 7Oal) IMa Structure Diagram, and 
is very general. [Bjtimer 804 "sxroothtalks~ the 
reader into understanding basics of VCM by first 
nodelling very sin@e file system ideas; thus that 
paper may serve as a sufficient entry into be' 
able to read VPI definitions. In [Bjhmer 82c 7 
it is not obvious hew the abstractions relate to 
(i.e. injects into) database management SystemS 
for respecture data tiels. This relationship, 
except for tie case of the relational nodel, is 
dealt with in [Bjdmer 82dl. For tie hierarch- 
icaln&el is shown the socalled hierarchical se- 
quential access method (hsam), hierarchical direct 
access methods (hdam) with so-called "Qrild-twin" 
pointers respectively entire file pointers. For the 
network aode only a single step of develapnent is 
shcwn:one tcwards 'chained pointer' realizations, 
eventually leading to the 'current-of' ard 'area' 
notions of the CXDLSYL/DBn; report [COlXSYL 71aJ. 

3.1A. Hansal: A Mxlel of PRTV [Hansal 76al --- ---- -- 

This is the earliest kwwn application of VDl to 
database specification. The actual wrk ww car- 
riedout in the sunmer of 1974 when A. Hansalwas 
an undergraduate student. The report gives a fair- 
ly ca@ete and faithful node1 of the "Peterlee Re- 
lational Test Vehicle" (PKJV) - otherwise knckJn as 
IS/l. PF?IV is a relational algebra based Cams ac- 
tuallyirqlanented bythe IIH UK Scientific Centre 
in the early 1970s. 
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3.2 J.F.Nilsson: Formalization & Pealization 
Database System-[Nilsson 76ai 

of - 

In this Ph.D.l%esis VIM nrxlelling techniques are 
applied as a tcol in both semantic analysis of im- 
knmm and novel relational database concepts, and 
in the synthesis of a relational data model propo- 
Sal. 

3.3 J.Lindenau: "A Descriptive Qu 
&eNetwrk Data v;tg -- -- 
Fbrrnal Semantics Definition in 
META-IV” [Lindenau 81aJ - 

This M.Sc. Thesis is in German. In its first part 
(85 carefully annotated pages) is given a formal 
VCMstyle mdel of the semantics of the CODASyL/ 
DBTG proposed CML for the netmrk data model. This 
definition faithfully models crucial data mdel 
aspects sudh as the currency notions, ard con- 
straints among data model co-qonents (such as re- 
cord types, set types arkd currency pointers). It 
then mdels the semantics of 8 variants of the 

connect' and 'mve' ccmnands. it is to be recon- 
mended that this entire part of the thesis be pub- 
lished in English. 

In its second part a query language extension fea- 
turing relational algebraic terms is super-imposed 
on the system of part 1. The semantics of the new 
constructs are given in terms of their translation 
into "ordinary" CML constructs. Part 3 then docu- 
ments an implemented translator. 

3.4 Ths.Olnhoff: "Functional Semantics Descri ion 
gmqelwf giii 
-- - -- 

ibis Ph.D.Thesis is in German. The 200 page mrk 
carefully analyzes the so-called ANSI/SPARC pro- 
posal for a 3-level external/conceptual/internal 
schema view of data bases. The specific model stu- 
died is the relational. The approach is that of u- 
sing VIX/MEXA-IV as a tool in this investigation. 
Thus the 'relations' between the external and the 
conceptual, and between the conceptual and the in- 
ternal schemas are studied by synthesizing and stu- 
dying the injection and abstraction (or retrieval) 
functions for both the data objects and the cun- 
imndoperations. 

3.5 E.Neuhold et al. -- 

The work of section 3.4 also had a background in 
work "pre-dating" m-influence: [Biller 74a, 75a, 
76a]. The joint papers with Olnhoff [Neuhold 8Oa, 
81al mmar izes at-d extends the work mentioned in 
section 3.4. (xlr cwn work in applying VDM to data 
bases was partly prompted by a desire to siqlify 
the treatmants of the Biller et al. papers. 

3.6 W.Lamersdorf et al.: Pascal/R - -- 

It was J.W.Schmidt of the Hamburg University who 
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first suggested the idea of formalizing his very 
elegant relational extensions to Pascal. Initial 
work on this was done by W.Iamrsdorf as part of 
a M.Sc. course. T+m reports, and Lmersdorf's Ger- 
n-m Ph.D.Thesis, new documents this effort [Lam- 
ersdorf 8Oabl. In one report the ideas of Pascal/R 
are carefully introduced, hand-inland with their 
formalization. The other report gives the cmplete 
formal definition. Ihis work seems to have inspired 
the proposal that a possible ANSI 'Relational Data 
Model' standard also be formalized, in fact [X3/ 
ANSI/SPARC 81a] exgnplifies such a form1 (VCM) def- 
inition. 

3.7 B.S.Hansen & S.U.Palm: - A Model of - J?zE!yE --- 
the PL I Users Interface 
~sen 8m -- 

This is an internal, IBM Confidential, report of 
the IBM San Jose Resa Laboratory, California, 
and of the Ccmputer Science Department of the Tech- 
nical University of Demmrk. It represents about 
4 man-months of relatively in-experienced under- 
graduate student work spread over half a year. Al- 
though based only on a single reference manual and 
no access to System/R designers nor a System/R it- 
self, it remarkably accurately describes the mul- 
tiple user, recovery based version of System/R as 
iqlementedand operated by the IBM San Jose Re- 
search Laboratory. Thus the model, besides defining 
SQL with views etc., employs a n&a-process noticn 
to capture, as abstractly and implemantation-inde- 
pendent as possible, the notions of 'shared access' 
to data as well as 'transaction cumrits' and 'back- 
outs ' . 

This is not the place to relate the very my, very 
interesting experiences obtained in the process of 
constructing this rodel, but only to say that in 
our opinim IBM would do the entire database cun- 
mnity a most valuable service in making a (Vor- 
rect") update of this definition publicly available. 

It appears that the IBM Scientific Center in Heidel- 
berg, W.Germanyr is currently pursuing very inter- 
esting end-user database system architectural design 
work based on the above wrk. 

4. amZL.USIoN - 

We have presented three lines related to formliza- 
tion of database systems: (1) rationales for doing 
so; (2) an actual 'realistic' model of crucial a- 
spects of IMS, the IBM Information Management Sys- 
tem, by far the rrost wide-spread DBMS of the 1970s; 
and (3) an annotated survey of related formliza- 
tion work. 

The work of e.g. Olnhoff & Neuhold point to a next 
"generation" of database formalization efforts: 
thoseof capturing the more recent proposals of 
the data base architects: researchers & designers, 
and the works of most of the researchers mentioned 
insecticn 3 bears pranise to the hope that data- 
base proposals in the 1980s will be carried by ma- 
thematically clean formalizations. 
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AP-IX I: A Formal &de1 of IMS - ----- 

A.1 Introducticn 

Thisappendix contains an abstractmdeltichis 
intended to describe the most fundamental concepts 
Of Im's hierarchical database system, IMS (In- 
form&ionManagemntSysten). 

Then&e1 covers only the mst fmdamental con- 
structs of the data manipulation language DL/l. 
First of all, the catalogue and the data part is 
modelled, and then the semantics is given for the 
six fur&mental omnands: Get wgue, Set Next, 
Get Next within Parent, Insert, Delete, arxl Ha- 
place. IbE!VW, dy the rmst sinple form of 
these are treated. 

The made1 is based primarily on the user manual of 
IMS [IBM a]. Readers familiar with IMS should be 
awarethat the n&e1 is an abstraction and that 
the follwing featuresare not modelled: 

0 

0 

Gzntmnd Cedes 
"Advanced Features": Multiple mitioning,etc. 
Logical Databases 
Accqq Dependent Features 
m~tmning inwrong calls 
'Wrap around" of position 

(start of database = end of database) 
Get-Hold calls 
Insert Pules other than FIRST 

It is believed, anyway, that the tie1 is a reason- 
able description of "elemsntaq" I%. 

A.2TheE&abaseStructure: SmanticI -- 

TheIMSHierarchicalU&abaseisconsideredtoan- 

sistof a Catalogue (Schsm), a Eata Part, and 
current Positions: 

HDB :: CTLG DP POS 

A.2.1 Catalogue 

(1) 

CTLG : : (SegmTp 3 SegmDescrl Ord (2) 
SegmDeecr :: RecDescr CTLG 
RecDescr ** (FieldId $, TYPE) Seqinf 

'. SearchFields 
Seqinf = Unique 1 Multiple 1 NON-SW 
Unique ** FieldId 
Multiple I: FieldId 
SearchFields :: FieldId-set 
OPd = . . . 
TYPE = INT I . . . 
SegmTp = TOKEN 
FieldId = TOKEN 

Ihe Catalogue defines a hierarchy of Seqmant Types 
and their associated Record Descriptors. Sibling 
SegnentTypes are ordered by the Order went 
with tich we assutm a relation << indexed by the 
ordering: 

type:cc : Ord + (SegmTp Segmlp $ BOOL) (3) 

The records of a segment type are described by the 
required fields and their types, *ether the re- 
cords must be ordered by a key field or not, and 
tich fields may be used for selection. 

No!%gmentTypemayappearmorethanonceinahie- 
rarchy. We therefore have the following invariant 
on the catalogue: 

~CTLGf&CTLG(6dm,Ord)) 9 (4) 
(Vmk-SegmDescr(recd,ctlg') cnsdm) 

??.?.RecDescr(recd) h *-~~~~(ctlg')) 
A(V8tp~,stp2 E &nEdnl 

f8tp +6tp2 3 
f$et 8tpsl = 8type8(8-CTLG(8dmfst&)) in 
let 8tp82 = 8type8f~CTLGf8dmf8tp2!) 5 
Stp8Z"8tp82 = 11 A 
f8tp8lu8tp82)n&l8dm = III I 

hino-Ordford,&nsdm) 

inv-RecDe8crfmk-RecDe8crftpm,8eq,8earchJ@8~~ A 
8earchf8 = domtpm -- 

A cage8 seq: fmk-Multipleffid) + fidEdomtpm, 
vlfidl + fidermtpm, 

+ truer 
inv-Ordf,) p . . . 

w: inv-CTLG: CTLG + BOOL 
w: inv-RecDescr: RecDescr + BOOL 
w: ino-ord: Ord SegmTp-set + BOOL 

AIU~wsegmnt types of a (sub-)catalogue 
: 

stypesfmk-CTLGfsdn,)) $ . .- 

sdmfstpl)) 1 stpedomsdnl 

(5) 

(6) 

I:; 
(6) 

are 

(7) 
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Sincethe segment types are uniquewithinthe cata- 
logue, it is often convenient to have direct access 
the associated record description: 

get-RecDescr(stp,&CTLG(sdm,)) 4 (8) 
if 

type: 

6tp E domsdm 
- 

then 6-ReCDe6Crf6dhf6tp)) -- 
else (let 6tp' E domsdm be 6.t. -- 

6tpe6type6fs-CTLGf6dmf8tp 
get-RecDe6cr(stp,~&‘LGf6&n(stp 

SegmTp CTLG q RecDescr 

I’))) in 
))) - 

pre: - inv-CTLG(ctlgl A 6tpEGtypeG(Ctlg) 

A.2.2 IZeta Part --- 

DP = SegmTp 3 SEGMENT (9) 
SEGMENT :: Record DP 
Record = FieldId 3 VAL 
VAL = Intg 1 --a 

The Data Part associates a list of segments tc each 
segment-type. F&h segment consists of a F&cord and 
an associated sub-data-part. Thereby the Records 
are arranged in ahierarchy where the records ofa 
segment type under a given parent are ordered by 
the list. A reccrd just associates a value to each 
Field. 

AData Part of an HDB mst follcw the structure 
prescribed by the catalogue: 

inv-DPfdp)&CTLGIsdn,) 4 
domdp = domsdm 

hi%pedosJ 
(&cegml = dp(stp) in 
tet mk-SegmDescr(mi,Zlg'I = sciW6tp) -- 
let mk-RecDescr(tpm,seq,) = xi -- 

(vmk-SEGMENT(rec,dp'I 6 elemasegmll 
linv-Record(rec,tpmJ h-DP(dp' 

&check-sequencel6egmZ, 6eq))- 
m: DP + (CTLG 7 BOOL) 
pre: inv-CTLGIctlg) 

(10) 

in 
in - 

)ctZg') 

inu-Record(rec,tpm) 4 
domrec=domtpm h 

(11) 

(vfidrdGec)'ftype-offrecffidll=tpmffid)l 
e: Ret?% (FieldId fi TYPE) + BOOL 

type-of(va1) 4 l&Intg(vatl -) E,...) 
TV@: VAL -+ TYPE 

(12) 

The follming function will check that the records 
of a segment list are ordered according to their 
key field. In IbE mltiple records with the same 
key may be allcwed. 

check-6eque?acefsegml,seq) P 
6eq=Nc+ss32 

v f Vi, j&dsegmtl 
f&Tyf = eFieldId(seq) in . = s-Recordfsegmlt~l) fkeyf) 
tet i'$ = ~Record(segmt[j])(keyf)'~ 
((i-Q') 3 ca6e6 8eq: 

f&Unique0 + ikeycjkey, 
mk-Multiple0 + ikeyAjkey) 

(13) 

)) 

A.2.3 Fbsitioniq in the Data Base -VP- 

POS = fs-current:Qathl r;-parent:[Pathl) 
Path = (SegmTp NI) (14) 

The JMS system maintains tm positions in the data- 
base, each one identifying a unique segment. The 
current position bughly speaking) identifies the 
record last accessed, and the parent position iden- 
tifies the segment under which the Get Next Within 
Parentcamlandmaysearch. 

A segment amd its associated record is uniquely 
identified by a so-called Path, which gives the 
segment type and au index in the associated list 
of segments for each level on the way dawn fran the 
rcctdataparttotheseqnenLAn~yPathmy 
be thought of as denoting an imaginary "system 
seqnent" which cannot be accessed. 

If the current Path is missing (nil) the current 
position is at "the end of the DaGTBase". If the 
Parent Path is missing, no records can be selected 
by "Get Next Within Parent". 

Nw there follow sans useful Path operations to be 
used later in the definitions of the m. 
Firstly, all the possible paths in a data part. 

all-paths(dpl 4 (15) 
Q&=Cl 

then {<>I 
etse {<fstp,i)>^p I 

stp6domdp A ieinddp(stp) h 
pratt-paths(6-~dp(stpICillIj 

&.,@: DP + Path-set 
- 

rcetrievalof the subdatapart, and the recorddem- 
tedbyapati: 

get-DP(path,dp) A (16) 
cases path: 
((> -, dp, 

c(stp,i)>^path' -+ 

&@: Path DP 7 DP 
get-DP(path',EDP(dp(stplCillll 

pre: patheall-paths(dp) 

get-Record(path,dpl d (17) 
(let path'^<(stp,iT> = path . 
let dp' 
s-Record(dp'(stp)tiJ)l 

= get-DPIstp,dp) % - 

typz Path DP 1 Record 
pre: pathrall-pcrths(dp)\[<>} 

IWYte that the get-DP extends to the "system seg- 
mt" (0). The follwing function tests whether 
apath denotes a segtrentbelowthe segment denoted 
bya parent path. If the parent path is missing 
n0segmentcanbebelowit. 

beneath(path,parent) p 
parentsnit h 

(18) 

is-prefwparent,path) h lenpath>@arent 
w: Path [Path1 -+ BOOL - 
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A.2.4 Sequencing in the Data Ease ---- 

All the records of the data base are ordered in a 
so-called hierarchical sequence corresponding to 
a parent first, left-to-right traversal of the 
data part tree. In our mdel this ordering is re- 
flected by an ordering on the unigue path identifi- 
cations of the records. In this way, the ordering 
becanes a lexicographical ordering cm the paths. 
Since the ordering depends on the ordering of 
segment types at each level, the catalogue is 
needed in the follcwing function, determining the 
ordering: 

precede6 (pl, p )&CTLG (6dm, or& p 
i (pz=<> -) fa 6e2 

PI’” -t true, 
T +(E cfstpI,i)>^pI I = pl in 

let c(stp2, j)>ApS~ = p2 3 
(stpl*~tpZ -) *@I “or- 6tP2, 
i*j + i-cj, 

(19) 

T 
preceiee(pI f,pz f)6-CTLG(6dmfstp~ ))))) 

a: Path Path + (CTLG 1 BOOD 
pre: (3dprDPJ finv-DPfdpJctlg) A 

Ipl, p2 1 2 att-path6 fdpl 

For later use, we define a few operations using the 
sequence concept. 

first-path(p6)ctlg 4 (20) 

SJz $-& 
-- 
else (Apcpsl (Wp’eps\{p] ) fprecedesfp,p’)ctlg) 

typs: Path-set 1 (CTLG 3 CPathll 

(21) 

next-path(p) fctlg, dp) A 
first-pathf Ip’ 1 p’ealt-pathsfdpl h 

follow6(p’,p)ctzg1) 

(22) 

type: [Path] 7 fCTLG DP 7 CPathll 

A.2.5 Well-fomsdness of the Data Base ---- 

At the endofourtreatmntofthe DataSaseSt~~ct- 
ure we formulate the global conditions to be met by 
the Data Base: 

*HDBfctlg, dp, po6) 4 
inv-CTLG (ctlg) 

h=DP(dp) ctlg 

(23) 

hltet (current, parent) = pas in 
(current=nit v currenteall-shhsfdpl) 

h(parent=& v parenteall-paths(dp) \{<>I)) 
type: BDB + BOOL 

A.3 IkkaManipulatim -- 

In this section we define the semantics of the six 
fundamental ctxrmnds of IMS: Get Unique, Set Next, 
Get Next within Parent, Insert, Delete, & Replace. 
The full abstract syntax and distribution tictiOnS 
are given bslow: 

A.3.1 Syntactic Jbnains 

Cmd = Gu 1 Gn 1 Gnp 1 Isrt 1 Dkt 1 Rep1 (24) 
Gu :: CSsa+l 
Gn :: [Ssa+l 
Gnp :: [,%a+] 
Isrt :: S6a+ Record 
Diet :: 0 
Rep1 :: Record 

Ssa = (Se Tp CQuaZl) 
Qua1 = Eq 9” . . . 
Eq :: FieldId VAL 
Record = FieldId a VAL 

(25) 

Precondition: 

pre-CmdtcmdJhdb 4 (26) 
case6 cmd: 

(&Gu(Ol -rpre-Gu(cmd)hdb, . . . -) . . . ! 

The definition of the semantics of the ms is 
divided into three parts. First we discuss the can- 
tmn concept of Sequential Search Arguments (ssa's). 
We then treat the data retrieval CcmMnds (the 
Get's), and finally the data rrodifying amnands. 
For each cunmnd we define the conditions in rela- 
tion to the IZeta Base to be satisfied before appli- 
cation of the canmrkd, and the interpretation func- 
tion defining the semantics of the cmmand. 

Note that the special Set-Hold caTmandsarenot 
mxlelled as they are almost logically equivalent 
to the Set calls except that they indicate that 
the succeding ccmmnd my be a replacement or dele- 
tion. 

A.3.2 Segment Search Arguments 

The 

Ssa-tist = CSsa+l (27) 
Ssa 
Qua1 

1 ,k$ 
r 

Tp [QuaZlJ 
. . . 

Eq :: FieldId VAL 

purpose of the Sea-list is to determine a set 
of segments of a given type by giving qualifica- 
tions which must be satisfied either w the seg- 
ments of the type themselves, or by their ances- 
tors. The qualification for a segment type is 
given by a Seguential Search Argument (Ssa). In 
IMS,hcwever, not all levels on the path to the 
desired segment type need to be given in the list. 
In this case the systan will assms so-called 
inplied Ssa's (see below). Also, the list may bs 
totally left out, in Vhic?n case all segmenti Of 
the data base are selected. The qualification may 
havemany form in IX. Since these are not our 
primryccncern we cmly cover the case where a 
field in a record is required to have a certain 
value. 'Ihe gualification my be left out, in' 
tich case all segments of the type apply. 

For an &a-list to be valid in the oontext of a 
HI& the Ssa's of the list, taken fran left to 
right, must "lie" cn a path fran the root to the 
desired segment type, givenbythelastssa: 
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pre-Ssa-list(ssal)&HDB(ctlg,,I g 
(ssal=nil + true 
T -+ pre-Ssa-list'(ssaZ)ctlgI 

type: [Ssa+l + (HDB 7 BOOLI 

pre=Ssa-list'(ssal)m&CTLG(sdm,l A 
cases ssal: 
f- -+ true, 
~lstp,qualJ>Assal' + 

iJ stpqiomdm 
then - 

(let mk-SegmDescr(recd,ctlg') = -.- 
(qual=nil v pre-Qual (qual)recd) 
pre=SZlist'(ssal')ctlg'J I 

(28) 

(29) 

sdm(stp) in - 
A 

eLse 
(let stps = (stp' 1 stp'edomsdm h 

stpestypes(s-~GfSdmfstp'II) & 

YfFF,;t~~alse, - 
-+ 

pre-Ssa-list'(ssal)s-CTLG(sdm(stp')))) 
type: Ssa* + (CTLG % BooL) 

pre-QualfqualIm~RecDescrftpm,,srchfsl $ (30) 
cases qual: -- 
f&Eq(fid,val) -+ fidcrsrchfs A 

tpmffid)=type-of(val), 
. . . I 

type: Qua1 + (Recdescr q BOOL) 

The function type-of: vaL + TYPE is assumed to be 
given. 

Fbr an Ssa-list to be used, the missing levels must 
be supplied by the system. Such Ssa's are qualified 
by a special qualification indicating that the le- 
vel was implied. We therefore introduce cunpleted 
Ssa-lists as lists of: 

Ssa ' = fSegnz!L'p [QuaZlIMpLl! (31) 

W+I the Ssa-list may be ccqleted by: 

completefssal)mk-CTLGfsdn,) A 
cases ssal: - 
f<> + <', 
cfstp,q)>^ssal' -+ 

iJ stprdomsdm 

(32) 

then <(6tp,q)~Acomplete(8sal'I~CTLG~6dm(stp)) 
else (let 8tp' be 6.t. -- -- 

8tpe8t~pe8f~CTLG(sdm~stp'II) & 
~(8tp',IMPL)> 

~lete(6sal)~CTLGf8dmf8tp')))) 
tElpe: Sea* 3 (CTLG r Ssa'*) 

An Ssa-list may be evaluated in two ways. We give 
the sir@e one first: 

evat-Ssa-list(ssalI(ctlg,dp) e 
tJ sscil=nil 

(33) 

then azpathe(dp) 
else (let 88a.I' = complete(ssal)ctlg & 
- ~rchfssal',dp)) 

type: i&a+] 7 (CTLG DP 7 Paths) 

Proceedings of the Eighth International Conference 
on Very Large Data Bases 

343 

searchfssal,dp) p 
cases Ssal: 
(0 + I-1, 
cfstp,q)>Assat' + 

I<fstp,i)>^p I 
ieinddpfstp) A 

(34) 

(let mk-SEGMENT(rec,dp'I = dpplstp)tiJ in 
fi[=nilvq=E v satisfiesfrec,q)) h - 
pesearch(ssal',dp'))]I 

w: Ssal'* DP 7 Path-set 

satisfies(rec,q) _1 
cases ,q: f&Eqffid,val) + recffid)=vaZ, . . . I 

Q@: Record Qua1 3 BOOT, 

We see that in this simple case, implied Ssa's are 
treated like unqualified Ssa's. 

In the Get Unique and Insert Commands, tie implied 
Ssa's must 'be treated according to sow special 
rules which we quote from [IBM al: 

"(1) If the prior call established ,oosition on a 
segment type that the current call is using 
as an implie segment type, an SSA qualified 
with current psition is assumed at that 
level. (This is true even if the segment has 
nonunique keys.) If a parent level qualified 
SSA is provided for other than the parent's 
current position, an unqualified SSA is as- 
surwd by DL/I for all missing levels belw 
that parent. 

(2) If the prior call did not establish position 
on any segment type implied in the current 
call, then DL/I assumes an unqualified SSA 
at that level." 

It does not seem quite clear haw to interpret 
these rules. One idea would be to follw the cur- 
rent path "as long as possible", but it appears to 
be tco restrictive. Instead, the interpretations 
formalized below seem to conform better to the 
rules. 

The idea is to try hew far the current path can be 
used still fulfilling the qualifications Of the 
ccmpleted Ssa-list treating ix@ied Ssa's as 
u qualified. This will result in a prefix of the 
current path. FYcr6 this prefix wa take the part 
dcwn to, and including, the last i.rt@ied level, 
and use this part as the first part of the selected 
path mere the rest is found by the usual search 
given above. 

eval-Ssa-list-P(s8al,cur)(ctlg,dp) $ (36) 
i-f ssal = nil 

then all~ths(dp) 
else (let 8sal' = complete(ssal)ctlg in 

zcur = nil 
- 

then seGh(ssal',dpl 
else search-along-path(ssal', cur, dp)l 

e: L~sa+l~thl 3 (CTLG DP 1 Path-&I 
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search-along-path(ssa2, cur, dp) 1 (37) 
(let j = try-path(ssaZ,cur,dp) in 
tet k = max({ k’l I<k’<j A - 

--s~~ZCk’.J=(,~I~u~O~ in 
let cur’ = ccurCi1 1 ieindcur A i<k> in 
iZ seat I= ~ssal[i] I iZ&saZ A iTk> zi 
tet dp’ = et-DPfcur’,dr 52 
Icur’ A p pesearchfssaZ’,dp’) 1 ) - B 

e: Sea+ Path DP + Path-set 

try-path(ssa1, cur, dp) p (38) 
iJ ssat=o v cur=0 

then 0 
else (let c(6tp,q)>As6al’ = 66al in 
- tet c(stp’,il>Acur’ = cur zi 

tet mk-SEGMENT(rec,dp’) = dp(stp’ICi7 & 
~6~6tp’h(q=nilvq=IMFXvsati6fies(rec,q)) 

then I + try-p~(se~cur’,dp’) 
else 0) 

type: Ssa%th DP 1 No 

Try-path will return the length of the longest pre- 
fix of the current path that satisfies the gualifi- 
cations in the Sea-list. 

A.3.3 Petrie~l &mends 

IMS has three cam-ends for data retrieval: 

Gu :: [Ssa+l 
Gn :: [Ssa+l 
Gnp :: [Ssa+l 

(39) 

Get Unique retrieves the first record in the hie- 
rarchical sequence which is selected by the Ssa- 
li6t. Get Next retrieves the first record when 
starting at the current position which is selected 
by the Ssa-list g Get Next within Parent wxks as 
Get Next except that the record must be a descen- 
dantof the record denoted by the actual parent 
position. 

All Get cammnds will set the current position to 
the record retrieved, but only Get Unique, and 
Get Next will change the parent position. 

Precondition: 

J?Or all Get mmands, the Sea-list must be valid: 

~“GET’r(~“GET’r(e6al)) hdb 9 (40) 

&)-g%g$~;;;~~$gj? 3 B*(JL) 
“‘GET”: Gu, Gn, Gnp 

Interpretation: 

*Gu(mk-Gu(ssal))mk-HDB(dp,ctlg,pos) A (41) 
ftet (cup,) = poe in 

I let paths = eval-Ga-list-P(ssal,cur) fctlg, dp) in 
let p = first-path (paths) ctlg in 
let fpo6’,re6) = 

- 

fp=?g + fpos,W-FCUNDJ. 
T + ffp,p).get-Recordfp,dp)) & 

(~HDB(dp,ctlg,pos’Irres)l 

int-Gn(mk-Gn( 
int-Gn(mk-Gn(ssa1) 

Jmk-HDB (dp, ctlg, pas) & (42) 
(let (Cup,) = po (let (Cup,) = pos in 
tet paths t&t paths = ev = evalzsa-list(ssal1 (dp, ctlg) 
let paths’ : let paths’ = ?flprpaths A 

& 

1 1 follow6(p,cur)ctlg1 in 
J!& P = first-path(path6’) ctlg Tz - 
let (pos’,res) = 

fp=& -) fpos,KFX-FOUND), 
T + ffp,p),get-Recordfp,dp)) in - 

(mk-HDB(dp, ctlg, po6 ‘), resl) 

int-Gnpfmk-Gnpfssal) Jmk-HDB(dp, ctlg, pas) & (43) 
-ii&t - 

‘let 
let 

I--- 
! 

let 
let 

(cuF;parent) = pos in 
paths = eval-Ssa-li~t(ssal) (dp,ctlgl 
paths ‘= ‘vpepaths A 

follow6(p,cur)ctl A 

beneathfp, parent) B 
P = first-pathfpaths’)ctlg 
(~06 ‘, res) = 

(p-nil + fpos,FKYT-FOUND/ 
T -* fp,parent), get-Recordfp, dpl I I in - 

(mk-HDB(dp,ctlg,pos).res)l 

m: “GET” + (HDB 3 HDE (Record 1 NOT-FCUND)) 

The exclamation marks indicate the points Where the 
definitions differ. Note that many textbooks let 
you have the impression that Get Unique uses the 
simple form of S6a evaluation; this is mt the 
case! 

A.3.4 Modification C&mar& 

IMshas three cxmnands which my modify the data 
part of the data base. This section starts with 
the definition of a m function, then follws 
eachofthe ammnds separately, and at the end we 
give sme auxiliary functions. 

Modification: 

Ccmmn to the mxlification cmmnds is that they 
my change part of theData Part of the Data Base. 
The following function performs the task of inser- 
ting a new Sub-Data-Part at a given position. 

modifytparent, subdp)dp 4 (44) 
ca6e6 parent 
f- + subdp, 
C (stp,il >-parent' + 

fl& segml = dpfstp) in 
let mk-SEGMENT(rec,dp’) = segmlCi1 z -- 
let d 
dp+ f 

” = modify(parent’,eubdp)dp’ z 
etp + segml+[: i-k-SEGMENT (rec,p”) 11) ) 

type: Path DP 7 (DP 7 DP) - 

Insertion: 

Isrt :: Ssa+ Record (45) 

me Insert cammnd inserts a record at the position 
indicated by the Ssa-list. The last element Of 
the list indicates the type of the record, and 
must be unqualified: 
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pre-Isrtf&<srt(66al, ret) )&HDBfctlg,dp, 14 (46) 
pre-Ssa-lz6t'(66al)cttg 

h(let ssal’^<(stp,q)> = 66at in 
q&A 

- 

inv-Record(rec,get-RecDecr(stp,ctlg))) 
type: Isrt + (HDB 7 BOOL) 

(47) 
k.srtlmk-Isrt(ssa1, rec))mk-HDB(ctlg,dp,pos)A 

(let 66aZ’^cstp,r&> = 66Xin 
let (cur,parent) = PO6 z 

let path6 = eval-Ssal-P fssa~cur) Idp, cttgl in 
let in6po6 = first-path (paths) in 
tmtp exit @ Imk-HDM(dp,ctlg,pos),FAILED) z 
iJhzT+iz;& 

etse (let subdp = get-DP (inspos, dp) 
- let (subdp’,i) = 

& 

insert-rec(stp, ret, ctlgl (subdp) in 
let dp’ = modify (inspos, subdp ‘) dp in 
tet current ‘= inspos^ ((stp, i) > in 
tet parent’ = 

- 

adjust-in6ertion(in6pos, 6tp, il parent in 
let ~06' = (cur',parent'J z 
(mk-HDBfctlg,dp’,po6’IrSUCCEEDED))) - 

a: IwtT(HDB 7 (HDB fE%ILEZm) I) 

me Int-Isrt function first identifies the subdata 
partin which the record is to be inserted. Then 
the record is inserted in this subdatapart which 
is again inserted in the whole data part. Finally, 
the positions are modified to reflect the inser- 
tion. 

find-position(segm1, ret, fidl A (48) 
x segml=o v 6-Record(hd6egml) (fid)Lrec(fid) 

then 1 - - 
else 1 + find-position(tlsegmt,rec,fid) 

w: SEGMENT* Ret Fid + 2 

insert-ret Istp, ret, ctlgl dp 4 (49) 
(let mk-RecDescr(,seq, ) = get-RecDescr~stp,ctlg)in -- 
let segml = dp(6tp) in - 
let i = 
cases seqinf: 

/pJDN-sw + 1, 
Unique (f id) + 

&f (3 j~~6egmlI 
(s-Record(segmlCjl(fid)=rec(fidl) 

then exit 
else findposition(segm1, ret, fid), 

Mu1 tiple(fidl + 
find-position(segm1, ret, fid) ) in 

let 6e 1’ = insert-elemfmk-SEGMENT(rec,[:II,i) in 
iTgi + stp -+ seginl’],i)) - 9” 

- 

&T&?: SegmTp Record CTLG 1 (DP 3 DP) 

The insert-ret function inserts the record in the 
subdatapart under the given segment type and at 
tile right positim according to its key value. 

Delete : 

Dlet :: 0 (50) 

‘Ihe Delete cxmmndremwes the record denoted by 
the current position. The "system record" can, of 

course, not be deleted. 

pre-Dletfmk-DletOJmk-HDBf,, (cur,)) A 
curmii? cur+o~- 

(51) 

type: Diet-r (HDB 7 BOOL) 

int-Dletfmk-DletOJmk-HDB(ctlg,dp,posl e (52) 
(let (cu~arentl Go6 in 
tet del-parentA < (6tp, i)x- current in 
tet 62&C+ = get-DP(parent, dp) zi 
let segml = subdp(6tp) z 
tet 6Ubdp' = 6Ubdp + 

- 

Cstp + remove-elem(segm1, i) 1 in 
let dp’ = modifyIparent,subdp’)dp in 
tet current ‘= next-path (cur) Ictlg, dp) 
tet parent’ = 

z 

adjust-removal (del-parent, stp, i) parent a 
(&HDB (ctlg, dp ‘, (current I, parent ‘) )) 

M: Dlet 1 (HDB 7 HDBI 

First, the subdatapart inUhichthe current record 
is situated is found, the record deleted and the 
data part updated. Finally, the positions are ad- 
justed. 

Replace: 

Rep1 :: Record (53) 

The Replace camxmd updates saw fields of the cur- 
rent record. me record provided must be sub-record 
with values of right type, and the key field must 
not be banged: 

are-Rep1 (mk-Rep1 (ret) Imk-HDBfctlg,dp, (cur, ))A (54) 
curs nii7 cur + 0 

hflet cur'w6tp,)> = cur in 

tet mk-RecDescrftpm, 6eq, ) = - 
get-RecDe6cr(stp,ctlg) in 

domrec = domtpm -- 
hi$idrdomrec) (type-of frecffidl) = tpdfid)) 
hcase6 G: 

fmk-Uniqueffid) + f i& edomrec, 
mk-Mul tiple f f id) + 
T 

f ic& <zrm)ec, 
+ true )I 

int-Rep1 Imk-Rep1 (reel )mk-HDBfctlg, dp, ~08) 9 (55) 
f& frpT7<fstp,il>,I= ~06 in 
let subdp = get-dpf rpo8, dpl 
tet segml = sUbCip(6tp) 

z 

tet mk-SEGMENTf ret ‘, dp”) = sefl?iJ in -- 
mk-SEGMENT (ret ’ + ret, d 

g :F’f subdp + [6tp 

“) G 
+segml+ i+segmllTi f 

= modify (parent, 6ubdp)dp zi - 
mk-HDBfctlg,dp’,pos)) 

ty=Repl 1 (HDB 7 HDB) 

A.3.5 Adjustment of Parent path --- 

After insertion or deletion of segments the current 
and parent paths my no longer be valid. The cur- 
rent path is changed explicitly as shawn in the 
formulas, Whereas the parent pati must be adjusted 
if it passes through the modified subdata-part. 

Proceedings of the Eighth International Conference 
on Very Large Data Bases 

345 Mexico City, September, 1982 



a~ju8t-in8ertion(in8po8, stp, i)parent A (56) 
(parent=nil + nit, 
-beneath(parent, inspos) 

-t parent, 
T 

(let reit = 
cparentCj1 I leninsposc jclenzarent, in 

let <(stp’, j!>Are8t’ = rest 
-- 

zi 
Istpestp’ + parent, 

- 

jci -t parent, 
T + ins-po8~(18tp’,j+l)>~rest’!) 

w: Path SegmTp .??I 3 ([Path1 q [Path]) 

adjust-detetion(delpo8, stp,i)parent p (57) 
(parent=niZ + niZ, 

7 -beneatn(parent,delpos) 
-+ parent 

T 
(& reZt = 

cparentt jl 1 lendelposcj+arent> in 
let ((stp’, j)>Are8t’ = rest - Gi 
Istp+stp’ -t parent, 

- 

j& +niz, 
jci -+ parent, 
'> - 

type: 
-+ det-pod ((stp’, j-il>^rest’)l 

Pat; :egmTp Nl 7 ([Path] N + [Path]) 

R&e that if a segment of the parent path is 
deleted (j=i) the parent path is set to undefined 
CniZl. 

A-3.6 Auxiliary List Functions 

Insertion of an element just before the i'th posi- 
tion of a list: 

insert-elemla,al, i) A 
iJ i=l 

then ca>^al 
else hdal^insert-elemla,i-I,tlatl 

e:A”NI 7 A+ 
pre: - icI1: lend+1 I 

I&xmval of the i'th element of a list: 

remove-etem(al, i) J& 
iJ i=l 

then tlal -- 
else hdal^remove-elem(i-l.tlaZ) ~- 

type: JI;~I~ q A* 
pre: 

Test whether a list is a prefix of another: 

is-prefix:(l 
-:A* A 

p2 = 1 ) !I (31’eA*l(l~=l~al ‘) 
-+BOOL 

(58) 

( 59) 

(60) 

APPENDIXII:Meta-Languag e - (META-IV1 Sunrey 

DATA TYPES -- 

_INTG, 5, Q Integers and Natural Nurrbers (larger 
than or equal to 0 respectiuvely 1) 

with the usual operators: +, -, X, =, *, <, 2, etc. 

BOOL Fkolean truth values: true and false with the 
usual operators: h,v,-,D. EYedicate expres- 

sions involve use of existensial, 3, unique exist- 
ensial, 3!, and universal, d, quantification. 

gUoT Quotations are emmerated atomic objects, e.g. 
FAILED, SUCCEEDED, NOT-EWND, denoting thm- 

selves. Only operators are: = and f. 

TOKEN Non-enumerated at&c objects denoting them- 
selves. Cnly operators are: = and *. 

Sets Finite sets of "finite" (e.g. not functional) 
objects: -set (suffix) applied to domain A 

yields dcmin ofinite subsets of domain A. Set 
forming expressions are: ( al,az, . . . ,a, ) and 
( a I P(a) 1: the set of elements satisfying 2. 
Usual operators: 
Il. 

u,n,=,~,e,\,cad, etc. Bnpty set 

Tuples Finite length sequences, or lists, of ob- 
jects : * and + (suffix) applied to dcsmin A 

yields dmin of tuples whose elements are A ob- 
jects, * also generates the empty, 0, tuple, + 
does not. Tuple forming expressions are: <al,az, 
. . .,a,> and cf(i)lP(i)>: the tuple of all those 
gtfi;rpnts,.ordered as by ordering of i, sa- 

. A Izst operators: hd, tl, &I, COI, 
, elems, indis .- denote "heady "tail", length, 

selection, concatenation, elements and indices. 
Also (in)equality: (+) =. 

Maps Finite damin functions (from A into B) deno- 
ted by: A 3 8, with A elements being simple, 

i.e.non-functional finite objects. Map fomiq 
expressions are: [ a +bl,a2+b2, . . . a+b 1 and 
[ d(x)+r(y) 1 P(x,yl 5: the map from >Jtz bi> re- 
spectively d(x) to r(y) for all P(x,y). Cperators: 

striction, application and cornposition. Also (in)- 
equality: (*) =. l3qky map: [I. 

Function8 LaxMa-functions defined either as f(a)g 
expression or ha.expression. &mains of 

total, or partial A to B functions written: A + B, 
respectively A 7 B. Qnly operation is applica- 
tion: ( ). 

Tree8 IXxmin of A-named, resp. anonymous, trees o- 
B; objects defined by: A :: B1 B2 . . . BN, 6r 

(Bl B2 . . . BN); which defines named, resp. anony- 
mous, tree constructor (decmposer) functions: 
mk-Al ... I, resp. ( . . . ), and selector func- 
ss : s-Bl, ~Bz, . . . =BN. - 

ABsrRAcl! SYNTAX 

(or Domain Quations) are of either the A=D-expres- 
don or A: :D-expression form, where D-expression 
my involve the set, tuple, map, funct*ion,+or tree 
domin constructing operators: -set, 
3 respectively :: and ( . . . ). GZtioZlal' 2!LZ 
operators are: I (non-discriminated union), and 
c . . . ] (optional damin). 
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WETA-IV in addition to conventional, applicative -- 
anMxucts (iJ then else etc.) makes heavy use of 
the following: -- I_- 

(1~ id = expr & body) 

Iandin sugar for (hid. body)(expr): 
id bound to all free occurrences in 
body and denoting substitution of 
expr for all these. Multiple, po- 
tentially mutually recursive let 
definitions are camnon. 

(let mk-Afx,y, . . . ,zl -1 atree & body) 

deccqoses atree into its constitu- 
ent ccqonents. Otherwise as above. 

(bl -t el,bz -+ “2, . . . ,bn -t en) 

I%Carthy (LISP) conditional, bnroay 
be T denoting true. --.- 

cases e: (vz + el, v2 -+ “2, . . . . . J L’n -+ en) 

Ordinary cases construct. Often u- 
sed with vi being mk-3;( . . . ) and 
then denoting decomposition of e- 
tree with . . . . . identifiers being 
bound in e;. 

(Aid&S) (Plid) 

Unique descriptor expression: the u- 
nique object, in S, which satisfies 
P, undefined if not unique. 

f(&A(x,y, . . . ,z)l 4 body 

Function definition equivalent to: 

f (atree)A 
(let mk-A (x, y, . . . ,a)=atree in -- - 
body) 
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