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Abstract 

This paper reports on a method for protecting 
statistical databases against inference, 
developed over the past four years. The method, 
called randomizing, is conceptually elegant, 
easy to implement at very small additional cost, 
and requires no on-going maintenance. It can be 
equally applied to small and medium-size as well 
as large databases, because it does not depend 
on sampling techniques in the conventional 
sense. Thus we feel that randomizing is an 
eminently practical and effective method if the 
protection of statistical data against inference 
is of concern. 

1. Introduction 

In the past decade, the importance of databases 

to the operation of large and medium-size 

enterprises has gradually been realized. In 

parallel with this development, a significant 

increase in sophistication with regard to 

database design and database implementation has 

occurred. In particular, a number of questions 

arose out of practical consideration which 

previously were considered purely academic. Many 

of these questions are related either to 

concurrency of operations or to security of 

data. 

The term data security encompasses a very large 

area, from the physical protection of tape reels 

to the most sophisticated kernel design 

methodologies. In this paper we are primarily 

interested in statistical databases. These are 

databases containing numerical data where access 

to individual entries is not permitted (except 

to users with special authorization), but 

statistics concerning several data items are 

supplied to the users of this database. As an 

example, consider a database containing 

information about the state of health of top 

government officials. While there may be a 

legitimate interest of the general public in, 

say, the number of psychiatric treatments 

administered to members of the government with 

cabinet rank during the past five years, it 

might have severe implications if an official 

could be identified as one of the recipients 

(cf. Sen. Eagleton). Thus security of 

statistical databases is concerned with the 

problem whether it is possible to infer from 

responses to .legitimate queries information 

which is explicitly hidden from the general 

user. In other words, the important issue in 

statistical database security is inference 

control. 
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2. The Model 

Throughout this paper we will assume a 

relational database (see [l] or [23], e. g.) 

consisting of keys (which may be a combination 

of columns, called category fields) used to 

access the items or records; the (numerical) 

values of the database items are assumed to be 

confidential. The assumption of a relational 

database is for technical reasons only. In our 

particular database model, access to items is by 

specifying the item's index (an integer denoting 

its position in the database). The index is to 

be considered the primary key in this setting. 

This model is called key-specified; it is an 

abstraction of the usual model where access is 

by way of characteristic formulae (see [14]). 

For both access mechanisms, a query is a request 

to supply the information associated with the 

items specified in the query. 

In a statistical database all the items are 

considered confidential (secret); thus they are 

to be protected against unauthorized access. 

However in many cases (census information, e. 

g.) there is a legitimate interest in obtaining 

statistical access to these data (e. g. "average 

income of all fathers of six or more children"). 

Thus a user may not be authorized to access 

individual items but s/he may have access to the 

average or median of a number of items. These 

queries are called queries of type average or 

median. 

We say a database is compromised if a user can 

determine the value of any item (which was 

previously unknown) from the responses to legal 

queries. A database is called secure if it can 

not be compromised. 
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3. Randomizing 

The literature is replete with results 

demonstrating the difffculty of obtaining secure 

databases with the traditional approaches (see 

for instance [2,...,11,15,...,22]; for a 

general overview see [14]). However, clearly 

there is a need for secure databases. In the 

following we will outline just that: A database 

which is almost identical to the conventional 

statistical database and yet it can be shown to 

be secure. !joreover the method is conceptually 

very simple, it can be superimposed on 

practically any ex sting database, and the 

additional cost is quite negligible in most 

cases (see Section 7.). We will describe our 

approach exclusive 1 y in terms of queries of type 

average, although t works also with queries of 

other types. We propose a method using random 

selection. Rather than using queries of type 

average of k elements we employ the following 

type of queries where v>O: The user provides (as 

usual) k indices il,...,ik and the system 

determines the corresponding database elements 

DK(i,),..., DK(ik); but instead of computing the 

average of these k values the system first 

determines randomly another v elements of the 

database and then computes the average of these 

ktv elements. Clearly for v=O we obtain the 

original queries of type average. For v>l, this 

method will be called randomizing and the 

queries will be referred to as randomized 

queries of type average. Thus if q is the 

response to the randomized query of type average 

(il,...,ik), then we have 

9 = (i=,DK(ij) + 1 
J=l 

DK(sj) )/(k+v) 

where DK(sj) is a result of the random selector 

function S and DK(m) is the value of the 

database element selected by index m. In the 
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following we will concentrate mainly on the case 

where v=l. However all the results for v=l can 

also be applied to the case where v>l. Note that 

for k not too small, the response of such a 

query will be a good approximation on the 

(desired) precise value (average of 

{DK(i.,,..., DK(ik))). The main claim of the 

paper is now as follows: 

Theorem: Let v=l, k not too small (e.g. k>5), 

and assume that no database items are known to 

the compromiser. It is impossible to compromise 

a database with randomized queries of type 

average. 

Proof: The proof consists of two parts. First we 

assume that our way to compromise a database is 

by solving a system of linear equations obtained 

directly from a sequence of queries. We claim 

that in this case our database cannot be 

compromised. We first observe that our best 

"guess" for the values DK(sj) determined by the 

random selector function S is the average s' 

taken over all responses to the queries issued. 

Therefore rather than solving a system of 

equations 

D*x = k*q 

where D is the matrix derived from our given 

sequence of queries we must solve the modified 

system 

where 

D*x = q' 

q' = ((ktl)q,-s,,...,(k+l)q&. 

However all w;iat we can solve is the system 

D*x = q” 

where 

q" = ((k+l)q,-s',...,(k+l)qt-s'); 

in other words q' contains errors and is given 

by q". The sensitivity of a system of linear 

equations M*x=c to errors in c is usually 

measured by the condition number 

cond(M) = 1 IMI 1.1 IM' ( / 

where I I 1 I is some matrix norm and M' denotes 

the inverse matrix to M. We choose the following 

norm 11 I I: 

M=(m(i,j)) 
l<i,jin 

It can now be shown (see for instance [14]) that 

for any matrix D involved in possible 

compromise, 

cond(D) 2 t. 

This implies that all matrices D are quite 

sensitive to errors; note that t>k. Furthermore 

on the average the errors can be expected to be 

considerable; if we assume that the sj are 

.distributed uniformly, sj-s' will be of the same 

order of magnitude as s' on the average. 

Therefore it is not possible to obtain useful 

results when solving this system of equations; 

the database can not be compromised. 

In the second part of the proof we show that the 

method of "filtering out" the "noise" introduced 

by the "errors" does not achieve compromise 

either. Let 

qj : ( i(j,l),..., i(j,k) ) for j=l,...,t 

be a sequence of queries of type randomized 

average corresponding to a matrix D of dimension 

t such that the following holds: if S; is qj as 

a query of type (nonrandomized) average then by 

solving D*x=k*q' we can determine all 

DK(i,),..., DK(it). Mow define q(j,m) to be the 

response to the mth repetition of query qj; note 

that in general q(j,m)#q(j,n) since the result 

sm of the random selector function S in the mth 

repetition will usually differ from its result 

s, in the nth repetition although otherwise the 

queries q(j,m) and q(j,n) are identical. However 
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(q(j ,1 I+:. .+s(j ,N’ 1)/N’ We remark that other schemes for compromise, in 

might converge to a certain value with particular trackers ([19]; also [7,6]) can not 

increasing N', say to qJ; thus we would get be applied within our framework. 

qj = ,&d(j,n) DK(in) t sj 

where D=(d(j,n)). Assuming that the sj are not 

all equal, it is not difficult to see that the 

database cannot be compromised. Of course we 

assume that no sj is known; note that this 

information cannot be retrieved from the queries 

if one uses the following scheme. Let T be a 

uniform random selector function; whenever a 

query of type randomized average is posed, two 

calls to T are made yielding t, and t2. He 

determine which one of these two values is to be 

returned as value for S in such a way that it 

"depends on all DK(ij) for j=l,...,k in the 

query", i.e. if (il,...,ik) is the sequence of 

indices specified by the user in the query and 

the choice of S based on this sequence is 

maxIt,,t21 (is minCt,,t21) then for all i., 

j=l ,...,k, there exists an index gj in ilf...,Nl 

such that the choice of S based on the new 

sequence of indices 

(i,,...,i j-,'4j,ijtl,...,ik) 

is min{t,,t2} (is maxCt,,t2)). A concrete scheme 

to achieve this is the following. Let E be the 

boolean expression 

E=[(DK(il)sDK(i2))@...@(D~(ik-l)<DK(ik))] 

where $ is the exclusive-or operator defined by 

e 1 true false 

Then S yields the value maxtt,,t21 iff E is 

true. This scheme satisfies the above condition 

and has the additional advantage that on the 

average max{t,,t21 and minCt,,t21 are returned 

equally often. Note that in this way no 

information about the range of the DK(s) is 

required, no time dependency is introduced, and 

no previous values of T must be stored. 

Proceedings of the Eighth International Conference 
on Very barge Data Bases 

4. Randomizing: Simulation Results 

In order to provide pratical results, several 

extensive simulations were performed. In all 

simulations described in this paper, the 

database elements as well as the randomly 

selected elements were obtained through 

successive calls to a uniform random number 

generator (URAND). The first simulation ([12]) 

was directed at the accuracy of the responses to 

the queries. It turned out that for small k (k=5 

and k=lO), the accuracy of the responses was 

acceptable on the average but the worst case was 

quite bad; on the other hand, for larger k 

(kr20) both the average as well as the worst 

case are very satisfactory (see Fig. 1). 

The second simulation ([13]) demonstrates that a 

good deal of care must be exercised in the 

choice of the random elements. More 

specifically, the simulation contrasts the 

security of randomized databases where the 

choice of the random element is as described 

above (using the logical formula E) with the 

simple minded approach where the random element 

is selected in a uniformly distributed way. The 

implication of this simulation is that it is 

necessary to use the more complicated selection 

method if one is interested in security (see 

Fig. 2). 

This last simulation also shows that "filtering 

out" the error in the responses by repeating the 

same query many times does not achieve 

compromise. More specifically, the simulation 

determines the probability with which a computed 

(compromised) value of a database element is 

afflicted with an error of a given magnitude. It 

shows that even for 1000 repetitions of the same 

query the probabilities of large errors are very 

substantial, if the sophisticated selection 

method is chosen. 
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Average Maximal 
k relative error in percent 
5 8.9 140 

10 4.7 30 
20 2.4 11 
50 1.0 3.5 

100 0.5 1.4 

Fig. 1 Accuracy of the responses to queries 
(No elements assumed known) 

repetitions repetitions 
k i 1000 i 1000 
5 24.05 38.28 

2 
24.34 74.56 

10 20.11 26.75 10 19.32 
20 17.48 15.86 20 17.78 ii::; 
50 16.92 7.99 50 17.03 93.76 

100 16.25 4.67 100 16.27 95.07 

sophisticated method simple method 

Fig. 2 Probability in percent that the error 
of a computed database element is less 
than 16 percent 

(No elements assumed known) 

5. Accuracy and Restricted Randomizing 

It is evident from the data in Figure 1 that for 

smaller k, say k<20, the accuracy of the 

responses can be quite bad. In fact, it is not 

difficult to see that the .relative error 

introduced by randomizing a query can be 

arbitrarily bad. The question arises whether 

this can be excluded. It should be noted that it 

is the maximal error of the responses which is 

rather unpleasant; the average error is quite 

acceptable even for smaller k. This suggests the 

notion of restricted randomizing. 

Consider a query (i,,...,i,) (of type average); 

let q be its (true) response, i.e. 

q = [DK(i,)+...+ DK(ik)] / k. 

In our randomized model the response will not be 

q but q', defined by 

q ' = [DK(i,) + . . . + D&(i,) + DK(s)l / (k+l) 
where s is the result of a call to the random 

selector function (assuming v=l). As pointed 

out, q' may differ arbitrarily from q. Let mx 

(mn) be the largest (smallest) of the elements 

DK(ij), j=l,..., k. Instead of allowing DK(s) to 

be arbitrary we require it to satisfy the 

following inequalities: 

q - (mxtmn) / (2.j) 2 DK(s) 2 q + (mx+mn) / (2j) 

for some j>O suitably chosen. This method of 

selecting the randomly chosen element is then 

called restricted randomizing. Clearly the 

crucial point is the choice of j. If j is too 

small (j<<l) then for all practical purposes we 

will end up with unrestricted randomizing; if j 

is too large the contribution of DK(s) will not 

change q at all thereby rendering the method 

useless as now the database can be compromised. 

Furthermore if j is too large, it is possible 

that no DK(s) satisfies the required 

inequalities. In these and similar cases (mx=mn, 

e.g.), alternative schemes must be provided. The 

following method was found to be useful. Let S 

be the sophisticated random selector function 

described above. Given a query (i,,...,i,) we 

make a call to S; let the result of this call be 

x. Then we test whether DK(x) satisfies the 

inequalities; if yes then we use this index x in 

the computation of q' otherwise we continue 

calling S (regardless of the previous seed!) 

until either the result does satisfy the 

requirements or else until a certain preset 

number of successive calls to S has been made 

(e.g. 20j) in which case the value to be used in 

the computation of q' is that which came closest 

to satisfying the conditions. 

A note-worthy by-product of our method is an 

intriguing security-accuracy trade-off. It can 

be briefly stated as follows. Increasing the 

security of the database can be done at a price 

in accuracy of the responses, and conversely 

increasing the accuracy of the responses results 

in a decrease of the security of the database. 

There are two ways in which the accuracy of the 

responses to queries can be influenced, namely 

the choice of v and the choice of j. Choosing v 

greater than 1 will diminish the precision of 

the responses (as clearly the contribution of 
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the randomly chosen elements will be greater); a 

similar effect is obtained if j, the randomizing 

parameter, is chosen very small (since in this 

case the randomly selected elements do not 

depend at all on the size of the other elements 

in the query). Selecting a very large j will 

open the database to easy attacks, it will not 

be secure any longer. 

Clearly, the choice of v and j is to be made by 

the owner of the database; in fact, it may even 

be desirable to choose different values for v 

and j for different users (e.g. depending on 

their authorization). This security-accuracy 

trade-off is very appropriate as it reflects 

reality in that not all data are to be 

considered equally confidential and that not all 

users are equally trusted. Thus a judicious 

choice of values for v and j permits database 

owners to reflect different degrees of 

confidentiality of their data with regards to 

different audiences. 

6. Restricted Randomizing: Simulation Results 

In order to obtain data concerning the accuracy 

of the responses another simulation was done 

exactly like the first one (whose results are 

reported in Figure 1) but implementing the above 

described method of restricted randomizing. The 

results for k=5,10,20 are given below in Figure 

3 for various values of j, namely 

j=1,2,5,10,20,53. 

Then we conducted another experiment by way of 

simulation in order to establish that this class 

of methods indeed results in secure databases 

for sensible choices of j. This simulation is 

compatible with all the others. In order to 

determine how secure the resulting database is, 

we deternined the probability that the computed 

value of any (compromised) database element is 

afflicted with an error of a certain magnitude. 

Method and results of this very extensive 

simulation are discussed at length in [13]; here 

we give only part of the tables obtained. Figure 

4 gives the probability that the computed value 

of any database element has an error less than a 

certain threshold, here 16% and 4%. More 

specifically, if we are using queries with k 

indices and we attempt to compromise, i.e. 

compute the value of a particular database 

element, the expected or probable error which 

this computed value will have (owing to the fact 

that the queries are randomized) can be derived 

from Figure 4. For example, if we know that the 

randomizing factor j is 10 and that k is 100, 

then the probability that the computed value for 

the element is within four percent of the true 

value of the database item is 21.06% if no 

filtering was used, and it is 19.64% if 1000 

repetitions were used. 

The results suggest that restricted randomizing 

for a suitable choice of j is a very useful way 

of protecting confidential data on the one hand 

while on the other hand providing meaningful 

statistical information based on these 

confidential database items. 

average maximal 
relative relative 
error in error in 
percent percent 

k j 
51 8.2 65 

2 5.8 54 
5 2.8 28.5 

10 2.1 21.3 
20 1.9 23.4 
50 1.8 17.1 

10 1 4.7 25.9 
2 3.9 19.4 

1; 
1.8 14.0 
1.2 12.0 

20 1.04 12.9 
50 0.99 10.4 

20 1 2.4 11.2 
2 2.2 10.9 
5 0.93 4.6 

10 0.6 3.9 
20 0.47 3.8 
50 0.43 3.4 

Figure 3: Accuracy with restricted 
randomizing 
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$2 assumption in view of insertion and deletion of 

records). In both cases, the random selection 

can however be performed by randomly selecting 

access paths. The most straight-forward (albeit 

possibly not always most efficient) way is 

probably to choose randomly at any given node in 

the tree or graph, which edge leaving this node 

is to be taken, until some termination criterion 

is met. A good deal of care must be exercised in 

the selection of the starting point for these 

random access paths. In the hierarchical model, 

the access paths will start at the root of the 

appropriate tree, in the network model one must 

probably have several starting points to ensure 

randomness of the resulting choice of element. 

The problem in the network model is that there 

may be several paths leading to the same record 

(this is in contrast to the hierarchical model 

where there is precisely one path starting at 

the root to any particular node), and moreover, 

different records may have vastly different 

"accessibility". For example, for one record 

there may be a single access path while for 

another record there are twenty different access 

paths; consequently without additional 

precautions the second record is much more 

likely to be "randomly" chosen in this way than 

the first. This problem can be overcome with 

several starting points for the randomly chosen 

access paths. 

reoetitions reoetitions 
k 1' 1000 1' 1000 
5 36.22 48.29 9.93 18.33 

10 24.46 35.61 6.51 5.45 
20 19.54 22.46 4.93 0.84 

1;: 
17.39 10.96 4.31 0.00 
16.65 5.98 4.14 0.00 

j=5 
5 63.37 74.80 21.62 28.53 

10 55.71 75.15 15.40 24.05 
20 48.57 68.35 12.44 7.92 
50 43.61 62.42 11.09 0.78 

100 41.98 60.27 10.49 0.08 

j=lO 
5 75.81 74.94 27.69 24.94 

:; 77.03 74.91 85.45 81.90 25.17 29.50 32.11 39.81 

50 71.42 81.11 21.85 21.29 
100 70.31 80.29 21.06 19.64 

j=20 
5 75.15 75.38 25.84 25.73 

:i 82.51 85.74 81.86 88.74 43.44 45.86 49.19 63.93 
85.52 91.02 43.21 65.44 
84.78 90.09 41.76 60.06 

Probability in percent that the error of a 
computed database element is less than 16 
percent (left two columns of the table) 
and less than 4 percent (right two columns 
of table) for various values of .j and 
k; no elements assumed known. 

Figure 4 

7. Implementation Considerations 

The description of our method is in terms of the 

conceptual level of a database. Clearly, the 

actual inplementation of the method will depend 

to a significant extent on the kind of database 

which is used. If a relational database 

implementation is employed, the description 

given here can be directly carried over, 

provided it is possible to talk about the ith 

tuple in a table. If the database model employed 

in the inplementation is either the 

hierarchical or the network model, the 

siiuation changes somewhat since it does not 

make sense any longer to talk about the ith 

record (unless the records are numbered from 1 

to N contiguously -- not a very realistic 
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