
AN TMPLEMENTATION OF IMPURE SUPROGATES

S. M. Deen

Department of Computing Science
University of Aberdeen

Aberdeen, Scotland

ABSTRACT

Surrogates or internal identifiers can be made
to facilitate both fast access and storage in-
dependence if they are implemented properly.
Such an implementation is discussed here; it
permits the tuplcs of a relation to be accessed
very fast by primary key for both random and
sequential search without retarding the per-
formance of secondary keys. It employs a key
compression and a hasiiing algorithm and
attempts to place tuples on data pages in the
primary key sequence. Subsequent updates are
absorbed by a dynamic allocation of overflows.
An indexing technique called a hash tree holds
surrogates in primary key order, and facili-
tates fast sequential access. The access speed
remains high even at a 90% load factor, with-
out being significantly affected by storage
reorganisation resulting from the addition of
new attributes, deletion of old attributes or
change of data page sizes.

These techniques have been implemented in the
PRECI database system at Aberdeen.

1. INTRODUCTION

The basic concept of surrogate as an unique in-
ternal identifier is not new, although this
particular term is. It has been used in
various forms and names in a number of data-
base products - in the Codasyl model it is
called a database key, in Adabas an internal
sequence number, and in SYSTEM R a tuple
identifier. The concept has been fully de-
fined by Hall et al 111 who also advocated the
term surrogate. Codd recognised it in 121.

Hall et al have idealised a surrogate as that
identifier of an entity which never changes.
For instance the surrogatemust not change if
an employee changes his/her name. If a course
is now given by a different teacher who has
changed both the title and the syllabus of the
course (quite a common occurrence in a uni-
versity) it somehow still remains the same
course, and hence must have the same surrogate .
We have however deviated from this idealised
concept in our implementation, and hence the
notion of impure surrogates, as will be

Proceedings of the Eighth International Conference
on Very Large Data Bases

explained below.

In this paper we assume a primary key (pkey
for short) not only to act as the unique
identifier of tuples, but also to be that key
which is used most frequently for random and
sequential access to the tuples. A surrogate
is the permanent internal identifier of a
tuple; we can generate it independent of the
relevant pkey, and if this is done, it has to
be linked to the pkey value by something like a
Balance tree (B-tree) [3]. However, such a
technique is ineffecient as it can take several
disc accesses to find a surrogate from a large
B-tree, and at least another disc access to
retrieve the tuple. We therefore use an al-
ternative strategy and generate surrogates from
the pkey values for faster access. This however
means that if a pkey value changes, the corr-
esponding surrogate must also change. Thus we
deviate from the original pure concept of per-
manent surrogates. The disadvantage of this
impure concept is trivial compared to its ad-
vantages. At worst we have to deleteand re-
insert a tuple if its primary key value changes;
but it provides fast random and sequential
access by pkey, and also allows a flexible stor-
age structure permitting additions/deletions of
attributes and change of page sizes without any
significant loss of retrieval efficiency.

It is possible to store tuples in strict prim-
ary key sequence by using a combination of hash-
ing and page-splitting techniques [41. The pkey
value is hashed to determine the data page-whhre
the tuples are held in that key sequence; in the
event of an overflow the content of the page is
split redistributing the tuples over two pages -
the original page and an overflow page - again
in the same key order. Use of hashing avoids
the need for large indexes, and the technique
permits very fast access by pkey both randomly
and sequentially. However accesses by second-
ary keys become much slower, due to the need of
a large index and/or frequent reorganisations.
The secondary keys can be supported there by an
index either for (i) (secondary key, primary
key) pair, or for (ii) (secondary key, storage
location) pair. Option (i) tends to make the
index large as the size of the pkey can be
large, and this in turn slows down the process-
ing. The replacement of a primary key by a

245
Mexico City, September, 1982

compressed primary key does not work since the
data compression is not a reversible process,
that is, we can not derive a primary key value
from its compressed form without additional
information. Option (ii) needs frequent re-
organisation of the index, at least once after
every splitting, and hence unacceptable part-
icularly in a relation where a large number
of secondary keys are supported. What we need
is a (secondary key, surrogate) index where a
very fast access by surrogates is guaranteed -
ideally as fast as the access by storage loc-
ations, but at the same time preserving stor-
age independence mentioned earlier. This is
precisely what we allow for, but secondary key
implementations is not covered in this paper.
In our model,

pii-~+z+[~~

We can not get a storage location directly from
any key value (primary or secondary) without
going through the surrogates. The following
surrogate facilities are needed:

(i)

(ii)

(iii)

(iv)

Surrogate generation

When a tuple is inserted, a surrogate
must be generated and the surrogate
directory updated.

Surrogate release

When a tuple is deleted, the surrogate
directory must be updated, releasing the
surrogate for possible re-use.

Surrogate access

Given a pkey value, the system should be
able to find the surrogate.
Storage access
Given a surrogate, it should be possible
to find the stored tuple.

An efficient and flexible implementation of the
surrogate facilities demands the following:

(i) Fast direct and sequential access to
tuples by pkey.

(ii) Fast direct and sequential access to
tuples by surrogates. Fast direct access
by surrogate is essential if we are to
provide fast access by the pkey and sec-
ondary keys. The fast sequential access
by surrogate can be used to advantage by
an intelligent DBMS for fast access to a
set of tuples (not necessarily con-
tiguous) yielding the same secondary key
value. It can also be used to support
an efficient system defined order, as in
the Codasyl set order clause.

(iii) Independence of surrogates from storage
locations.

(iv) Low storage wastage.

Some of these requirements might dictate trade
offs; we claim that our technique satisfies the
requirements to a high degree as discussed in
this paper. The plan of the paper is as follows.
In section 2, we describe our surrogate gener-
ation and tuple storage technique, and indicate
the flexibility they provide in storage re-
organisation. The next section explains the
surrogate directory and the primary key index,
the latter holding surrogates in pkey order.
The storage usage and access efficiency are con-
sidered in section 4 where a brief comparison
with SYSTEM R and the Codasyl model is also
attempted. Section 5 contains a conclusion.

2. SURROGATE GENERATION AND TUPLE PLACEMENT

In this model, a surrogate is constructed as a
concatenation of an internal relation number
(irn) and an effective key value (ekey value)
as:

surrogate ::= <irn> <ekey value>

where ekey is generated from pkey - using a
hashing and a key compression algorithm, suppor-
ted by an overflow mechanism. The resultant
surrogates are then allocated to physical pages,
referred to as data pages. These techniques
are applied separately to each relation, with
different parameters, and hence in their des-
cription below we shall assume only one relation
unless indicated otherwise.

The ekey value gives the relative position of a
tuple in a stored relation in insertion time
sequence, except where asurrogateis re-allocat-
ed after the deletion of the original tuple.
Therefore by sorting the tuples to be inserted
in pkey order at the first loading of the re-
lation, we make the surrogate and pkey order
coincide. However the subsequent insertions of
tuples in the same relation are potentially un-
ordered, and therefore there is a need for an
index (referred to as PINDEX) to yield surro-
gates (and hence tuples) in pkey order as dis-
cussed in section 3.

2.1 Hashing Technique

The hashing technique we use is called a divis-
ion hashing, which when applied to a pkey value
gives a quotient, referred to as surrogate &ome
(hash) slot or SHS for short. Thgword 'home'
disting;ishes it from the surrogate overflow
(hash)slot or SOS discussed later. The expect-
ed average number of tuples in SHS is fixed for
a given relation, and is called surrogate home
(hash) xidth (SHW). To explain The hashin;

Proceedings of the Eighth International Conference
on Very Large Data Bases

246
Mexico City, September, 1982

technique, we consider an example. 2.2 Key Compression Technique

Assume we have a 4-digit pkey for a given relat-
ion with 10,000 possible pkey values (called pkey
range K) ranging from 0000 to 9999. Of these
10000 potential values, suppose we expect only N
values (i.e. N tuples) ever to be loaded in the
database for this relation. We divide N by H
number of surrogate home slots to get SHW. Say
N=lOOO, and H=SO. We define a divisor D as

D=K 10000 = E 50 = 200

N SHW z - 1000 = H 50 = 20

The ekey value corresponding to a pkey value p is
then

P ekey value = - *SHW + C D

where we take only the integral part of the
result p/D and 0 < C < SHW, C being the current
number of tuples Tinciuding this tuple) in this
hash slot. In other words C is the relative
position of this tuple in this hash slot in in- '
sertion time sequence. [We shall ignore here
the situation where a surrogate is re-allocated
after the deletion of the original tuple - it is
discussed later].

In key compression, the pkey values are com-
pressed to provide a more uniform distribution,
while retaining the original key order. For
instance if an organisation has employee numbers
in three ranges 11 to 90, 201 to 300, 501 to 900,
then these ranges can be replaced by the follow-
ing three ranges: 1 to 00, 81 to 180 and 181 to
581 - the final overall compressed key range
being 1 to 581 instead of the original overall
key range 11 to 900. The mapping between the
original and compressed key range would look
like:

Original key values Compressed key values

13
15
18 . . .

3
5
8 .

205 85
214 94
225 105 . .

510
517
521

A

190
197
201
. .

Assume that we are storing the relations spec-
ified above for the first time with the follow-
ing pkey values: The compressed key range is clearly more un-

iformly distributed. The divisor D given
2, 3, 50, 103,189, 204, 251, 278 earlier should now be obtained by dividing the

compressed key range (rather than the original

Then SHS = 1 for pkey values 2, 3, 50, 103 and
189
with C = 5 and the correspondingekey
values 1, 2, 3, 4 and 5 respectively.

SHS = 2 for pkey values 204, 251, 278
with C = 3 and the corresponding ekey
values 21, 22 and 23 respectively.

pkey range) by H. The sucess of the compression
algorithm depends on the prior knowledge of the
pkey value distribution, and on the effective-
ness of the algorithm itself. The generated
code has to be reasonably small so that it can
be held in the memory during run-time. A
generalised key-compression technique to deal
with non-uniform distributions is given in [ill,
but not discussed here.

order is not maintained, but in the second slot
it is. We do not change surrogates for the pre-
servation of the pkey order, since such a change
would involve a major reorganisation of all

In a subsequent run if we have pkey = 23 and 300,
then the corresponding ekey value will be 6 (C=6,

indexes and storage positions.

SHS=l) and 24 (C=4, SHS=2) respectively.

One of the problems encountered in a division

Note
that in the first slot (i.e. SHS = 1) the pkey

hashing algorithm is the high collision pro-
bability, that is, the chance that too many pkey
values might yield the same SHS. We apply two
remedies to control the situation.

non-uniform or Poissonian, then in the absence
of any key compression, we would expect some
SHSs to have too few and some too many values.
A good compression technique will reduce the
under and overflows, but is unlikely to elimin-

2.3

ate them completely.

Surrogate Overflow

Underflows lead to stor-
age wastage and overflows access inefficiency,

If the pkey value distribution is assumed to be

and one must strike a balance. For overflows,
we provide HO number of surrogate overflow
(hash) slots (SOS) with a fixed (for a given
relation) surrogate overflow (hash) xidth (SOW).

Key compression
Overflow slots

as explained in the next subsections.

An overflow slot is allocated dynamically, to an
over-flowing slot which can be a home slot or
another overflow slot. The allocation is ex-
elusive that is the same overflow slot can not

Proceedings of the Eighth International Conference
on Very Large Data Bases

247
Mexico City, September, 1982

be shared by two overflowing slots, nor can an
overflowing slot have two overflow slots dir-
ectly linked to it. If overflow slot B of an
overflowing slot A overflows then the next free
overflow slot is allocated to overflow slot B
(which is now overflowing) but not to the or-
iginal overflowing slot. Note that an overflow
slot is allocated only when a slot actually
overflows, and not before. Once allocated an
overflow slot can not be removed until it be-
comes empty (that is free) due to, say, sub-
sequent deletions of tuples; a free overflow
slot can be allocated to any needy over-
flowing slot. The ekey value of the first
tuple in an overflow slot SOSi is

H * SHW + (SOS.-1) * SOW + 1
irrespective of the Averflowing slot to which
this overflow slot SOS. is allocated. A
second tuple falling i&o this slot will get
the next ekey value, and so on. The last
tuple of this slot will be the (SOW)th tuple in
insertion time order, and will have the ekey
value

H * SHW + SOS i * sow

We define the percentage of surrogate over-
flow as 100 * HO * SOW/(H*SHW).

If SOW = 1, then the storage wastage is min-
:.,,al, but the overhead is high. A size SOW =
l/3 SHW or SOW = l/2 SHW seems more reason-
able for random distribution. In our examples
we shall mostly use SOW = l/2 SHW for con-
venience.

2.4 Tuple Placements

Hash slots are allocated to physical data pages
as per an algor:.ihm. The simplest method is to
allocate them in their own order: SHS , SHS
SHS , SOS , SOSSOS - which mai!itains2the
effictive'key (2nd hencg'surrogate) sequence.
However the allocation can be non-contiguous
(but not considered in this paper) within this
sequence if the data pages are shared with the
hash slots of other relations, each hash slot
having an exclusive portion of storage space
(called storage slot) for its tuples. A hash
slot may straddle a page boundary. If tuples
of a relation are of fixed length, as customary
in most relational implementations, then given
a surrogate we can directly determine the
physical location of the corresponding tuple
from knowing the page size. This requires no
indexes or disc access overheads, hence the
tuple can be retrieved by a single disc access.
We assume all data pages of a relation, irr-
espective of whether they hold home or overflow
slots, are of the same size.

The above prescription of tuple placement with
contiguous allocation is displayed in figure 1
where SHS - 11 and 12 of relation 05 occupy

Proceedings of the Eighth International Conference
on Very Large Data Bases 248

page slots 11 and 12 (top and bottom half of
page 6) respectively. We assume the following
parameters for the relation 05.

pkey range K = 10000
maximum number of expected tuples N = 1000
maximum number of SHS = 50
SHW = 20

With 40 tuples per page, we need 25 data pages.

Let us suppose that only 10 tuples with ekey
values 201-210 are stored on that page slot at
first loading in pkey order, the remaining pos-
itions being empty. The next tuple into that
page slot will get the surrogate 05211 unless
an earlier surrogate is available due to de-
letion. For instance if the tuple with surro-
gate 05206 is deletedand if surrogate is free
(the surrogate of a deleted tuple is not nacess-
arily immediately freed for reallocation due to
integrity reasons), then our new tuple will get
this surrogate rather than 05211. In either
case the stored position of this new tuple might
not be in the correct pkey sequence. The place-
ment of an overflow hash slot is similiar except
that there will be more overflow slots per data
page due to their smaller slot widths. A more
detailed description of insertion/deletion/re-
trieval operation is given in the next section.

If the tuples of the same relation vary in
length, then our overflow technique described
above will not work. For such cases, we shall
probably divide an overflow page into fixed
length sections, and allocate dynamically one
section to each needy overflowing page - exactly
in the same way as for the surrogate overflow
slots. Either the excess length of the tuples,
or some of the tuples can be transferred to
these overflow sections. The processing for these
tuples will naturally be slower. We have not
implemented this technique but might investigate
it in a later paper; however in the rest of this
paper we shall assume all the tuples of a re-
lation to have the same length, unless otherwise
indicated.

2.5 Data Page Reorganisation

Since tuples are stored on surrogate sequence,
they can be easily copied in the same sequence
on to other pages of smaller or larger size
without any significant copying overhead. The
surrogate directory and PINDEX (both described
later) are not affected. Therefore if a new
attribute is added or an old one deleted, the
tuples are simply copied out on to new data
pages with the new tuple length. This avoids
the need for any pointers and retains largely
the original access efficiency (see section 4).

3. SURROGATE DIRECTORY AND PKEY INDEX

We need one surrogate directory and a pkey index
(PINDEX) for each relation, and both are used

Mexico City, September, 1982

Page 1

Page 2

Page 6

I
I /

I /
/

' / 1
L KEYS

c

201-220

I

Page 25

PAGE HEADER I

05201 05202 05203 05204

:

05217
I

05218
I

05219
I

05220

05221 0..

.

I 05240

Data page 6 holding slots 11 & 12 (Page Slots)

Entries show surrogates, the underlined boxes
being occupied and the others empty.

The overflow slots are not shown, but they
behave the same way, except that more of
them will
their sma

be on the same data
ller hash width (SOW)

page due to
.

Each box shows
slot number and
effective key value range

FIGURE 1: TUPLE PLACEMENT

Proceedings of the Eighth International Conference
on Very Large Data Bases Mexico City, September, 1982

during insertion, deletion and retrieval of
tuples.

3.1 Surrogate Directory

A surrogate directory is accessed during the
run-time for three functions

(i) to allocate a surrogate
(ii) to release a surrogate
(iii) to access a tuple directly by a pkeyvalue

The directory basically consists of one entry
for each hash slot (both home and overflow),
each entry containing the current number (C) of
tuples in that slot, and its overflow slot
number (SOS) if allocated. We provide two
options for the directory: option 1 for the
compact surrogate directory (CSD) and option 2
for the disperse surrogate directory (DSD).
The CSD of a relation is small and can be held
in the memory during the processing of the re-
lation, whereas the disperse directory is dis-
persed on the data pages, each data page hold-
ing the directory information for the hash slots
of this page. Our standard option is CSD and is
described first.

In CSD, the entry for each hash slot i has the
following value V

v = (w+l) * SOS + c

where W = SHW or SOW depending on whether i is
a home or an overflow slot, SOS is the overflow
slot allocated to i and C is the current number
of tuples in slot i. Clearly 0 < C ,< W. If no
overflow slot has been allocated then SOS ,= 0,
and hence V = C. The entries for a CSD are
shown below with SHW = 10 and SOW = 5.

3 10 21 8 31
slot numbers 12 34 5-

Home slots

slot 1
numbers 12 34

Overflow slots

In home slot 2 we have V = 10 = 11 x 0 +lO = C,
and hence this slot is full, but no overflow
slot is allocated to it. However in home slot
5, V = 31 = 11 x 2 + 9, and hence its overflow
slot number is 2 and C = 9. This is possible -
it means that a tuple is deleted from the home
slot after the allocation of an overflow slot.
This deletion does not affect the overflow slot,
but the next insertion will be in the home slot
since C = 9 < SHW. The overflow slot 2 is full
and has got an overflow slot (slot number 4)
since its V = 29 = 6 x 4 + 5. In home slot 3
V = 21 = 11 x 1 + 10 indicating that overflow
slot 1 has been allocated to it.

To insert a tuple, the pkey value is compressed

and hashed to find the surrogate home slot. If
C < SHW there, then the relevant page slot is
sequentially scanned for an empty position. The
first empty position found provides the surrogte
and storage space for the tuple. If C = SHW,
and SOS = 0, the first free surrogate overflow
hash slot (from a bit map maintained for the
purpose in the directory header) is assigned.
The tuple concerned then becomes the first in-
habitant of this overflow hash slot. If how-
ever an SOS has already been assigned and its
C < SOW, then the relevant page slot is scanned
for an empty position as above: if C = SOW, then
another overflow slot is assigned to this over-
flow slot (but not to its home slot), and the
process is repeated. Note that we need only 1
disc access for this search irrespective of over
flows since the directory is searched in the
memory. To retrieve a tuple directly by pkey,
the surrogate home slot is found as above and
then the relevant page slot scanned for a match
of the pkey value. If it is not found, then the
page slot of the relevant overflow hash slot is
searched. The process is repeated for all the
relevant overflows until the tuple is found or
end of overflows reached. For 30% surrogate
overflows, we therefore need 1.33 disc accesses
for retrieval. For deletion, the surrogate is
obtained from the PINDEX since the PINDEX has to
be entered for all insertions and deletions any-
way; it takes only about 1 disc access to get a
surrogate from a well-organised PINDEX as
described later. Using the surrogate, the tuple
position is retrieved from storage by a further
disc access. A deletion marker is then written
and the surrogate directory updated decreasing
C by 1. If C of an overflow slot becomes 0,
then the slot is released for subsequent realloc-
ation after a suitable integrity check.

The Compact Surrogate Directory described above
is small - taking for instance about 80 bytes for
a relation of 1000 tuples - and hence can be
kept in the memory during its processing as
assumed above. For very large relations, say a
million tuples and 100000 slots the CSD can be
too large for the memory, and in that case our
second option, the DSD applies. There C and SOS
of the surrogate hash slots (both home and over-
flow) are maintained on the data pages for each
hash slot starting (not necessarily ending) on
this data page. This is of course less efficient
For instance, to find an empty position for the
insertion of a tuple, we will first have to
access the data page of the home slot to examine
the directory. If C = SHW, we must go to the
data page holding its overflow hash slot (if any)
and so on, Thus for 30% surrogateoverflows we
would need 1.33 discaccesses here, as against
1 disc access in the case of CSD.

3.2 Pkey Index

Since some of the tuples are not stored in pkey
order, we need an index referred to as PINDEX,

Proceedings of the Eighth International Conference
on Very Large Data Bases 250 Mexico City, September, 1982

to access the tuples in pkey sequence. This
index can be a B-tree, but we describe here
an alternative technique called a hash tree
which provides faster access than by a B-tree
of depth higher than two (see Section 4.2).

In a hash tree, the pkey value is compressed
and hashed to find a slot where this pkey value
and its surrogate are held. The algorithms
for PINDEX are generally assumed to be differ-
ent from those for the surrogates,except that
in both the compression algorithm must retain
the original key order, and that the hashing
technique must be division. As in the case of
surrogates, the quotient of the division hash-
ing gives the EINDEX home (hash) slot (PHS)
with a fixed EINDEX home (hash) iidth (PHW).
PINDEX overflow (hash) slots (POS) with a
fixed PFNDEX overflow (Kash) width (POW) are
also provided, Each slot (home or overflow)
contains a header followed by a set of pkey
entries in pkey sequence as shown below:

N P C' KSM 111
KSM 222

Header - Other entries.---3

where: N(P) is the next (prior) PINDEX slot
(home or overflow) in pkey sequence,
and C is the current number of pkey
values in this slot, with 0 < C < W
where W = PHW or POW as the -&se-may be,

(K.S.) are the compressed key value and
thk &irrogate of ith pkey value in this
slot. The compressed pkey value is used
to reduce the index size.

Mi is the number of other tuples
(members in the Codasyl sense). This
tuple can not normally be deleted un-
less M. = 0, and hence M. permits an
integrity check; but M. San be dropped
from the index if desii!ed.

The entries (K.S.M.) are held in strict pkey
order, with ne& !&ertions being placed in the
correct ordinal positions. As in the case of
the surrogate directory, the overflow slots are
allocated dynamically and exclusively to needy
overflowing slots (home or overflow). However
when an overflow slot is allocated the entries
are spread evenly in pkey sequence among the
overflow slot. For instance, suppose PHW = 8,
POW = 4, and say a PINDEX home slot has the
following 8 pkey values

21 23 42 56 58 60 62. 68

If we insert a key value 30, we must allocate
an overflow slot with the followina result

Oriainal Home Slot

E
Overflow Slot

for empty position

Proceedings of the Eighth International Conference
on Very Large Data Bases 251 Mexico City, September, 1982

This minimises the need for slot splitting for
Poissonian or non-uniform insertions. The
process is reversed for deletions. The evenness
of the key value distribution between the over-
flowing and overflow slots is maintained irres-
pective of whether the overflowing slot is a
home or an overflow slot.

In a hash tree we provide two types of overflows:
local and global, both having the same POW, but
stored on different types of PINDEX pages.
PINDEX home slots along with the local overflow
slots are stored on what are called PINDEX home
pages, and global overflow slots on PINDEX
global overflow pages (Figure 2). Except this
distinction in contents, there is no other
difference between these two types of pages, for
instance, both have the same page size. On each
home page, a certain proportion of space, say
25%, is reserved for local overflow slots to be
allocated only to the overflowing (home or local
overflow) slots of this page. A global overflow
slot is allocated only when all the relevant
local overflow slots are occupied. (Both the
local and global overflow slots are allocated
on dynamic and exclusive basis with only one
overflow slot being directly linked to an over-
flowing slot). The existence of local overflows
on the same PINDEX page reduces disc accesses.

The PINDEX can be reorganised quite easily with-
out affecting the rest of the database. Such
reorganisation should be done periodically with
different hash widths and overflow distribution,
partly to reduce global overflows. As the index
is relatively small the load factor can be kept
at around 70 to 80% without wasting too much
storage space. This should keep the global
overflow low and permit the retrieval of a
surrogate for a pkey value by about a single
disc access. The PINDEX is updated during in-
sertions and deletions of tuples and is used for
sequential processing of tuples by pkey. Some-
times it is also employed for random access by
pkey (see later).

In a highly clustered key distribution where
wide gaps are known to exist, the PINDEX home
slots are numbered in a non-contiguous, but
ascending order. For instance if we do not
expect any key value for slots 6 to 36, then
these slots will not be created, instead slot
37 will follow slot 5. If any key later yield
an intervening missing slot, it will be homed in
slot 37. This technique is called slot collaps-
ing, and requires e'ach PINDEX home slot to con-
tain its slot number in the header which in that
case will have an extra field. This collapsing
technique can also be used for surrogates, but
a more compact version (since the CSD is kept in
the memory) is proposed in ref [ill.

4. STORAGE USAGE AND ACCESS EFFICIENCY

The storage usage and access efficiency are
closely related, one can be gained at the
expense of the other. For instance if the total
number of expected tuples N in surrogate hash-
ing is assumed to be higher than it is, then
there will be an increase in underflows and a
decrease in overflows resulting in higher
efficiency in direct access by pkey. We wish
to examine here the storage wastage our tech-
nique incurs and the access efficiency it pro-
vides - along with a brief comparison with two
other techniques.

4.1 Wastage Calculation

The storage space wasted on data pages depends
mainly on the success of the compression algor-
ithm and the hashing technique. The compress-
ion algorithm is an unknown entity, but the
impact of hashing can be easily ascertained if
we assume a random distribution of pkey values,
as done below.

Let us assume that N is the maximum number of
pkey values out of the pkey range K to be dis-
tributed over a maximum number of surrogate
home hash slots H where' H = K/D >> 1, with surr-
ogate home hash width SHW = N/H. The probabil-
ity p[rl that there are exactly r tuples in a
slot is:

*
K-D K

C cN
D

with 1 p[rl = 1
r=o

(1)

The number of slots getting exactly r tuples =
H*p[rl. The space wasted (unit is the number
of tuples) if there are only r tuples in a slot
is (3-W-r). Therefore the wastage by the slots
that have exactly r tuples is H*p[rl*(SHW-r).

Hence the total space wasted

SHW-1
TW = lH*p[r]*(SHW-r)

r=o (2)

The percentage wastage in the home slots

= TW/N = TW/(H*SHW)

The overall percentage wastage

= TW + wastage in the overflow slots
H*SHW + HO*SOW (3)

=TW/N (4)

Since the wastage in the overflow slots is
expected to be less than that in the home slots,
the eqn (4) is an upper limit.

Using expressions (1) and (4) we have calculat-
ed the percentage wastage for a number of cases.
The two plots presented in figure 3 are:

(a) Percentage wastage against the value of
slot width SHW for K = 10000, N = 1000

(b) Percentage wastage against N for K =
10000 and SHW = 20

Plot (a) gives the wastage of 12, 9.5 and 8.5%
for SHW = 10, 15 and 20 respectively, the wast-
age reducing further but more slowly for higher
values of SHW. In plot (b) the maximum wastage
is 8.5% for K = 10000, irrespective of N. Sim-
ilar calculations with larger values of K (K =
100000 and 1000000) did not affect plot (a) or
the value of the maximum wastage shown by plot
(b) in any significant way. Thus a-wastage of
8.5% appears reasonable. The dynamic allocat-
ion of overflows and an effective data compress-
ion technique should improve this situation.
Note that if SHW = N (hence H = 11, the wastage
is 0%.

4.2 Access Efficiency

We wish to present here some theoretical esti-
mates of access efficiency for a given percent-
age of surrogate overflows in our model. The
figures given will be evaluated for 0, 10,and 30
percent surrogate overflows, with SHW = 20, SOW=
10 (not relevant for 0% overflow), PHW = 10 and
POW = 5. It is assumed that PINDEX is reason-
ably.organised with 10 PINDEX home hash slots
and 5 PINDEX overflow slots per PINDEX home page,
thus each such home page having up to 100 surro-
gates in the home slots, and 25 surrogates in the
local overflow slots - with, say, an average
population of 100 pkey values per page. We also
suppose that the global overflow area is 10% of
the PINDEX home pages. Note that since PINDEX
can be reorganised, its overflows (local and
global) are expected to be smaller than the surr
ogate overflows. We shall consider below ran-
dom and sequential accesses by surrogates and
d-y. The unit used to measure access speed is
a disc access.

The speed for random access by surrogate is 1
disc access irrespective of surrogate overflows,
and that by pkey is 1.11 for 10% and 1.33 for
30% surrogate overflows as pointed out earlier
(see also below). Sequential access by surro-
gates is fast with 1 access per data page (assum-
ing hash slots are placed in their own sequence).
Sequential access by pkey has two components:

(i) PINDEX access time TIP] and

(ii) data page access time T[Dl

If the PINDEX is reasonably organised, as we
have assumed it is, the need to access PINDEX
global overflow should be neglible in the case of
10% surrogate overflows. Therefore for 0 to 10%
surrogate overflows we need 1 disc access, and
for 30% surrogate overflows 1.10 disc accesses
(since global overflow is 10%) to retrieve 100
surrogates for 100 pkey values (average home page
population) from PINDEX. Hence time T[P] for
20 surrogates is 0.20 and 0.22 for up to 10% and
for 30% surrogate overflows respectively. (Note

Proceedings of the Eighth International Conference
on Very Large Data Bases

252
Mexico City, September, 1982

HOME
SLOTS

LOCAL
OVERFLOW

40

30

20

10

PINDEX Home Page
6 Home and 4 Local Overflow
Slots per page

I ! ’
-;- -i’ 1 ’

’ ’ I
’ I - -!- - I
I r --I- -
i I I
! I I

PINDEX Global
Overflow Page

16 Overflow Slots
POW is same for both overflows and assumed to be 112 PHW here.

FIGURE 2: PINDEX PAGES

10' 10'

SLOT WIDTH SHW = 20 SLOT WIDTH SHW = 20

K = 10000 K = 10000

20 40 80 160 1280 10240

NO. OF KEYS N -+

I a-
0 20 40 60 80

SLOT WIDTH -+

FIGURE 3: STORAGE WASTAGE

Proceedings of the Eighth International Conference
on Very Large Data Bases 253 Mexico City, September, 1982

that if we wish to get the surrogate of asingle
tuple from the PINDEX, then according to these
assumptions, we need 1.0 disc access for 10%
and 1.1 disc access for 30% surrogate overflows;
in contrast, irrespective of surrogate over-
flows, a two-level B-tree will require 1 disc
access and a three-level B-tree 2 disc accesses,
if the root is held in the memory.)

For x percent surrogate overflows, we have 2 * x
overflow slots in every 100 surrogate home slots,
since SHW = 2 * SOW. To access the tuples of
100 surrogate home slots and 2*x surrogate over-
flow slots - holding 20*(100+x) surrogates al-
together - we need 100 + 2 * x disc accesses.
Therefore time T[D] to access 20 surrogates is
(100+2*x)/(100+x). The total access time is
then:

T[P] + T[D] = T[P] + (100+2*x)/(100+x)

The values for different percentages are shown
in table 1. The figures given there should re-
main valid up to a 90% load factor since the
anticipated storage wastage is only 8.5% as dis-.
cussed in the last subsection.

TABLE 1

Unit is a disc access

Random access

Overflow on data pages
0% 10% 30%

by surrogates 1 1 1
by pkey 1 1.11 1.33

Sequential access

by surrogates
(per data page) 1 1 1
by pkey
(per 20 tuples) 1.20 1.29 1.45

Random access (but not sequential access) by
pkey will be slower if hash slots cut across
page boundaries. It is assumed that at least
initially slot width will be so chosen that an
exact multiple of hash slots is held on a page.
However if tuple size expand/contract by a
fraction of the original size - rather than
being doubled/halved - due to say additions/
deletions of attributes, then the page align-
ment will be lost, slowing down random access by
pkey. However, at worst - whether due to excess-
ive surrogate overflows or loss of page align-
ment - we can always access a tuple via PINDEX
with 1.1 disc accesses (as estimated earlier
for 30% overflows) to get the surrogate and 1
disc access to get the tuple by surrogate. In
that case random access by pkey will require
2.1 disc accesses, perhaps reducing to 2 disc
accesses if the PINDEX is reorganised very
efficiently. In our present implementation in
the PRECI database system [9, 101 PINDEX is used
for random access by pkey if surrogate hash
slots straddle page boundaries. It is also

possible to reserve initially more space in the
surrogate home slots (by just having a larger N
or larger tuple length), which will reduce the
size of surrogate overflows and the need to
cross page boundaries.

The storage wastage can be eliminated virtually
completely if we use SHW = N and H = 1 with no
surrogate overflow slots; in other words a
single surrogate slot for the whole relation.
In this case, the speed of access by surrogates
will not be affected, but those by pkey will be.
For a random retrieval by pkey we will need 2.1
disc accesses, as explained above. Sequential
access by pkey will be expensive since the
stored tuples will not generally be in pkey
sequence.

4.3 Comparison With Other Models

We shall briefly compare our technique with tbse
employed in SYSTEM R and Codasyl implementations.

In SYSTEM R [5,6,7] each tuple has a tuple ident-
ifier (TID) made up of page number and page off-
set, and hence storage can not be easily reorgaw
ised outside the page. The user can suggest a
TID during insertion, but if the suggested page
is not available, the tuple will be stored on an
adjacent page. The TIDs are linked to key values
by a B-tree. SYSTEM R permits variable length
tuples and dynamic addition of new attributes,
both of which can lead to overflows. If the
original page is full, an overflowing tuple is
moved to another page with a tag in the original
location giving the address of the new location.
In that case two disc accesses are necessary to
access the tuple by its TID.

Comparison with SYSTEM R depends on a number of
assumptions, such as page size, key length, depth
of the B-tree etc. A SYSTEM R page is 4096 bytes
which can be assumed to hold 200 (key, TID)
entries. If the cardinality of a relation is
under 40K, then a two-level B-tree will suffice,
with a three-level B tree for above 40K. The
root of the tree may be assumed to be in the
memory, thus requiring 1 disc access for a two-
level and 2 disc accesses for a three-level tree.
In addition, we need 1 to 2 disc accesses to re-
trieve a tuple by the TID obtained from the B-
tree. SYSTEM R does not support primary key as
such, but we can assume a unique key with clust-
ering index as the closest equivalent of our
primary key. We shall consider two cases, one
with cardinality 30000 and the other with 50000.
We shall assume the compact surrogate directory,
which can take up to 2 pages for 100000 tuples,
to be in the memory as well.

Proceedings of the Eighth International Conference
on Very Large Data Bases

254
Mexico City, September, 1982

Random Access by key or equivalent

Columns (i) of Table 2 refers to fixed length
tuple, retrieved in a single disc access by TID.
Calculations for our model follow those made
for Table 1.

Over- No. of SYSTEM R Our Model
flow tuples (PRECI)

(i) (ii) (i) (ii)

0% 30K 2.0 3.0 1.0 2.1
30% 39K 2.0 3.0 1.3 2.1
45% 45K 3.0 4.0 1.5 2.1

0% 50K 3.0 4.0 1.0 2.1
30% 65K 3.0 4.0 1.3 2.1
45% 75K 3.0 4.0 1.5 2.1

Table 2

Access in our case will be faster, if space is
reserved initially in surrogate home slots,
which will reduce the overflow.

Addition of new attributes

SYSTEM R will require 2 accesses by TID assum-
ing the original pages as full. This will in-
crease the SYSTEM R figures to those under
column (ii). Our figures will change to a fixed
2.1 access (column ii), as explained earlier,
irrespective of overflows and cardinalities. If
the original pages are so populated as to allow
some later growth without overflowing (in our
case it is equivalent to the use of larger
tuple length initially) then figures of Table 2
could remain unchanged for both the models.

Sequential access

Intuitively sequential access by pkey is faster
in our case since no tuple is spread over two
pages and since tuples are clustered in surro-
gate home and overflow slots. We also do not
have the overhead of SYSTEM R Prefix with each
tuple. Any detailed comparison depends on too
many assumptions, and hence not attempted.

In the above comparisons, tuples are assumed to
be fixed length. As we have not investigated
the problem of variable length tuples in our
model, we can not compare this case, but in-
tuitively its affect in our model would be like
that of the overflows in Table 2 and in SYSTEM R
it would increase the access by TID to more than
1 disc access. There are also other forms of
accesses which we have not considered; SYSTEM R
could have advantages there, although not nec-
essarily so. It is only fair to point out that
these figures do not indicate the overall per-
formance of SYSTEM R, which depends on many
factors including query optimisation.

In the earlier versions of the Codasyl model 181
records are given their database keys (surro-

gates) in four Location modes: Calc, Direct, Via
and System-default. In most implementations,
database keys contain some physical locations
such as area number, page number, page offset
etc., despite some more recent claims on the
independence of database keys from the physical
storage. The Location modes are used to gener-
ate database keys.

The Calc mode employs hashing on a user-defined
Calc key to produce database keys. Random access
by the Calc key is fast, taking about 1.33 disc
accesses for 30 percent overflows (IDMS, IDS-II),
as in our case shown in Table 1. Since the usual
practice is to employ the remainder hashing, it
is difficult to see how these records can be
accessed sequentially by the same key with any
efficiency. The storage wastage is implement-
ation-dependent, but usually high, averaging
around 30 percent.

In the Direct mode, the database key is taken as
the value of a user-defined Direct key. In the
event of a clash with an existing database key
the system allocates adifferent database key; if
the user forgets this database key later, then it
is his problem. These records can be accessed
randomly fast by the Direct key except where
there are those clashes; efficient sequential
access by the same Direct key should be possible,
but can not be guaranteed. Note that there is no
concept of primary or unique key in the Codasyl
model, and if the values of any Calc or Direct
key change later, due to updates, then those data-
base keys can not be found.

In the Via mode the database keys are allocated
in such a way, that the records concerned are
stored close to those of another record type (set
type). This mode permits these records to be
accessed fast, in some sequence, in association
with the set owner. In the last mode, the user
has no control over the database keys and hence
over the storage locations of these records.
Here the notion of fast access by any particular
key does not exist in this case except by user-
defined indexes.

In the Codasyl model, storage reorganisation will
generally be difficult, irrespective of implement-
ors .

5. CONCLUSION

The surrogate implementation technique presented
above provides a fast random and sequential access
in primary key order in spite of unordered in-
sertions and deletions, with under 10% storage
wastage. Access by secondary keys are not ad-
versley affected, and a large measure of storage
independence is provided. The technique is im-
Wemented in the PRECI [9,101 database system
which is based on a canonical data model capable
of supporting relational, Codasyl and other user
views.

Proceedings of the Eighth International Conference
on Very Large Data Bases

255 Mexico City, September, 1982

A critical factor of this method is the nature
of the pkey value distribution. The method
works best if the distribution is reasonably
uniform, or can be made uniform (by the key com-
pression algorithm). The overflow mechanism
cushions against some non-uniformity. We looked
at some actual key values: product codes of a
manufacturing concern, and the student numbers
of an institution; but both turned out to be
rather simple. As indicated earlier we have
also developed a generalised key compression
technique capable of dealing with most non-
uniform distribution reasonably well [ill.
Note that we have in fact presented a
two-part technique, the parts can be used
independently of each other:

(i) Surrogate implementation. Its PINDEX
can be a B-tree. Indeed in the PRECI
implementation, we have an option of
specifying a B-tree instead of a hashtree
for the PINDEX of a relation if B-tree is
expected to be more efficient for that re-
lation.

(ii) Hash-tree. If the depth of a B-tree is
greater than two, then hash tree could be
a better alternative for unique-key
indexes and probably for non-unique-key
indexes. In many machines the basic page
size (as unit of input-output) is much
smaller than 4096 bytes used in SYSTEM R.
For instance in our machine (Honeywell 66/
80) it is 1280 bytes, requiring a three-
leirel B-tree for more than 4096 tuples
(assuming the key and TID sizes to be the
same as those used in the SYSTEM R com-
parison made earlier).

We intend to examine our technique further in
the following areas:

(i)

(ii)

(iii)

(iv)

(v)

Very highly clustered distribution

Handling of variable length tuples

Sharing of data pages by tuples of differ-
ent relations

Reorganisation of surrogates for improved
performance

Use of hash-tree for non-unique secondary
key indexes (currently being studied and
implemented).

Finally I would like to thank some of my coll-
eagues in the PRECI project for comments and
suggestions - they are: David Bell of Ulster
Polytechnic, and Talib Abbod, John Edgar, Dirk
Nikodem, Malcolm Taylor and Ambrish Vashishta
of Aberdeen University. Many thanks also to
Professor D. Kerridge of Statistics at Aberdeen
University for assisting me with the probabil-
ity calculation. The work is partially support-
ed by the U.K. Science and Engineering Research
Council.

Proceedings of the Eighth international Conference
on Very Large Data Bases 256 Mexico City, September, 1982

REFERENCES

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

Hall, P. et al. : "Relations and Entities",
Modelling in DBMS, edited by Nijssen
(North-Holland 1976).

Codd, E. F. : "Extending database relat-
ional model to capture more meaning", ACM
TODS, vol (4:4), p397, December 1979.

Comer, D. : "The ubiquitous B-tree", ACM
Computing Surveys, Vol 11, no.2, ~121,
June 1979.

Litwin, W. : "Trie Hashing", Proc. of ACM-
SIGMOD, 1981.

(i) Astrahan, et al. : "SYSTEM R:
Relational Approach to Database
Management". ACM TODS, Vol.1, 1976.

(ii) Astrahan et al. : "A history and
evaluation of SYSTEM R", RJ2843
(36129) IBM Research Laboratory,
San Jose, California, June 1980.

Selinger, P.G. et al. : "Access path
selection in a relational DBMS", RJ2429,
IBM Research Laboratory, San Jose,
California, August 1979.

Blasgen, M. W. et al. : "SYSTEM R: An
architectural update". RJ2581 (33481).
IBM Research Laboratory, San Jose,
California, July 1979.

Codasyl DDLC Journal of Development,1978.

Deen, S.M., Nikodem, D., Vashishta, A. :
"The design of a canonical database
system (PRECI)", The Computer Journal,
vo1(24:3), ~200, August 1981.

Deen, S. M., Edgar, J.A., Nikodem, D. and
Vashishta, A. : "Run-time management in a
canonical DBMS: (PRECI)", proc. of 2nd
British National Confc. on Databases,
Bristol, July 1982, edited by Deen, S.M.
and Hammersley, P.

Bell, D. A. and Deen, S.M. : "Key space
compression and hashing in PRECI"
Computer Journal (in press), 1982.

