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ABSTRACT: Drawing upon an analogy between Program-
ming Language Systems and Database Systems we out-
line the requirements that architectural specifica-
tione of database systems must fulfill, and argue
that only formal, mathematical definitions may sa-
tisfy these. Then we illustrate some aspecte and
touch upon some uses of formal definitions of data
models and database management systems. A formal
model of IMS will earry this diecussion. Finally
we survey some of the existing literature on formal
definitione of database syetems. The emphasis will
be on constructive definitions in the denotational
semantics etyle of the VIM: Vienna Development Meth-
od. The role of formal definitions in intermational
standardization efforte ig briefly mentioned.
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0. INTRODUCTION

There is a growing and increasingly more widespread
interest in mathematical semantics definitions of
various aspects of database systems. There is also
a growing acceptance of such definitions in both in-
ternational standardization work, in architectural
design, as well as as a basis for development of
correct implementations, and verification of cor-
rectness of uses of databases.

The aim of this invited paper is to make a larger
fraction of the database community of both re-
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searchers and practitioners aware of these facts,
of what it takes to construct and use such defini-
tions, and what their aims are.

This introduction serves to delineate and otherwise
relate the subject.

We start with an analogy. It compares notions from
the field of (conventional) programming languages
with notions from the field of databases.

(1) In the former we speak of programming langua-
ges. In the latter of data systems, i.e. of data
models, and data definition, manipulation, & query
languages (DDL, DML, resp. QL). We claim that the
two sides relate: the data model (DM) aspects of
Pascal-like languages, are the data type aspects:
data structures (values) and their primitive opera-
tions. The data definition aspects of these pro-
gramming languages are the data type and variable
definitions, respectively declarations. Finally,
the data manipulation & query aspects are the
statement & expression constructs.

(2) This was the first step of our analogy. In our
next step we relate programming language processors
to database management systems, DBMS. By a language
processor we understand either a compiler + run~
time system, or an interpreter. The function of
a language processor is to execute (input) pro-
grams in the presence of (input) data (incl. files,
etc.). The purpose of a DBMS is to execute (input)
commands {of DDL/IML/(Ls) in the presence of stored
(i.e. database) data.

(3) In our final step we relate programs + input
data to input commands + databases. Programs cor-
respond to commands, input data (primary input &
input fram files, etc.) correspond to databases.

(1) We shall now exploit the analogy. Previously,
it was considered of utmost importance to secure
the correctness of language processors for the
following reason: all programs, including programs
implementing DBMSs, on their way from conception
to execution, would pass through a compiler or in-
terpreter. The programs might have been believed
to be correct, but if e.g. the campiler was wrong,
then all would be wrong. From considerations of
both program correctness and compiler/interpreter
correctness arose the desire to construct precise
definitions of programming languages. Fram these,
it was expected, one could eventually prove cor-
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rectness both of programs and of compilers. Now
our dependence & reliance on database systems is
such that we must require the same stringent re-
quirements as to their precise description. Just
like we define programming languages precisely, we
must now require similar definitions of data models
and the related (possibly abstract) DDLs, DMls &
ds.

(2) In programming language processor, i.e. in in-
terpreter, compiler and run-time system development
we use the formal definition of the programming
language. Thus we systematically derive language
processors fram language definitions. Correspond-
ingly, we argue that DBMSs be rigorously derived
from formal definitions of data models & their
DDLs, DMLs & (Is.

(3) In program development we use the formal def-
inition of the programming language to verify its
correctness. Similarly we can use the formal def-
finition of a data model & its DDL, DML & QL, to
verify properties of any particular database and/
or any particulare use, through a DML, DDL or QL
cammand, of such a database.

We observe the following distinction: to specify a
data model and its DDL, DML & QL (or: Programming
Language) is one thing. To specify a database
(resp.: program) is quite another thing. In this
paper we focus on the former, but the techniques
for the latter may be the same. Common to all spec-
ifications is their 1language, the meta-language.
The implementation language for a DBMS (as derived
from a data model + DDL/IML/QL specification) may
be Pascal, whereas the implementation language for
a database usually is a DDL/DML/QL.

The specification language of this paper is the VIM
notation language; it is called META-IV, and is de~
scribed very briefly in an appendix.

1. DEFINITION OBJECTIVES & REQUIREMENTS

We outline the requirements that users must put on
database system definitions. We distinguish between
requirements expected to be fulfilled by some soft-
ware and the architectural definitions of the soft-~
ware functions: concepts & facilities. The latter
fulfill the former. Requirements definition speak
of the software, whereas definition requirements
speak, at a meta-level, of how we express defini-
tions including the way in which definitions ex-
press desired properties.

The objective of a definition of a data model &
its DDL/IML/QL is that it specifies samething for
both the intended users & developers of the implied
family of DBMSs. The definition is a legal contract
between users & developers. The objective of a def-
inition is also that it expresses the requirements
put on the data model, i.e. the expectations laid
down in uses thereof. We shall not further touch
upon this relationship to requirements analysis &
definition.
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The objectives result in certain ﬂu_lrenents.
For it to formally fulfill the rdle of "legal con-
tract" a definition must be consistent & camplete,
and uses of what the definition defines must be
provably correct w.r.t. the specification. By a
consistent definition we mean one which ascribes
an un-ambiguous, precise, non~trivial semantics.
By a complete definition we mean one which ascribes
semantics to all applicable constructs. These pro-
perties can both be easily verified to hold (or
not hold) for denctational, e.g. VDM-based, defini-
tions.

For it to usefully fulfill this rdle a definition
should furthermore not be unduly long, i.e. be
reasonably short, and it should be rehensible
by the two parties concerned: those who write ref-
erence & introductory manuals for uses of what is
defined, and those who develop implementations of
what is defined. One could list, as a definition
objective that the object which has been defined,
in casu: the Data System is well-conceived: free
from mis—conceptions, conceptually clean and with
an optimum of notions; and that the defined data
system has properties which are either transparent-
ly defined or relatively easy to ascertain fram
the definition.

A definition must be accessible to reasonably skil-
led software engineers, i.e. they should be able
to effectively find their way into & “around" the
internals of a definition. In addition to the def-
inition being (de facto) correct, definition users
must also believe it to be correct. "Correctness"
of a definition, IiIn addition to oconsistency and
completeness, etc., also means that it is permis-
sible. Thus desired non-determinism, quasi-paral-
lelism, concurrency and resource usage optimization
must be expressed by the definition.

It should not, per se, be a requirement or an ob-
jective that a definition be formal, let alone
executable.

To summarize, the objectives & requirements of a
definition can be itemized:

(i) legal contract between user & developer,

(ii) consistent & camplete,

(iii) camwprehensible & concise (short & precise),
(iv) accessible & referencable,

(v) correct & believed correct,

(vi) permissive - where appropriate,

(vii) suitable for user manual technical writers,
implementors & validators

2. FORMAL DEFINITIONS & THEIR USES

We now argue that only formal definitions will sa-
tisfy the above-stated objectives & requirements.
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By formal definition we mean a definition about
which questions can be answered objectively. Math-
ematics then is our tool to achieve this. Several
definitional styles are possible. They fall in two
groups: the constructive models of either denota-
tional or operational semantics, and the implicit
definitions of either axiomatic or algebraic seman-
tics.

Given a definition of the latter kind one is usual-
ly required to show that there exists a non-trivial
model for there to exist any sensible realization.
Current implicit definition styles achieve this
model requirement at the expense of forcing rather
low-level abstractions resulting in rather volumin-
ous definitions. A drawback of algebraic definition
styles, as contrasted to denotational ones is their
apparent inability to cope with higher order func-
tional abstractions.

Given suitably high-level abstractions denotational
semantics today appear to satisfy most of the re-
quirements put to definitions of sequential, or de-
terministic systems. The more permissive aspects
can be expressed in either axiomatic or structured
operational semantics [Gordon 8lal.

We shall focus on the VIM approach to formalization
of database Systems. VDM, for Vienna Development
Methodology, is a denotational semantics based soft-
ware development method, which, however, permits
carefully controlled naive set theoretic predicates
to achieve a high degree of expressability. VIM is
extensively documented in the literature: currently
four boocks [Bjgrner 78a, Jones 80a, Bjgrner 80a,
Bigrner 82b] in addition to many papers. For data-
base-oriented introductions to VDM you may consult
[Bjgrner 80b].

The discussion which follows will not be a tutorial
on how to use VDM for purposes of e.g. formal def-
initions, nor on how to read such VIM definitions.
Instead we shall outline some of the methodological
steps in constructing such definitions, or models
as we shall henceforth call them. The discussion
will be carried relative to the Formal Model of IMS
given as an appendix.

Semantic Domains

- The Database Structure:

In architecting a new Data Model (or variant there-

of) the most important thing to first decide upon
is the semantic objects (or states): "that which we

wish to speak about". In the case of IMS it was
given by others, and our formalization is hence a
recording of the results of a semantic analysis. We
found that IMS states could be abstracted as shown,
first in (1), subsequently, decamposing these into
constituent objects, defined in (2), (9), and (14).

The cbject defined by formulae (1, 2, 9, 14) are
representationally abstracted mathematical Domains.
That is: we have abstracted away any implementation
concerns to focus on what the user sees. The Damain
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equations define the class of all objects (usually
too many, but see below).

Thus we do not believe in defining such object do-~
mains by displaying one or two "snapshot" pictures
of "typical" such objects in the form of drawings
with boxes and pointers, etc. Our major misgiving
about such drawings is that they are only snapshots,
too few to extrapolate the entire allowed class.
Our subsidiary misgivings about drawings or tables
of example database constellations is that one is
not told exactly the semantics of the primitives
used in the drawings, let alone their combination.

~—— The Database Invariants

But the domain definitions (1, 2, 9, 14) scametimes
define too much. It is, in general, not possible
to express, in the form of damain equations, all
the internal consistency constraints which usually
must hold within and between sub-parts of objects.
These data model integrity constraints are instead
expressed in the form of predicate functions called
(data type or data structure) invariants. Invari-
ants apply to objects of defined domains and are
defined to hold only for those objects which are
well-formed. The IMS invariants are defined in
(4, 5, 6, 10, 11, 23).

-- Auxiliary Database Notions

Finally, before dealing with data manipulation, we
deal with a variety of auxiliary notions, usually
functions of various kind — notions which are
either used in establishing invariants, or, subse-
quently, in establishing the meaning of query/up-
date commands.

These ancillary functions are illustrated by form-
ulae (3, 7, 8, 12, 13, 15-22). The reader is en-
couraged to study these from this point of view.

0o 0 0 o0

We find that the process of establishing what "the
whole thing is all about", i.e. the semantic do-
mains, their invariants and auxiliary notions, is
the most crucial — and most rewarding, hence the
most important. We find, in oontrast, that many
database treatments all too often begin by explain-
ing conrete syntax, trying to cover the damain of
applicable commands as completely as possible, and
failing, invariably, to explain, to any acceptable
depth, the semantic domains. Their structure only
transpires indirectly from explications of cammand
semantics.

We find that very many database proposals are con-
ceptually constrained by unnecessary implementation
concerns and by a lack of a suitable abstraction
medium. We find that denotational modelling of
data models very quickly brings one into interest-
ing generalizations. The abstraction language of
e.g. VIM relieves one fram many unwanted clerical
details, and thereby enables one to better exploit
ones' mental capability. In short: A good, concise
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and well-founded notation is ve important, also
for architectural design work. Y )

Syntactic Domains

— The Database Cammands

In establishing the semantic domain the architect
naturally had certain data manipulation and query
capabilities in mind. Basic aspects of these are
normally reflected in some of the auxiliary func-
tions —— e.g. (8, 15-22). Thus the foundations
upon which design and explication of the database
commands have already been laid. And we can pro-
ceed to architecting these commands (24, 25, 27,
31, 39, 45, 50, 53).

— The Context Condition Constraints of Comuands

The commands designate database objects by naming
segment types and fields (25.0, 25.2, 25.3)*. In an
actual database same of these names may not be, or
yet have been, defined. Moreover, the cammands
may contain data values (24.4, 24.6, 25.2-3). These
may not be of the kind described in the appropriate
parts of the Catalogue (2.2, 2.7). As part of cam-
mand elaboration one therefore have to check that

only appropriate names and values are used (26, 28,-

29, 30, 40, 46, 51, 54).

Semantic Functions

Finally we are ready to make precise the specific
semantics of cammands. Formulae (32-38, 44, 48-49)
can be considered auxiliary functions used in ex~
plicating the denotations of several commands; with
(4143, 47, 52, 55) being the actual, main semantic
functions.

o 0 0 o

We have campleted the denotational modelling of a
non-trivial data model, the IMS. Granted, it is
an abstraction of IMS, but the definitions illu-
strate what it takes to construct such a defini-
tion and what one obtains: an abstract "realiza-
tion" - an easy and not too costly way of “playing
around with and exercising" an entire spectrum of
IMS facilities. Instead of a lot of mational and
natural language words one has samething far wore
tractable: samething that can be abjectively scru~
tinized, savething which can serve as a very pre—
c;ise departure point for estimates of, and actual,
implementation, and for educational and training
purposes.

The illustrated IMS definition is of a nature which
can be implemented very quickly if one amits consi-
derations of resource efficiency. A nunber of exe-
cutable versions of the shown definition can be
thought of. Either one has, once and for all, an
interpreter for the meta~language used; or one
transliterates the definition into for example ML

* NN.M refers to M'th line of formula NN, O-origin.
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{of ICF [Gordon 79]) or SETL ([Schwartz 73a]).
Such "proto-typing” is by many considered useful.
We should like to point out, however, the important
clarifying rdle the construction and the existence
of a paper definition. In fact, we should like to
urge that architectural definitions such as the one
of the appendix, but for new concepts, new "inven-
tions”, be communicated, circulated, read and dis-
cussed for years before serious, constly attempts
be made to implement them.

3. RELATED WORK ~ An Amnotated Bibliography

In this section we first survey some of our own
work, in section 3.0, and then, in sections 3.1-
3.7, that of others, all, however, restricted to
the VDM viewpoint.

3.0 Bjgrmer et al.

The following references outline the general prin-
ciples for applying denotational, specifically VIM
modelling techniques to databases: [Bjdrner 80b,
Bijgrner 80d, Bjdrner 82cd]. The first two represent
early versions of the latter two. [Bjfrner 82c] de-
scribes relational, hierarchical and network data
models. Both relational algebra (procedural) and
predicate calculus (DSL-alpha, SEQUEL, SQL) query
languages are modelled in detail. The latter, ba-
sically borrowed from [Nilsson 76al], formed the ba-
sis for [Hansen 80a]. The hierarchical data model
is carefully formalized, £first rather generally,
then with a bias towards System 2000. The network
data model formalization is oriented towards Bach-
mans ([Bachman 70al) Data Structure Diagram, and
is very general. [Bjfrner 80b] "smoothtalks" the
reader into understanding basics of VIM by first
modelling very simple file system ideas; thus that
paper may serve as a sufficient entry into bei

able to read VIM definitions. In [Bjgrner 82c
it is not obvious how the abstractions relate to
{i.e. injects into) database management systems
for respecture data models. ‘This relationship,
except for the case of the relational model, is
dealt with in [Bjfrner 82d]. For the hierarch-
ical model is shown the socalled hierarchical se-
quential access method (hsam), hierarchical direct
access methods (hdam) with so-called "Child-twin"
pointers respectively entire file pointers. For the
network model only a single step of development is
shown: one towards ‘'chained pointer' realizations,
eventually leading to the ‘current-of' and ‘'area’
notions of the CODASYL/DBTG report [CODASYL 7laj.

3.1 A. Hansal: A Model of PRIV [Hansal 76a}

This is the earliest known application of VIM to
database specification. The actual work was car-
ried out in the sumer of 1974 when A. Hansal was
an undergraduate student. The report gives a fair-
ly complete and faithful model of the "Peterlee Re-
lational Test Vehicle" (PRTV) — otherwise known as
1S/1. PRIV is a relational algebra based DBMS ac-
tually implemented by the IBM UK Scientific Centre

in the early 1970s.
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3.2 J.F.Nilsson: Formalization & Realization of
Database Systems [Nilsson 76a]

In this Ph.D.Thesis VDM modelling techniques are
applied as a tool in both semantic analysis of im-
known and novel relational database concepts, and
in the synthesis of a relational data model propo—
sal.

3.3 J.Lindenau: "A Descriptive Query-Tanguage for
the Network Data Model — with a
Formal Semantics Definition in
META-IV" [Lindenau 8la] —

This M.Sc. Thesis is in German. In its first part
(85 carefully annotated pages) is given a formal
VIM-style model of the semantics of the CODASYL/
DBTG proposed DML for the network data model. This
definition faithfully models crucial data model
aspects such as the currency notions, and con-
straints among data model camponents (such as re-
cord types, set types and currency pointers). It
then models the semantics of 8 variants of the
'find' command, and the ‘'get' (2 variants), 'store'
‘erase'’ 'modify' (5 variants), ‘connect', ‘'dis-
connect' and ‘'move' commands. It is to be recam-
mended that this entire part of the thesis be pub-
lished in English.

In its second part a query language extension fea-
turing relational algebraic terms is super-imposed
on the system of part 1. The semantics of the new
constructs are given in terms of their translation
into "ordinary" DML oconstructs. Part 3 then docu-
ments an implemented translator.

3.4 Ths.Olnhoff: "Functional Semantics Description
of Query Operations in a 3-level
Data Model" [Olnhoff 8la]

This Ph.D.Thesis is in German. The 200 page work
carefully analyzes the so-called ANSI/SPARC pro-
posal for a 3-level external/conceptual/internal
schema view of data bases. The specific model stu-
died is the relational. The approach is that of u-
sing VIM/META-IV as a tool in this investigation.
Thus the ‘'relations' between the external and the
conceptual, and between the conceptual and the in-
ternal schemas are studied by synthesizing and stu-
dying the injection and abstraction (or retrieval)
functions for both the data objects and the cam-
mand operations.

3.5 E.Neuhold et al.

The work of section 3.4 also had a background in
work "pre-dating” VIM-influence: [Biller 74a, 75a,
76a]. The joint papers with Olnhoff [Neuhold 80a,
8la] summarizes and extends the work mentioned in
section 3.4. Our own work in applying VDM to data
bases was partly prampted by a desire to simplify
the treatments of the Biller et al. papers.

3.6 W.Lamersdorf et al.: Pascal/R

— —————— ——— ——

It was J.W.Schmidt of the Hamburg University who
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first suggested the idea of formalizing his very
elegant relational extensions to Pascal. Initial
work on this was done by W.lLamersdorf as part of
a M.Sc. course. Two reports, and Lamersdorf's Ger-
man Ph.D.Thesis, now documents this effort [Lam—
ersdorf 80ab]. In one report the ideas of Pascal/R
are carefully introduced, hand-in-hand with their
formalization. The other report gives the camplete
formal definition. This work seems to have inspired
the proposal that a possible ANSI 'Relational Data
Model' standard also be formalized, in fact [X3/
ANSI/SPARC 8la] exemplifies such a formal (VIM) def-
inition.

3.7 B.S.Hansen & S.U.Palm: System/R —— A Model of
the PL/I Users Interface
[Hansen 80a]

This is an internal, IBM Confidential, report of
the IBM San Jose Research Laboratory, California,
and of the Computer Science Department of the Tech-
nical University of Demmark. It represents about
4 man-months of relatively in-experienced under-
graduate student work spread over half a year. Al-
though based only on a single reference manual and
no access to System/R designers nor a System/R it-
self, it remarkably accurately describes the mul-
tiple user, recovery based version of System/R as
implemented and operated by the IBM San Jose Re-
search Laboratory. Thus the model, besides defining
SQL with views etc., employs a meta-process notion
to capture, as abstractly and implementation-inde-
pendent as possible, the notions of 'shared access'
to data as well as 'transaction commits’ and 'back-
outs'.

This is not the place to relate the very many, very
interesting experiences obtained in the process of
constructing this model, but only to say that in
our opinion IBM would do the entire database can~
munity a most valuable service in making a ("cor-
rect”) update of this definition publicly available.

It appears that the IBM Scientific Center in Heidel-
berg, W.Germany, is currently pursuing very inter-
esting end-user database system architectural design
work based on the above work.

4. CONCLUSION

We have presented three lines related to formaliza-
tion of database systems: (1) rationales for doing
so; (2) an actual 'realistic' model of crucial a-
spects of IMS, the IBM Information Management Sys-
tem, by far the most wide-spread DBMS of the 1970s;
and (3) an amnotated survey of related formaliza-
tion work.

The work of e.g. Olnhoff & Neuhold point to a next
"generation” of database formalization efforts:
those of capturing the more recent proposals of
the data base architects: researchers & designers,
and the works of most of the researchers mentioned
in section 3 bears promise to the hope that data-
base proposals in the 1980s will be carried by ma-
thematically clean formalizations.
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APPENDIX I: A Formal Model of IMS

A.l Introduction

This appendix contains an abstract model which is
intended to describe the most fundamental concepts
of IBM's hierarchical database system, IMS (In-
formation Management System).

The model covers only the most fundamental con-
structs of the data manipulation language DL/1.
First of all, the catalogue and the data part is
modelled, and then the semantics is given for the
six fundamental ocommands: Get Unique, Get Next,
Get Next within Parent, Insert, Delete, and Re-

place. However, only the most simple forms of
these are treated.

The model is based primarily on the user manual of
IMS [IBM a]. Readers familiar with IMS should be
aware that the model is an abstraction and that
the following features are not modelled:

Cammand Codes
"Advanced Features": Multiple Positioning,etc.
Logical Databases

Access Dependent Features
Positioning in wrong calls

"Wrap around" of position

(start of database = end of database)
Get-Hold calls
¢ Insert Rules other than FIRST

QO 00 O 0o o

It is believed, anyway, that the model is a reason-
able description of "elementary" IMS.

A.2 The Database Structure: Semantic Domains

The IMS Hierarchical Database is considered to con-
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sist of a Catalogue (Scheme),
current Positions:

a Data Part, and

HDB :: CTLG DP POS (1)

A.2.1 Catalogue

CTLG (SegmTp 3 SegmDeser) Ord  (2)

SegmDescr ReeDeser CTLG

RecDescr (FieldId g TYPE) Seqinf
SearchFields

Seqinf = Unique | Multiple | NON-SEQ

Unique FileldId

Multiple Field1d

SearchFields FieldId-get

ord = ...

TYPE = InT |

SegmTp =  TOKEN

Fieldld =  TOKEN

The Catalogue defines a hierarchy of Segment Types
and their associated Record Descriptors. Sibling
Segment Types are ordered by the Order Camponent
with which we assure a relation << indexed by the
ordering:

type: << Ord =+ (SegmTp SegmTp 7 BOOL) (3)

The records of a segment type are described by the
required fields and their types, whether the re-
cords must be ordered by a key field or not, and
which fields may be used for selection.

No Segment Type may appear more than once in a hie-
rarchy. We therefore have the following invariant
on the catalogue:

Inv-CTLG (mk-CTLG (edm,ord)) A (4)
(¥mk-SegmDeser(recd, ctly') e rngsdm)
(inv-RecDesger(recd) A inv-CTLG(ctlg'))
NVstpy, stpy € domedm)
(stp;+6tpy 2
%et etps; = stypes( 8-CTLG(sdm(etpy )

‘.\
B

Tet stpey = ?f)es(s-CTLG(sdm(sth)) in
stpslnstpSZ =
(stpsluetpsy)ndomedm = {}) )

ALnv-Ord(ord, domsedm)

inv-ReeDeger(mk-RecDeser(tpm, seq, searchfs)) A (5)
" searchfs < domtpm
A cases seq: (mk-Multiple(fid) + fidedomtpm,
mk-Unique(fid) ~ fidedomtpm,

T + true)

inv-Or'd(,) __A_ se e (6)
type: inv-CTLG: CTLG -+ BOOL (4)
type: inv-RecDescr:  RecDescr -+ BooL (5)
type: inv-Ord: Ord SegmIp-set = BOOL (6)
All the segment types of a (sub-)catalogue are
found by:
stypes (mk-CTLG (edm,)) A (7)

domsdm u

unionl stypee(s-CTLG (edm(etp))) | etpedomedm}
type: CTLG -+ SegmTp-set
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Since the segment types are unique within the cata-~
logue, it is often convenient to have direct access
the associated record description:

get-RecDescr(stp, mk=CTLG (edm,)) A (8)
if stp e domsdm
then s-RecDescr(edm(stp))
else (let stp' ¢ domedm be s.t.
stpestypes(s~CTLG (sdm(stp'))) in
get-RecDeser(stp, e=CTLG (edm(atp'))})

type: SegmTp CTLG 3 RecDeger
pre:  inv-CTLG(etlg) A stpestypes(etlyg)

A.2.2 Data Part

DP = SegmTp g SEGMENT* (9)
SEGMENT  :: Record DP

Record = FieldId 7 VAL

VAL = Intg | ...

The Data Part associates a list of segments to each
segment-type. Each segment consists of a Record and
an associated sub-data-part. Thereby the Records
are arranged in a hierarchy where the records of a
segment type under a given parent are ordered by
the list. A record just associates a value to each
Field.

A Data Part of an HDB must follow the structure
prescribed by the catalogue:

inv-DP (dp)mk=CTLG(sdm, ) A (10)
domdp = domsdm
N(Vstpedomdp)
{let segml = dp(stp) in
let mk~SegmDeser(rd,ctlg') = sdmlstp) in
let mk—RecDescr(tpm,seq,) = nd in
" (Vmk-SEGMENT(vec,dp') ¢ elemssegml)
“(inv-Record(rec,tpm) A inv-DP(dp')ctlg’)
Acheck-sequence(segml, seq))
type: DP + (CTLG ~ BOOL)
pre: inv-CTLG(ctlg)

o
S

inv-Record(rec,tpm) A (11)
domrec—domtpm A
(Vfidedomree) ( type-of (rec(fid) )=tpm(fid))
type: Record (FieldId g TYPE) ~ BOOL
type-of (val) A (is-Intg(val) -+ INT,...) (12)
type: VAL + TYPE

The following function will check that the records
of a segment list are ordered according to their

key field. In IMS multiple records with the same
key may be allowed. .
check-sequence(segml, seq) A (13)
seq-bDN—SEQ
v(ivi, Je‘mdseg‘ml)

(let keyf = g-FieldId(eeq) in
let ikey = s-Record(segml[i])(keyf),
Jkey = s=Record(segml[jl)(keyf) in
((i<j) > cases seq:
(mk-Unique() -~ ikey<jkey,
mk~Multiple() -+ ikey<jkey))})
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A.2.3 Positioning in the Data Base

POS
Path

(g=current:[Path] s-parent:[Pathl)
(SegmTp Ny)* (14)

The IMS system maintains two positions in the data-
base, each one identifying a unique segment. The
current position (roughly speaking) identifies the
record last accessed, and the parent position iden-
tifies the segment under which the Get Next Within
Parent cammand may search.

A segment and its associated record is uniquely
identified by a so-called Path, which gives the
segment type and an index in the associated list
of segments for each level on the way down from the
root data part to the segment. An empty Path may
be thought of as denoting an imaginary "system
segment" which cannot be accessed.

If the current Path is missing (nil) the current
position is at "the end of the Data Base". If the
Parent Path is missing, no records can be selected
by "Get Next Within Parent”.

Now there follow same useful Path operations to be
used later in the definitions of the ocommands.
Firstly, all the possible paths in a data part.

all-paths(dp) A (15)
if dp=[]
then {<>}
else {<(stp,i)>"p |
stpedomdp A ieinddp(stp) A
peall-paths(g-DP (dp(stp)[z])) }
type: DP -+ Path-set
Retrieval of the subdatapart, and the record deno~
ted by a path:

get-DP(path,dp) A (16)
cases path:
(<> -+ dp,
<(stp,1)>"path! -+
v get-DP(path', 8-DP(dp(stp)[i])))
type: Path DP 3 DP
pre: patheall-paths(dp)
get~Record(path,dp) A amn
(let path"((stp, i)>
let dp!'
s=Record(dp’ (stp)[i]))
type: Path DP <+ Record
pre: patheall-paths(dp)\{<>}

Note that the get-DP extends to the "system seg-
ment" (<>). The following function tests whether
a path denotes a segment below the segment denoted
by a parent path. If the parent path is missing
no segment can be below it.

path in
get-DP(stp,dp) in

o
=

beneath(path, parent) A (18)
parent:t:ml A
is-prefix(parent,path) a lenpath>lenparent

type: Path [Path] -+ BOOL
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A.2.4 Sequencing in the Data Base

All the records of the data base are ordered in a
so-called hierarchical sequence oorresponding to
a parent first, left-to-right traversal of the
data part tree. In our model this ordering is re-
flected by an ordering on the unique path identifi-
cations of the records. In this way, the ordering
becames a lexicographical ordering on the paths.
Since the ordering depends on the ordering of
segment types at each level, the catalogue is
needed in the following function, determining the
ordering:

precedes(py, po)mk=CTLG (8dm,ord) A (19)

(p2=<> - 'a 8e
p1=<> =+ true,

T +(Let <(stp1, 1)>"pyr = p1 in

Tet <(stpy, j)>"pgr = py in
(stpltstpz -+ stp1 <ora 8tPas
147 -+ 1<d,

T -

precedes(p; 1,pg 1) 8=CTLG(8dm(8tpy )))))
type: Path Path + ( C'TLG = BOOL)
pre: (3dpeDP)(inv-DP(dp)etlg)
{p1,p9} < all-paths(dp)

For later use, we define a few operations using the
sequence concept.

ftrst—path(ps)ctlg A (20)

if pe={}
then nil
else (Apeps) (¥p'epa\{p} ) (precedes(p,p')ctly)
type: Path-get 3 (CTLG 3 [Pathl)

follows(py,pgletl (21)
(po=nil - alse T -+ precedes(pg,py)etlyg)

type: Pat'h Pathl % (CTLG 3 BOOL)

next-path(p) (ctlg,dp) A (22)

I p eall-paths(dp) A
follows(p',pletlg})
[Pathl 3 (cTLG DP 3 [Pathl)

fwst—path({p

type:
A.2.5 Well-formedness of the Data Base

At the end of our treatment of the Data Base Struct-
ure we formulate the global conditions to be met by
the Data Base:
inv-HDB(etlg,dp,pos) A (23)
inv-CTLG (etlg)
ATnw=DP(dp) ctlg

a(let (current,parent) = pos in

( current—ml v currenteall-paths(dp))

Mparent=nil v parenteall-paths(dp)\{<>}))
type: HDB -+ BOOL

A.3 Data Manipulation

In this section we define the semantics of the six
fundamental commands of IMS: Get Unique, Get Next,
Get Next within Parent, Insert, Delete, & Replace.
The full abstract syntax and dlstrlbutlon functions
are given below:
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A.3.1 Syntactic Domains

omd = Gulconl enp | Isrt | Dkt | Repl  (24)
Gu 22 [8sat]

Gn :: [Seat]

Gnp :: [Ssat]

Isrt :: Ssat Record

Diet :: ()

Repl  :: Record

Ssa = (SeilmTp LQuall) (25)
Qual = .

Eq i FdeId VAL

Record = FieldId g VAL

Precondition:

pre-Cmd[ emdJhdb A (26)

eases emd:
(mk=Gu(°) - pre-Gu(emd)hdb, ««c =+ «o. )

The definition of the semantics of the commands is
divided into three parts. First we discuss the cam-
mon concept of Sequential Search Arguments (ssa's).
We then treat the data retrieval commands (the
Get's), and finally the data modifying commands.
For each cammand we define the conditions in rela-
tion to the Data Base to be satisfied before appli-
cation of the command, and the interpretation fimc-
tion defining the semantics of the command.

Note that the special Get-Hold commands are not
modelled as they are almost logically equivalent
to the Get calls except that they indicate that
the succeding command may be a replacement or dele-~
tion.

A.3.2 Segment Search Arguments

Ssa-list = [Ssa+] (27)
Ssa = (Se Tp [Quall)

Qual = 7"' .

Eq 3 F’LeldId VAL

The purpose of the Ssa-list is to determine a set
of segments of a given type by giving qualifica-
tions which must be satisfied either by the seg-
ments of the type themselves, or by their ances-—
tors. The qualification for a segment type is
given by a Sequential Search Argument (Ssa). In
IMS, however, not all levels on the path to the
desired segment type need to be given in the list.
In this case the system will assume so-called
implied Ssa's (see below). Also, the list may be
totally left out, in which case all segments of
the data base are selected. The qualification may
have many forms in IMS. Since these are not our
primary concern we only cover the case where a
field in a record is required to have a certain
value. The qualification may be 1left out, in:
which case all segments of the type apply.

For an Sga-list to be valid in the context of a
HDB, the Ssa's of the 1list, taken from left to
right, must "lie" on a path from the root to the
desired segment type, given by the last Ssa:
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pre-Ssa-list(ssal)mk-HDB(etly,,) A (28)
(ssal=nil -+ true
-+ pre-Ssa-list'(ssal)etly)

T
type: [Ssat] - (HDB 3 BOOL)

pre-Ssa-list'(ssal )mk-CTLG (edm,) A (29)
cases ssal: N
(<> =+ true,
<(stp,qual)>"esal ' -
if stpedomedm
then
(let mk-SegmDeser(recd,ctly') = sdm(stp) in

(qual=nil v pre-Qual({qual)recd) A
pre=Ssa-list'(ssal')etlg’)

else

(let stps = {stp' | stp'edomsdm A

stpestypes(s-CTLG (Sdm(etp'))} in

o
S

cases etps:
7 = false,
{stp'} -
pre-Ssa-list'(ssal)s-CTLG(sdm(stp'))))
type: Sea® - (CTLG 3 BOOL)

pre-Qual(qual)mk-RecDescr(tpm, , srchfs) A (30)
cases qual: ’
(mk-Eq(fid,val) + fidesrchfs A

tpm(fid)=type-of (vall,
vee )

type: Qual + (Recdescr 3 BOOL)

The function type-of: VAL -+ TYPE is assumed to be

given.

For an Ssa-list to be used, the missing levels must
be supplied by the system. Such Ssa’s are qualified
by a special qualification indicating that the le-
vel was implied. We therefore introduce completed

Ssa-lists as lists of:

Ssa' = (SegmTp [QuallIMPL]) (31)
Now the Ssa-list may be completed by:
complete(ssal )mk=CTLG (8dm,) A (32)

cases ssal:
(<> -+ <>
<(setp,q)>"ssal’ ~+
1f stpedomsdm
then <(stp,q)>"complete(ssal')s-CTLG(sdm(stp))
else (let stp' be s.t.
stpestypes(g-CTLG (sdm(stp'))) in
<(stp', IMPL)>
complete(ssal)s-CTLG (sdm(stp'))))
type: Sea* 3 (CTLG 3 Ssa'*)

>

An Sga-list may be evaluated in two ways. We give
the simple one first:
eval-Ssa-list(ssal) (ctlg,dp) A (33)
if ssal=nil N
then all-paths(dp)
else (let seal' = complete(ssallctlyg in
search(ssal',dp))

type: [Seat]l 3 (CTLG DP 3 Path-set)
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search(ssal,dp) 4 (34)
casges Ssal:
(<> -+
<(etp,q)>"ssal' -+
{<(stp,i)>"p |
teinddp(stp) A
(let mk-SEGMENT(rec,dp') = dp(stp)[i] in
(q=nil v q=IMPL v satisfies(rec,q)) A
pesearch(seal ,dp'))})
DP 3 Path-set

{<>},

type: Ssal'*

satisfies(ree,q) A
cases q: (mk-Eq(fid,val) + rec(fid)=val, ... )
type: Record Qual 3 BOOL

We see that in this simple case, implied Ssa's are
treated like unqualified Ssa's.

In the Get Unique and Insert Commands, the implied
Ssa's must be treated according to some special
rules which we quote from [IBM a]l:

"(1) If the prior call established position on a
segment type that the current call is using
as an implied segment type, an SSA qualified
with current position is assumed at that
level. (This is true even if the segment has
nonunique keys.) If a parent level qualified
SSA is provided for other than the parent's
current position, an unqualified SSA is as-
sumed by DL/I for all missing levels below
that parent.

(2) If the prior call did not establish position
on any segment type implied in the current
call, then DL/I assumes an unqualified SSA
at that level."

It does mnot seem quite clear how to interpret
these rules. One idea would be to follow the cur-
rent path "as long as possible”, but it appears to
be too restrictive. Instead, the interpretations
formalized below seem to oconform better to the
rules.

The idea is to try how far the current path can be
used still fulfilling the qualifications of the
completed Sga-list treating implied Ssa's as
u nqualified. This will result in a prefix of the
current path. Fram this prefix we take the part
down to, and including, the last implied level,
and use this part as the first part of the selected
path where the rest is found by the usual search
given above.
eval-Ssa-list-P(gsal,cur)(ctlyg,dp) A (36)
if ssal = nil
then all-paths(dp)
else (let ssal' = complete(ssal)etlyg in
then search(seal',dp)
else search-along-path(seal’,cur,dp))
type: [Seat) [Pathl 3 (cTLG DP 3 Path-set)

Mexico City, September, 1982



search-along-path(eeal,cur,dp) A (37)
(let § = try~ path(ssal eur,dp) in
Tet k = max({ k'| 1<k’'<j A
“seallk'J=(,IMPL) }u{0} in
let cur' = <cur[i] | ieindeur A i<k> in
let ssal'= <ssalli] | ieindssal A ©>k> in

Tet dp' = get-DP(cur',dp) in

Teur' " p pesearch(ssal',dp') })
type: Seat Path DP -  Path-set
try~path(esal,cur,dp) A (38)
if ssal=<> v cur=<>

then 0

else (let <(setp,q)>"esal' = ssal in

Tet <(stp',i)>"cur’ = cur in

Tet mk-SEGMENT(rec,dp’) dp(stp')[i] 1in
if stp=etp'a(q=nilvq=IMPLvsatisfies(rec,q))
then 1 + try-path(esal',cur',dp')
elge 0)
type: Sea Path DP 3 W,

Try-path will return the length of the longest pre-
fix of the current path that satisfies the qualifi-
cations in the Ssa-list.

A.3.3 Retrieval Commands

IMS has three commands for data retrieval:

Gu :: [Sseat] (39)
6n :: [Ssat]
Gnp :: [Ssat]

Get Unique retrieves the first record in the hie-
rarchical sequence which is selected by the Ssa-
list. Get Next retrieves the first record when
starting at the current position which is selected
by the Ssa-liet. Get Next within Parent works as
Get Next except that the record must be a descen-—
dant of the record denoted by the actual parent
position.

All Get commands will set the current position to
the record retrieved, but only Get Unique, and
Get Next will change the parent position.

Precondition:

For all Get camands, the Ssa-list must be wvalid:
pre="GET" (mk-"GET"(8s8al))hdb A (40)
r'e- sa—lzst(ssal)hdb
GET" 3 (HDB 3 (HDB 3 BOOL)
"GET" Gu, Gn, Gnp

Interpretation:

int—Gu(Ln]g:Gu(ssaZ))mk-—HDB(dp,ctlg,pos) A (41)
(let (cur,) = pos in
| Tet pathe = eval-Ssa-list-P(ssal,cur)(ctly,dp)
let p
let (pos',res) =
(p=nil -+ (pos,NOT-FOUND),
T -+ ((p,p),get~-Record(p,dp))
(mk-HDB(dp, ctlg,pose'), res))

o]
S

o
S
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int-Gn(mk-Gn(ssal) )mk-HDB(dp,ctlg,pos) A (42)
(let (cur,) = pos in

Tet paths = eval-Ssa-list(esal)(dp,ctlg) in
let paths' = Ip T pepaths A

! follows(p,cur)etlg} in
letp = first-path(paths') ctlg in

let (pos',res) =

(p=nil + (pos,NOT-FOUND),

T -+ ((p,p),get-Record(p,dp)) in
(mk-HDB(dp, ctlg,pos'),res))

int~Gnp (mk-Gnp(seal) )mk-HDB (dp,ctlg,pos) A (43)

(let (cur,parent) = pos in
Tet paths = eval-Ssa-liet(ssal)(dp,ctlyg) in
Tet paths'= {p | pepaths a
follows(p,curietl
! beneath(p, parent) ? in
let p = first-path(paths')ectly in

let (pos',nres) =
(p=nil » (pos,NOT—FOUND)
! T -+ (p,parent)},get-Record(p,dp))) in
(mk-HDB(dp, ctlg, pos),res))

"GET" + (HDB 3 HDB (Record | NOT-FOUND})

type:
The exclamation marks indicate the points where the
definitions differ. WNote that many textbooks let
you have the impression that Get Unique uses the
simple form of Ssa evaluation; this is not the
casel

A.3.4 Modification Commands

= first-path(paths) ctlg in

344

IMS has three commands which may modify the data
part of the data base. This section starts with
the definition of a cammon function, then follows
each of the commands separately, and at the end we
give some auxiliary functions.

Modification:

Cammon to the modification commands is that they
may change part of the Data Part of the Data Base.
The following function performs the task of inser-
ting a new Sub-Data-Part at a given position.

modify(parent, subdp)dp A (44)
cases parent
(<> -+ gubdp,
<(stp,1)>"parent' +
(let segml dp(stp) in

let mk-SEGMENT(rec,dp') = segml[i] in

Tet dp" = modify(parent’,eubdp)dp' in

dp + fstp - segml+[1,—>mk—SEGMENT( rec,dp”)11))
type: Path DP 3 (DP 3 DP)

Insertion:

Isrt :: Ssat Record (45)
The Insert command inserts a record at the position
indicated by the Ssa-list. The last element of

the list indicates the type of the record, and
must be unqualified:
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pre-Isrt(mk-Isrt(ssal,rec) )mk~HDB(ctlg,dp,)s  (46)
pr e-Ssa—Ztst (ssal)ectlyg
A(let ssal'“<(etp,q)> =
q = nil A
mv—Record { rec, ge t-RecDecr(stp,ctlg)))

type: Isrt + (HDB 3 BOOL)
(47)

int-Isrt(mk-Isrt(ssal,rec))mk-HDB(ctlg,dp, pos)A

ssal in

(Zet ssal ' - <stp,nil> = gsal in
let (cur,parent] = pos 1in
let paths = evaZ-SsaZ—P(ssal eur) (dp, etlg) in
let inspos = first-path(paths) in

trap exit with (mk-HDM(dp,ctlg,pos),FAILED) 1n
if inspos=nil
then exit
else (let subdp
Zet (subdp', 1)
insert-rec(stp, rec, ctly) (subdp) in
let dp’ = modify(inspos,subdp')dp in
let current'= inspos” <(etp,1)> in
let parent' =
adjust-insertion( inspos, 8tp,i)parent in
let pos' {eur',parent') in
(mk-HDB(thg,dp ,pos'),SUCCEEDED} ) )
type: Isrt ¥ (HDB 5 (HDB (FAIIED‘SUQIEEDED)))

get-DP(inspos,dp) in

The Int-Isrt function first identifies the subdata
part in which the record is to be inserted. Then
the record is inserted in this sub data part which
is again inserted in the whole data part. Finally,
the positions are modified to reflect the inser-
tion.

find-position(segml,rec,fid) A (48)
if szgml=<> v s=Record(hdsegml) (fid)>rec(fid)
then 1
else 1 + find-position(tlsegml,rec,fid)
type: SEGMENT* Ree Fid - Ny
insert-rec(stp, rec,ctlg)dp A (49)
(let mk-RecDescer(,seq,) = get-RecDescr(stp,ctlg)in
let segml = dp(stp) in
Zet i =
cases seqinf:
(RON-SEQ -1,

Unique(fid) -~
if (3jeindsegml)
(8=Record(segml{ j1(fid)=rec(fid))
then exit
eZse findposition(segml, rec, fid},
Multiple(fid) -+
find-position(segml,ree,fid) ) in
Zet seﬁm = insert-elem(mk-SEGMENT (rec,[1),1) in
8tp - segml'], 1))
tyge SegmTp Record CTLG = (DP 3 DP)

The insert-ree function inserts the record in the
subdata part under the given segment type and at
the right position according to its key value.

Delete:

Dlet :: () (50)

The Delete caomand removes the record denoted by
the current position. The "system record" can, of
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course, not be deleted.

pre~Dlet(mk~Dlet())mk=HDB(,, (cur,)) A (51)
eurnil A eurs<>

type :Dlet -+ (HDB 3 BOOL)

int-Dlet(mk-Dlet())mk-HDB(ctly,dp,pos) A (52)
(Zet (cur,parem‘:) pos in
Tet del-parent”™<(stp,i)>= current in
Tlet subdp = get-DP(parent,dp) in
let segml = subdp(stp) in
let subdp' = subdp +

[stp = remove-elem(segml,i)] in

let dp' = modify(parent, subdp')dp in
Tet current'= next-path(cur)(ctlg,dp) in

Tet parent’ =
adjust-removal (del-parent, stp, 1) parent in
(mk-HDB(cetlg,dp', (current',parent’)))
type: Dlet 3 (HDB = HDB)

First, the subdata part in which the current record
is situated is found, the record deleted and the
data part updated. Finally, the positions are ad-
justed.

R_eglace :

Repl (53)

Record

The Replace command updates some fields of the cur~

rent record. The record provided must be sub-record

with values of right type, and the key field must

not be changed:

pre-Repl (mk-Repl(rec))mk~HDB(ctlg,dp, (cur,))A (54)

eurt nil A cur * <>

Alet cur'” <(stp, )> =
Tet mk-RecDescr(tpm, seq, )

get-RecDeser(stp,ctlg) in

eur in

domrec < domtpm
a(Vfidedomree) (type-of (rec(fid)) =
Acases seq:
(mk-Unique(fid) -~ fid-edomrec,
mk=Multiple(fid) + fid~ edomrec,

tpm( fid))

T -+ true ))

int-Repl(mk-Repl(rec) )mk~HDB(ctlg,dp,pos) A (55)

“(Let (rpos <(stp,i)>, 7T = poe in

let subdp = get-dp(rpos,dp) 12_2

let segml = subdp(stp) in

Tet mk-SEGMENT(rec',dp") = segmll[il in

Tlet segm = mk—SEGMENT( rec' + ree,dp") in

Tet subdp = gubdp + [stp » segml + Li> segm 1] in

Tet dp' = modify(parent,subdp)dp in

mk-HDB(thg,dp ,pos))
type:Repl 3 (HDB 3 HDB)

A.3.5 Adjustment of Parent Path

After insertion or deletion of segments the current
and parent paths may no longer be valid. The cur-
rent path is changed explicitly as shown in the
formulas, whereas the parent path must be adjusted
if it passes through the modified subdata-part.
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adjust-insertion(inspos, stp, i) parent A (56) BOOL Boolean truth values: true and false with the

(parent=nil + nil, T usual operators: a,v,-, 5. Predicate expres-
-beneath(parent, inspos) sions involve use of existensial, 3, unique exist-
r - parent, - ensial, 3!, and universal, v, quantification.
N
(let rest = QUOT Quotations are enumerated atomic objects, e.q.
<parent[j] | leninspos<j<lenparent> in FAILED, SUCCEEDED, NOT-] + denoting them-
let <(stp', j)>"rest’ = rest in  selves. Only operators are: = ard .
(stpxstp' - parent, o .
J<i ~ parent, TOKEN Non—enumerated atamic objects denoting them—
T -+ ins-pos <(stp’, j+1)>"rest')) selves. Only operators are: = and %.

type: Path SegmTp N; 3 ([Path] 3 [Pathl)
Sets Finite sets of "finite" (e.g. not functional)

adjust—delef:'ion(de.lpos, stp,i)parent A (57) objects: -get (suffix) applied to domain 4
(parent=nil - nil, yields domain of finite subsets of domain 4. Set
~beneath(parent,delpos) forming expressions are: { aj,ag, ... ,a, } and

-+ parent {al Pla) }: the set of elements satisfying P.

T - Usual operators: u,n, <, c,e,\, card, etc. Brmpty set
(let rest = {1. -

<parent[j] | lendelpoe<j<lenparent> in

let <(stp',J)>"rest! = rest in Tuples Finite length sequences, or lists, of ob-

(stpxstp’ ~ parent, jects: * and + (suffix) applied to domain 4

J=t -+ nil, yvields domain of tuples whose elements are A cb—

J<t * parent, . jects, * also generates the empty, <>, tuple, *+

J>t -+ dgl-pos <(sfp',j—1l)> rest')) does not. Tuple forming expressions are: <aj,ay,

type: Path SegmTp Ny 3 ([Path] 3 [Path]) cee,ay> and <f(i)|P(i)>: the tuple of all those

. . f(i) elements, ordered as by ordering of 7, sa-
Seletet 11-5) e e oo e B g Hsfying P List operstors: i, g Jen, [
= 1s se unaerin ~ . [l L [orepedC T T pama
(nil). » elems, inds denote ‘"head", "tail", length,
—= selection, concatenation, elements and indices.
Also (in)equality: (+) =.

A.3.6 Auxiliary List Functions Maps Finite domain functions (from 4 into B) deno-
. . . ) ted by: 4 7 B, with 4 elements being simple,
I{lsertlon of an element just before the i'th posi- i.e.non-functional finite objects. Map forming
tion of a list: expressions are: [ a;oby,apsby, ... ,a,7by, ] and
) ) [ d(x)»r(y) | P(z,y) ﬁ: the map from a; to b;, re-
ms:er?-elem(a,al,v,) A (58) spectively d(z) to r(y) for all P(x,y). Operators:
if i=1 . dom, rng, v, +,\, (), © denote: domain, co-damain

then <a> QZ Tﬁn%, extension, redefinition/override, re—

else hdal infert-elem(a, i-1,tlal) striction, application and composition. Also (in)-
type: A* N, 3 At equality: (+) =. Bwpty map: [].

pre : te{l:lenal+1)}
Functions Lambda-functions defined either as f(a)A

Removal of the i'th element of a list: expression or Aa.expression. Domains of
. total, or partial 4 to B functions written: 4 -+ B,
remove-elem(al,i) A (59) respectively 4 3 B. Only operation is applica-
if i=1 tion: ( ).
then tlal
else hdal”remove-elem(i-1,tlal) Trees Domain of A-named, resp. anonymous, trees o-
type: AT N, 3 4A* B; objects defined by: 4 :: By By ... By, &
pre : ieindal (B; By ... By); which defines named, resp. anony-
mous, tree constructor (decamposer) functions:
Test whether a list is a prefix of anocther: mk=4( «+. ), resp. { ... ), and selector func-
. tions: &-B7, &-Bgy, +-. s-By-
Ls-pr'efix(ll, l9) A (31'&*)(12=11AZ') (60)
type: A* A* ~» BOOL ABSTRACT SYNTAX
(or Domain Equations) are of either the A=D-expres-
APPENDIX II: Meta-language (META-IV) Survey sion or A::D-expression form, where D-expression
may involve the set, tuple, map, function, or tree
DATA TYPES domain constructing operators: -set, 0, e
3 respectively :: and ( ... ). Additional domain
INTG, Np, N; Integers and Natural Nurbers (larger operators are: | (non-discriminated union), and
than or equal to 0 respectiuvely 1) [ ... ] (optional damain).

with the usual operators: +, -, X, =, #, <, <, etc.
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LANGUAGE CONSTRUCTS

META-IV in addition to conventional, applicative
constructs (if then else etc.) makes heavy use of
the following:

(let id = expr in body)

Landin sugar for (Aid.body)(expr):

td bound to all free occurrences in
body and denoting substitution of
expr for all these. Multiple, po-
tentially mutually vecursive let
definitions are common. -

(let mk=Alx,y, -.- ,2) = atree in body)

decawoses atree into its constitu-
ent components. Otherwise as above.

(b; * eg,by * 25, «-. -'bVl-‘ e,)

McCarthy (LISP) conditional, %, may
be T denoting true.

cases e: (V] * e7,Vg 3 29, «eeee Uy > g,)

Ordinary cases construct. Often u-~
sed with v; being mk-Bi{ .+ ) and
then denoting decomposition of e~
tree with ..... identifiers being
bound in e;-

(AideS) (P(id)

Unique descriptor expression: the u-
nique object, in 5§, which satisfies
P, undefined if not unique.

flmk=A(x,y, -+ ,2)) A body
Function definition equivalent to:

flatree)d
(let mk-A(x,Y,...,3}=atree in
body)
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