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ABSTRACT 

Surrogates or internal identifiers can be made 
to facilitate both fast access and storage in- 
dependence if they are implemented properly. 
Such an implementation is discussed here; it 
permits the tuplcs of a relation to be accessed 
very fast by primary key for both random and 
sequential search without retarding the per- 
formance of secondary keys. It employs a key 
compression and a hasiiing algorithm and 
attempts to place tuples on data pages in the 
primary key sequence. Subsequent updates are 
absorbed by a dynamic allocation of overflows. 
An indexing technique called a hash tree holds 
surrogates in primary key order, and facili- 
tates fast sequential access. The access speed 
remains high even at a 90% load factor, with- 
out being significantly affected by storage 
reorganisation resulting from the addition of 
new attributes, deletion of old attributes or 
change of data page sizes. 

These techniques have been implemented in the 
PRECI database system at Aberdeen. 

1. INTRODUCTION 

The basic concept of surrogate as an unique in- 
ternal identifier is not new, although this 
particular term is. It has been used in 
various forms and names in a number of data- 
base products - in the Codasyl model it is 
called a database key, in Adabas an internal 
sequence number, and in SYSTEM R a tuple 
identifier. The concept has been fully de- 
fined by Hall et al 111 who also advocated the 
term surrogate. Codd recognised it in 121. 

Hall et al have idealised a surrogate as that 
identifier of an entity which never changes. 
For instance the surrogatemust not change if 
an employee changes his/her name. If a course 
is now given by a different teacher who has 
changed both the title and the syllabus of the 
course (quite a common occurrence in a uni- 
versity) it somehow still remains the same 
course, and hence must have the same surrogate . 
We have however deviated from this idealised 
concept in our implementation, and hence the 
notion of impure surrogates, as will be 
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explained below. 

In this paper we assume a primary key (pkey 
for short) not only to act as the unique 
identifier of tuples, but also to be that key 
which is used most frequently for random and 
sequential access to the tuples. A surrogate 
is the permanent internal identifier of a 
tuple; we can generate it independent of the 
relevant pkey, and if this is done, it has to 
be linked to the pkey value by something like a 
Balance tree (B-tree) [3]. However, such a 
technique is ineffecient as it can take several 
disc accesses to find a surrogate from a large 
B-tree, and at least another disc access to 
retrieve the tuple. We therefore use an al- 
ternative strategy and generate surrogates from 
the pkey values for faster access. This however 
means that if a pkey value changes, the corr- 
esponding surrogate must also change. Thus we 
deviate from the original pure concept of per- 
manent surrogates. The disadvantage of this 
impure concept is trivial compared to its ad- 
vantages. At worst we have to deleteand re- 
insert a tuple if its primary key value changes; 
but it provides fast random and sequential 
access by pkey, and also allows a flexible stor- 
age structure permitting additions/deletions of 
attributes and change of page sizes without any 
significant loss of retrieval efficiency. 

It is possible to store tuples in strict prim- 
ary key sequence by using a combination of hash- 
ing and page-splitting techniques [41. The pkey 
value is hashed to determine the data page-whhre 
the tuples are held in that key sequence; in the 
event of an overflow the content of the page is 
split redistributing the tuples over two pages - 
the original page and an overflow page - again 
in the same key order. Use of hashing avoids 
the need for large indexes, and the technique 
permits very fast access by pkey both randomly 
and sequentially. However accesses by second- 
ary keys become much slower, due to the need of 
a large index and/or frequent reorganisations. 
The secondary keys can be supported there by an 
index either for (i) (secondary key, primary 
key) pair, or for (ii) (secondary key, storage 
location) pair. Option (i) tends to make the 
index large as the size of the pkey can be 
large, and this in turn slows down the process- 
ing. The replacement of a primary key by a 
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compressed primary key does not work since the 
data compression is not a reversible process, 
that is, we can not derive a primary key value 
from its compressed form without additional 
information. Option (ii) needs frequent re- 
organisation of the index, at least once after 
every splitting, and hence unacceptable part- 
icularly in a relation where a large number 
of secondary keys are supported. What we need 
is a (secondary key, surrogate) index where a 
very fast access by surrogates is guaranteed - 
ideally as fast as the access by storage loc- 
ations, but at the same time preserving stor- 
age independence mentioned earlier. This is 
precisely what we allow for, but secondary key 
implementations is not covered in this paper. 
In our model, 

pii-~+z+[~~ 

We can not get a storage location directly from 
any key value (primary or secondary) without 
going through the surrogates. The following 
surrogate facilities are needed: 

(i) 

(ii) 

(iii) 

(iv) 

Surrogate generation 

When a tuple is inserted, a surrogate 
must be generated and the surrogate 
directory updated. 

Surrogate release 

When a tuple is deleted, the surrogate 
directory must be updated, releasing the 
surrogate for possible re-use. 

Surrogate access 

Given a pkey value, the system should be 
able to find the surrogate. 
Storage access 
Given a surrogate, it should be possible 
to find the stored tuple. 

An efficient and flexible implementation of the 
surrogate facilities demands the following: 

(i) Fast direct and sequential access to 
tuples by pkey. 

(ii) Fast direct and sequential access to 
tuples by surrogates. Fast direct access 
by surrogate is essential if we are to 
provide fast access by the pkey and sec- 
ondary keys. The fast sequential access 
by surrogate can be used to advantage by 
an intelligent DBMS for fast access to a 
set of tuples (not necessarily con- 
tiguous) yielding the same secondary key 
value. It can also be used to support 
an efficient system defined order, as in 
the Codasyl set order clause. 

(iii) Independence of surrogates from storage 
locations. 

(iv) Low storage wastage. 

Some of these requirements might dictate trade 
offs; we claim that our technique satisfies the 
requirements to a high degree as discussed in 
this paper. The plan of the paper is as follows. 
In section 2, we describe our surrogate gener- 
ation and tuple storage technique, and indicate 
the flexibility they provide in storage re- 
organisation. The next section explains the 
surrogate directory and the primary key index, 
the latter holding surrogates in pkey order. 
The storage usage and access efficiency are con- 
sidered in section 4 where a brief comparison 
with SYSTEM R and the Codasyl model is also 
attempted. Section 5 contains a conclusion. 

2. SURROGATE GENERATION AND TUPLE PLACEMENT 

In this model, a surrogate is constructed as a 
concatenation of an internal relation number 
(irn) and an effective key value (ekey value) 
as: 

surrogate ::= <irn> <ekey value> 

where ekey is generated from pkey - using a 
hashing and a key compression algorithm, suppor- 
ted by an overflow mechanism. The resultant 
surrogates are then allocated to physical pages, 
referred to as data pages. These techniques 
are applied separately to each relation, with 
different parameters, and hence in their des- 
cription below we shall assume only one relation 
unless indicated otherwise. 

The ekey value gives the relative position of a 
tuple in a stored relation in insertion time 
sequence, except where asurrogateis re-allocat- 
ed after the deletion of the original tuple. 
Therefore by sorting the tuples to be inserted 
in pkey order at the first loading of the re- 
lation, we make the surrogate and pkey order 
coincide. However the subsequent insertions of 
tuples in the same relation are potentially un- 
ordered, and therefore there is a need for an 
index (referred to as PINDEX) to yield surro- 
gates (and hence tuples) in pkey order as dis- 
cussed in section 3. 

2.1 Hashing Technique 

The hashing technique we use is called a divis- 
ion hashing, which when applied to a pkey value 
gives a quotient, referred to as surrogate &ome 
(hash) slot or SHS for short. Thgword 'home' 
disting;ishes it from the surrogate overflow 
(hash)slot or SOS discussed later. The expect- 
ed average number of tuples in SHS is fixed for 
a given relation, and is called surrogate home 
(hash) xidth (SHW). To explain The hashin; 
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technique, we consider an example. 2.2 Key Compression Technique 

Assume we have a 4-digit pkey for a given relat- 
ion with 10,000 possible pkey values (called pkey 
range K) ranging from 0000 to 9999. Of these 
10000 potential values, suppose we expect only N 
values (i.e. N tuples) ever to be loaded in the 
database for this relation. We divide N by H 
number of surrogate home slots to get SHW. Say 
N=lOOO, and H=SO. We define a divisor D as 

D=K 10000 = E 50 = 200 

N SHW z - 1000 = H 50 = 20 

The ekey value corresponding to a pkey value p is 
then 

P ekey value = - *SHW + C D 

where we take only the integral part of the 
result p/D and 0 < C < SHW, C being the current 
number of tuples Tinciuding this tuple) in this 
hash slot. In other words C is the relative 
position of this tuple in this hash slot in in- ' 
sertion time sequence. [We shall ignore here 
the situation where a surrogate is re-allocated 
after the deletion of the original tuple - it is 
discussed later]. 

In key compression, the pkey values are com- 
pressed to provide a more uniform distribution, 
while retaining the original key order. For 
instance if an organisation has employee numbers 
in three ranges 11 to 90, 201 to 300, 501 to 900, 
then these ranges can be replaced by the follow- 
ing three ranges: 1 to 00, 81 to 180 and 181 to 
581 - the final overall compressed key range 
being 1 to 581 instead of the original overall 
key range 11 to 900. The mapping between the 
original and compressed key range would look 
like: 

Original key values Compressed key values 

13 
15 
18 . . . 

3 
5 
8 . 

205 85 
214 94 
225 105 . . 

510 
517 
521 

A 

190 
197 
201 
. . 

Assume that we are storing the relations spec- 
ified above for the first time with the follow- 
ing pkey values: The compressed key range is clearly more un- 

iformly distributed. The divisor D given 
2, 3, 50, 103,189, 204, 251, 278 earlier should now be obtained by dividing the 

compressed key range (rather than the original 

Then SHS = 1 for pkey values 2, 3, 50, 103 and 
189 
with C = 5 and the correspondingekey 
values 1, 2, 3, 4 and 5 respectively. 

SHS = 2 for pkey values 204, 251, 278 
with C = 3 and the corresponding ekey 
values 21, 22 and 23 respectively. 

pkey range) by H. The sucess of the compression 
algorithm depends on the prior knowledge of the 
pkey value distribution, and on the effective- 
ness of the algorithm itself. The generated 
code has to be reasonably small so that it can 
be held in the memory during run-time. A 
generalised key-compression technique to deal 
with non-uniform distributions is given in [ill, 
but not discussed here. 

order is not maintained, but in the second slot 
it is. We do not change surrogates for the pre- 
servation of the pkey order, since such a change 
would involve a major reorganisation of all 

In a subsequent run if we have pkey = 23 and 300, 
then the corresponding ekey value will be 6 (C=6, 

indexes and storage positions. 

SHS=l) and 24 (C=4, SHS=2) respectively. 

One of the problems encountered in a division 

Note 
that in the first slot (i.e. SHS = 1) the pkey 

hashing algorithm is the high collision pro- 
bability, that is, the chance that too many pkey 
values might yield the same SHS. We apply two 
remedies to control the situation. 

non-uniform or Poissonian, then in the absence 
of any key compression, we would expect some 
SHSs to have too few and some too many values. 
A good compression technique will reduce the 
under and overflows, but is unlikely to elimin- 

2.3 

ate them completely. 

Surrogate Overflow 

Underflows lead to stor- 
age wastage and overflows access inefficiency, 

If the pkey value distribution is assumed to be 

and one must strike a balance. For overflows, 
we provide HO number of surrogate overflow 
(hash) slots (SOS) with a fixed (for a given 
relation) surrogate overflow (hash) xidth (SOW). 

Key compression 
Overflow slots 

as explained in the next subsections. 

An overflow slot is allocated dynamically, to an 
over-flowing slot which can be a home slot or 
another overflow slot. The allocation is ex- 
elusive that is the same overflow slot can not 
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be shared by two overflowing slots, nor can an 
overflowing slot have two overflow slots dir- 
ectly linked to it. If overflow slot B of an 
overflowing slot A overflows then the next free 
overflow slot is allocated to overflow slot B 
(which is now overflowing) but not to the or- 
iginal overflowing slot. Note that an overflow 
slot is allocated only when a slot actually 
overflows, and not before. Once allocated an 
overflow slot can not be removed until it be- 
comes empty (that is free) due to, say, sub- 
sequent deletions of tuples; a free overflow 
slot can be allocated to any needy over- 
flowing slot. The ekey value of the first 
tuple in an overflow slot SOSi is 

H * SHW + (SOS.-1) * SOW + 1 
irrespective of the Averflowing slot to which 
this overflow slot SOS. is allocated. A 
second tuple falling i&o this slot will get 
the next ekey value, and so on. The last 
tuple of this slot will be the (SOW)th tuple in 
insertion time order, and will have the ekey 
value 

H * SHW + SOS i * sow 

We define the percentage of surrogate over- 
flow as 100 * HO * SOW/(H*SHW). 

If SOW = 1, then the storage wastage is min- 
:.,,al, but the overhead is high. A size SOW = 
l/3 SHW or SOW = l/2 SHW seems more reason- 
able for random distribution. In our examples 
we shall mostly use SOW = l/2 SHW for con- 
venience. 

2.4 Tuple Placements 

Hash slots are allocated to physical data pages 
as per an algor:.ihm. The simplest method is to 
allocate them in their own order: SHS , SHS . . . . 
SHS , SOS , SOS . . ..SOS - which mai!itains2the 
effictive'key (2nd hencg'surrogate) sequence. 
However the allocation can be non-contiguous 
(but not considered in this paper) within this 
sequence if the data pages are shared with the 
hash slots of other relations, each hash slot 
having an exclusive portion of storage space 
(called storage slot) for its tuples. A hash 
slot may straddle a page boundary. If tuples 
of a relation are of fixed length, as customary 
in most relational implementations, then given 
a surrogate we can directly determine the 
physical location of the corresponding tuple 
from knowing the page size. This requires no 
indexes or disc access overheads, hence the 
tuple can be retrieved by a single disc access. 
We assume all data pages of a relation, irr- 
espective of whether they hold home or overflow 
slots, are of the same size. 

The above prescription of tuple placement with 
contiguous allocation is displayed in figure 1 
where SHS - 11 and 12 of relation 05 occupy 
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page slots 11 and 12 (top and bottom half of 
page 6) respectively. We assume the following 
parameters for the relation 05. 

pkey range K = 10000 
maximum number of expected tuples N = 1000 
maximum number of SHS = 50 
SHW = 20 

With 40 tuples per page, we need 25 data pages. 

Let us suppose that only 10 tuples with ekey 
values 201-210 are stored on that page slot at 
first loading in pkey order, the remaining pos- 
itions being empty. The next tuple into that 
page slot will get the surrogate 05211 unless 
an earlier surrogate is available due to de- 
letion. For instance if the tuple with surro- 
gate 05206 is deletedand if surrogate is free 
(the surrogate of a deleted tuple is not nacess- 
arily immediately freed for reallocation due to 
integrity reasons), then our new tuple will get 
this surrogate rather than 05211. In either 
case the stored position of this new tuple might 
not be in the correct pkey sequence. The place- 
ment of an overflow hash slot is similiar except 
that there will be more overflow slots per data 
page due to their smaller slot widths. A more 
detailed description of insertion/deletion/re- 
trieval operation is given in the next section. 

If the tuples of the same relation vary in 
length, then our overflow technique described 
above will not work. For such cases, we shall 
probably divide an overflow page into fixed 
length sections, and allocate dynamically one 
section to each needy overflowing page - exactly 
in the same way as for the surrogate overflow 
slots. Either the excess length of the tuples, 
or some of the tuples can be transferred to 
these overflow sections. The processing for these 
tuples will naturally be slower. We have not 
implemented this technique but might investigate 
it in a later paper; however in the rest of this 
paper we shall assume all the tuples of a re- 
lation to have the same length, unless otherwise 
indicated. 

2.5 Data Page Reorganisation 

Since tuples are stored on surrogate sequence, 
they can be easily copied in the same sequence 
on to other pages of smaller or larger size 
without any significant copying overhead. The 
surrogate directory and PINDEX (both described 
later) are not affected. Therefore if a new 
attribute is added or an old one deleted, the 
tuples are simply copied out on to new data 
pages with the new tuple length. This avoids 
the need for any pointers and retains largely 
the original access efficiency (see section 4). 

3. SURROGATE DIRECTORY AND PKEY INDEX 

We need one surrogate directory and a pkey index 
(PINDEX) for each relation, and both are used 
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Page 1 

Page 2 

Page 6 

I 
I / 

I / 
/ 

' / 1 
L KEYS 

c 

201-220 

I 

Page 25 

PAGE HEADER I 

05201 05202 05203 05204 

: 

05217 
I 

05218 
I 

05219 
I 

05220 

05221 0.. . . . . . . 

. . . . . . . . . 

I 05240 

Data page 6 holding slots 11 & 12 (Page Slots) 

Entries show surrogates, the underlined boxes 
being occupied and the others empty. 

The overflow slots are not shown, but they 
behave the same way, except that more of 
them will 
their sma 

be on the same data 
ller hash width (SOW ) 

page due to 
. 

Each box shows 
slot number and 
effective key value range 

FIGURE 1: TUPLE PLACEMENT 
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during insertion, deletion and retrieval of 
tuples. 

3.1 Surrogate Directory 

A surrogate directory is accessed during the 
run-time for three functions 

(i) to allocate a surrogate 
(ii) to release a surrogate 
(iii) to access a tuple directly by a pkeyvalue 

The directory basically consists of one entry 
for each hash slot (both home and overflow), 
each entry containing the current number (C) of 
tuples in that slot, and its overflow slot 
number (SOS) if allocated. We provide two 
options for the directory: option 1 for the 
compact surrogate directory (CSD) and option 2 
for the disperse surrogate directory (DSD). 
The CSD of a relation is small and can be held 
in the memory during the processing of the re- 
lation, whereas the disperse directory is dis- 
persed on the data pages, each data page hold- 
ing the directory information for the hash slots 
of this page. Our standard option is CSD and is 
described first. 

In CSD, the entry for each hash slot i has the 
following value V 

v = (w+l) * SOS + c 

where W = SHW or SOW depending on whether i is 
a home or an overflow slot, SOS is the overflow 
slot allocated to i and C is the current number 
of tuples in slot i. Clearly 0 < C ,< W. If no 
overflow slot has been allocated then SOS ,= 0, 
and hence V = C. The entries for a CSD are 
shown below with SHW = 10 and SOW = 5. 

3 10 21 8 31 
slot numbers 12 34 5- 

Home slots 

slot 1 
numbers 12 34 

Overflow slots 

In home slot 2 we have V = 10 = 11 x 0 +lO = C, 
and hence this slot is full, but no overflow 
slot is allocated to it. However in home slot 
5, V = 31 = 11 x 2 + 9, and hence its overflow 
slot number is 2 and C = 9. This is possible - 
it means that a tuple is deleted from the home 
slot after the allocation of an overflow slot. 
This deletion does not affect the overflow slot, 
but the next insertion will be in the home slot 
since C = 9 < SHW. The overflow slot 2 is full 
and has got an overflow slot (slot number 4) 
since its V = 29 = 6 x 4 + 5. In home slot 3 
V = 21 = 11 x 1 + 10 indicating that overflow 
slot 1 has been allocated to it. 

To insert a tuple, the pkey value is compressed 

and hashed to find the surrogate home slot. If 
C < SHW there, then the relevant page slot is 
sequentially scanned for an empty position. The 
first empty position found provides the surrogte 
and storage space for the tuple. If C = SHW, 
and SOS = 0, the first free surrogate overflow 
hash slot (from a bit map maintained for the 
purpose in the directory header) is assigned. 
The tuple concerned then becomes the first in- 
habitant of this overflow hash slot. If how- 
ever an SOS has already been assigned and its 
C < SOW, then the relevant page slot is scanned 
for an empty position as above: if C = SOW, then 
another overflow slot is assigned to this over- 
flow slot (but not to its home slot), and the 
process is repeated. Note that we need only 1 
disc access for this search irrespective of over 
flows since the directory is searched in the 
memory. To retrieve a tuple directly by pkey, 
the surrogate home slot is found as above and 
then the relevant page slot scanned for a match 
of the pkey value. If it is not found, then the 
page slot of the relevant overflow hash slot is 
searched. The process is repeated for all the 
relevant overflows until the tuple is found or 
end of overflows reached. For 30% surrogate 
overflows, we therefore need 1.33 disc accesses 
for retrieval. For deletion, the surrogate is 
obtained from the PINDEX since the PINDEX has to 
be entered for all insertions and deletions any- 
way; it takes only about 1 disc access to get a 
surrogate from a well-organised PINDEX as 
described later. Using the surrogate, the tuple 
position is retrieved from storage by a further 
disc access. A deletion marker is then written 
and the surrogate directory updated decreasing 
C by 1. If C of an overflow slot becomes 0, 
then the slot is released for subsequent realloc- 
ation after a suitable integrity check. 

The Compact Surrogate Directory described above 
is small - taking for instance about 80 bytes for 
a relation of 1000 tuples - and hence can be 
kept in the memory during its processing as 
assumed above. For very large relations, say a 
million tuples and 100000 slots the CSD can be 
too large for the memory, and in that case our 
second option, the DSD applies. There C and SOS 
of the surrogate hash slots (both home and over- 
flow) are maintained on the data pages for each 
hash slot starting (not necessarily ending) on 
this data page. This is of course less efficient 
For instance, to find an empty position for the 
insertion of a tuple, we will first have to 
access the data page of the home slot to examine 
the directory. If C = SHW, we must go to the 
data page holding its overflow hash slot (if any) 
and so on, Thus for 30% surrogateoverflows we 
would need 1.33 discaccesses here, as against 
1 disc access in the case of CSD. 

3.2 Pkey Index 

Since some of the tuples are not stored in pkey 
order, we need an index referred to as PINDEX, 
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to access the tuples in pkey sequence. This 
index can be a B-tree, but we describe here 
an alternative technique called a hash tree 
which provides faster access than by a B-tree 
of depth higher than two (see Section 4.2). 

In a hash tree, the pkey value is compressed 
and hashed to find a slot where this pkey value 
and its surrogate are held. The algorithms 
for PINDEX are generally assumed to be differ- 
ent from those for the surrogates,except that 
in both the compression algorithm must retain 
the original key order, and that the hashing 
technique must be division. As in the case of 
surrogates, the quotient of the division hash- 
ing gives the EINDEX home (hash) slot (PHS) 
with a fixed EINDEX home (hash) iidth (PHW). 
PINDEX overflow (hash) slots (POS) with a 
fixed PFNDEX overflow (Kash) width (POW) are 
also provided, Each slot (home or overflow) 
contains a header followed by a set of pkey 
entries in pkey sequence as shown below: 

N P C' KSM 111 
KSM 222 

Header - Other entries.---3 

where: N(P) is the next (prior) PINDEX slot 
(home or overflow) in pkey sequence, 
and C is the current number of pkey 
values in this slot, with 0 < C < W 
where W = PHW or POW as the -&se-may be, 

(K.S.) are the compressed key value and 
thk &irrogate of ith pkey value in this 
slot. The compressed pkey value is used 
to reduce the index size. 

Mi is the number of other tuples 
(members in the Codasyl sense). This 
tuple can not normally be deleted un- 
less M. = 0, and hence M. permits an 
integrity check; but M. San be dropped 
from the index if desii!ed. 

The entries (K.S.M.) are held in strict pkey 
order, with ne& !&ertions being placed in the 
correct ordinal positions. As in the case of 
the surrogate directory, the overflow slots are 
allocated dynamically and exclusively to needy 
overflowing slots (home or overflow). However 
when an overflow slot is allocated the entries 
are spread evenly in pkey sequence among the 
overflow slot. For instance, suppose PHW = 8, 
POW = 4, and say a PINDEX home slot has the 
following 8 pkey values 

21 23 42 56 58 60 62. 68 

If we insert a key value 30, we must allocate 
an overflow slot with the followina result 

Oriainal Home Slot 

E 
Overflow Slot 

for empty position 
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This minimises the need for slot splitting for 
Poissonian or non-uniform insertions. The 
process is reversed for deletions. The evenness 
of the key value distribution between the over- 
flowing and overflow slots is maintained irres- 
pective of whether the overflowing slot is a 
home or an overflow slot. 

In a hash tree we provide two types of overflows: 
local and global, both having the same POW, but 
stored on different types of PINDEX pages. 
PINDEX home slots along with the local overflow 
slots are stored on what are called PINDEX home 
pages, and global overflow slots on PINDEX 
global overflow pages (Figure 2). Except this 
distinction in contents, there is no other 
difference between these two types of pages, for 
instance, both have the same page size. On each 
home page, a certain proportion of space, say 
25%, is reserved for local overflow slots to be 
allocated only to the overflowing (home or local 
overflow) slots of this page. A global overflow 
slot is allocated only when all the relevant 
local overflow slots are occupied. (Both the 
local and global overflow slots are allocated 
on dynamic and exclusive basis with only one 
overflow slot being directly linked to an over- 
flowing slot). The existence of local overflows 
on the same PINDEX page reduces disc accesses. 

The PINDEX can be reorganised quite easily with- 
out affecting the rest of the database. Such 
reorganisation should be done periodically with 
different hash widths and overflow distribution, 
partly to reduce global overflows. As the index 
is relatively small the load factor can be kept 
at around 70 to 80% without wasting too much 
storage space. This should keep the global 
overflow low and permit the retrieval of a 
surrogate for a pkey value by about a single 
disc access. The PINDEX is updated during in- 
sertions and deletions of tuples and is used for 
sequential processing of tuples by pkey. Some- 
times it is also employed for random access by 
pkey (see later). 

In a highly clustered key distribution where 
wide gaps are known to exist, the PINDEX home 
slots are numbered in a non-contiguous, but 
ascending order. For instance if we do not 
expect any key value for slots 6 to 36, then 
these slots will not be created, instead slot 
37 will follow slot 5. If any key later yield 
an intervening missing slot, it will be homed in 
slot 37. This technique is called slot collaps- 
ing, and requires e'ach PINDEX home slot to con- 
tain its slot number in the header which in that 
case will have an extra field. This collapsing 
technique can also be used for surrogates, but 
a more compact version (since the CSD is kept in 
the memory) is proposed in ref [ill. 



4. STORAGE USAGE AND ACCESS EFFICIENCY 

The storage usage and access efficiency are 
closely related, one can be gained at the 
expense of the other. For instance if the total 
number of expected tuples N in surrogate hash- 
ing is assumed to be higher than it is, then 
there will be an increase in underflows and a 
decrease in overflows resulting in higher 
efficiency in direct access by pkey. We wish 
to examine here the storage wastage our tech- 
nique incurs and the access efficiency it pro- 
vides - along with a brief comparison with two 
other techniques. 

4.1 Wastage Calculation 

The storage space wasted on data pages depends 
mainly on the success of the compression algor- 
ithm and the hashing technique. The compress- 
ion algorithm is an unknown entity, but the 
impact of hashing can be easily ascertained if 
we assume a random distribution of pkey values, 
as done below. 

Let us assume that N is the maximum number of 
pkey values out of the pkey range K to be dis- 
tributed over a maximum number of surrogate 
home hash slots H where' H = K/D >> 1, with surr- 
ogate home hash width SHW = N/H. The probabil- 
ity p[rl that there are exactly r tuples in a 
slot is: 

* 
K-D K 

C cN 
D 

with 1 p[rl = 1 
r=o 

(1) 

The number of slots getting exactly r tuples = 
H*p[rl. The space wasted (unit is the number 
of tuples) if there are only r tuples in a slot 
is (3-W-r). Therefore the wastage by the slots 
that have exactly r tuples is H*p[rl*(SHW-r). 

Hence the total space wasted 

SHW-1 
TW = lH*p[r]*(SHW-r) 

r=o (2) 

The percentage wastage in the home slots 

= TW/N = TW/(H*SHW) 

The overall percentage wastage 

= TW + wastage in the overflow slots 
H*SHW + HO*SOW (3) 

=TW/N (4) 

Since the wastage in the overflow slots is 
expected to be less than that in the home slots, 
the eqn (4) is an upper limit. 

Using expressions (1) and (4) we have calculat- 
ed the percentage wastage for a number of cases. 
The two plots presented in figure 3 are: 

(a) Percentage wastage against the value of 
slot width SHW for K = 10000, N = 1000 

(b) Percentage wastage against N for K = 
10000 and SHW = 20 

Plot (a) gives the wastage of 12, 9.5 and 8.5% 
for SHW = 10, 15 and 20 respectively, the wast- 
age reducing further but more slowly for higher 
values of SHW. In plot (b) the maximum wastage 
is 8.5% for K = 10000, irrespective of N. Sim- 
ilar calculations with larger values of K (K = 
100000 and 1000000) did not affect plot (a) or 
the value of the maximum wastage shown by plot 
(b) in any significant way. Thus a-wastage of 
8.5% appears reasonable. The dynamic allocat- 
ion of overflows and an effective data compress- 
ion technique should improve this situation. 
Note that if SHW = N (hence H = 11, the wastage 
is 0%. 

4.2 Access Efficiency 

We wish to present here some theoretical esti- 
mates of access efficiency for a given percent- 
age of surrogate overflows in our model. The 
figures given will be evaluated for 0, 10,and 30 
percent surrogate overflows, with SHW = 20, SOW= 
10 (not relevant for 0% overflow), PHW = 10 and 
POW = 5. It is assumed that PINDEX is reason- 
ably.organised with 10 PINDEX home hash slots 
and 5 PINDEX overflow slots per PINDEX home page, 
thus each such home page having up to 100 surro- 
gates in the home slots, and 25 surrogates in the 
local overflow slots - with, say, an average 
population of 100 pkey values per page. We also 
suppose that the global overflow area is 10% of 
the PINDEX home pages. Note that since PINDEX 
can be reorganised, its overflows (local and 
global) are expected to be smaller than the surr 
ogate overflows. We shall consider below ran- 
dom and sequential accesses by surrogates and 
d-y. The unit used to measure access speed is 
a disc access. 

The speed for random access by surrogate is 1 
disc access irrespective of surrogate overflows, 
and that by pkey is 1.11 for 10% and 1.33 for 
30% surrogate overflows as pointed out earlier 
(see also below). Sequential access by surro- 
gates is fast with 1 access per data page (assum- 
ing hash slots are placed in their own sequence). 
Sequential access by pkey has two components: 

(i) PINDEX access time TIP] and 

(ii) data page access time T[Dl 

If the PINDEX is reasonably organised, as we 
have assumed it is, the need to access PINDEX 
global overflow should be neglible in the case of 
10% surrogate overflows. Therefore for 0 to 10% 
surrogate overflows we need 1 disc access, and 
for 30% surrogate overflows 1.10 disc accesses 
(since global overflow is 10%) to retrieve 100 
surrogates for 100 pkey values (average home page 
population) from PINDEX. Hence time T[P] for 
20 surrogates is 0.20 and 0.22 for up to 10% and 
for 30% surrogate overflows respectively. (Note 
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that if we wish to get the surrogate of asingle 
tuple from the PINDEX, then according to these 
assumptions, we need 1.0 disc access for 10% 
and 1.1 disc access for 30% surrogate overflows; 
in contrast, irrespective of surrogate over- 
flows, a two-level B-tree will require 1 disc 
access and a three-level B-tree 2 disc accesses, 
if the root is held in the memory.) 

For x percent surrogate overflows, we have 2 * x 
overflow slots in every 100 surrogate home slots, 
since SHW = 2 * SOW. To access the tuples of 
100 surrogate home slots and 2*x surrogate over- 
flow slots - holding 20*(100+x) surrogates al- 
together - we need 100 + 2 * x disc accesses. 
Therefore time T[D] to access 20 surrogates is 
(100+2*x)/(100+x). The total access time is 
then: 

T[P] + T[D] = T[P] + (100+2*x)/(100+x) 

The values for different percentages are shown 
in table 1. The figures given there should re- 
main valid up to a 90% load factor since the 
anticipated storage wastage is only 8.5% as dis-. 
cussed in the last subsection. 

TABLE 1 

Unit is a disc access 

Random access 

Overflow on data pages 
0% 10% 30% 

by surrogates 1 1 1 
by pkey 1 1.11 1.33 

Sequential access 

by surrogates 
(per data page) 1 1 1 
by pkey 
(per 20 tuples) 1.20 1.29 1.45 

Random access (but not sequential access) by 
pkey will be slower if hash slots cut across 
page boundaries. It is assumed that at least 
initially slot width will be so chosen that an 
exact multiple of hash slots is held on a page. 
However if tuple size expand/contract by a 
fraction of the original size - rather than 
being doubled/halved - due to say additions/ 
deletions of attributes, then the page align- 
ment will be lost, slowing down random access by 
pkey. However, at worst - whether due to excess- 
ive surrogate overflows or loss of page align- 
ment - we can always access a tuple via PINDEX 
with 1.1 disc accesses (as estimated earlier 
for 30% overflows) to get the surrogate and 1 
disc access to get the tuple by surrogate. In 
that case random access by pkey will require 
2.1 disc accesses, perhaps reducing to 2 disc 
accesses if the PINDEX is reorganised very 
efficiently. In our present implementation in 
the PRECI database system [9, 101 PINDEX is used 
for random access by pkey if surrogate hash 
slots straddle page boundaries. It is also 

possible to reserve initially more space in the 
surrogate home slots (by just having a larger N 
or larger tuple length), which will reduce the 
size of surrogate overflows and the need to 
cross page boundaries. 

The storage wastage can be eliminated virtually 
completely if we use SHW = N and H = 1 with no 
surrogate overflow slots; in other words a 
single surrogate slot for the whole relation. 
In this case, the speed of access by surrogates 
will not be affected, but those by pkey will be. 
For a random retrieval by pkey we will need 2.1 
disc accesses, as explained above. Sequential 
access by pkey will be expensive since the 
stored tuples will not generally be in pkey 
sequence. 

4.3 Comparison With Other Models 

We shall briefly compare our technique with tbse 
employed in SYSTEM R and Codasyl implementations. 

In SYSTEM R [5,6,7] each tuple has a tuple ident- 
ifier (TID) made up of page number and page off- 
set, and hence storage can not be easily reorgaw 
ised outside the page. The user can suggest a 
TID during insertion, but if the suggested page 
is not available, the tuple will be stored on an 
adjacent page. The TIDs are linked to key values 
by a B-tree. SYSTEM R permits variable length 
tuples and dynamic addition of new attributes, 
both of which can lead to overflows. If the 
original page is full, an overflowing tuple is 
moved to another page with a tag in the original 
location giving the address of the new location. 
In that case two disc accesses are necessary to 
access the tuple by its TID. 

Comparison with SYSTEM R depends on a number of 
assumptions, such as page size, key length, depth 
of the B-tree etc. A SYSTEM R page is 4096 bytes 
which can be assumed to hold 200 (key, TID) 
entries. If the cardinality of a relation is 
under 40K, then a two-level B-tree will suffice, 
with a three-level B tree for above 40K. The 
root of the tree may be assumed to be in the 
memory, thus requiring 1 disc access for a two- 
level and 2 disc accesses for a three-level tree. 
In addition, we need 1 to 2 disc accesses to re- 
trieve a tuple by the TID obtained from the B- 
tree. SYSTEM R does not support primary key as 
such, but we can assume a unique key with clust- 
ering index as the closest equivalent of our 
primary key. We shall consider two cases, one 
with cardinality 30000 and the other with 50000. 
We shall assume the compact surrogate directory, 
which can take up to 2 pages for 100000 tuples, 
to be in the memory as well. 
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Random Access by key or equivalent 

Columns (i) of Table 2 refers to fixed length 
tuple, retrieved in a single disc access by TID. 
Calculations for our model follow those made 
for Table 1. 

Over- No. of SYSTEM R Our Model 
flow tuples (PRECI) 

(i) (ii) (i) (ii) 

0% 30K 2.0 3.0 1.0 2.1 
30% 39K 2.0 3.0 1.3 2.1 
45% 45K 3.0 4.0 1.5 2.1 

0% 50K 3.0 4.0 1.0 2.1 
30% 65K 3.0 4.0 1.3 2.1 
45% 75K 3.0 4.0 1.5 2.1 

Table 2 

Access in our case will be faster, if space is 
reserved initially in surrogate home slots, 
which will reduce the overflow. 

Addition of new attributes 

SYSTEM R will require 2 accesses by TID assum- 
ing the original pages as full. This will in- 
crease the SYSTEM R figures to those under 
column (ii). Our figures will change to a fixed 
2.1 access (column ii), as explained earlier, 
irrespective of overflows and cardinalities. If 
the original pages are so populated as to allow 
some later growth without overflowing ( in our 
case it is equivalent to the use of larger 
tuple length initially) then figures of Table 2 
could remain unchanged for both the models. 

Sequential access 

Intuitively sequential access by pkey is faster 
in our case since no tuple is spread over two 
pages and since tuples are clustered in surro- 
gate home and overflow slots. We also do not 
have the overhead of SYSTEM R Prefix with each 
tuple. Any detailed comparison depends on too 
many assumptions, and hence not attempted. 

In the above comparisons, tuples are assumed to 
be fixed length. As we have not investigated 
the problem of variable length tuples in our 
model, we can not compare this case, but in- 
tuitively its affect in our model would be like 
that of the overflows in Table 2 and in SYSTEM R 
it would increase the access by TID to more than 
1 disc access. There are also other forms of 
accesses which we have not considered; SYSTEM R 
could have advantages there, although not nec- 
essarily so. It is only fair to point out that 
these figures do not indicate the overall per- 
formance of SYSTEM R, which depends on many 
factors including query optimisation. 

In the earlier versions of the Codasyl model 181 
records are given their database keys (surro- 

gates) in four Location modes: Calc, Direct, Via 
and System-default. In most implementations, 
database keys contain some physical locations 
such as area number, page number, page offset 
etc., despite some more recent claims on the 
independence of database keys from the physical 
storage. The Location modes are used to gener- 
ate database keys. 

The Calc mode employs hashing on a user-defined 
Calc key to produce database keys. Random access 
by the Calc key is fast, taking about 1.33 disc 
accesses for 30 percent overflows (IDMS, IDS-II), 
as in our case shown in Table 1. Since the usual 
practice is to employ the remainder hashing, it 
is difficult to see how these records can be 
accessed sequentially by the same key with any 
efficiency. The storage wastage is implement- 
ation-dependent, but usually high, averaging 
around 30 percent. 

In the Direct mode, the database key is taken as 
the value of a user-defined Direct key. In the 
event of a clash with an existing database key 
the system allocates adifferent database key; if 
the user forgets this database key later, then it 
is his problem. These records can be accessed 
randomly fast by the Direct key except where 
there are those clashes; efficient sequential 
access by the same Direct key should be possible, 
but can not be guaranteed. Note that there is no 
concept of primary or unique key in the Codasyl 
model, and if the values of any Calc or Direct 
key change later, due to updates, then those data- 
base keys can not be found. 

In the Via mode the database keys are allocated 
in such a way, that the records concerned are 
stored close to those of another record type (set 
type). This mode permits these records to be 
accessed fast, in some sequence, in association 
with the set owner. In the last mode, the user 
has no control over the database keys and hence 
over the storage locations of these records. 
Here the notion of fast access by any particular 
key does not exist in this case except by user- 
defined indexes. 

In the Codasyl model, storage reorganisation will 
generally be difficult, irrespective of implement- 
ors . 

5. CONCLUSION 

The surrogate implementation technique presented 
above provides a fast random and sequential access 
in primary key order in spite of unordered in- 
sertions and deletions, with under 10% storage 
wastage. Access by secondary keys are not ad- 
versley affected, and a large measure of storage 
independence is provided. The technique is im- 
Wemented in the PRECI [9,101 database system 
which is based on a canonical data model capable 
of supporting relational, Codasyl and other user 
views. 
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A critical factor of this method is the nature 
of the pkey value distribution. The method 
works best if the distribution is reasonably 
uniform, or can be made uniform (by the key com- 
pression algorithm). The overflow mechanism 
cushions against some non-uniformity. We looked 
at some actual key values: product codes of a 
manufacturing concern, and the student numbers 
of an institution; but both turned out to be 
rather simple. As indicated earlier we have 
also developed a generalised key compression 
technique capable of dealing with most non- 
uniform distribution reasonably well [ill. 
Note that we have in fact presented a 
two-part technique, the parts can be used 
independently of each other: 

(i) Surrogate implementation. Its PINDEX 
can be a B-tree. Indeed in the PRECI 
implementation, we have an option of 
specifying a B-tree instead of a hashtree 
for the PINDEX of a relation if B-tree is 
expected to be more efficient for that re- 
lation. 

(ii) Hash-tree. If the depth of a B-tree is 
greater than two, then hash tree could be 
a better alternative for unique-key 
indexes and probably for non-unique-key 
indexes. In many machines the basic page 
size (as unit of input-output) is much 
smaller than 4096 bytes used in SYSTEM R. 
For instance in our machine (Honeywell 66/ 
80) it is 1280 bytes, requiring a three- 
leirel B-tree for more than 4096 tuples 
(assuming the key and TID sizes to be the 
same as those used in the SYSTEM R com- 
parison made earlier). 

We intend to examine our technique further in 
the following areas: 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

Very highly clustered distribution 

Handling of variable length tuples 

Sharing of data pages by tuples of differ- 
ent relations 

Reorganisation of surrogates for improved 
performance 

Use of hash-tree for non-unique secondary 
key indexes (currently being studied and 
implemented). 

Finally I would like to thank some of my coll- 
eagues in the PRECI project for comments and 
suggestions - they are: David Bell of Ulster 
Polytechnic, and Talib Abbod, John Edgar, Dirk 
Nikodem, Malcolm Taylor and Ambrish Vashishta 
of Aberdeen University. Many thanks also to 
Professor D. Kerridge of Statistics at Aberdeen 
University for assisting me with the probabil- 
ity calculation. The work is partially support- 
ed by the U.K. Science and Engineering Research 
Council. 

Proceedings of the Eighth international Conference 
on Very Large Data Bases 256 Mexico City, September, 1982 

REFERENCES 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

Hall, P. et al. : "Relations and Entities", 
Modelling in DBMS, edited by Nijssen 
(North-Holland 1976). 

Codd, E. F. : "Extending database relat- 
ional model to capture more meaning", ACM 
TODS, vol (4:4), p397, December 1979. 

Comer, D. : "The ubiquitous B-tree", ACM 
Computing Surveys, Vol 11, no.2, ~121, 
June 1979. 

Litwin, W. : "Trie Hashing", Proc. of ACM- 
SIGMOD, 1981. 

(i) Astrahan, et al. : "SYSTEM R: 
Relational Approach to Database 
Management". ACM TODS, Vol.1, 1976. 

(ii) Astrahan et al. : "A history and 
evaluation of SYSTEM R", RJ2843 
(36129) IBM Research Laboratory, 
San Jose, California, June 1980. 

Selinger, P.G. et al. : "Access path 
selection in a relational DBMS", RJ2429, 
IBM Research Laboratory, San Jose, 
California, August 1979. 

Blasgen, M. W. et al. : "SYSTEM R: An 
architectural update". RJ2581 (33481). 
IBM Research Laboratory, San Jose, 
California, July 1979. 

Codasyl DDLC Journal of Development,1978. 

Deen, S.M., Nikodem, D., Vashishta, A. : 
"The design of a canonical database 
system (PRECI)", The Computer Journal, 
vo1(24:3), ~200, August 1981. 

Deen, S. M., Edgar, J.A., Nikodem, D. and 
Vashishta, A. : "Run-time management in a 
canonical DBMS: (PRECI)", proc. of 2nd 
British National Confc. on Databases, 
Bristol, July 1982, edited by Deen, S.M. 
and Hammersley, P. 

Bell, D. A. and Deen, S.M. : "Key space 
compression and hashing in PRECI" 
Computer Journal (in press), 1982. 


