
RANDOMIZING, A PRACTICAL METHOD FOR PROTECTING
STATISTICAL DATABASES AGAINST COHPROElISE

Ernst Leiss

Department of Computer Science, University of Houston
Houston Texas 77004

Abstract

This paper reports on a method for protecting
statistical databases against inference,
developed over the past four years. The method,
called randomizing, is conceptually elegant,
easy to implement at very small additional cost,
and requires no on-going maintenance. It can be
equally applied to small and medium-size as well
as large databases, because it does not depend
on sampling techniques in the conventional
sense. Thus we feel that randomizing is an
eminently practical and effective method if the
protection of statistical data against inference
is of concern.

1. Introduction

In the past decade, the importance of databases

to the operation of large and medium-size

enterprises has gradually been realized. In

parallel with this development, a significant

increase in sophistication with regard to

database design and database implementation has

occurred. In particular, a number of questions

arose out of practical consideration which

previously were considered purely academic. Many

of these questions are related either to

concurrency of operations or to security of

data.

The term data security encompasses a very large

area, from the physical protection of tape reels

to the most sophisticated kernel design

methodologies. In this paper we are primarily

interested in statistical databases. These are

databases containing numerical data where access

to individual entries is not permitted (except

to users with special authorization), but

statistics concerning several data items are

supplied to the users of this database. As an

example, consider a database containing

information about the state of health of top

government officials. While there may be a

legitimate interest of the general public in,

say, the number of psychiatric treatments

administered to members of the government with

cabinet rank during the past five years, it

might have severe implications if an official

could be identified as one of the recipients

(cf. Sen. Eagleton). Thus security of

statistical databases is concerned with the

problem whether it is possible to infer from

responses to .legitimate queries information

which is explicitly hidden from the general

user. In other words, the important issue in

statistical database security is inference

control.

Proceedings of the Eighth International Conference
on Very Large Data Bases

189
Mexico City, September, 1982

2. The Model

Throughout this paper we will assume a

relational database (see [l] or [23], e. g.)

consisting of keys (which may be a combination

of columns, called category fields) used to

access the items or records; the (numerical)

values of the database items are assumed to be

confidential. The assumption of a relational

database is for technical reasons only. In our

particular database model, access to items is by

specifying the item's index (an integer denoting

its position in the database). The index is to

be considered the primary key in this setting.

This model is called key-specified; it is an

abstraction of the usual model where access is

by way of characteristic formulae (see [14]).

For both access mechanisms, a query is a request

to supply the information associated with the

items specified in the query.

In a statistical database all the items are

considered confidential (secret); thus they are

to be protected against unauthorized access.

However in many cases (census information, e.

g.) there is a legitimate interest in obtaining

statistical access to these data (e. g. "average

income of all fathers of six or more children").

Thus a user may not be authorized to access

individual items but s/he may have access to the

average or median of a number of items. These

queries are called queries of type average or

median.

We say a database is compromised if a user can

determine the value of any item (which was

previously unknown) from the responses to legal

queries. A database is called secure if it can

not be compromised.

Proceedings of the Eighth International Conference
on Very Large Data Bases

190

3. Randomizing

The literature is replete with results

demonstrating the difffculty of obtaining secure

databases with the traditional approaches (see

for instance [2,...,11,15,...,22]; for a

general overview see [14]). However, clearly

there is a need for secure databases. In the

following we will outline just that: A database

which is almost identical to the conventional

statistical database and yet it can be shown to

be secure. !joreover the method is conceptually

very simple, it can be superimposed on

practically any ex sting database, and the

additional cost is quite negligible in most

cases (see Section 7.). We will describe our

approach exclusive 1 y in terms of queries of type

average, although t works also with queries of

other types. We propose a method using random

selection. Rather than using queries of type

average of k elements we employ the following

type of queries where v>O: The user provides (as

usual) k indices il,...,ik and the system

determines the corresponding database elements

DK(i,),..., DK(ik); but instead of computing the

average of these k values the system first

determines randomly another v elements of the

database and then computes the average of these

ktv elements. Clearly for v=O we obtain the

original queries of type average. For v>l, this

method will be called randomizing and the

queries will be referred to as randomized

queries of type average. Thus if q is the

response to the randomized query of type average

(il,...,ik), then we have

9 = (i=,DK(ij) + 1
J=l

DK(sj))/(k+v)

where DK(sj) is a result of the random selector

function S and DK(m) is the value of the

database element selected by index m. In the

Mexico City, September, 1982

following we will concentrate mainly on the case

where v=l. However all the results for v=l can

also be applied to the case where v>l. Note that

for k not too small, the response of such a

query will be a good approximation on the

(desired) precise value (average of

{DK(i.,,..., DK(ik))). The main claim of the

paper is now as follows:

Theorem: Let v=l, k not too small (e.g. k>5),

and assume that no database items are known to

the compromiser. It is impossible to compromise

a database with randomized queries of type

average.

Proof: The proof consists of two parts. First we

assume that our way to compromise a database is

by solving a system of linear equations obtained

directly from a sequence of queries. We claim

that in this case our database cannot be

compromised. We first observe that our best

"guess" for the values DK(sj) determined by the

random selector function S is the average s'

taken over all responses to the queries issued.

Therefore rather than solving a system of

equations

D*x = k*q

where D is the matrix derived from our given

sequence of queries we must solve the modified

system

where

D*x = q'

q' = ((ktl)q,-s,,...,(k+l)q&.

However all w;iat we can solve is the system

D*x = q”

where

q" = ((k+l)q,-s',...,(k+l)qt-s');

in other words q' contains errors and is given

by q". The sensitivity of a system of linear

equations M*x=c to errors in c is usually

measured by the condition number

cond(M) = 1 IMI 1.1 IM' (/

where I I 1 I is some matrix norm and M' denotes

the inverse matrix to M. We choose the following

norm 11 I I:

M=(m(i,j))
l<i,jin

It can now be shown (see for instance [14]) that

for any matrix D involved in possible

compromise,

cond(D) 2 t.

This implies that all matrices D are quite

sensitive to errors; note that t>k. Furthermore

on the average the errors can be expected to be

considerable; if we assume that the sj are

.distributed uniformly, sj-s' will be of the same

order of magnitude as s' on the average.

Therefore it is not possible to obtain useful

results when solving this system of equations;

the database can not be compromised.

In the second part of the proof we show that the

method of "filtering out" the "noise" introduced

by the "errors" does not achieve compromise

either. Let

qj : (i(j,l),..., i(j,k)) for j=l,...,t

be a sequence of queries of type randomized

average corresponding to a matrix D of dimension

t such that the following holds: if S; is qj as

a query of type (nonrandomized) average then by

solving D*x=k*q' we can determine all

DK(i,),..., DK(it). Mow define q(j,m) to be the

response to the mth repetition of query qj; note

that in general q(j,m)#q(j,n) since the result

sm of the random selector function S in the mth

repetition will usually differ from its result

s, in the nth repetition although otherwise the

queries q(j,m) and q(j,n) are identical. However

Proceedings of the Eighth International Conference
on Very Large Data Bases 191

Mexico City, September, 1982

(q(j ,1 I+:. .+s(j ,N’ 1)/N’ We remark that other schemes for compromise, in

might converge to a certain value with particular trackers ([19]; also [7,6]) can not

increasing N', say to qJ; thus we would get be applied within our framework.

qj = ,&d(j,n) DK(in) t sj

where D=(d(j,n)). Assuming that the sj are not

all equal, it is not difficult to see that the

database cannot be compromised. Of course we

assume that no sj is known; note that this

information cannot be retrieved from the queries

if one uses the following scheme. Let T be a

uniform random selector function; whenever a

query of type randomized average is posed, two

calls to T are made yielding t, and t2. He

determine which one of these two values is to be

returned as value for S in such a way that it

"depends on all DK(ij) for j=l,...,k in the

query", i.e. if (il,...,ik) is the sequence of

indices specified by the user in the query and

the choice of S based on this sequence is

maxIt,,t21 (is minCt,,t21) then for all i.,

j=l ,...,k, there exists an index gj in ilf...,Nl

such that the choice of S based on the new

sequence of indices

(i,,...,i j-,'4j,ijtl,...,ik)

is min{t,,t2} (is maxCt,,t2)). A concrete scheme

to achieve this is the following. Let E be the

boolean expression

E=[(DK(il)sDK(i2))@...@(D~(ik-l)<DK(ik))]

where $ is the exclusive-or operator defined by

e 1 true false

Then S yields the value maxtt,,t21 iff E is

true. This scheme satisfies the above condition

and has the additional advantage that on the

average max{t,,t21 and minCt,,t21 are returned

equally often. Note that in this way no

information about the range of the DK(s) is

required, no time dependency is introduced, and

no previous values of T must be stored.

Proceedings of the Eighth International Conference
on Very barge Data Bases

4. Randomizing: Simulation Results

In order to provide pratical results, several

extensive simulations were performed. In all

simulations described in this paper, the

database elements as well as the randomly

selected elements were obtained through

successive calls to a uniform random number

generator (URAND). The first simulation ([12])

was directed at the accuracy of the responses to

the queries. It turned out that for small k (k=5

and k=lO), the accuracy of the responses was

acceptable on the average but the worst case was

quite bad; on the other hand, for larger k

(kr20) both the average as well as the worst

case are very satisfactory (see Fig. 1).

The second simulation ([13]) demonstrates that a

good deal of care must be exercised in the

choice of the random elements. More

specifically, the simulation contrasts the

security of randomized databases where the

choice of the random element is as described

above (using the logical formula E) with the

simple minded approach where the random element

is selected in a uniformly distributed way. The

implication of this simulation is that it is

necessary to use the more complicated selection

method if one is interested in security (see

Fig. 2).

This last simulation also shows that "filtering

out" the error in the responses by repeating the

same query many times does not achieve

compromise. More specifically, the simulation

determines the probability with which a computed

(compromised) value of a database element is

afflicted with an error of a given magnitude. It

shows that even for 1000 repetitions of the same

query the probabilities of large errors are very

substantial, if the sophisticated selection

method is chosen.

192 Mexico City, September, 1982

Average Maximal
k relative error in percent
5 8.9 140

10 4.7 30
20 2.4 11
50 1.0 3.5

100 0.5 1.4

Fig. 1 Accuracy of the responses to queries
(No elements assumed known)

repetitions repetitions
k i 1000 i 1000
5 24.05 38.28

2
24.34 74.56

10 20.11 26.75 10 19.32
20 17.48 15.86 20 17.78 ii::;
50 16.92 7.99 50 17.03 93.76

100 16.25 4.67 100 16.27 95.07

sophisticated method simple method

Fig. 2 Probability in percent that the error
of a computed database element is less
than 16 percent

(No elements assumed known)

5. Accuracy and Restricted Randomizing

It is evident from the data in Figure 1 that for

smaller k, say k<20, the accuracy of the

responses can be quite bad. In fact, it is not

difficult to see that the .relative error

introduced by randomizing a query can be

arbitrarily bad. The question arises whether

this can be excluded. It should be noted that it

is the maximal error of the responses which is

rather unpleasant; the average error is quite

acceptable even for smaller k. This suggests the

notion of restricted randomizing.

Consider a query (i,,...,i,) (of type average);

let q be its (true) response, i.e.

q = [DK(i,)+...+ DK(ik)] / k.

In our randomized model the response will not be

q but q', defined by

q ' = [DK(i,) + . . . + D&(i,) + DK(s)l / (k+l)
where s is the result of a call to the random

selector function (assuming v=l). As pointed

out, q' may differ arbitrarily from q. Let mx

(mn) be the largest (smallest) of the elements

DK(ij), j=l,..., k. Instead of allowing DK(s) to

be arbitrary we require it to satisfy the

following inequalities:

q - (mxtmn) / (2.j) 2 DK(s) 2 q + (mx+mn) / (2j)

for some j>O suitably chosen. This method of

selecting the randomly chosen element is then

called restricted randomizing. Clearly the

crucial point is the choice of j. If j is too

small (j<<l) then for all practical purposes we

will end up with unrestricted randomizing; if j

is too large the contribution of DK(s) will not

change q at all thereby rendering the method

useless as now the database can be compromised.

Furthermore if j is too large, it is possible

that no DK(s) satisfies the required

inequalities. In these and similar cases (mx=mn,

e.g.), alternative schemes must be provided. The

following method was found to be useful. Let S

be the sophisticated random selector function

described above. Given a query (i,,...,i,) we

make a call to S; let the result of this call be

x. Then we test whether DK(x) satisfies the

inequalities; if yes then we use this index x in

the computation of q' otherwise we continue

calling S (regardless of the previous seed!)

until either the result does satisfy the

requirements or else until a certain preset

number of successive calls to S has been made

(e.g. 20j) in which case the value to be used in

the computation of q' is that which came closest

to satisfying the conditions.

A note-worthy by-product of our method is an

intriguing security-accuracy trade-off. It can

be briefly stated as follows. Increasing the

security of the database can be done at a price

in accuracy of the responses, and conversely

increasing the accuracy of the responses results

in a decrease of the security of the database.

There are two ways in which the accuracy of the

responses to queries can be influenced, namely

the choice of v and the choice of j. Choosing v

greater than 1 will diminish the precision of

the responses (as clearly the contribution of

Proceedings of the Eighth International Conference
on Very Large Data Bases 193 Mexico City, September, 1982

the randomly chosen elements will be greater); a

similar effect is obtained if j, the randomizing

parameter, is chosen very small (since in this

case the randomly selected elements do not

depend at all on the size of the other elements

in the query). Selecting a very large j will

open the database to easy attacks, it will not

be secure any longer.

Clearly, the choice of v and j is to be made by

the owner of the database; in fact, it may even

be desirable to choose different values for v

and j for different users (e.g. depending on

their authorization). This security-accuracy

trade-off is very appropriate as it reflects

reality in that not all data are to be

considered equally confidential and that not all

users are equally trusted. Thus a judicious

choice of values for v and j permits database

owners to reflect different degrees of

confidentiality of their data with regards to

different audiences.

6. Restricted Randomizing: Simulation Results

In order to obtain data concerning the accuracy

of the responses another simulation was done

exactly like the first one (whose results are

reported in Figure 1) but implementing the above

described method of restricted randomizing. The

results for k=5,10,20 are given below in Figure

3 for various values of j, namely

j=1,2,5,10,20,53.

Then we conducted another experiment by way of

simulation in order to establish that this class

of methods indeed results in secure databases

for sensible choices of j. This simulation is

compatible with all the others. In order to

determine how secure the resulting database is,

we deternined the probability that the computed

value of any (compromised) database element is

afflicted with an error of a certain magnitude.

Method and results of this very extensive

simulation are discussed at length in [13]; here

we give only part of the tables obtained. Figure

4 gives the probability that the computed value

of any database element has an error less than a

certain threshold, here 16% and 4%. More

specifically, if we are using queries with k

indices and we attempt to compromise, i.e.

compute the value of a particular database

element, the expected or probable error which

this computed value will have (owing to the fact

that the queries are randomized) can be derived

from Figure 4. For example, if we know that the

randomizing factor j is 10 and that k is 100,

then the probability that the computed value for

the element is within four percent of the true

value of the database item is 21.06% if no

filtering was used, and it is 19.64% if 1000

repetitions were used.

The results suggest that restricted randomizing

for a suitable choice of j is a very useful way

of protecting confidential data on the one hand

while on the other hand providing meaningful

statistical information based on these

confidential database items.

average maximal
relative relative
error in error in
percent percent

k j
51 8.2 65

2 5.8 54
5 2.8 28.5

10 2.1 21.3
20 1.9 23.4
50 1.8 17.1

10 1 4.7 25.9
2 3.9 19.4

1;
1.8 14.0
1.2 12.0

20 1.04 12.9
50 0.99 10.4

20 1 2.4 11.2
2 2.2 10.9
5 0.93 4.6

10 0.6 3.9
20 0.47 3.8
50 0.43 3.4

Figure 3: Accuracy with restricted
randomizing

Proceedings of the Eighth International Conference
on Very Large Data Bases 194 Mexico City, September, 1982

$2 assumption in view of insertion and deletion of

records). In both cases, the random selection

can however be performed by randomly selecting

access paths. The most straight-forward (albeit

possibly not always most efficient) way is

probably to choose randomly at any given node in

the tree or graph, which edge leaving this node

is to be taken, until some termination criterion

is met. A good deal of care must be exercised in

the selection of the starting point for these

random access paths. In the hierarchical model,

the access paths will start at the root of the

appropriate tree, in the network model one must

probably have several starting points to ensure

randomness of the resulting choice of element.

The problem in the network model is that there

may be several paths leading to the same record

(this is in contrast to the hierarchical model

where there is precisely one path starting at

the root to any particular node), and moreover,

different records may have vastly different

"accessibility". For example, for one record

there may be a single access path while for

another record there are twenty different access

paths; consequently without additional

precautions the second record is much more

likely to be "randomly" chosen in this way than

the first. This problem can be overcome with

several starting points for the randomly chosen

access paths.

reoetitions reoetitions
k 1' 1000 1' 1000
5 36.22 48.29 9.93 18.33

10 24.46 35.61 6.51 5.45
20 19.54 22.46 4.93 0.84

1;:
17.39 10.96 4.31 0.00
16.65 5.98 4.14 0.00

j=5
5 63.37 74.80 21.62 28.53

10 55.71 75.15 15.40 24.05
20 48.57 68.35 12.44 7.92
50 43.61 62.42 11.09 0.78

100 41.98 60.27 10.49 0.08

j=lO
5 75.81 74.94 27.69 24.94

:; 77.03 74.91 85.45 81.90 25.17 29.50 32.11 39.81

50 71.42 81.11 21.85 21.29
100 70.31 80.29 21.06 19.64

j=20
5 75.15 75.38 25.84 25.73

:i 82.51 85.74 81.86 88.74 43.44 45.86 49.19 63.93
85.52 91.02 43.21 65.44
84.78 90.09 41.76 60.06

Probability in percent that the error of a
computed database element is less than 16
percent (left two columns of the table)
and less than 4 percent (right two columns
of table) for various values of .j and
k; no elements assumed known.

Figure 4

7. Implementation Considerations

The description of our method is in terms of the

conceptual level of a database. Clearly, the

actual inplementation of the method will depend

to a significant extent on the kind of database

which is used. If a relational database

implementation is employed, the description

given here can be directly carried over,

provided it is possible to talk about the ith

tuple in a table. If the database model employed

in the inplementation is either the

hierarchical or the network model, the

siiuation changes somewhat since it does not

make sense any longer to talk about the ith

record (unless the records are numbered from 1

to N contiguously -- not a very realistic

References -___

[1] DATE, C.J. An Introduction to Data Base
Systems
Addison-Wesley Reading, Mass., 1975

[2] DAVIDA, G.I., LINTON, D.J., SZELAG, C.
R ., WELLS, D.L. Database Security
IEEE Transactions on Software Engineering, Vol.
SE-4, No. 6, November 1973, 531-533

[3] DEMILLO, R.A., DOBKIN, D., LIPTON, R.J.
Even Data Bases That Lie Can Be Compromised
IEEE Transactions on Software Engineering, Vol.
SE-4, Ilo. 1, January 1978, 73-75

Proceedings of the Eighth International Conference
on Very Large Data Bases Mexico City, September, 1982

[4] DENHING, D.E. Are Statistical Data Bases
Secure?
Paper presented at the NCC in Annaheim, June
1978

[17] SCHLldRER, J. Identification and Retrieval
of Personal Records from a Statistical Data Bank
Methods of Inform. in Medicine, Vol.'14, No. 1,
January 1975, 7-13

[5] DEWING, D.E. A Review of Research on [18] SCHL'ORER, J. Confidentiality of
Statistical Data Base Security Statistical Records: A Threat Minitoring Scheme
In [24], 15-25 for On-Line Dialogue

[6] DENNING, D.E., DENNING, P.J., SCHWARTZ,
M.D. The Tracker: A Threat to Statistical
Database Security
ACM Transactions on Database Systems, Vol. 4,
No. 1, March 1979, 76-96

Methods of Inform. in Medicine, Vol. 15, No. 1,
January 1976, 36-42

[7] DENNING, D.E., SCHLbRER, J. A Fast
Procedure for Finding a Tracker in a Statistical
Database
ACM ToDS 5,l (March 1980), 88-102.

[19] SCHL'DRER, J. Union Tracker and Open
Statistical Databases
Report TB-IMSD l/78, Institut fUr Medizinische
Statistik und Dokumentation, Universitat
Giessen, June 1978

[8] DOBKIN, D., JONES, A.K., LIPTON, R.J.
Secure Databases: Protection Against User
Inference

[20] SCHWARTZ, M.D. Inference from
Statistical Data Gases
Ph.D. Thesis, Department of Computer Science,
Purdue University, N. Lafayette, Ind., August
1977

ACM Transactions on Database Systems, Vol. 4,
No. 1, March 1979, 97-106

[21] SCHUARTZ, M.D., DENNING, D.E., DENNING,
P.J. Linear Queries in Statistical Data Bases
ToDS Vol. 4, No. 2, June 1979, 156-167

[9] DOBKIN, D., LIPTON, R.J., REISS, S.P.
Aspects of the Database Security Problem
Proceedinos of a Conference on Theoretical
Computer Science, August 15-17, 1977,
of biaterloo, tlaterloo, Ont.

[22] YAO, A.C. A Note on a Conjecture of Kam
and Ullman Concerning Statistical Databases

University Information Processing Letters Vol. 9, No. 1,
July 1979, 48-50

[lo] KAM, J.B., ULLMAN, J.D. A Model
Statistical Databases and Their Secur
ACM Transactions on Database Systems,
No. 1, March 1977, l-10

[ll] LEISS, E. Security in Databases
Queries Involve Averages

of
tY
Vol. 2,

[23] WIEDERHOLD, G. Database Design
McGraw-Hill, New York, New York, 1977

where

[24] DEMILLO, R.D., DOBKIN, D., JONES, A.K.,
LIPTON, R.J. (eds.) Foundations of Secure -~
Computation
Academic Press, New York, 1978

Research Report CS-77-33, Department of Computer
Science, University of !Jaterloo, Waterloo,
Ontario, October 1977

[12] LEISS, E. Database Security and
Restricted Randomizing
Proceedings, Primera Conferencia National
Teoria de Computacidn y Desarrollo de Sof
Santiago, Chile, August 22-24, 1979

en
tware,

[13] LEISS, E. On the Security of Random
Databases: A Simulation

ized

Proceedings, First International Conference on
Computer Science, Santiago, Chile, 1981,
pp. 135-159.

[14] LEISS, E. Principles of Data Security
Plenum Publishing Corporation,- York, New
York, in press

[15] REISS, S.P. Medians and Database
Security
In [24], 57-91

[16] REISS, S.P. Security in Databases: A
Combinatorial Stud
JACM Vol. 26, No. Y, January 1979, 45-57

Proceedings of the Eighth International Conference
on Very Large Data Bases 196 Mexico City, September, 1982

