
CHOICES IN PRACTICAL DATA DESIGN

W. Kent

IBM General Products Division
Santa Teresa, California

ABSTRACT

Current data design methodologies tend to generate
a single design for an application, neglecting
many other possible designs. This is partly
because user requirements have to be expressed in
semantic models which are too closely coupled to
the data design. Failure to recognize the variety
of designs which can represent the same facts also
hampers other data administration functions which
depend on adequate data documentation. Such func-
tions include application planning, redundancy
management, and information center services. And
there are even implications for the design of
high-level interfaces to diverse data.

WEIGHTS

Lxyz I 1231
---,I-,,,,J

+
PRICES

1 PARTS-DATA
I
1-1

I I I I

j ~f-!v__ff;!13-25 t
M----J

i
1 PARTS-DATA

I
f [PARTiPARAM IVALUEi

! Jxyz Iweight! 123)
I lxyz Iprice 113.25j
I ,,,,I,,,,,, m-m--

In this paper we make some initial attempts to cat-
alogue the range of such design options, and to
suggest how design methodologies might be enhanced
to exploit the options. We also point out that a
similar range of options exists for the semantic
enterprise descriptions which serve as input to
such methodologies.

Figure 1. Three alternative designs.

1.2 Consequences

These observations have consequences for data
analysis and design, and also for the techniques
and uses of data documentation.

1.0 INTRODUCTION

1 .l Multiple Design Options

In the first place, most designers are probably
not aware of all the available design options. A
catalog of such options would thus in itself be a
valuable aid in data design.

A given set of facts can be expressed in many dif-
ferent configurations of data elements. Some of
the configurations can be obtained by normalisa-
tion [Kent 81a] and denormalization [Schkolnick],
which are techniques for regrouping a given set of
data elements. But the range of design options is
much larger than that. The initial set of data
elements is itself variable; different kinds and
numbers of data elements could be used to express
the same facts. Experienced data designers gener-
ally take advantage of many such options in
practice, but the options seem to be neglected in
current methodologies for data analysis, design,
and documentation. We rediscovered these design
alternatives in the course of some work on a data
documentation tool [Kent 81b].

Beyond that, we observe that current methodologies
and tools do not consider all the design alterna-
tives. They tend to lock in on one logical data
design generated mechanically from a given enter-
prise description. At best, they might consider
the alternatives which can result from this ini-
tial design via normalization or denormalization.
The results may be suitable for the novice design-
er, or for small or "quick and dirty"
applications. But the experienced designer is
likely to be disappointed, since he often can see
that alternative designs would be preferable.

To illustrate the kind of variability we have in
mind, consider that the weights and prices of
parts might be kept in any of the data configura-
tions shown in Figure 1.

(BY "enterprise description" we mean a data-
independent description, expressed in terms of
entities and relationships, of something for which
data will be maintained in some data store. A "da-
ta design" is some configuration of record
formats, including record type names, field names,
key specifications, and field representations.)

Pmmsdingt of the Eighth International Conference
011 Very Large Data Bases 105 Mexico Cii, Se+ptembu~ 198p

Design methodologies and tools would be more use-
ful if they considered all the relevant design
options. At first, such tools are likely to yield
a bewildering array of designs for the user to
choose from. But over time we should be able to
formalize the criteria for choosing among such
options. A few are suggested in this paper. These
can eventually be incorporated into more sophisti-
cated methodologies and tools that help the user
select the best design.

One of the reasons that the methodologies generate
single designs is that the user's requirements
have to be expressed in semantic models which are
too closely coupled to the data design. They use a
form of entity/relationship model in which enti-
ties and attributes are little more than
thinly-disguised records and fields. Furthermore,
entity types are usually required to be disjoint
(no subtypes or overlapping types), so that they
already correspond naturally to record types. By
the time a user has specified his enterprise
description in these terms, he has already made
many of the difficult design decisions. Further-
more, if he wants to modify his logical data
design, it turns out that he has to tinker with his
enterprise description.

It would be useful if such methodologies and tools
would adopt a more data-independent form of
entity/relationship model, being more neutral to
any particular implementation in terms of records
and fields. The tools could then more readily take
over the design burden from the user. The
description of such a model is beyond the scope of
the present paper, but one approach is sketched in
Chapter 11 of [Kent 781.

The responsibilities of data administration go
beyond the design of databases. There are a number
of functions which depend on the proper documenta-
tion of data. Many of these require the ability to
determine that the same information exists in two
different contexts. One consequence of ourobser-
vations is that such correlation can be quite dif-
ficult. Two "data things" may refer to the same
piece of reality, and yet have substantially dif-
ferent data designs (recall Figure 1, as an
example). If we are limited to simple matching
techniques, such as checking if the two things
have the same data elements, we are not likely to
find the match. What is needed are more sophisti-
cated documentation techniques, along the lines
suggested in [Kent 81b] and [Kent 821, and more
sophisticated correlation techniques, perhaps
based on the transformations suggested in the pre-
sent paper.

For example, existing data that might be sharable
by a new application may not be discovered if the
search is conducted in terms of matching data ele-
ments. I.e., if we simply look for data elements
in the dictionary that match the data elements
designed for the new application, we will miss
cases where the same information has been imple-
mented in a different configuration;

Proceedings of the Eighth International Conference
on Very Large Date Barer

166

In the same way, redundancies in implemented data
may be overlooked if we simply search for matching
data elements. Also, possible interfaces between
applications will be missed if we simply look for
matching data elements. And the suitability of
one system as a potential replacement for another
will not be correctly assessed if we simply look
for matching data elements.

One function of an information center is to find
information requested by people not familiar with
the data structures. This can't-be done without
knowing all the data designs in which such infor-
mation might be implemented.

Beyond data design and documentation, our thesis
has implications for high-level interfaces to
data, and especially to distributed data. Such
systems will, in general, have to provide some
kind of uniform access to inhomogeneous data,
implemented in a variety of data models under a
variety of database management systems. Our
observations add a new dimension to
"inhomogeneity". We usually think of inhomogene-
ous databases as being built in different data
models under different database management
systems. We now have to recognize that databases
using the same data model under the same database
management system can still be inhomogeneous, if
different data designs were used to implement the
same facts.

1.3 Overview

In subsequent sections, we present:

. Examples of the design options.

. Ideas for a methodology to generate such
options.

. Some observations on a parallel set of options
in the enterprise description.

We use the following conventions in the illus-
trations of record formats:

EMPLOYEE INVENTORY
t I I I I I I I
pPNUM]SSNUM(NAME 1 ~IWAREHOUSEIQUANTITY]

I I I I
L111222]98765!Smtthj [Q33A]Central 1 9501
--,,,-I,,,,, --,,I--,,,,,,, I --------A

EMPLOYEE and INVENTORY are record type names.
11=1) indicates keys: EMPNUM and SSNUM are each
an alternate key, while PART and WAREHOUSE togeth-
er form a compound key. The bottom row shows sam-
ple field values.

Mexico City, Septembef, 1982

2.0 THE KINDS OF CHOICES EMPLOYEE

2.1 Logical Record Alternatives

Many of the design options take the form of record
transformations, i.e., one set of record formats
can be transformed into another set, more or less
equivalently. Some such transformations are sug-
gested in this schematic overview:

1113151 I
L2!4! 161
- - - -

Ill--l-
1 IAIBI IAlCl
I--
l Ill31 Ill51 11131c15l

1214ld161
L-l-l-l-J

In many cases, information occurring as field val-
ues in one design may occur in field names or even
record type names in other designs. Figure 1 was
one such example. Another is:

SALES SALES
I I I 1

~YEARIMONTB(SALESI+>JAN/ . . .
I I

/DEC/

Records can be split or combined both horizontally
and vertically. A simple example:

L- I I I L- L- 1

p 1123!13.251 pYz I 1231 lxyz 113.251
-,--I-,, m-w-- A ---w I ------ J L----I-----J

A more complex combination of all these options is
shown in Figure 2, which provides five different
ways to deal with subtypes. All employees (in this
simplified case, accountants and salesmen), have
departments and jobs, but only salesmen carry pro-
ducts.

In most of the cases we will consider, the alterna-
tives are not exactly equivalent. There are sec-
ondary characteristics which might make one
configuration or another more suitable for a given
application. It is precisely to the point that a
good methodology or tool should know about such
secondary characteristics, and help the user to
evaluate them in choosing his final design.

One such characteristic pertinent to the example
of Figure 2 might be called "sparseness". Are most
of the attributes applicable to most of the enti-
ties? If very few employees were salesmen, and/or
there were many fields that applied only to sales-
men, then form (a) would be very sparsely filled,
i.e., there would be lots of blank space. One of
the other forms might be preferable.

/EMPiDEPTiJOB/PROD/
L- I I 1

1789ly77 laccl - I
11231x99 ~slsltoysl
L ,,-I --me ,,-I ---- J

(a) Combined entity
type.

ACCOUNTANT

/EMP/DEPT/
L- I

17891P /
L I-,--J m-e

SALESMAN

(c) Partitioned
subtypes.

EMPLOYEE SALESMAN
II
pEIDEPT/JOBI

I I I
[EMPI PROD1

I

17891y77 lacc(I
11231x99 lsls, I123ltoysl
L m-m I ____ I---J L-,-I----J

(b) Partitioned data
(replicated entities).

ACCOUNTANT
I 1 I
[E 1 DEPT 1

[789!y77 1
--- ----J

SALESMAN-l SALESMAN-2
II
IEzlDEPT/

I I
(LEE[PROD[

(d) Three record types.

EMPLOYEE SALESMAN
II
pE(DEPT/JOBI IEMP(DEPT(PRODI

I I 1 L-I

1789ly77 lacclI
p I x99 pays I
-,,I-,-, e-m_ J

(e) Redundant information.

Figure 2. Five choices for subtypes.

Another consideration has to do with the manage-
ment of "master lists". The EMPLOYEE record type
provides a simple master list for control of all
employees. There is exactly one record for each
and every employee; any employee not in this list
is not in the database at all. With the other
forms, it takes extra work to achieve this same
level of control, if it is needed. In form (b),
there could be a salesman record with no corre-
sponding employee record. In form (c), the same
employee number might show up for both an account-
ant and a salesman. Forms (d) and (e) can have
similar problems.

Without an EMPLOYEE record type, it becomes diffi-
cult to retrieve all employees. In forms (c) and
Cd), one has to know all the job types, and
retrieve the corresponding records.

Also, the EMPLOYEE record type makes it possible
to insert a new employee before his job is estab-
lished. In forms (c) and (d), if we don't know the
employee's job we can't insert his record.

Proceedings of the Eighth International Conference
on Very Large Data Bases

Sometimes the subtypes are not explicitly distin-
guished or named. The EMPLOYEE record in Figure
2(a) might not have an explicit JOB field. Then
form (a) is the only one that works. If necessary,
the job can be implicitly determined, e.g., by a
blank PROD field. Form (a) is the general mech-
anism for handling information which is not appli-
cable to all occurrences of an entity type, when
there is no desire to explicitly designate entity
subtypes. For example, a maiden name field is not
applicable to all employees, and hence is blank in
many cases, but there may be no separate field to
distinguish between married females and other
employees. If needed, that could be inferred from
non-blank maiden names.

Finally, there is an important criterion which
applies to this and many other cases: the "fixed
population" constraint. Form (a) is equivalent to
the other forms only if certain constraints are
specified and enforced. In this case, the JOB
field must be restricted to the values "act" and
"sls" (accountants and salesmen). Otherwise,
updates to the data could introduce jobs not pres-
ent in the other forms, i.e., not corresponding to
any of the other record types.

Forms (a), (b), and (e), with an explicit JOB
field, are appropriate when we prefer to keep the
list of job types open-ended and free to grow.
Forms (c) and (d), with a distinct record type for
oath job, are appropriate when we wish to con-
strain the set of jobs.

Still another set of examples is provided in Fig-
ures 3-5, showing three database designs ,,for the
same application. The first is a straight&ward
design. The second one maintains all relation-
ships between employees and departments in one
parametric form. Essentially some field and
record names have migrated into the data.

EMPLOYEE DEPARTMENT
I I I I 1 r I I I

,IEMPNvM(NAMEIDEPT(sALI
L I I I I

]DEPT]MGR(ACDITCR[

1 123 IDick! x9915001
1 456 IDick) x991600(

L x9914561 789 1
,,,-I,,, ,,,,,,,J

[789 !Dickl y77!5001 (others omitted)
-s-v__ _-mm mm_- m--J

SSNUMS LOANS

1 999 1 123 1
1 998 1 123 (
1 997 1 456 1 ______ I _-mm ,,,J

1 996 789 1
L mm--- 1 ----m-J

Figure 3. A straightforward record design.

The third design (Figure 5) corresponds to an
irplementation of a binary relation model. The
last two columns form a composite identifier. All

Proceedings of the Eighth International Conference
on Ye&iwgs lhte bss

168

binary facts can be represented here as entity-
relationship-entity triples.

This example provides an excellent illustration of
our concerns: if these three databases had actu-
ally been implemented, to what extent would it be
possible to automatically detect the redundancy
among them?

EMPLOYEE EMP/DEPT FACTS

1 123 IDick
1 456 IDick
[789 IDick!

,,,,,,I,-,, -m-J

SSNUMS

1 999 1 123 1
1 998 1 123 1
1 997) 456 1
[_____ 996 1 ___m__ 789 J 1

1 123
1 456
1 789

I if3

I :'Bt
L ------

Figure 4. Consolidating all facts connecting
employees with departments.

assigned I x99)
assigned I x99(
assigned I ~771
loaned I 2881
loaned
manages I '::I
audits 1 :991

________ ,,I mm__ J

EMPLOYEE FACTS

iEMPNUM/FACT /TYPE /VALUE/

123 lalt-ident
123 lalt-ident
123 Iname
123 Iassigned
123 learns
123 Iloaned
123 Iloaned
456 Iname
456 Iassigned
456 (earns
456 lalt-ident
456 Imanages
789 lname
789 Iassigned
789 learns
789 lalt-ident
789 laudits

.,,,,A,,,,-,,,-

ssnuml999
ssnum1998
name IDick
dept 1x99
money1500
dept 1288
dept 1~77
name [Dick
dept 1x99
money1600
ssnuml997
dept 1x99
name IDick
dept 1~77
money1500
ssnuml996
dept 1x99

I ----- ---w-

Figure 5. Consolidating all facts
about employees.

2.2 Ideal vs. Efficient Designs

The following alternatives generally go beyond the
objectives of logical data design. In many cases,
the trade-offs are between so-called "update anom-
alies" and efficiency.

Mexico City, September, 1982

2.2.1 Alternative Meanings

Sometimes a field can have several alternative
meanings, varying from one record occurrence to
the next. This is especially useful with facts
that are mutually exclusive.

The motivation is simple: in the "idealized"
design, mutually exclusive facts guarantee that
every record will have a blank field. The idealism
may not always justify the unused space.

For instance, suppose that:

. Salesmen had quotas, in dollars.

. Non-salesmen had life insurance, also in dol-
lars.

A simple logical design yields:

/EMPLOYEE/QUOTA/INSURANCE/
L I I I

in which every record would be blank in either the
second or third field.

'Ihe alternative practical design would be:

in which the Q/I field contained quotas for sales-
men and insurance .amounts for non-salesmen. Of
course, there has to be some way of identifying
which employees are salesman. There might be a
distinct JOB field in the record, or it might be
encoded somehow in the employee number.

A similar example gives rise to a different kind of
trick. Suppose we had employees and spouses and
maiden names (let's simplify by assuming every-
one's married).

A simple logical design yields:

I I I I 1

IEMPIMAIDEN-NAMEISPOUSEISPOUSE-MAIDEN-NAME]

It doesn't take long to realize that there will be
at least one blank field in every record. The
smarter design is:

/EMP/SPOUSE/MAIDEN-NAME/
- I I

in which the last field means "maiden name of
employee or spouse, depending on which is a mar-
ried femaleW. The sex of the employee might be

Proceedings of the Eighth International Conference
on Very Large Data Bases

indicated in a distinct field in the record, or it
might be encoded in the employee number.

This differs slightly from the previous example
involving quotas and insurance. In that case, we
had different facts about the same object. Here,
in a sense, we are allowed the same fact about dif-
ferent objects. That is, maiden name is a fact
either about the employee or about the spouse. Of
course, it is also true that, indirectly, they are
both facts about an employee, being either her
maiden name or his wife's maiden name.

2.2.2 Denormalixation

Denormalization is a form of data redundancy which
may be introduced to optimize performance [Schkol-
nick]. It can actually yield two different forms
of redundancy, depending on. whether the field
involved is simply moved to another record, or
maintained in both records:

p/ Normalized.
I I

-n
[EnPIDEPT(MGR) PDl Moved.

I I J-

II

[EMPIDEPTIMGRI ~DIMGRI Maintained
I I I I 1 in both.

. Moved:

The department manager's name is moved from
the department record to the employee record.
A manager's name is now replicated with every,
employee record for that department.

. Maintained in both records:

In addition, the manager's name is also
retained in the department record. Now it
appears in multiple record types as well as in
multiple record occurrences.

2.2.3 Derivable Information

Many kinds of derivable information are frequently
included in the stored data, usually for reasons
of performance, even though they are redundant.
Sometimes computation time is avoided, sometimes
access to other records is minimized.

Denormalixation can be considered an example of
this. In effect, the relationship "manager of
employeeW is being stored, even though it is

derivable from "manager of department" and "de-
partment of employee".

169 Mexico City. Satptambqr~W82

It is not uncommon to store a sum (e.g., Order
Total), even though it is computable from detail
items. Similarly, one might include the winner's
name in an election record, even though it could be
derived from the votes obtained by each candidate:

I I I ------
IELECTIONIOFFICEIDATEIWINNER]
L--I ------J

I I I 1
~LECTIONICANDIDATEIVOTESI

I I

This avoids the computation time involved, and
also the need to access the records of all the can-
didates. Such a field might not be produced by a
strictly logical approach to data design. Alter-
natively, if the user did specify such a relation-
ship in his enterprise description, he might well
neglect to mention the interdependence: the win-
ner of the election had better be the candidate who
got the most votes.

It should be noted that this kind of
"derivability" relationship again illustrates the
complexities of redundancy management, information
inventory, and inquiry. A search for unplanned
redundancy should take note of the fact that one
data base identifies the winners of elections,
while another records the number of votes received
by each candidate. Inquiries about the winners of
elections should be answerable from that latter
database.

2.3 Field-Level Alternatives

Next we deal with design alternatives at the field
level rather than the record level. The first case
involves alternatives in a single field. The oth-
ers involve multiple fields, possibly changing in
number from one alternative to the other.

The general principle underlying these cases is
that, for a given piece of information, the con-
tent and number of fields can vary depending on the
form of representation chosen. This constitutes a
family of design options, and also some imped-
iments to detecting commonality of information.

2.3.1 Alternative Representations

This is a familiar and commonplace design choice:
selecting among several possible identifiers or
representations. Examples:

. Employee numbers vs. social security numbers
vs. operator codes vs. people names.

. Part number in various formats, or vendor's
codes for the parts.

. Various representations for time and date.

Proceedings of the Eighth International Conference
iia .Very Lerge Data Bases -

. For numeric quantities, the choices of units,
data type, number base, precision, etc.

These are not of major concern for us as a data
design issue. But it's worth noting some poten-
tial problems with respect to data documentation
and other aspects of information control. Specif-
ically, it's important to document both the entity
represented and the form of representation as sep-
arate attributes of the data element. If the
underlying entity types are not clearly indicated,
then such things as redundancy or implied informa-
tion can be difficult to detect.

For example, if one database is documented as con-
taining part numbers and prices, and another is
documented as containing vendor's codes and
prices, then the redundancy may go undetected
unless a human being happens to notice.

2.3.2 Concatenated Fields

In many cases, it's really a very arbitrary deci-
sion as to whether something should occupy one or
several fields. Sometimes the relevant argument
has to do with whether these things are perceived
as one thing or many, and it sometimes has to do
with whether there is any need to refer to the
sub-components independently. Trying to put these
on any theoretical foundation will probably divide
the world into two equal camps (excluding those
who don't care at all). Some examples:

I I I I
date: /month/day/year/<->lmonthldaylyearl

I-
I 1 I I I I

name: Ifirst,middle,lastl<->lfirstlmiddlellastl
I 1 I I I I

I I I I I 1

length:lyards,feet,inchesl<->lyardslfeetiinchesl
1 I I 1

I I
time: Ihours:mins:secsl<->jhoursiminsisecsj

I I

I I

address:lnumber street,city,state zipI<->

I I I I I 1

lnumberlstreetlcitylstatelzipl
I I I I I I

Sometimes obviously distinct facts are concat-
enated for efficiency reasons, perhaps so that
programs can refer to them with a single field
name, perhaps to minimize the number of field
names in a dictionary, or perhaps because the phy-
sical implementation of distinct fields would take
up too much space. This leads to alternatives
like:

170 Mexico City, SeptembwjW82

I I I I I I
IEMP ISEXIMARISEEICHGI <-> /EMP/PDiAUTH/
L----- I I I I L-- l I

[Jones1 M I S / 1 I 0 1 IJoneslMSl 01 I
pmithl F !-D-!-f-! 0 I -----I,-- -e-J t fy~t~~D~ 00 1

L -- ,--A

In which

PD (personal data) = sex + marital status.
AUTR (authorizations):

First digit: 1 = may see salary records.
Second digit: 1 = may change salaries.

2.3.3 Embedding

Facts may be combined by more elaborate embedding
than simple concatenation. Sometimes one fact is
embedded as a substring of another (frequently
involving identifiers):

. Insurance claim number includes date of claim.

. Part serial number includes part type.

. Person number includes date of birth.

And sometimes the embedding is even more computa-
tional:

. The person numbers are even or odd based on
sex.

. Winners and losers of elections could be dis-
tinguished by using positive and negative num-
bers for their vote counts.

The "Personal Data" of the preceding EMPLOYEE
record might often be further encoded:

1 = male, single
2 = male, married
3 = female, single
4 = female, married

One could even take the view that derivable infor-
mation implies a kind of embedding. One could say
that the vote count field also identifies the win-
ner (even without using signed numbers), simply
because one can determine the winner by comparing
votes. In effect, the count field contains two
kinds of facts: the vote counts explicitly, and
the winners and losers implicitly.

The alternative in all these cases is to provide
distinct fields for all these facts. In many
cases, this will lead to redundancy with the
"knowntt contents of identifiers, unless the iden-
tifiers are also restructured to be purely random
labels devoid of any information content.

Prowdings of the Eighth International Conference
on Very Large Data Bases 171

2.3.4 Uniform vs. Mixed Representations

Representations of data have various attributes,
such as length, data type, scale, or units of meas-
ure. In the vast majority of cases, these are uni-
form over a field, i.e., uniform for a given field
in a record type. That's one of the foundations of
the record concept.

In this normal case, such attributes are factored
out into the data description, e.g., into a data
dictionary.

But there are exceptions. Sometimes mixed repres-
entations have to be used, and then the
descriptions can no longer be factored out. The
data must become self-describing. Additional
fields must be introduced to describe the repres-
entations of other fields in the record.

The most common example is a length field which
accompanies a field of varying length data. There
are many other examples in which, for example, one
field provides the units of measure for another.
Time is sometimes handled in this way. The effec-
tive periods of contracts might vary considerably,
and it might be desirable to store some in days,
some in months, and some in years. This would
require two fields: the quantity (e.g., 12), plus
the units (e.g., weeks). (Of course, there is also
the option to concatenate these into one field,
e.g., "12 weeks".)

The alternatives in this general case are:

. Convert everything to a common representation
(fixed length, same units, etc.) using a sin-
gle field.

. Add fields to describe the variable represen-
tation.

I r ‘------‘, r -------, r -------

[VALUEI I(LENGTR)~ ~(UNITS)) I (SCALE)]...
I L ________ J L _______ J L _______ J

2.3.5 Qualification vs. Unique Identifiers

For objects having no unique identifiers, assign-
ing new unique identifiers is always a
possibility.

Sometimes there is another option: identification
via some unique attribute or related entity. For
example, cities with the same name (in the United
States) can be distinguished by the state in which
they occur. These related things would serve as
qualifiers.

The most direct effect is to increase the number of
fields in a record. A given fact (e.g., people's
birthplaces) could be expressed in a different

Mexico City, September, 1982

number of fields, depending on whether unique or
qualified identification was used.

These options imply more than the simple addition
or removal of an identifier field, or a change of
representation within a field. They can give rise
to substantial differences in field and record
formats.

If cities had unique identifiers, then we might
have a data base like:

PEOPLE
I I I
[PERSON/CITY-CODE[(data about people)

CITIES
I I I I
ICITY-CODEINAMEISTATEI (data about cities)
L I I I

But if cities are referenced by name, qualified by
their states for uniqueness, then:

1. A state field has to be imported into the PEO-
PLE record (which would violate third normal
form if city codes were retained).

2. The CITIES record becomes redundant, and
would usually be discarded (assuming we
aren't maintaining other information about
cities). Users will obviously know not to
ask what state a city is in; if they can
uniquely name the city, they know the state.
Application logic changes: applications need-
ing to know in which state a person was born
no longer need to access a second record.

The result is a data design with one less record
type, and fewer data elements:

2.3.6 Nameless Entities

One thing worse than having no unique names is hav-
ing no names at all. This can be treated as an
extreme case of the qualifier situation. As
before, there is always the option to assign arbi-
trary new unique identifiers.

But if there happens to be a related entity or
attribute in one-to-one correspondence with these
objects, then we can take advantage of them for
unique indirect naming. Consider elections. They
have no natural identification of their own, and
we could assign them arbitrary election numbers.

Procea&gs of the Eighth International Conference
on Very Large Data Basas 172

But we could also identify them by the year in
which they occurred, e.g., "the 1980 election"
(provided that we were only concerned with U.S.
presidential elections). Similarly, it might be
possible to identify sales territories by their
headquarters city, e.g., the Chicago territory.

Strictly speaking, even social security numbers
function in this manner. To be precise, a social
security number identifies an account, although it
is frequently used to identify the owner of that
account.

In most respects the treatment is the same as for
qualification, except that it only takes one
field. In a sense, we are now also dealingwith a
form of embedding: one field is serving two pur-
poses, both identifying an occurrence (an
election) and telling us a fact about it (when it
occurred).

We still have the "disappearing record type".
With arbitrary election numbers, we would have
distinct records for elections and for the per-
formance of candidates in elections:

[EIRCTION-NUMBERIDATEI
I I

I
/ELECTION-NUMBERICANDIDATE/VOTESi
L I I

But if elections were to be identified by their
dates, then the database design is reduced to:

I I I I
)ELECTION~CANDIDATR~VOTES~
L I I

As before, users will obviously know not to
inquire about the date of an election; if they can
name the election, they know the date.

Note that if presidents were uniquely named and
were limited to a single term, then elections
could also be identified by their winners: the
Carter election, the Reagan election, etc. In
that case it would again become meaningful to ask
when an election occurred, but it would become
foolish to ask who won it.

2.3.7 Multi-Type Domains

Even when unique identification is available for
an entity type, there may be a need for uniqueness
across the union of several types. This may arise
whenever multiple entity types can occur in one
role of a relationship, i.e., in one field of a
record.

Mexico Cii, Septambw, ,l@fG

Examples of such situations:

. The owners of things (might be people, depart-
ments, companies, etc.).

. The things owned (use your imagination).

. Things to which users might have access, under
an authorization scheme.

. Units of work might be delayed ("held") with
the responsible holder being either a person
or a department.

. An employee might belong either to a depart-
ment or to a branch office.

There are two factors affecting the design choices
in this case:

. Whether or not identifiers are unique over the
union of these types. (We assume there are
unique identifiers within each type.)

. Whether or not the identifiers of the differ-
ent entity types are of the same data type.

Depending on these criteria, the following are
some design possibilities (not mutually
exclusive):

. Use a single field, with a data type that
matches the data types of all the identifiers.

The main steps in a systematic des
will probably be:

ign methodology

. Use a single field, with a eloosee data type
that accommodates all the identifier$. In the
worst case, this would be a varying character
string.

1. Develop an initial data design from the input
semantic model.

2. Apply some elementary transformations to gen-
erate possible alternative models.

This approach loses some of the benefits of 3.
type checking.

Gather data for the parameters 'governing the
choice between such alternatives.

. Use a different field for each entity type,
each with the proper data type.

All but one of these fields should he blank-in
a given record occurrence.

. Provide an additional field explicitly speci-
fying the entity type occurring in each
record.

This could either be a required qualifier if
identifiers are not unique, or simply an addi-
tional attribute.

. Create a new super-type and assign new global
identifiers.

The following are some possible designs for what
is essentially a simple binary relationship
between company cars and their users, where the
assigned us+ might be either a department or an
employee:

L- I L----l

I I I I I
ICAR IU~ERIDEPIIEMPL~YEEI
~NUMBER]TYPE)NAMEINUMBER I

I I I I

In the third design, the user will appear in either
the third or the fourth field. One field will be
blank in every record. But the design does take
advantage of built-in data type checking for the
identifiers.

We might note a curious symmetry. In an earlier
section we discussed alternate meanings for a giv-
en field. Here we have a case of alternate fields
for a given meaning.

3.0 IDEAS FOR A SYSTEMATIC METHODOLOGY

3.1 Overview

4. Evaluate that data and choose a design.

In the present paper, we deal only with Step 2.

3.2 Elementary Record Transformations

Figure 6 shows a suggested set of elementary
transformations (operations) by which it is posai-
ble to generate many alternatives (not including
the field-level alternatives) from a given initial
design. They may also be used in trying to deter-
mine whether two designs contain similar informa-
tion, by trying to transform one into the other.
Because we have tried to make them elementary,
they may not all provide interesting design alter-
natives in themselves. Many of them are only sig-
nificant when used in combinations, as will be
illustrated later.

This is only a suggested list. We haven't taken
the time to verify that all the examples can be
expressed as combinations of these transforms.

Proceedings of the Eighth International Conference
on Very Large Data Bases

173 Mexico City, Wtember/4982

17 project 1-1
IFA~FB]FCI ---> ~FA[FB]

<---

ih!Bnp] -- -- --
(a) Project/Join

Bl-REC

(c) Record/Value
Transform

FB-REC

jFAjFBi /FAIZZ/
- <-> -
IAlIBll IAllBll

L--I-A

(d) Field/Record
Transform

I-l partition m -1
IFA~FB! -4

<--
IFA(FBli+IFA/FB1/+..+/FA/FBn/

union]~ll~l I IAllB2 I

(b) Union/Partition

L--l _--mm J

(e) True/False
Transform

Figure 6. Elementary Record Transformations.

The transformations bear a strong resemblance to
the operators of the relational model, partisular-
ly those defined in the extensions for RM/T
[Codd]. Though the functions are similar, these
transforms differ significantly in intent from the
relational operators. The relational operators
are designed to operate on relation instances dur-
a ltexecution" time, while the transforms are
intended to operate on relation definitions, dur-
ing the design process that precedes even the
definition stage. Thus, for example, concepts
like intermediate unnamed relations, or elimi-
nation of duplicates, apply to the relational
operators but not to these design transforms.

In a sense, these transforms may be likened to view
definitions in relational systems, the principal
difference being that both the initial configura-
tions and the final results are candidates for
being considered as base tables.

Another important distinction is that these design
transforms are not intended to provide precisely
equivalent structures. Rather they are meant to
generate plausible design alternatives. The
degree of equivalence that may be achieved under
various constraints, and the relative merits of
the alternatives, are topics that remain to be
explored systematically. In the extreme, these
transforms may even be used to detect forms which
are not equivalent, but where there are consider-
ations of consistency to be maintained, i.e.,
implications.

The notation is not rigorous. It is merely a
shorthand way to suggest some basic concepts. We
use the following terminology:

Proceedings of the Eighth International Conference
on Very Large Data Bases

174

(f) Nulls
Transform

. "Record" = record type name = relation name.

. "Field" = field name = column name = attribute
name.

. "Value" = field value = tuple element= domain
element.

. "FA" is an example field name, and Al,...,An
are possible values occurring in that field.

3.2.1 Project/Join

This analog of the familiar relational operators
serves several purposes:

1. When the common field (FA) is a key, then we
have a simple possibility of partitioning.or
merging records. Example:

mprojm I
[E/WT IPRICE] --->]PART]WEIGRTI+]PART]PRICEI

I I <-mm L- J L- I J

p]123!13.25]joinlxyz I 1231 lxyz 113.251
----I-, - ,-,,-A L __-- I ------ J L----I w---- J

The joined form provides for a single tlmaster
list" or "existence list" of FA values (e.g.,
a master parts list), each occurring as a
record key once and only once in the
database. The function here is somewhat ana-
logous to the "E-relations" of [Codd]. The
joined form also suggests that every FA value
has corresponding values of the FB and FC
attributes, e.g., every part has a price and
weight. Nulls (blanks) must be used when
this does not hold.

Mexico City, September, 1982

The partitioned form avoids the need for
nulls, but also loses the %aster list" capa-
bility unless additional constraints are spe-
cified and enforced.

2. Normalization and denormalization can be done
by sequences of joins and projects.

3. Projection provides a form of implication, by
which a super-relationship can be derived
from a sub-relationship:

SALES DEALS-WITH

IBUYERISELLERIITEMIPRICEI ->w
I I I I I

I I I I I 1 I I

It does not yield an equivalent alternative
data design, but it must be taken into con-
sideration when exploring for possible redun-
dancies among databases.

3.2.2 Elementary Union/Partition

/EMP

/EMPiDEPTiJOB/

1789ly77 (act]
L- I I (7771~76]acc(
1789(y77 (act] L ---l----l---'
17771~76]acc[<-> +
11231x99]sls(
[3211x99 islsl

-,-I mm__ -e-J
iEMP/DEPT/JOB/

I I I

[123(x99 lsls]
[3211x99 lslsl
,--I --me e--J

The partition creates n record types having con-
stant values in the "FBi" fields (referring to
Figure 6b). It is the same as the "partition by
attribute" (PA'IT) operator in [Codd].

The partitioned form is rarely useful by itself,
since it has a field of constant values in each
record. The transformation would normally be used
as an intermediate step, in conjunction with oth-
ers .

The partition is only valid under the fixed popu-
lation constraint. The partition must yield a
fixed. number of record types, and is therefore
only acceptable when field FB (or its underlying
domain, in relational terms) has a fixed and known
population of permissible values. And,
preferably, the population should be relatively
small. Plausible examples might include fields
representing the months of the year, the work
shifts in a day, or possibly the sales territories
of a company. When this transform is combined with
others, it must be understood that the fixed popu-
lation constraint still applies.

Proceedings of the Eighth International Conference
on Very Large Data Bases

Going in the other direction, the union form is not
truly equivalent to the partitioned form unless
there are enforced constraints on the permissible
values in FB. Otherwise, updates to the data could
introduce values not corresponding to any of the
data in the partitioned form. The trade-offs with
respect to population control are these:

. The union form is preferable if the set of val-
ues is to be open ended, allowing freedom of
growth to accept new kinds of information
without having to restructure the data.

. The partitioned form is preferable if one
desires to embed constraints in the structure,
in order to exercise control over the allow-
able values.

There is another consideration on the union,
regarding identifiers. The union yields a fully
equivalent form only when there is uniqueness and
data-type compatibility among the "FB" field val-
ues. Otherwise, additional transforms may be
needed (see section 2.3.7, "Multi-Type Domains").

The union and partition forms differ in the
enforceability of functional dependencies. In the
union form, making FA a key insures that each value
of FA can only occur once, i.e., with only one FB
value. In the partitioned form, the same FA value
can occur with a different FB value in each record
type.

3.2.3 Record/Value Transform

A value (,,Bln in Figure 6c) can be expressed either
as a field value or in a record type name:

ACCOUNTANTS

jEMPiDEPT/JOBi <-> /EMP/DEPTj
L- I I I I

1789ly77 (act] ;;I,77 1
17771~76 lace]
L I----I-,-l ---

;7771~76 1
,,eL-,,,J

The record-to-value transform is a minor extension
of the TAG operator in [Codd], where it is limited
to preserving the record name in the field value.

3.2.4 Field/Record Transform

Field names and record type names can often be
interchanged, especially when a record represents
a single relationship (or attribute):

xxx WEIGHTS

<->

175
Mexico City, September, 1932

3.2.5 True/False Transform

This transform, in a sense, considers a list of all
"possible" occurrences of something, and flags
those which are true, or which exist.

Normally, we keep data by recording the true facts
and omitting the false ones. But it is also possi-
ble to record all possible assertions, and then
flag which are true and which are false. If the
"things" we are considering are the occurrences of
relationships, then this transform appears as:

i <-> /

1 Al 1 Bl 1 1 1

[---- A2 1 ----J 132 1 IA2IBll 0 1

1 Al 1 B2 1 0 1

[Az!Bz! ---- ---- m--mm 1 J 1

3.2.6 Nulls Transform

A field of nulls can be added to or deleted from
any record type. We will use this in an even more
general form: a new record can be created at any
time consisting of an arbitrary field and a null
field.

3.3 Compound Record Transformations

We also designate some useful combinations of the
elementary transformations (Figure 7).

3.3.1 Generalized Record/Value Transform

This is a simple combination of the elementary
union/partition and record/value transforms:

.(intermediate). ACCOUNTANTS
I 1
:~MPIDEPTIJOBI. ~EIDEPTI

I -I
I J I I

[EMPlDEPTlJOBl .1789ly77 laccl: 17891y77 I
I I I .1777ly76 lacc(. L7771y76 I

178gly77 laccl .i,,,l mm-w l,,,J. ---I----J
17771~76 laccl<->. .<->
11231x99 lslsl .I* SALESMEN
[321(x99 PlsJ

,,,I,,,, -w-J
:~EIDEPT~JOB[:

.11231x99 lslsl. t-' 1
:L""!x" Plsl. 11231x99 I

w-m mm_- w--J. ~211x99 (
,,.A,,,-J

Bl-REC Bn-REC

j

<-> i "1 1 + . . . + 1 Al

I :
[b!Bn 1 Ihl

_-mm mm__ J L ,,,,J

(a) Generalized Record/Value Transform

j
j

mm__ I-,--J

+ <->

L ,,,-,-I,,,,,,J

L Cn I Dn I
m-s_ I mm__ J

(b) Generalized Union/Partition

g-q-q g-iq-Gq...m
AllBllCll <-> (All Cl1 I C21 I...1 Cnl I
. I- I. I
* I. I. I I:::/ :
yyq

-- --
[Ani Cln I C2n I...1 Cnn I
-- ,,,-,I,,,-, I I,,,,,J

(c) Field/Value Transform

Figure 7. Compound Record Transformations

3.3.2 Generalized Union/Partition

Obtained by repeated applications of the elementa-
ry union/partition transformation. "FAC" in Fig-
ure 7b is the union of the FA and FC field values.
When FA and FC have the same population of values, 'I

4 a frequent special case, then FAC=FA. As noted _. 1
earlier, field transformations may have to be , /
applied to deal with non-uniqueness or /

type-incompatibility of identifiers in the union.

3.3.3 Field/Value Transform

Obtained by combining the field/record and
record/value transforms. For example, the months
can occur as field values or in field names:

Proceedings of the Eighth International Conference
‘on Very Large Date Beses 176

.“

Mexico City, SeWember, 9982

.
project.-, .

i
------>IEMP)DEP~ .

.-.
~~~join( 

L ------>IEMP(PRODI<------- 

project.-. 
. . . . . . . . . . . . 

..,........... . . . . . . . . . . . . . . 

*I * -I * 
:jEMPiDEP] : .\EMP\DEPl . 

.- . 
. + . + . 
---I .I* 

i 
-------->ISLSMNIPRODI. .(SLSMNIPRODI. 
parti- .-. .-. 

i tion . + . (b) . 

L. --------;jACCTjNULLi: null 1 
.-. <--> . 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 8. 

Figure 8 shows the transformation between forms 
(a) and (b) of the subtype example (Figure 2), com- 
bining the null, union/partition, and project/join 
transforms. We omit the JOB field. 

The transformation between forms (a) and (c) of 
the subtype example (Figure 2) also illustrates a 
combination of the null and union/partition trans- 
forms (we omit the JOB field): 

In the most general case, there are many ways in 
which this transform can be applied to a given 
record. Any one of the initial fields can be 
retained as a key. Multiple combinations of some 
remaining fields could be migrated into field 
names 0-v repeated applications of this 
transform), with the remaining fields left to pro- 
vide field values. 

3.4 Sample Applications of the Transforms 

(a) (cl 
EMPLOYEES ACC0UNTANT.S ACCOUNTANTS 
~~~union~~nulll-~ 
PElDEPlPRODl +- IEMP)DEP)NCLL~<-->IEMP\DEP~

I I I --> L-l L-1 I

17891y771 - lpart.[789!y771 - I
pxgytoys(--- ---l----J LW11

,,,,J

SLMEN

+

SALESMEN

/
- I I

g-b-q&q

I _“;pypoys I
L -W--J

p=ypoYs I
,,,,J

For an example of the field/value transform, con-
sider a work schedule which assigns different
operators to different systems on different
shifts. (For the sake of this example, we assume
that one operator is assigned to one system for one
shift, and allow operators to work more than one
shift.) This example can be transformed in at
least two different ways:

I I I I 1

<-~(OP~SHIFT-l-SYS~SHIFT-2-SYS~SHIFT-3-SYS~
L- I I I

(system per shift for each operator)

I I I 1 1
<->(SYS~SHIFT-1-OP(SHIFT-2-OP(SHIFT-3-OP~

- I I I

(operator per shift for each system)

Proceedings of the Eighth International Conference
on Very Large Dete Bases

The true/false transform can be applied to a sim-
plified work schedule, in which we simply track
which operator works on which shift:

By itself, that is not usually an interesting
option. But if we combine it with the field/value
transform, we obtain a familiar schedule form:

jbP/c->m<->/OP/
(All IAll 1 tx 1 IAlt X 1 t i;ii ; 1 IAll IAll 2 3 1 1 1 1 pdl __ ,,,I,-, X 1.X I 1 -e-J f

LeeI ___m_ J IEdl 1 IX 1

IEdl 2 IX 1
pdi me ___m_ 3 I--J 1 1

In the extreme, we can reduce the entire schedule
to a single record occurrence:

I I I I I I I

(Al/l[A1/21A1/3(Ed/lIEd/2(Ed/31
I I I I I I I

pt 1
-mm_ I _-me

txpt I
I w--m se__ w--m I ,-m-J

Observe <the "fixed populationU constraint: this
design option is only viable with a fixed set of
shifts and a fixed set of operators.

177 Mexico Ci, September, 1982

4.0 CHOICES IN SEMANTIC MODELLING 4.1 Subtypes

What we have said about data designs is also true
for enterprise descriptions. Just as there are
many possible data designs for representing a
slice of reality, so also are there many ways to
structure the corresponding enterprise description
in terms of entities and relationships.

To illustrate the extensive range of possible
enterprise descriptions, consider the production
of certain parts by certain machines. The result-
ing parts might be finished, damaged, or lost. A
reasonable data design is:

I I I I

/MACHINEjPARTIRESULTI
I I I I

The prose description of this enterprise might be
structured into entities and relationships in any
of the forms shown in Figure 9.

Returning to an earlier point, the examples of
Figure 2 can be analyzed in terms of the semantics
of subtypes. The main problem with subtypes is
that they require an "L-shaped" data structure
(Figure lo), which is incompatible with the
natural semantics of records [Kent 791. There are
some attributes which apply to all entities of a
given type, and some which apply only to a subset
of the entities, i.e., the subtype.

d--i--Z
t facts 1

21 common 1
t to

31 entire +---I 1 facts
t type $ unique to 1

41 1 1 / subtype /

Figure 10. The subtype "L".

Unfortunately, record types are rectangular.
Every instance of a given record type contains the
same fields. So, to represent subtypes in
records, we have to transform the L-shape into
rectangles. This is where choices arise -- there
are at least five ways to convert an "L" into rec-
tangles, as illustrated in Figure 11.

1-1 produces 1-1
!MACHINE/---->IPy/

lhas
V

/

I r--------i
/MACHINEHproducesk>m
I L--mT----J

Iresult
V

La

(a) Attributes of entities.

-PART1
1-I
/ lFIN=HEDl 1

l-l
,-Iproduces IDAMAGED I I
b.ACHINE+>~ y 1

(d) Entity subtypes.

71 produces 1-1
lMACHINEl/~PART~

(b) Attributes of relationships (c) Ternary relationship.

I

1 finishes/ --I

/>I

Pdamagesl
~MACHINRI

>

IPART/

Fl

(e) Sub-relationships.

Figure 9. Alternative Semantic Models

Proceedings of the Eighth International Conference
0mVery Large Date Bases 178

I I

I PRODUCTION-EVENT I

-
uses1 makes1 result1

V V V

pii&iijjPARTi ISTATUS/

(f) Events as entities.

Mexico City, September,&

II II I I
11 I I I- - - - -I

tfacts $- null- -1
P(commonl- - - - -(

tto
3lentirelfacts

ttype funique td
41 1 I /subtype i

(a) Single record type,
with null values.

C-i-i7
tcommon]

2lfacts I
II II

II II I 1

3(common[facts I
tfacts funique to-/

41 I I isubtype I

(c) Two record types,

li$J
ac s

2[commonl
tto i

3lentirel 3iGZ-7
ttype -/ tunique to-J

4j 1 i 1 r*jsubtfpe f

(b) Two record types,
replicating entities.

Ji--i-i
tcommon{

2lfacts 1
II IJ

III
3lcommonl 3[facts I

tfacts 4 tunique to]
4j] i i 4jsubtye f

(d) Three record
partitioning entity types. types.

$-J-j
ac s

2lcommonl
t-to I I I I I I I

3lentirel 3lcommon (facts (
ttype 1 [facts +unique to]

41 1 1 1 4l(again)lsubtype I 11 1 1 I
(e) Redundant information.

Figure 11. Five ways to make rectangles.

4.2 Type/Attribute lnterchangability

The concepts of type and attribute can be inter-
changed. A fact can be treated as a basis for
classification into groups, or simply as a proper-
ty. We have treated "salesman" and Uaccountant"
as entity types, reflected in distinct record
types, and also as properties of employees,
reflected in values of a job field.

Conversely, any attribute -- or combination of
attributes -- could become the defining character-
istic for some types. When mapped in the simple
and direct way to data designs, this is reflected
in possible migrations from field values to record
types. For example, the locations of employees
might normally be maintained as a field value in an
employee record. But, alternatively, the data
could be partitioned into a subtype form -- one
record type per location -- with the location now
implied by the record type name rather than being
explicit anywhere in the data:

EMPLOYEES SAN JOSE EMPS TUCSON EMPS

jEHPNmltOCiTI i->F
I I I

F
J

Proceedings of the Eighth International Conference
on .Very Large Data Baser

Carrying this case to its extreme, numeric infor-
mation could be expressed in subtype fashion, with
a distinct record type for each value. Thus we
could conceivably contemplate a record type for
18-year old employees, one for 19-year olds, etc.:

18-YR-OLD-EMPS 19-YR-OLD-EMPS

m piiG$qI

Such alternatives make sense only to the extent
that the value populations are fixed, i.e., a
fixed number of locations or employee ages.

4.3 Types, Attributes, Relationships

Another observation is that types (and hence
attributes) can often be interchanged with
relationships. An employee is something which is
employed by a company. A salesman is a person (or
an employee) who sells for some company. Con-
versely, a person who runs in an election is a can-
didate; one who wins an election is a winner.

The parallel between relationships and types sug-
gests that we ought to consider sub-relationships
as an analog to subtypes. Just as we can charac-
terize people with greater or less precision as
being either salesmen or employees, so also we can
sometimes choose among relationships which are
more comprehensive or less. For example, we might
perceive these as relationships:

. Which employee designed which product.

. Which employee assembled which product.

. Which employee tested which product.

Or we might perceive the more comprehensive
relationship:

. Which employee worked on which product.

To preserve the same amount of information, we
might then treat ltdesigned", "assembled", and
"tested" as attributes of the "worked onn
relationship, just as a "job" field provides more
information about the subtype of an employee.

For another example, we might perceive the
relationships

. Who won which election.

. Who lost which election.

Or we might perceive the relationship

. Who ran in which election,

with winning and losing be&n& reflected in attri-
butes.

Mexico City, SeptenWp, 1982

~~ ~-

Just as salesmen and engineers are different kinds
of employees, we could say that designing, assem-
bling, and testing are different kinds of
'*working" on products -- and also that winning and
losing are different kinds of "running" in
elections.

Winning and losing are sub-relationships of "ran
in" , and winners and losers are subtypes of candi-
dates. The same can be said about designing and
designers, assembling and assemblers, and testing
and testers.

4.4 Two Levels of Options

It is beyond the scope of this paper to pursue
equivalence transformations of enterprise
descriptions. [Falkenberg] discusses some equiv-
alence transformations for relationships. He sug-
gests an approach to selecting a preferred or
canonical form out of each set of equivalents,
which would be an important contribution toward
dealing with some of these problems.

This variability on two levels leaves us with the
situation of Figure 12, all of which applies to the
same piece of reality. There is a set of equiv-
alent enterprise descriptions, and also a set of
equivalent data designs. There are some especial-
ly direct correspondences between certain enter-
prise descriptions and certain data designs,
represented here by the vertical lines. These are
the basis of the simplistic design algorithms of
today's methodologies, in which a given enterprise
description forces a particular data design.

/ENTERPRISE<->/ENTERPRISE<->/ENTERPRISE
lDESCRIPTIONl
I I I

lDESCRfPTION[

i-i
i DATA iC->i DATA I<->[DATA 1

DESIGN 1 1 DESIGN 1 I DESIGN I I
i A i i

Figure 12.

We are proposing that a richer set of data design
options be made available for a given enterprise
description, either by directly transforming the
data designs or by transforming the enterprise
descriptions and then obtaining the corresponding
data designs.

Procesdings of the Eighth International Conference
dn Very Largs Data Bums

180

5.0 CONCLUSIONS

We have identified a wide range of data designs,
and also enterprise descriptions, that can corre-
spond to a given slice of reality. We have tried
to point out the consequences for data design
methodologies and tools, and also for data doc-
umentation techniques. And we have tried to sug-
gest the beginnings of a systematic methodology
for dealing with such variability.

The work is preliminary, and leaves many questions
open. We may not have discovered all the design
options. We may not have classified them in the
best way. The transforms we suggested might be
neither necessary nor sufficient nor optimal. And
there is certainly considerable work left in the
development of tools to help select optimal
designs from the many available options.

ACKNOWLEDGMENTS

Several people provided valuable comments on ear-
lier drafts of this paper, including Bob Bascom,
Paula Newman, Goran Sandberg, and John Widger.

REFERENCES

[Codd] E.F. Codd, "Extending the Data Base Rela-
tional Model to Capture More Meaning", ACM
Transactions on Database Systems 4(4),
Dec. 1979.

[Falkenberg] E. Falkenberg, ltBalanced Informa-
tion Structures: The Basis for Well-Formed
Conceptual Schemas", in preparation.

[Kent 781 W. Kent, Data and Reality, North Hol-
land, 1978.

[Kent 791 W. Kent, "Limitations of Record Based
Information Models", ACM Transactions on
Database Systems 4(l), March 1979.

[Kent 81a] W. Kent, "A Simple Guide to Five Nor-
mal Forms in Relational Database Theo$, IBM
Technical Report TR03.159, Aug. 1981.

[Kent 81b] W. Kent, "Data Model Theory Meets a
Practical Application", Proc. VLDB7, 1981.

[Kent 821 W. Kent, ltThe Meanings of Data
Elements", in preparation.

[Schkolnick] M. Schkolnick and P. Sorenson, ?he
Effects of Denormalization on Database Per-
f ormance" , IBM Research Report RJ3082,
March 1981.

Mexico Cii, Septombsr~ lm

