
‘. ’

-t-he purpat
statkstical
ated with
moninav
by describl
plexity, the
data base:
tertstics of
tures and I

5.40

5.00
:

4.60 ::.
. .

. 4.20

i’ 3.80

. :3.4&u

[log Page Faults]

<
Lawrence Berkeley Laboratory f _./.

., .: University of California
, . . ;

Berkeltiy, California 94720 _ 4
‘. x x x x x x x X’I ,x x x

ct

..,"S.

i. Introduction

uaia b.aies (SDBS), cal
c&t& of this paper is to describe the nature of

ta*bases and thPAnlSrFIP(-
5m. Since stateticae’~~la~s:aB!.,abthi; 12 14
Bty of appHcation are&, itnUJp&per, biemffer Size
several examples that emphasize the com- iiq corisists

kW@~~ieCt~ of problems, and when appropriate some

6.2. Rasponse As?bembly
6. Logical modeling

‘capabilities that are important for SDBs can be four;d in

6.1. Repreaqtation of category and summary attributes
6.2. Gra$h’rtiresentation
6.3. Summary sets
6.4.4wwwationldisaggregG~m

7. User Intetiaqe
8. Int$grating statistical ana?& &nd data m~agement
9. Segurtty

9.1. Lhpitihg !JI* qtiery set ’
I, .‘.

9.A j..imiting fii‘i’ersectii @ @j&y~S&l3
Q,$. lj!tmQm,+ie~qQG@b.“~ ~. ,.:, ,- ‘.‘-,

?, ’

.4i#J’mtna #h~.d~~~~~
~,,~~-4?+prpg data v*., .,.

_ q “’ _

w*,CpackrdigQif&:9Ridrks
., i,.“. , 1

[Bragg 8 11.
At first glance it appear5 that the necessary data

imanagea~& +%%n&ions can be supported by existing

‘6 described in
and their use.

11: analysis pur-
?qt.t,er data and
;e parameters.
’ !the different
m,yt; the vaii-
he expeiim&tt
base is usually

When a process unfixes a page, the reference count of
the page is decreased by one.

When a nrocess terminates. the naaes of its stack are

1 f
. Thf?re are two main reasons for the fact that com-

rn&jiWAWA 4l&Ag~St,**hWO~~~.
2.

3.

d&a..

different columns, the filter-factors of predicates, etc.
Thus during execution, a process may loop over a set
of pages larger than this hot set size. Assuming that

,,(step .3b%makes :.swe thatc-the process g@s:-another
The tissue. of pvhrdt ~hati~en$!~whut~~%~the Dages

an.

5.

6.
7.

provided
by thxmi ~W@@MN&EBBMMHIQ~I~~PM&~-

hot set size, based on available statistics such as the
sizes of the relations involved, the cardinalities of

s so
sses
size
not

important since these occurrences are infrequent.

minimum hot point (i.e., the mmimum number Dt
pages required to run). The schema presented here
guarantees that, if processing of this query is allowed,
it will not suffer external thrashing. (Note that for
these requests there can be no internal thrashing.) In
a high performance system, in order to insure that a
certain level of fast queries is active at the same time,
the buffer can be divided into two regions; one for
fast requests, the other for slow ones. (The
initialization step would create two free lists each
having the size of the respective region. A reasonable
choice is to have both regions of the same size.) The
fast requests are thus guaranteed a certain minimum
number of frames for them. In order to maintain
good utilization of the buffer pool, the free list for the
fast queries has to be allowed to take frames from the
free list for the slow queries (this will happen when
there are no slow queries present in the system.) As
before, adequate service can be maintained by
restricting the multiprogramming level.

6. The last comment has to do with contention problems
in the buffer manager. Clearly, the stack
manipulations that are performed on the free list in
steps 2 and 3 of the algorithm must be serialized.
Since the operations that are done are removal and
insertions of elements in LRU chains, the path length
through the critical region is no different than that
through the code of a standard buffer manager with
one LRU stack. Thus this algorithm should not
introduce additional serialization problems. In fact, it
may even decrease them as the manipulations of
private LRU chains need not be serialized.

5. EXAMPLES OF HOT SET
SIZE COMPUTATION

As an illustration of how the hot set size can be
estimated by the optimizer of a relational database
management system, we show some examples using System
R. For each two way join between relations Rl and R2,
assume Rl is the outer relation and R2 is the inner.
Control pages are not included ‘&I the expressions below.
The following terms are used below

dindex (R2)
ls(R2)

I(R2)

lsleaf(R2)

Number of pages for relation Rl.
Number of pages for relation R2.
Depth of the index on R2.
Number of pages in the inner loop for R2. It
is given by P(R2) divided by the number of
different values for the attribute upon which
the join is performed. This estimate is based
on the uniform distribution assumption.
Number of pages in the index used to access
R2.
Number of index leaf pages scanned on an
inner loop of R2.

for a sequential scan on both Rl and R2,

hot point = 1 + P(R2)

for an index scan on R 1, sequential scan on R2,

hot point = 2 + P(R2)

for a sequential scan on Rl, index scan on R2 (smooth
discontinuity), interpolate between

and
1 + dindex(R2) + ls(R2)

1 + I(R2) + P(R2)

Example 1.

Type 2 join:

for a sequential scan on both Rl and R2,

hot point = 1 + ls(R2)

for a sequential scan on Rl, index scan on R2,

hot point = 1 + lsleaf(R2) + ls(R2)

where lsleaf(R2) is the number of leaf pages in the inner lo
For an index scan on Rl, sequential scan on R2,

hot point = 1 + dindex(R1) + ls(R2)

Example 2.

In Example 1, the first formula is derived by reserving
enough frames to contain the entire R2 relation, plus one
frame for a data page for Rl. If a frame for a data page of
Rl is not reserved the access to Rl causes the first page in
the R2 loop to be replaced, and consequently the entire set
of pages in the R2 loop to be lost. For the second formula,
an additional frame is reserved for the leaf pages of the
index, which is always accessed before accessing Rl data
pages. The third formula presents a smooth discontinuity.
The minimum number of faults is achieved when all the
access entities for R2 (index and data pages) completely fit
in the buffer. The number of faults will increase in a
roughly linear way, until only a number of frames sufficient
to hold an average loop on the second relation, is available.
This assumes substantial rereferences between succesive
inner loops. If the number of data pages in the referenced
relation is large, and the join filtering is high, data page
rereferencing will be very low. In this case, P(R2) is
substituted for ls(R2). The formulae in Example 2 are
derived using analogous considerations. Values for the
estimated number of hot set size obtained using these
expressions are shown in Figures 1-3.

The above formulae are easily generalizable to n-way
joins, and represent a conservative estimate of the hot
points. The number of hot points to be computed varies
from n-l to 3(n-1) (in the case of smooth discontinuities),
where n is the number of relations referenced in the query.

Proceedings of the Eighth International Conference
on Very Large Data Bases 26.0 Mexico City, September, 198

A MECHANISM FOR MANAGING THE BUFFER POOL IN A RELATIONAL
DATABASE SYSTEM USING THE HOT SET MODEL

Giovanni Maria Sacco and Mario Schkolnick

IBM Research Laboratory
San Jose, California 95193

ABSTRACT

The design of the buffer manager in a Relational
Database Management System can significantly affect the
overall performance of the system. Thrashing is a common
phenomenon that occurs in these systems due to the
combination of a regular pattern of accesses made by a
process and the competing requests for buffer resources
made by concurrently executing processes. In this paper,
we present a buffer management algorithm based on a
model of database requests. A discussion of problems
encountered by traditional methods for buffer management
as well as extensions to the algorithm are also presented.

1. TRADITIONAL METHODS
FOR BUFFER MANAGEMENT

Database Systems typically use an LRU replacement
technique [LANG771 to manage their internal buffer(s).
The LRU technique has proved to be more efficient than
other methods in reducing the amount of paging that occurs
in these systems. Also, the technique is relatively simple to
implement, something that is highly desirable in a high
performance system. However, as the following examples
show, there are many cases where serious problems occur.

1. If one of the processes is running a batch like job, i.e.,
one that performs a long sequential scan on the data
while at the same time requesting pages very rapidly,
the pages referenced by it will tend to go to the top of
the stack, causing the pages used by other processes to
be flushed out of the buffer. This causes the batch
like process to take precedence over the other
processes. If these are short, fast transactions, the
situation becomes intolerable.

2. Another case where LRU behaves very badly is when
a process cycles through a set of pages, which is larger
than the set of pages that can fit in the buffer. In this
case, every new reference to a page causes a fault.
This effect is called internal throshlng.

3. A more serious problem that occurs in multiuser
systems is that one process may use pages more
rapidly than another one that has a looping behavior
as it references pages. In this case, even if the set of
pages that are rereferenced inside the loop may be
smaller than the buffer size, the “stealing” of pages by
the first process effectively reduces the available
frames in the buffer for the second process. This

Proceedings of the Eighth International Conference
on Very Large Data Bases

reduction can be such that the second process
generates a page fault on every request. In this case
we say that there is external thrashing.

Mechanisms for dealing with thrashing have been
developed in Operating Systems. The most well known of
these uses the principle of the Working Set
Model [DENN68]. A buffer manager using this model
defines a window r and observes the average number of
different pages that are requested by a process in a period
equal to r. This number is called the working set size of the
process, u. A scheduler then ensures that while this process
is running, at least (I pages are allocated to it.
Alternatively, the buffer manager can give different
priorities to page requests from the various processes,
depending on their working set size. Processes with a large
working set size will get more buffer frames allocated to
them. In high performance Database Management Systems,
this last mechanism has several drawbacks. In the case of a
process, like the batch process described in case 1 above or
the one described in case 3, the Working Set Model tries to
give to this process many buffer frames, causing external
thrashing of other processes. If a process loops. over a
number of pages larger than the window size 7, as in case 2,
the working set mechanism will attempt to reserve r frames
for this process in the buffer, where having just one frame
associated to it would have caused the same level of faults
to occur. Thus the buffer frames are poorly utilized.
Finally, in the case of a process with a looping behavior, as
it goes from one loop of pages to the next, the working set
size will temporarily increase causing this process to get
more frames assigned to it. As before, this causes external
thrashing. All of the above cases may also cause scheduling
problems if processes are scheduled considering their
working set size requirements. Moreover, the working set
model is expensive to implement, in terms of instructions
executed, a fact that has discouraged its use in high
performance database systems.

2. THE HOT SET MODEL

Relational Database Management Systems have high
level language interfaces allowing their users to state their
processing requirements without specifying how the required
data should be accessed. The system has internal
mechanisms that decide on the best strategy to access the

257 Mexico City, September, 1982

data. We call these strategies access plans. In System R1,
the internal mechanism is called the Optimizer [SELI79].
Since the access plan is generated by the system, it turns
out that Rhe ~8aasofalatae~ll blah tiatt&era& w&be ..-._ .._ -

pool at the time the query is processed, then the cost of
using this plan goes up to 44,000 cost units. In this case ,
accessing DEPT as outer would have been preferable, at a
iiSQ*b~n~WQ~si~~, ~jd&Qbt3~ooilRiwbp~n 20
bidrsJIsfila~ fdtath tlilmajctbe qaltqG&cp~S~ the cost
ff%MliQ#pRta~&@BHti t%%B@@Otsa6QanIalaSe them. Ao
example of such a project is the PAREP (Populations at
Risk tdl?&vi&mn@&k&olti~g~k [Matrilbat abKk$t size

~prsdiptet&e Mtt&$sa&e of a hot set. This effect is also
considus&mW s6dwawt~~a6leti~~~ti*~.
statistical data bases can be quite sparse, i.e. contain a
large PrqNN&oBU#FJ!Ml lN’ANSEkW~BaHE1 an
extreme exefi g~3m i$.&~mw&o find
data bases that are 40-50X sparse.

some pages to- remain in the buffer pool, independently of
whi8MesLRU algorithm would call for [LORI77]. (A page
that is ~~d~~~~i~i~~~~t~~ai~r~~d fixed.
Because pa~!$!~~~~~i%~y%&!t!fa&%es not implement a
true LRU met a%&&& m@ging its buffer ~001.~) This
last discontinuity is also referred to as a hot point. The
lar$M &3llit@&lnrarz&$3xtrt&bti&e3 am&\Ptei&~&. is

~~~n~~lt~Qg~~cl.sretcla~ P+ssif ications 
a 100 page document [DHEW 751. 

assumes that this is done by introducing a in 
step 3b2. If no pages are fixed, steps 4 and 5 of the 

&~&&.Jb&&ees&lified. 

WlIbbWSE#369bS 
212 

258 

e~gdcQanttles,n~ottragnrrmoberleef @a-, tBat are 
s~@?ds%i&.by the process, and numall, the actual number of 
buffBh6r~stinl~~U~iblhJumndfidet~lstoldhe hot 

btfsk iobt&ed~&&Y~tpfN@a$er(~anst~ Ib#@.twulli When 
6ltlWh 

P 
~Pl~~~~~sh~~~iB~~~~is advauta- 

geous o store the data in a matrix form to simplify the 

plex and specialized software for its access and mani- 
pulatlqT. the page is found, then if the page is also in the 

$&c util&s, oil producers, petroleum product 
retailers, oil refineries, natural gas pipeline companies, 
and a variety of businesses in the U.S. The data is coi- 
lected by using fairly complex forms. The information 
collected with each form (or sometimes a set of forms) is 



ties” or “World 

a be easily seen that the amount of different foa T&t% It 
ata e emen s IS very large. indeed, the number of data 

ems I&. n&Ural ~XSTEMdRelectBhOr $&&rl utilities 
algS&js a~#&fZiOO. In total, the n~S&BCb~ data ele- 
ments is around 10.000. The number of elements makes 
it difficult to remembg[)wh?lijhey (qq?, l@iplone to 
remember the precise acronyms used. What makes it 
ev#% more dl%cult is %&t s&‘&al d&z? el&n&nts have 
sitMar meani@& and tBatJ tha.&ffereko& may&e in the 
mathods usd6to measBe0thetnBr thelurfits as&d. There 
must be some place where such detail information is kept 
anQnanage&@r the w.r@rgl,qf the &@a ig.gventually 

IO%% 65K 3.0 4.0 1.3 2.1 
45%There E&a great X&l df. @omplQxRy h. Validating 

such data. Validation can be as simple as range check- 
ing, or as complex as c&&iig~hether certain totals on 
consumption match (or are within bounds of) the 

A~~~~f~~~~Is~s.f~ByeBFi~~daBBe 
rt&&%@ i~~l~~~~Ss~~~~ef~dsl~@§e the 
w~fyp@l$f+p~,&~ lyg p&.p?yfpearb trends. &ma- 

tron across ata elements from drfferent data bases is 
to perform unit conver- 

meters for the measured 

sd@dd~~.~Pd#lb @Mbbbbe&d0#l%8t~~b&s&MfiX§e 
caesdsi~drap~g~~$~altrmlnar~~on~ecfiiqLPsqPlorne are 
tw.length initially) then figures of Table 2 
could remain unchanged for both the models. 

Sequential access 

is BQ~~~~~8tka~u~s~~BrnetPDI~~ and 
a~c~r~qU%Mi4t%Ul&@bf!rdNn Semeslcdytheihhtr&qtes, 
eff ~alenz#lstirU%iind8~ wastage is implement- 
ation-dES3WMt~te4M& t+#&&f&* dR%r#MMSfigure 
aroW%&sRHM@I&data base represented in a table (rela- 

tion) form. The first five attributes (oil type, State, 

bas%&@%is~ @i&fe #&I&g t&hniques, as discussed 
in a later section on logical modeling. 

In the Via mode the database keys are allocated 
in such a way, that the records concerned are 
stored close to those of another record type (set 
type). This mode permits these records to be 

Intuitively sequentia 
in our case since no 
pages and since tupl 
gate home and overfl 
have the overhead of 

in association 
last mode, the user 

ase keys and hence 
these records. 

s by any particular 
se except by user- 

many assumptions, an 

be fixed length. A 
the problem of vari 
model, we can not c 

reorganisation will 
pective of implement- 

it would increase th 
1 disc access. 
accesses which we ha 
could have advantage 
essarily so. 
these figures do no 
formance of SYSTEM 
factors including que 

technique presented 
and sequential access 
of unordered in- 

under 10% storage 
keys are not ad- 
measure of storage 

e technique is im- 
database system 
data model capable 

asyl and other user 

records are given their dat8~&&y&W%MW~of cateWYandsummaQf attributes. 



A critical factor of this method. is the nature 
of the pkey value distribution. The method 
works best if the distribution is reasonably 
uniform, or can be made uniform (by the key com- 
pression algorithm). The overflow mechanism 
cushions against some non-uniformity. We looked 
at some actual key values: product codes of a 
manufacturing concern, and the student numbers 
of an institution; but both turned out to be 
rather simple. As indicated earlier we have 
also developed a generalised key compression 
technique capable of dealing with most non- 
uniform distribution reasonably well [ill. 
Note that we have in fact presented a 
two-part technique, the parts can be used 
independently of each other: 

(i) Surrogate implementation. Its PINDEX 
can be a B-tree. Indeed in the PRECI 
implementation, we have an option of 
specifying a B-tree instead of a hashtree 
for the PINDEX of a relation if B-tree is 
expected to be more efficient for that re- 
lation. 

(ii) Hash-tree. If the depth of a B-tree is 
greater than two, then hash tree could be 
a better alternative for unique-key 
indexes and probably for non-unique-key 
indexes. In many machines the basic page 
size (as unit of input-output) is much 
smaller than 4096 bytes used in SYSTEM R. 
For instance in our machine (Honeywell 66/ 
80) it is 1280 bytes, requiring a three- 
level B-tree for more than 4096 tuples 
(assuming the key and TID sizes to be the 
same as those used in the SYSTEM R com- 
parison made earlier). 

We intend to examine our technique further in 
the following areas: 

(i) 

(ii) 

(iii) 

(iv) 

(VI 

Very highly clustered distribution 

Handling of variable length tuples 

Sharing of data pages by tuples of differ- 
ent relations 

Reorganisation of surrogates for improved 
performance 

Use of hash-tree for non-unique secondary 
key indexes (currently being studied and 
implemented). 

Finally I would like to thank some of my coll- 
eagues in the PRECI project for comments and 
suggestions - they are: David Bell of Ulster 
Polytechnic, and Talib Abbod, John Edgar, Dirk 
Nikodem, Malcolm Taylor and Arrbrish Vashishta 
of Aberdeen University. Many thanks also to 
Professor D. Kerridge of Statistics at Aberdeen 
University for assisting me with the probabil- 
ity calculation. The work is partially support- 
ed by the U.K. Science and Engineering Research 
Council. 

REFERENCES 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

Hall, P. et al. : "Relations and Entities", 
Modelling in DBMS, edited by Nijssen 
(North-Holland 1976). 

Codd, E. F. : "Extending database relat- 
ional model to capture more meaning", ACM 
TODS, vol (4:4), p397, December 1979. 

Comer, D. : "The ubiquitous B-tree", ACM 
Computing Surveys, Vol 11, no.2, ~121, 
June 1979. 

Litwin, W. : "Trie Hashing", Proc. of ACM- 
SIGMOD, 1981. 

(i) Astrahan, et al. : "SYSTEM R: 
Relational Approach to Database 
Management". ACM TODS, Vol.1, 1976. 

(ii) Astrahan et al. : "A history and 
evaluation of SYSTEM R", RJ2843 
(36129) IBM Research Laboratory, 
San Jose, California, June 1980. 

Selinger, P.G. et al. : "Access path 
selection in a relational DBMS”, RJ2429, 
IBM Research Laboratory, San Jose, 
California, August 1979. 

Blasgen, M. W. et al. : "SYSTEM R: An 
architectural update". RI2581 (33481). 
IBM Research Laboratory, San Jose, 
California, July 1979. 

Codasyl DDLC Journal of Development, 1978. 

Deen, S.M., Nikodem, D., Vashishta, A. : 
"The design of a canonical database 
system (PRECI)", The Computer Journal, 
vo1(24:3), ~200, August 1981. 

Deen, S. M., Edgar, J.A., Nikodem, D. and 
Vashishta, A. : "Run-time management in a 
canonical DBMS: (PRECI)", proc. of 2nd 
British National Confc. on Databases, 
Bristol, July 1982, edited by Deen, S.M. 
and Hammersley, P. 

Bell, D. A. and Deen, S.M. : "Key space 
compression and hashing in PRECI" 
Computer Journal (in press), 1982. 

‘roceedings of the Eighth international Conference 
In Very Large Data Bases 256 Mexico City, September, 1982 



needed, the possible and legal values for these attri- 
butes, and the formats of the values (e.g. the format for 
age groups, or whether to use capitals in names of 
cities). In addition, the codes or abbreviations that were 
assigned to values (e.g. codes for states and counties) 
mUSt be remembered. It is not surprising that such data 
bases require specialists to access them. 

the encoded values, but rather leave the burden on the 
user to determine which codes to use before querying 
the data base. 

These difficulties are even more serious in SDBs, for 
two reasons. First, many data bases have categories 
that change their definitions over time. An example of 
this was mentioned previously where counties change 
their boundaries but not their names. Also, the same 
terms are used with slightly different meanings. For 
example, the term “state” may include Guam and Puerto 
!?ico in one data base, but not in another. The second 
reason stems from the summary sets. With every new 
summary set that is created, new names are introduced, 
or perhaps old names with new meanings. It is neces- 
sary to control this proliferation of terms, and to keep 
track of what exists in the system. 

The previous technique still requires that the 
encoded values be stored repeatedly. Another approach 
is to use the logical extension of the matrix storage 
form. One can store the list of distinct category values 
of each attribute once (perhaps in a dictionary). Then, 
each category attribute can be used to form one dimen- 
sion of a multi-dimensional matrix. For each combination 
of values from the category attributes, one can compute 
the appropriate position in the multi-dimensional matrix. 
There is a well-known algorithm for such a mapping 
(called “array linearization”); its use for category 

attributes is explained in [Eggers & Shoshani 801. It is 
worth noting that the mapping is a simple computation, 
and therefore random access is essentially achieved. 

The next sections organize the discussion of prob- 
lems into research areas. Whenever appropriate, some 
solutions that have appeared in the literature are men- 
tioned. This is not intended to be a comprehensive list 
of solutions, but rather to pick some representative solu- 
tions that we are familiar with as possible approaches to 
the problems. 

4.2. Sparse data 

4. Physical Organization 

Most of the problems discussed in this section stem 
from the need to compress the data in large SDBs, while 
permitting fast access. There are a large number of 
known compression techniques ranging from coding to 
intricate text compression. The purpose of this section 
is to highlight some representative techniques that are 
particularly applicable to SDBs. 

As was discussed in Example 4 on world trade, 
SDBs can be quite sparse. The greater the sparseness, 
the greater the chance that longer sequences of null 
values can be found in the data. But, in addition, experi- 
ence suggests/that in SDBs null values (or other desig- 
nated constapts) tend to cluster. To see the reason for 
this, refer back to figure 3. Suppose that a certain 
state does hot consume a certain oil type. Then in the 
consumption column there would be zero (or null) values 
in consecutive positions for all the counties in that 
state, for all years, for all months. Of course, the order 
of the category attributes will change the length of the 
null sequences. 

4.1. Category attributes 

Whenever several category attributes are used 
jointly to form a composite key, a large storage overhead 
results. This point was illustrated previously in Figure 3, 
where there is much repetition of values in the category 
attributes columns. Because the category attributes 
form a cross product, the storage requirements are multi- 
plicative in nature. For each additional category attri- 
bute in the composite key, the amount of extra storage 
required is the size of the storage required for the previ- 
ous category attributes times the number of distinct 
categories in the additional attribute. It is therefore 
quite important that some compression techniques be 
used. 

This brings up the following interesting problem: 
given a certain order of the category attributes and 
given the precise layout of the corresponding measured 
values, find an efficient algorithm for determining the 
best reordering of the category attributes such that the 
length of null sequences is maximized. 

One common technique to reduce this overhead, is 
to encode the category values, and to store only the 
codes with the data base. This can result in great sav- 
ings, since some category values are descriptive text 
(for example, the industrial categories shown in Figure 
1). Furthermore, the amount of storage needed for the 
category values depends on the number of distinct 
category values. Thus, only one bit is necessary to 
encode the two values of sex, and only four bits for the 
twelve values of months. Two example systems that 
were specifically designed to manage SDBs, use this 
technique: the RAPID system [Turner et al 791, and the 
ALDS system [Burnett 81 Thomas 811. As was pointed 
out in [Gey 811 it is unfortunate that many systems 
which use encoding, do not provide software for the 
automatic translation between the original values and 

The length of sequences is very important since 
compression techniques can take advantage of them by 
essentially replacing a sequence with a count and a 
value. This technique (called run length encoding) can 
result in substantial reductions in the size of the data, 
depending on the sparseness of the data base. The 
main problem with this technique is the need to access 
the data sequentially once it is compressed. The ability 
of random access according to relative position is lost. 
In [Eggers & Shoshani 801 a technique was developed 
where logarithmic access can be achieved for data 
whose null sequences have been compressed. The 
technique, called “header compression”, makes use of a 
header which contains the counts of both compressed 
and uncompressed sequences in the data stream. The 
counts are organized in such a way as to permit a loga- 
rithmic search over them. A B-tree is built on top of the 
header to achieve a high radix for the logarithmic 
access. In a later paper [Eggers et al 811 the technique 
was extended to sequences of multiple constant values. 

This header compression technique is also used to 
compress sequences of values that vary in size require- 
ments (i.e. one byte, two bytes, etc.). This can be use- 
ful in the case where the distribution of summary attri- 
bute values is skewed in such a way that the majority of 
the values are small. As an example, consider seismic 
activity measurements where most of the measurements 
consist of low revel background noise. 

Proceedings of the Eighth international Conference 
on Very Large Data Bases 215 Mexico City, September, 1982 



4.3. Transposed files 

The tendency for clustering of null values often 
occurs within a single column (representing a single sum- 
mary attribute). This suggests that from a compression 
point of view, it is advantageous to transpose files, i.e. 
to store values by attribute, rather than as records or 
tuples. As discussed in [Teitel 771 and [Turner et al 
791, there are other reasons to prefer transposed files 
(sometimes called “attribute partitioning” or “vertical 
partitioning”) in SDBs. It is argued that in SDBs very few 
attributes are requested in a single query, and it is inef- 
ficient to access data organized as records, since it is 
necessary to read the data of the other attributes which 
are of no Interest from secondary storage. Another 
approach is to cluster the attributes which are likely to 
be accessed together, but it is not a simple matter to 
determine the preferred clustering from a set of 
representative queries [Hammer & Niamir 791. Fully tran- 
sposed files (i.e. no clustering of attributes) are used in 
the RAPID and ALDS systems mentioned above, and in 
earlier systems such as IMPRESS [Meyers 691 and 
PICKLE [Baker 761. 

4.4. Partial cross product 

The problem of efficiently storing the cross product 
of category attributes was discussed above. However, 
there are situations where not every possible combina- 
tion of the category attributes is valid, i.e. for the cornbi- 
nations that are not valid, the values for all the summary 
attributes are null. In such a case, the entire entry is 
missing from the data base. An example of this was 
shown in Figures 1 and 2 where for each state many 
industrial categories are missing altogether. This situa- 
tbn is referred to as the “partial cross product”. 

The problem is to determine whether there is a way 
to compress partial cross products. Clearly, the method 
of value encoding still works, but is there a way to 
further compress the combinations of category. attri- 
butes which are valid? In [Svensson 791 a technique 
which involves the use of a tree is suggested, but some 
redundancy of values is still left. In [Eggers et al 611 
another solution is suggested. It combines the array 
linearization technique used for full cross product, and 
the header compression technique for null sequences. 
Imagine a vector of “ones” and “zeros” that corresponds 
to valid and invalid entries in the partial cross product, 
respectively. The partial cross product is treated as if it 
was a full cross product, and array linearization is used 
to map into this imaginary vector. Then, the header 
compression mapping is used to map from the imaginary 
vector into the actual positions of the valid entries. The 
outcome of this combination is that just a header is 
necessary to perform the entire mapping and to achieve 
a logarithmic access time. 

6. Optimization 

6.1. Selection of physicd structures 
Because of their special nature, SDBs offer oppor- 

tunities for storage and access savings that use uncom- 
mon physical structures and access methods. In addition 
to the more common techniques, such as a variety of 
indexing and hashing methods, the gains that can be 
achieved by using techniques such as attribute parti- 
tbning (either full or clustered partitioning), encoding, 
array linearization, and different compression techniques 
must be considered. 

Given a statistical data base and a set of 
representative queries, the problem is to determine how 
to partition, compress, or encode the data, and which 
access methods to use to access the data. In general, 
this is a very difficult problem, even with a limited set of 
choices. However, there is still the challenge of solving 
this problem for SDBs, given a small set of storage and 
access methods which seem most likely to benefit the 
application. A representative example of such work is 
described in [Lehot 771, where the problem of determin- 
ing the optimal order of the category attributes in order 
to maximize the access time of a summary attribute was 
considered. The paper shows that under certain 
assumptions about the distribution of values and query 
characteristics, an optimal order can be found. It also 
contains several references to related work. 

Of course, the complementary problem to that of 
selecting data structures for an application, is that of 
processing queries efficiently.. Given that certain 
choices were made for the physical organization of a 
SDB, how can queries be processed optimally. Query 
optimization is still an active area in conventional data 
base research. The question is whether the known 
techniques can be applied to the more uncommon struc- 
tures that are useful for SDBs. 

6.2. Response assembly 

Attribute partitioning and compression introduce the 
problem of assembling the response to a query. Suppose 
that a response needs to be extracted from several 
attributes that were partitioned, and that the partitions 
are stored on a disk. In order to assemble tuples 
(records) for the response, a value from each partition 
could be read, and the appropriate values written a tuple 
at a time. But if the primary buffer space is limited, this 
would result in an excessive number of reads to the disk. 
The reason is that a single value from each page is read 
in order to assemble a tuple. If, in addition, the values in 
the attribute partition are compressed, there is an over- 
head to be paid for each access to the compressed 
data. Thus, given a limited buffer, the problem is to 
minimize disk reads and the overhead of accessing 
compressed data. 

In a paper published in this proceedings, a sugges- 
tion is made that special hardware can be used for the 
purpose of tuple assembly and compression [Hawthorne 
821. It suggests the use of microprocessors that are 
organized in a two level hierarchy. The leaf microproces- 
sors are responsible for writing and reading the 
compressed data and the top level microprocessor(s) 
responsible for tuple assembly. Thus, the data from the 
different partitions could be read in parallel, and passed 
on for tuple assembly. This work is still in the design 
stage. 

8. Logical modeling 

Can benefits be gained from modeling the semantics 
of statistical data bases? Is it worth adding to the com- 
plexity of the data model? There is a long standing con- 
troversy as to whether logical data models should be 
semantically simple (such as the relational model), or 
whether they should contain more semantics about the 
data structures (such as having generalization hierar- 
chies or distinguishing between entities and relation- 
ships). In the case of SDBs, the question is whether to 
model data types such as “matrix” and “time series”, 
and concepts such as category and summary attrlbutes. 

Proceedings of the Eighth International Conference 
on Very Large Data Bases 

216 Mexico City, September, 1982 



6.1. Representation of category and 
summary attributes 

This section points out some of the work done in 
modeling of category and summary attributes, and the 
benefits achieved. It is worth noting that practitioners 
make a distinction between parameters (which 
correspond to category attributes) and variables (which 
correspond to summary attributes) because it provides 
a better understanding of the content of the data base 
and how it was established. For example, in a scientific 
experiment, the parameters that can be set by the 
experimentor are referred to as the “independent vari- 
ables”, and the measured data as the “dependent vari- 
ables”. 

One of the main benefits of modeling the semantics 
of category and summary attributes is the capability of 
“automatic aggregation”. It is the ability of the system 
to infer the subsets of values over which an aggregation 
(or statistical) function should be applied. For example, 
consider the following query when applied to the data 
base in Figure 3: “find heating oil consumption in Ala- 
bama during 1977”. It is obvious that the result should 
be the total heating oil consumption over ah Counties in 
Alabama and over all months in 1977. Yet, without the 
explicit semantics of category and summary attributes 
the system would not be able to infer what is obvious to 
us. The benefit to the user is that it is not necessary to 
explicitly express which category attributes to summar- 
ize over. This can greatly simplify aggregation expres- 
sions in query languages. 

An example of adding the above mentioned seman- 
tics to an existing model is described in [Johnson 811. 
Using the framework of the Entity-Relationship model, an 
additional type of entity is allowed, called a summary 
set, which captures the semantics of Category attri- 
butes. In addition, an attribute which is designated as a 
summary attribute, can have an aggregation function 
(e.g. sum, average) or any other desired function 
(defined as a program) associated with it. 

6.2. Graph representation 

Another possibility is to have these semantic con- 
cepts represented internally, so that they are invisible 
to the user. An example of a system that takes this 
approach is SUBJECT [Chan & Shoshani 811, in which 
these semantic concepts are represented as a graph. 
There are two kinds of nodes: a “cross product” node, 
and a “cluster node”. The nodes can be connected by 
arcs to form a directed acyclic graph. To illustrate the 
meaning of these node types, we have represented the 
data base in Figure 1 as the graph shown in Figure 4. 
Note that nodes marked ‘Ix” are cross product nodes, 
and those marked “c” represent cluster nodes. 

Cluster nodes represent collections of items. Thus, 
the node “metal mining” at the bottom of the figure, 
represents the collection of iron ores, lead & zinc ores, 
etc. The node “metal mining” itself is one of the items 
under the node “mining”. As can be seen, cluster nodes 
are used to represent a hierarchy of parameters. This is 
a way of representing the complex category attribute 
“industrial classes”. Cluster nodes are also used to 
represent the collection of summary attributes under the 
node labeled “variables”. 

Cross product nodes are used to represent compo- 
Site keys of Category attributes. Such is the case with 
the node “state by industry”. The semantics of this 

Proceedings of the Eighth International Conference 
on Very Large Data Bases 

cross product node is such that each of its instances is 
made up of a pair of instances, one taken from the node 
“industry” and one from the node “states”. 

This graph structure is invisible to the user and is 
used to support a menu driven interface. The user does 
not need to know the types of nodes, but the system 
can make use of them to provide automatic aggregation. 
The graph can be either browsed by moving up and down 
the nodes, or can be searched directly with key-words. 
The sharing of nodes provides the capability to use the 
same clusters (e.g. state names) across data sets, and 
to avoid confusion of names. One of the main advan- 
tages of this representation is that the user can be 
shown the content of the data base by gradually reveal- 
ing more detail when requested. The possibility of view- 
ing hierarchical menus of details alleviates the need to 
remember names and acronyms. 

6.3. Summery sets 

Summary sets are simply data base views that are 
generated by using aggregate functions. The main prob- 
lem is one of managing a large number of sets. With 
each summary set new summary attributes are gen- 
erated. Obviously, the newly computed values of the 
summary attributes have to be stored if recomputing 
them every time they are needed is to be avoided. But, 
is there a way to avoid duplicating the category attri- 
bute values? Similarly, new names are likely to be used 
for the new summary attributes (e.g. “total consumption” 
when we summarize over consumption), but is there a 
way of using the same names of category attributes in 
the summary set? 

This is another situation where distinguishing 
between the type of attributes can be beneficial. If the 
category attributes are organized as lists of category 
values (say, in a dictionary), then it is possible for the 
category attributes of the summary sets to “point” to 
these lists, and to share the same names. It is easy to 
visualize this point in terms of the SUBJECT graphs 
described above. If a category attribute is used in its 
entirety in the summary set, then a pointer to the 
corresponding node is all that is necessary. If a selec- 
tion of a certain category is made, e.g. “Alabama”, then 
the pointer points directly to the node representing “Ala- 
bama”. If a selection of a subset of the category values 
was made (e.g. several states), then a new node is 
created whose members are that subset. 

This idea is complementary to the technique 
described in the section on physical organization above, 
where the lists of category attribute values are stored 
only once, and array linearization is used to map between 
them and the appropriate positions of the summary attri- 
butes. 

0.4. Aggregation/diaggregatiin 

In Example 3 above on geographical categories, the 
difficulties of correlating data from different data bases 
on the basis of a common but not identical category 
attribute were described. This problem is referred to as 
“aggregation/disaggregatiin” because, as shall be seen 
shortly, it involves both functions. For example, suppose 
that unemployment rates are to be correlated with 
median family income. The problem is that unemployment 
rates may be available by federal regions, but median 
family income may be available only by census regions. 
Both federal and census regions represent groups of 
states, but the groupings are different. In order to per- 
form the correlation task, it is necessary to disaggregate 

217 Mexico City, September, 1982 



one of the summary attributes (e.g. unemployment rates) 
to the state level using some proxy variable (e.g., popu- 
lation), and then aggregate back to the desired level. 

A recent paper [Merrill 821 describes the technique 
used to perform aggregation/disaggregation in the 
SEEDIS system which was mentioned in the introduction. 
It uses tables to represent the mapping between any 

two sets of category attribute values of interest. lt 
deals only with mappings for geographical categories, 
but the amount of detail is still large since there are so 
many different geographic categories used by federal 
and state government. In [Johnson 81a] a technique is 
proposed for modeling these mappings by associating 
them with relationships of the Entity-Relationship model. 

county business patterns 
by statxindustry 

inrlllctrial 

reporting units by 

states L 
employees payrolls reporting 

,..T;+.. ",I I L3 

A\ 
. . . 

1-3 4-7 500 or 
more 

iron lead & zinc 
ores ores 

Proceedings of the Eighth International Cotiference 
on Very Large Data Bases 

218 

FIGURE 4: SUBJECT graph for county 
business patterns of figure 1. 

Mexico City, September, 1982 



7. User Interface 

From the Examples section above, it is evident that 
one of the major problems for a user interfacing to large 
SDBs is to determine the content of the data base and 
the terms used for its attributes. Such problems are 
referred to as meta-data problems since they deal with 
information about the data. Meta-data is much more 
complex than listing the record types (or relations) and 
the attribute names and types. It includes information 
such as missing data specification, data quality specifi- 
cation (to indicate how reliable the data could be con- 
sidered), a history of data base creation and modifica- 
tions, complex attribute structures (e.g. vectors to 
represent the boundaries of geographical regions), etc. 
In a paper published in this proceedings [McCarthy 821, 
a comprehensive list of requirements for meta-data is 
given , with special attention given to SDBs. 

Whenever it is necessary to deal with the diversity 
and complexity of data bases such as the energy data 
of EIA described in Example 5, special techniques of 
classifying information may be needed. In fact, for the 
EIA data base, it was helpful to use a technique that is 
usually used in library systems, called “facet classifica- 
tion”. Using this technique, summary attributes are 
described using facets. For example, some of the 
facets used for the eneray data are: energy source (Oil, 
coal, etc.), function (produced, shipped, etc.), units of 
measure, dates, etc. Each facet is a hierarchy of terms 
that can be quite deep, as is the case with energy 
source. A combination of the terms from the facet 
hierarchies is then used to describe a summary attribute 
(for example, heating oil refined in mid-western states 
during 1977). This technique can avoid conflicts in 
definition of similar attributes since they have to be 
defined using terms from predefined facets. 

It is interesting to note that the SUBJECT graphs 
described previously are powerful enough to describe 
facets, since cluster nodes can represent a facet 
hierarchy. Indeed, SUBJECT is used to describe meta- 
data in a hierarchical manner, so that a user can start at 
a high level (e.g. population data, energy data, etc.), 
and gradually narrow down to the data set needed. 

The distinction between meta-data and data is not 
always obvious. Information that is stored in the data 
base can sometimes be thought of as meta-data and 
vice versa. This is particularly true of the values of 
category attributes. For example, if a user is inquiring 
about the content of the data base in Figure 3, it is as 
natural to ask what are the summary attributes (e.g. 
consumption) as it is to ask what years are covered or 
what are the oil types. Again, this argues for associating 
the list of values of category attributes with a dictionary 
rather than to store them with the data. 

What about query languages? Are there any spe- 
cial problems associated with SDBs? Aggregation is a 
predominant function that needs to be supported. How- 
ever, it is perhaps the most awkward function to 
express in many query languages. In addition to enrich- 
ing data models to support automatic aggregation, work 
is being done to simplify the expression of aggregate 
functions. For example, [Klug 811 proposes an exten- 
sion to query-by-example in order to support aggregate 
functions in SDBs. Perhaps a combination of menu driven 
techniques (such as those used in SUBJECT), graphics 
techniques (such as described in [Wong & Kuo 821 in 
this proceedings), and simple command languages can 
bring about more convenient user interfaces. 

8. Integrating statistical analysis and 
data management 

In order to perform statistical analysis, an analyst 
needs both data management tools and statistical tools. 
Unfortunately, these tools are not usually integrated into 
a single system. Data management systems support only 
a limited number of statistical functions, and statistical 
packages have limited data management capabilities. 

There are three possible approaches to this prob- 
lem. The first is to enrich statistical packages with more 
general data base structures and more powerful data 
management functions. Evidence of this approach can 
be found in new releases of statistical packages, where 
many systems now support some kind of hierarchical or 
network data structure, while past versions supported 
only “flat files”. However, they still lack many functions, 
such as joining two tables, or supporting summary sets 
(or views). 

The second approach is to enrich existing data 
management systems with tools useful to an analyst, 
such as taking random samples, and a library of statisti- 
cal operators. An example of this approach is described 
in [Hideto & Kobayashi 811, where statistical facilities 
are added to a commercial data management system, 
Model 204. 

The third approach involves interfacing statistical 
packages to data management systems. There are three 
variations to this approach. the first is to tightly couple 
each pair of systems. Usually a pair is selected for an 
application and is expected to last a long time. One 
such experience is described in [Weeks et al 811. The 
second variation involves defining a standard data for- 
mat that all systems accept. In the long run this is a 
more effective method to implement since each new sys- 
tem added is only required to communicate with the 
standard format in order to communicate to all systems. 
However, this technique may be less efficient in terms of 
processing time since two translators are involved, 
unless changes can be made to the software of the sys- 
tems involved. This approach was taken in the SEEDIS 
project mentioned above, where a fairly simple standard, 
called CODATA was quite successful in integrating 
several components of the system. An essential feature 
of such a standard is that it is self describing, i.e. that 
data bases carry their own data definition. The third 
variation involves a monitor that takes care of interfac- 
ing the systems, but presents the user with the impres- 
sion of a single system. an example of this variation is 
described in [Hollabaugh 81 Reinwald 811. 

An important point to note is that regardless of the 
approach taken, it is quite essential that statistical 
operations should produce self-describing data struc- 
tures that contain meta-data as well as data. Analysts 
have been burdened by having to keep hand-written 
documentation of the mete-data as they perform the 
analysis. As the analysis process progresses, it 
becomes increasingly difficult to keep track of these 
meta-data descriptions. 

It is not clear which of the above approaches is the 
most successful. Perhaps future systems can be 
designed from the start to accommodate both statistical 
analysis and data management needs. The system S 

[Becker & Chambers 803 was designed with this goal in 
mind. It also uses a certain form of self-describing data 
structures. 

Proceedings of the Eighth International Conference 
on Very Large Data Bases 219 Mexico City, September, 1982 



9. Security 

Security problems in statistical data bases arise 
from the wish to provide statistical information without 
compromising sensitive information about individuals. 
Providing the necessary security is also referred to as 
inference control since it is intended to prevent the 
inference of protected information from any collection of 
legitimate statistical queries. 

Here again, it is convenient to distinguish between 
category and summary attributes. It is customary to 
consider the individual values of the summary attributes 
as the ones that should be protected. Consider, for 
example, a medical experiment in which individuals are 
treated with a certain drug and its effect are measured 
in terms of blood pressure, body temperature, etc. Other 
information about the individuals may be collected such 
as medical history, living conditions, income, etc. Clearly, 
some of the information is sensitive such as income or 
medical history. Suppose that the correlation between 
blood pressure and income is to be explored. A legiti- 
mate query might be “find the average blood pressure on 
a certain date for males whose ineome is over 50000”. 
Date, sex and income are the “selecting” or category 
attributes, while blood pressure is the summary attribute 
over which a statistical operation is applied. Thus, 
“blood pressure” is the summary attribute that should be 
protected. 

Unfortunately, it is not sufficient to protect only the 
summary attributes. Suppose, for example, that the 
blood pressure of some individual is known to an intruder. 
By repeated application of the above query at different 
Income levels, he can infer information about the income 
of the individual, i.e. information about a category attri- 
bute can also be inferred. Furthermore, attributes can 
change their roles between category and summary. For 
example, in the query “find the average income of males 
whose blood pressure exceeds a certain level”, income 
ls the summary attribute, while blood pressure is the 
category attribute. 

There is an extensive list of papers that discuss 
problems and propose protection mechanisms for statist- 
ical data bases. Several of these mechanisms are 
briefly discussed here. Interestingly, some of the impor- 
tant results are negative. The different techniques are 
applicable to different circumstances and needs. 

9.1. Limiting the query set 

One of the more obvious techniques is to limit the 
number of cases (individuals) that qualify as a result of 
a query, called a query set. If the query set is below a 
pre-specified threshold, then the statistical operation 
should not be applied over it and the query is refused. 
However, this technique is quite useless. Intuitively, 
several queries can be issued whose query sets overlap, 
until a desired individual value can be inferred. Indeed, 
this was not only shown to be the case [Schlorer 75, 
Denning et al 791, but an efficient procedure for finding 
the snooping queries (called a “tracker”) has been dev- 
ised [Denning & Schlorer 801. 

9.2. Limiting intersection of query sets 

To remedy this deficiency another approach has 
been suggested, where the system keeps track of pre- 
vious queries and verifies that a new query request 
does not intersect excessively with previous queries 
[e.g. Dobkin et al 791. Analyzing audit trails is not a sim- 
ple matter, and techniques have been proposed for 

Proceedings of the Eighth international Conference 
on Very Large Data Bases 

keeping track of the query sets of previous queries 
instead [Chin & Ozsoyoglu 811. A new query is allowed 
as long as the intersection between its query set and 
those query sets previously answered do not fall below 
a pre-selected threshold. The main problem with this 
approach is that whether or not a certain query can be 
answered depends on the previous queries issued since 
the time that the data base was created. Also, for large 
data bases the number of previously accessed data 
sets may become quite large. This technique is thought 
to be advantageous for relatively small databases, such 
as medical experiments where the number of subjects is 
limited. In contrast, the technique described next iS 
useful only when requested query sets are large. 

9.3. Random sample queries 

This technique, proposed by [Denning 803, SPPlieS 

the statistical operation on a set of values drawn ran- 
domly from the query set. This makes it impossible for 
users to control precisely the query set from which the 
responses to their queries are drawn. Clearly, for such 
an approach to be successful, the query sets requested 
must he large enough to allow responses based on ran- 
dom samples to be statistically meaningful. Thus, this 
approach is only useful with large data bases, and for 
applications whose typical query sets are large. 

9.4. Partitioning of the data base 

In many applications it is possible to pre-determine 
that groups of individuals (cases) should be always 
accessed together for statistical purposes [e.g. Yu and 
Chin 771. The individuals within the groups cannot be 
accessed. In fact, a form of this technique, where the 
values for the groups are pre-aggregated, is probably 
the most widely used. Such is the case in census data 
bases, where information about individuals is prohibited 
by law. Only pre-aggregated data is available to users. 
One of the problems associated with such an approach is 
that sometimes the groups, as defined, may contain only 
a few individuals, and therefore one can infer information 
about individuals from the aggregated data. For exam- 
ple, if there are very few American Indian families living 
in a certain area, then aggregating over racial groups 
may reveal information about the individual families. This 
forces values to be suppressed from the data base as 
long as the number of individuals in a group is below a 
certain level. 

9.5. Perturbing data values 

There are two approaches to data perturbation: 
perturbing output values before presenting them to the 
user, and perturbing the actual values stored in the data 
base. Example Papers of output perturbation are [Haq 
773 and [Achugbue 81 Chin 781. [Beck 801 discusses 
techniques for perturbing the stored values, and also 
covers Previous work in the area. 

The main difficulty with this approach is to insure 
that the error introduced is within acceptable bounds. 
There is a trade-off between the level of security that 
can be achieved and the variance of perturbation intro- 
duced. With a sufficient number of overlapping queries it 
is possible to narrow the range of values for an indivi- 
dual. The challenge is in developing techniques that can 
provide fairly accurate statistical responses, while 
keeping the inference of the range of individual values 
sufficiently large for security purposes. 

220 Mexico City, September, 1982 



To summarize, providing security in statistical data 
bases is a difficult problem. There seems to be no single 
general solution. Therefore, numerous techniques have 
been suggested that can be used for different applica- 
tions and needs. Much of the research so far has been 
applied only with restricted assumptions, such as only 
SUM queries, or only a single case (record) for each ele- 
ment of the cross product of the category attributes 
[Kam & Ullman 771. There is still active research in this 
area. 

10. Concluding remarks 

The purpose of this paper was to describe the 
characteristics and problems that exist in statistical 
data bases, and to highlight some of the interesting work 
now emerging in this area. It is inevitable that some 
work may have been overlooked, especially since this is 
an inter-disciplinary area. 

New research efforts are now emerging in universi- 
ties, such as the University of Florida and the University 
of Wisconsin. In addition, there are continuing efforts in 
laboratories and institutions, such as Lawrence Berkeley 
Laboratory, Lawrence Livermore Laboratory, Battelle 
Pacific Northwest Laboratory, Statistics Canada, Bureau 
of Labor Statistics, and Bell Laboratories. 

The area of statistical data bases is quite important 
in that it encompasses a large variety of application 
areas that usually deal with large amount of data. Much 
of these data are now uselessly archived as there are 
no appropriate tools for their management and analysis. 
This area poses interesting, challenging, and real prob- 
lems that should be addressed by data base research- 
ers. 

Acknowledgement 

I would like to acknowledge the help received from 
Deanne Merrill and John McCarthy in selecting some of 
the examples. I am also grateful for the encouragement 
and support of many of my colleagues at Lawrence 
Berkeley Laboratory. This work was supported by the 
Applied Mathematical Sciences Research Program of the 
Office of Energy Research, U.S. Department of Energy 
under Contract No. DE-AC03-76SF00098. 

References 

[Achugbue & Chin 781 Achugbue, J.O., Chin, F.Y., Out- 
put Perturbation for Protection of Statistical 
Data Bases, Dep. Computing Science, University 
of Alberta, Canada, January, 1978. 

[Baker 761 Baker, M., User’s Guide to the Berkeley 
Transposed File Statistical System: PICKLE, 
Technical Report No.1, 2nd ed., University of Cal- 
ifornia, Berkeley, Survey Research Center, 1976. 

[Beck 801 Beck, L.L., A Security Mechanism for Sta- 
tistical Databases, ACM Trans. Database Syst. 
5, 3, (Sept. 1989), pp. 316338. 

[Becker & Chambers 801 S: A Language and System 
for Data Analysis, Bell Laboratories, July 1980. 

[Boral et al 821 Boral, l-l., Dewitt, D.J., Bates D., A 
Framework for Research in Database Manage- 
ment for Statistical Analysis, Proceedings of the 
ACM SIGMOD International Conference on 
Management of Data, June 1982. 

Proceedings of the Eighth International Conference 
on Very Large Data Bases 221 

[Bragg 811 Data Manipulation Languages for Statisti- 
cal Databases -- The Statistical Analysis System 
(SAS), Proceedings of the First LBL Workshop on 
Statistical Database Management, Dec. 1981, 
pp. 147-l 50. 

[Burnett & Thomas Sl] Burnett, R. A., and Thomas J. J., 
Data Management Support for Statistical Data 
Editing and Subset Selection, Proceedings of the 
First LBL Workshop on Statistical Database 
Management, Dec. 1981, pp. 88-l 02. 

[Chan & Shoshani 811 Chan, P., Shoshani, A., Subject: 
A Directory driven System for Organizing and 
Accessing Large Statistical Databases, Proceed- 
ings of the International Conference on Very 
Large Data Base (VLDB), 1980, pp. 553-563. 

[Chin & Ozsoyoglu 811 Chin, F.Y., Ozsoyoglu G., Auditing 
and Inference Control in Statistical Databases, 
March 1981, to appear in IEEE Transactions on 
Software Engineering. 

[Cohen & Hay 813 Why Are Commercial Database 
Management Systems Rarely Used for Research 
Data? Proceedings of the First LBL Workshop on 
Statistical Database Management, Dec. 1981, 
pp. 132-l 33. 

[Denning et al 791 Denning, D.E., Denning, P.J., 
Schwartz, M.D., The Tracker: A Threat to Statist- 
ical Database Security, ACM Trans. Database 
Syst. 4, 1, (March 1979), pp.76-96. 

[Denning 801 Denning, D.E., Secure Statistical Data- 
bases with Random Sample Queries, ACM Trans. 
Database Syst, 5, 3, (Sep. 1980), pp. 291-315. 

[Denning & Schlorer 801 Denning, D.E., Schlorer, J., A 
Fast Procedure for Finding a Tracker in a Statist- 
ical Database, ACM Trans. Database Syst. 5, 1, 
(March 1980), pp. 88-l 02. 

[DHEW 751 U.S. Department of Health, Education, and 
Welfare, Comparability of Mortality Statistics for 
the Seventh and Eighth Revisions of the Interna- 
tional Classification of Diseases, DHEW Publica- 
tion 76-l 340, Oct. 1975. 

[Dobkin et al 791 Dobkin, D., Jones, A.K., Lipton, R.J., 
Secure Databases: Protection Against User 
Influence ACM Trans. Database Syst. 4, 1, 
(March 1979), pp. 97-106. 

[Eggers & Shoshani 803 Eggers, S. J., Shoshani, A. 
“Efficient Access of Compressed Data,” 
Proceedings of the International Conference on 
Very Large Databases, 6,1980, pp. 205-211. 

[Eggers et al 81 J Eggers, S., Olken, F., Shoshani, A., A 
Compression Technique for Large Statistical 
Databases, Proceedings of the International 
Conference on Very Large Data Base (VLDB), 
1980, pp. 205-211. 

[Gey 811 Gey, F.G., Data Definition for Statistical Sum- 
mary Data or Appearances Can Be Deceiving, 
Proceedings of the First LBL Workshop on Sta- 
tistical Database Management, Dec. 1981, PP. 
3-l 8. 

Mexico City, September, 1982 



[Hammer & Niamir 791 Hammer, M., Niamir, 6. “A Heuris- 
tic Approach to Attribute Partitioning,” ACM SIG- 
MOD Proceedings of the International Confer- 
ence on Management of Data, Boston, 1979, pp. 
93-l 01. 

[Haq 771 Haq, M.I., On safeguarding Statistical Disclo- 
sure by Giving Approximate Answers to Queries, 
Int. Computing Symp., 1977, pp. 491-495. 

[Hollabaugh & Reinwald 811 Hollabaugh L.A., Reinwald, 
L.T., GPI: A Statistical Package / Data base 
Interface, Proceedings of the First LBL Workshop 
on Statistical Database Management, Dec. 
1981, pp. 78-87. 

[Hawthorne 821 Hawthorne, P., Microprocessor 
Assisted tuple access, decompression and 
assembly for statistical database systems, 
Proceedings of the International Conference on 
Very Large Data Base (VLDB), 1982. 

[Hideto & Kobayashi 811 Hideto, I., Kobayashi, Y., Addi- 
tional Facilities of a Conventional DBMS to Sup- 
Port Interactive Statistical Analysis, Proceedings 
of the First LBL Workshop on Statistical Data- 
base Management, Dec. 1981, pp. 25-36. 

[Johansson & Shilling 811 Johansson, J.H., Shilling, J.D., 
Toward the Development of an Integrated 
Economic data Base at the World Bank, Proceed- 
ings of the First LBL Workshop on Statistical 
Database Management, Dec. 1981, pp. 39-40. 

[Johnson 811 Johnson, RR., Modelling Summary Data, 
Proceedings of the ACM SIGMOD International 
Conference on Management of Data, 1981, pp. 
93-97. 

[Johnson 81a] Johnson, R.R., A Data Model for 
Integrating Statistical Interpretations, Proceed- 
ings of the First LBL Workshop on Statistical 
Database Management, Dec. 1981, pp. 176 
189. 

[Kam & Ullman 771 Kam, J.B., Ullman, J.D., A Model of 
Statistical Databases and Their Security, ACM 
Trans. Database Syst. 2, 1, (March 1 Q77), 
pp.l-10. 

[Klug 811 Klug, A., Abe -- A Query Language for Con- 
structing Aggregates-by-example, Proceedings 
of the First LBL Workshop on Statistical Data- 
base Management, Dec. 1981, pp. 190-205. 

[Lehot 771 Lehot, P., Misuki, M., Rosenthal, A., Szabo, 
S., On the Optimal Attribute Ordering for an 
Indexed Sequential File Organization, IEEE Asi- 
lomar Conference on Computer Systems, 1977. 

[McCarthy 821 McCarthy J., Meta data Management 
for Large Statistical Databases, Proceedings of 
the International Conference on Very Large Data 
Base (vLDB), 1982. 

[McCarthy et al 821 McCarthy, J.L., Merrill, D.W., 
Marcus, A., Benson, W.H., Gey, F.C., Holmes, H., 
Quong, C., The SEEDIS Project: A Summary Over- 
view of the Social, Economic, Environmental, 
Demographic Information System, Lawrence 
Berkeley Laboratory document PUB-424, April 
1982. 

Proceedings of the Eighth International Conference 
on Verv Larae Data Bases 

222 

[Merrill et al 791 Merrill, D., Levine, S., Sacks, S., Sel- 
vin, S., PAREP: Populations at Risk to Environmen- 
tal Pollution, Lawrence Berkeley Laboratory 
Document LBL-9976, October 1979. 

[Merrill 821 Merrill, D., Problems in Spatial Data 
Analysis, Proceedings of the Seventh Annual SAS 
Users Group International Conference, San Fran- 
cisco. Feb. 1982. 

[Meyers SQ] Meyers, E.D. Jr., Project IMPRESS: Time 
Sharing in the Social Sciences, AFIPS Confer- 
ence Proceedings of the Spring Joint Computer 
Conference, Vol. 34, 1969, pp. 673-680. 

[Nie et al 751 Nie, NH., et al, SPSS: Statistical Pack- 
age for the Social Sciences, Second Edition, 
McGraw Hill, New York, 1975. 

[SAS 791 SAS Institute, Inc., SAS User’s Guide, 1979 
Edition, Raleigh, North Carolina, 1979. 

[Schlorer 751 Schlorer, J., Identification and Retrieval 
of Personal Records from a Statistical Data Bank, 
Methods Inform. in Medicine 14, 1, (Jan. 1 Q75), 
pp. 7-l 3. 

[Svensson 791 Svensson, P. On Search Performance 
for Conjunctive Queries in Compressed, Fully 
Transposed Ordered Files, Proceedings of the 
International Conference on Very Large Data- 
bases, 5, 1979, pp. 155-l 63. 

[Teitel 771 Teitel, R.F., Relational Database Models and 
Social Science Computing, Proceedings of Com- 
puter Science and Statistics: Tenth Annual Sym- 
posium on the Interface, Gaithersburg, MD, 
y;;;;7Bureau of Standards, April 1977, pp. 

- . 

[Turner et al 791 Turner, M. J., Hammond, R. and Cotton, 
F. A DBMS for Large Statistical Databases, 
Proceedings of the International Conference on 
Very Large Databases, 5,1Q7Q, pp. 31 Q-327. 

[Weeks et al 811 Weeks, P., Weiss, S., Stevens, P., 
Flexible Techniques for Storage and Analysis of 
Large Continuing Surveys, Proceedings of the 
First LBL Workshop on Statistical Database 
Management, Dec. 1981, pp. 31 O-31 1. 

[Wong & Kuo 821 Wong, H.K.T., Kuo, I., A Graphical User 
Interface for Database Exploration, Proceedings 
of the International Conference on Very Large 
Data Base (VLDB), 1982. 

[Vu and Chin 771 Yu, CT., Chin, F.Y., A Study on the 
Protection of Statistical Databases, ACM SIG- 
MOD Int. Conf. on Management of Data, 1977, 
pp. 169-l 81. 

Mexico City, September, 1982 


