
A Methodoloqy for View Inteqration
in Loqical Database Desiqn

Shamkant 6. Navathe
Database Systems Research and Development Center

512 Weil Hall
University of Florida, Gainesville, Florida 32611

Suresh G. Gadqil
Metropolitan Life

Corporate S.Ystem Planninq
1 Madison Avenue

New York, New York 10010

Abstract

This paper is based on a conceptual frame-
work for the design of databases consisting of
view modeling, view integration, schema analysis
and mapping and physical design and optimiza-
tion. View modeling involves the modeling of
the user views using a conceptual/semantic data
model; the view integration phase merqes user
views into a global model which is then mapped
to an existing database environment and subse-
quently optimized. Here we use the data model
proposed by Navathe and Schkolnick to model user
views and develop a methodo1og.y for view inte-
gration. View integration issues are examined
in detail; operations for merging views are
defined and an approach to automating the view
integration process is described. The proposed
approach is being partially implemented at the
University of Florida.

1. INTRODUCTION

It can be said without any doubt that one
of the major obstacles to the use of database
management software is the initial preparatory
effort during logical database design. It is
certainly a difficult task to design a "com-
munity view" of a single database which truly
reflects the aggregation of views with different
expectations, backgrounds and technical exper-
tise. For realistic databases used in business,
industry and government with thousands of
potential users, an individual user or user
group cannot be expected to be aware of the
needs of the rest of the user community and a
designer cannot be knowledgeable enouqh to
comprehend the requirements of a spectrum of
users.

A natural way to start, therefore is b.y
collecting the views of user groups or applica-
tion areas individually. The problem of coping
with thousands of data elements/attributes or
hundreds of data objects is ver.y difficult to
deal with manually [12]. In this paper we
present an approach to alleviating this prol?lem.

proceedings of the Eighth International Conference
on Very Large Data Bases

It is assumed that user views would be explicit-
ly represented using some data model. The View
Representation Model of Navathe and Schknlnick
[111 is used as a representative model and a
methodology for inteqratinq such views is
discussed.

1.1 THE DATA BASE DESIGN PROCESS

The conceptual framework for the desiqn of
data bases as described in some of Navathe's
previous work [11,16] and as qenerally accepted
at the 1978 New Orleans data base desiqn work-
shop [;I] may be described in terms of four
steps. The input to these four steps stems from
a Requirements Analysis step which provides a
specification of data and processing require-
ments. The four steps are:

A. View modelinrl: in this first sten the
user's view of the real world is abstracted and
represented.

8. View Integration: the user views are
combined into a qlobal model of the data and any
conflicts in the process are presented for
resolution.

C. Schema analysis and mapping: the global
model is mapped to the logical structure of an
existing database management system. l

D. Physical schema design and optimization:
the logical structure is analyzed with respect
to physical design alternatives and an "optimal"
physical schema is constructed.

This conceotual framework is illustrated in
Fiqure 1.

1.2 OBJECTIVE AND SCOPE

A major problem in database design is the
lack of a structured desiqn methodoloqv and lack
of automatic aids for developing complex data-
bases. Research has been conducted with the

142 Mexico City, September,‘W82

goal of structuring this process [12,15,17-J.
Further, a few automated techniques which
address parts of the database design process and
others oriented towards particular database man-
agement systems are available; examples are
PSL/PSA [14] used primarily for requirements
specification; and Database Design Aid (DBDA)
[12] used for a specific database management
system. We had proposed in [16] the framework
for a structured database design methodology
consisting of the above 4 steps and surveyed
research done to date related to those steps.
In [ll] we described how the first step of view
modeling may be accomplished.

This paper addresses the View Integration
step. It assumes the use of the specific data
model namely, the Navathe and Schkolnick model
[ll], for representing views and analyzes the
process of view integration. The aaper dis-
cusses the different problems related to the
view integration process and proposes an
approach to the development of a software system
for automating the construction of integrated
views. We are presently implementing these
ideas in the database design aid in conjunction
with a data dictionary system being developed at
the University of Florida. Efforts are also
under way to consolidate the research on view
integration by collaborating with the University
of Rome where similar work is being pursued on
the extended E-R model [2]. To our knowledqe,
very little work has been done on the view
integration problem, barring a few exceptions
c51.

2. MODELING USER VIEWS

For ease of discussion and because of some
of its desirable features we have chosen the
model proposed by Navathe and Schkolnick [ll]
(henceforth abbreviated as the N-S model) as a
vehicle for modeling user views. A brief
description of the model and its advantages
follows.

2.1 SUMMARY OF THE NAVATHE-SCHKOLNICK MODEL

The N-S model includes the two as ects of
user requirements identified by Kahn [6 : "the !i
Information Structure perspective" describing
data by means of entity types and association
types, and "the usage perspective" giving a
description of processing and insertion/deletion
of instances of these types. The discussion of
the view integration process itself is mostly
invariant to the model selected and will be done
in a general way. The N-S model allows the
modeling of user views in explicit terms. The
model uses two type constructs: objects and
connectors. The object type is divided into two
subtypes: entity type and association type.

Proceedings of the Eighth International Conference
on Very Large Data Baser

Instances of an entity tvpe are called entities.
Entities refer to physical things, persons,
concepts. An entity type may either be self-
identified or externally identified. An asso-
ciation type refers to a collection of associa-
tions. Associations are n-ar.y relationships
defined over entity types and association types.
They are subdivided into two subtypes: simple
associations and identifier associations. The
subtypes of a simple association type are:
cateqorization, subsettinq and partitioninq
types.

Connecter types in the N-S model connect an
association type to some object tvoe which par-
ticipates in the association type. They are
divided into two subtypes: directed and undi-
rected. A directed connector type implies
certain rules of insertion and deletion in the
context of an association type. In qeneral,
connector types are used to show three types of
dependencies among object types: ownership,
deletion and null dependency. They are illus-
trated in Fiqure 3.

The N-S model representation conventions
allow view diagrams to be drawn. These diaqrams
are supplemented with assertions to state com-
plicated interdependencies among instances. An
assertion lanquage may be defined to state these
assertions. We are presently investigating the
adequacy of a language based on the first order
predicate calculus. The language must be capa-
ble of expressing the following kind of asser-
tions: For the view diagram in Fig. 18 -

"Procedures performed by the SERVICE
instance called Hospital-trust are always
performed free" is an assertion in natural
language. The same in an assertion
language could be stated as -

s.Service-Name = Hospital-trust &
<s,p> e PROCEDURE-IDENTIFIER &
<p,c,r> E PERFORMED ==>
<p,c,r> E PERFORMED-FREE.

where: s,p,c,r are respectively instances of
entity types SERVICE, PROCEDURE,
SCHEDULE and PERSONNEL.

Assertions pertaining to a single view are
termed intra-view assertions whereas those
pertaining to multiple views are termed inter-
view assertions.

For a further clarification of the N-S
model the reader is referred to the Appendix in
the paper and to Clll.

Note: The words 'type' and 'instance' will be
used in the subsequent discussion only
when they seem necessary.

143
.,

MexitiCity, September,1969

2.2 ADVANTAGES OF THE N-S MODEL

a) It allows association types to be
defined over entity types, over association
types, or a combination of both unlike the E-R
model [23.

b) Models the existence-dependencies among
entities separately (in terms of identifier
associations) from the relationships (or associ-
ations) among entities (unlike Smith/Smith
C131) l It thus defines identification paths
clearly. (e.g. PROCEDURE in Fig. 19 is exis-
tence-dependent on SERVICE b.y virtue of identi-
fier association PROCEDURE-IDENTIFIER),

C

1
Describes a view of terms of object

We which are either entities or associa-
tions). The internal hierarchy of descriptor
elements (attribute types) within an object type
is kept separate from the object type interac-
tion since .it is less important. For example
the internal structure of A in Figure 4 namely,
A(A,b,(c,d),(e,(f))) is a further level of
detail about entity type A.

d) Models data relationships as seen b.y
user both at schema and instance level. Proper-
ties of views with respect to insertion/deletion
rules etc. are clearly distinguished (unlike
Chen [2] and Smith/Smith [13]) by use of differ-
ent subtypes of association types and by employ-
ing directed connector types.

2.3 GLOSSARY OF VIEW MODELING AND INTEGRATION
TERMS

A user view is a representation of informa-
tion structure and processing requirements as
seen by a group of users. A subview is a subset
of a user view. The subsequemussion about
user views is equally applicable to subviews.

The View Integration process has as its
objective the development of a conceptual model
supporting all users in the organization. This
conceptual model will be called as a Global
View. The Global View ma.y in fact con-
num6er of views that cannot be further inte-
grated. The software system to accomplish view
integration will be called a View Integrator.

The Enterprise View forms a nucleus for
development of the m View. It describes
the basic entities and associations appropriate
for the organization and is based on the assump-
tion that some characteristics of data structure
and usage can be deduced from the nature of the
organization.

Proceedings of the Eighth International Conference
on Very Latgs Data Bases 144

Equivalent Views are defined as views which
have the same information content but different
structures. The term information content refers
to the functional and non-functional associa-
tions among attributes. Information content has
been defined formally for relational databases
in terms of functional dependence and direct
table look-up associations [l]. In this paper
we will assume that an acceptable measure of
information content has been defined for the
user c0mmunit.v in question.

A tarqet of integration is an object type
or a c-o?;-type which is compared among
different views for possible integration.

A view integration operation is a process
that is applied to the targets of integration
giving rise to new object types, connector
types, attribute types etc. These operations
are discussed in greater detail in a later sec-
tion. A preferred view is that view which is
selected from amonq two or more equivalent views
for inclusion in the Global View over a less
preferred view. The inteqration policy is
defined as the set of rules which dictate how a
number of local views must be integrated into an
Enterprise View. The policy contains several
rules; examples of these rules are:

"The user views in Finance Dept. are to
be preferred over user views in Market-
ing Dept. at all times."

or "In categorizing patients, select those
categorizations which correspond to the
physical allocation of wings in the
hospital (e.g. Psychiatric, Obstetric,
Intensive Care, etc.)."

The integration polic.y, after all, is subject to
interpretation by the designer. It should be
couched in the form of a scale of preferences of
views and intra-view and inter-view assertions.

2.4 EQUIVALENCE OF VIEWS

A comparison of two views can be made to
determine whether the.v are identical. Identical
views have objects and connectors that match
completely. In some cases the identical nature
of two views is made apparent only after naming
correspondences are established.

Views which are not identical are referred
to as non-identical and may be classified
further into Equivalent and Non-equivalent
views. A pairwise matching of views can lead to
the grouping of a set of views into subsets
shown schematically in the following hierarchy:

Mexico City, Sap$wnbar, 1982

Views

Identical Non-identical

(may have naming conflicts)

A
Equivalent Non-equivalent

ARestructure Representation
equivalent Equivalent

Equivalence of two views arises from two
sources: the use of different modeling cons-
tructs and conventions resulting in Representa-
tion Equivalence; genuine differences in how the
same data are viewed by the modeler/designer
resulting in Restructure Equivalence. Restruc-
ture Equivalence is so named because each of the
equivalent views can be transformed into the
other by a set of restructuring operations such
as compression, expansion, assembly merging and
assembly partitioninq [lo]. The distinction
between these two types of equivalences is
motivated by the fact that the complexity of
view integration operations is greater in deal-
ing with Restructure Equivalent views. Since
the boundary between these two is at best arbi-
trary, some convention must be adopted to sepa-
rate the two. In 'this paper our convention will
be as follows: if two views have objects and
connectors which match except for differences in
prime and candidate keys, they will be consi-
dered representation equivalent. Figure 5 shows
two Representation equivalent views. Figure 6
shows two Restructure equivalent views where
View 2 has entity type DEPTS categorized into
categories MEDICAL, SURGICAL, NON-MEDICAL-
NON-SURGICAL but contains the same information
as in View 1. The equivalence is not apparent
unless it is specified.

Restructure equivalence among views to be
integrated generally requires identification of
the preferred views(s) and gives rise to the
development of mapping rules during integration.
The preferred view is incorporated into the
Global View with as little change as possible.
Less preferred views are accommodated by means
of mapping rules which enable the non-preferred
view to be reconstructed from the Global View.

3. A MODEL FOR THE VIEW INTEGRATION PROCESS

A Global View is developed from the input
views and assertions. The input views consist

of the Enterprise View and local views; the
Inter-view assertions describe certain charac-
teristics of views which need to be taken into
account in the inteqration process.

Other outputs of the View Inteqration
process are - Mappinq Rules and a Statement of
Conflicts. The Mapping Rules describe how indi-
vidual local views can be generated and how user
processing requirements can be satisfied. The
nature of mapping rules depend upon the way in
which processing requirements are specified.
E.g. if an access path specification is used to
describe processing requirements, a mapping .rule
may state that the original access path is
obtained b.y a combination of access paths in the
global view. The statement of conflicts pre-
sents conditions which could not be resolved
during the integration.

The view integration model is presented
schematically in Figure 7.

The following assumptions and statements
further define the scope of view integration in
the present paper:

a) a sinqle result: the Global View which
really consists of multiple views is to be
produced. The model does not consider develop-
ment or presentation of alternative Global
Views.

b) due to errors or inadequate definition
of input views or assertions the integration
step produces a statement of conflicts wherever
necessary after designer intervention.

cl it is assumed that a "normalization of
input user views" is carried out corresponding
to the first normalization of the relational
model [4] to eliminate all Identifier Associa-
tions. The normalization process propagates
keys within the data structure so that all
objects become self-identified. Figure 8 illus-
trates how the identifying association linking
LABORATORY and CHIEF is removed by propagating
LabName into CHIEF, i.e., expanding the key of
CHIEF from ChiefName, to Labname, ChiefName to
make it self-identified. Navathe LgJ has dis-
cussed an intuitive procedure to normalize
network structured data which can be applied
when a network of identification paths is
present.

3.1 INPUTS TO THE VIEW INTEGRATOR

The inputs to the View Integrator are the
Enterprise View, the local views, assertions and

*(processing requirements. In this paper we do
not elaborate on how processing requirements
within each view are specified.

Proceedings of the Eighth International Conference
on Very Large Data Bases 146 Mexico CiW, September, 1982

A. THE ENTERPRISE VIEW

The Enterprise View is constructed by the
designer based on his knowledge of the orqaniza-
tion. It will include many of the entities in
the final database design. For example, in a
database for a Medical Center an Enterprise View
may consist of entity types DOCTORS, PATIENTS,
TESTS, MEDICATIONS, NURSES and PROCEDURES.

8. LOCAL VIEWS

Local Views are views of data seen by the
individual users or user groups in the organi-
zation. They are modeled using the N-S model
with entities and associations. The.v yvprEe
supplemented b.y intra-view assertions.
ferred local view and its intra-view asser-
tion(s) are carried forward unchanged as far as
possible during integration; some local views
undergo changes during integration. However,
unless deliberately deleted, no information from
any view is supposed to be lost.

C. INTER-VIEW ASSERTIONS

Inter-view Assertions circumscribe the view
integration process by specifying views which
are equivalent. They state in what way views
are equivalent and the data correspondence from
one view to another. Data correpsondence is
stated in terms of names of entities, associa-
tions and attributes and, where appropriate, the
restructuring operations to convert one view to
another. An example of an inter-view assertion
for Restructure equivalent views shown in Figure
6 is:

1. View 2 = RSTR[View 11
2. Preferred View = View 2
3. View 2 [MEDICAL, SURGICAL,

NON-MEDICAL-NON-SURGICAL]
==> CATEGORIZE [View 1

[DEPARTMENT]/TYPE]

The first two statements above are self-
explanatory. Statement 3 specifies the restruc-
turing operation called CATEGORIZE which trans-
forms entities from one view to another. (see
assembly partitioning in [lo]). In this example
the entities MEDICAL, SURGICAL, NON-MEDICAL-NON-
SURGICAL are categories of the DEPARTMENT entity
of View 1 by the attribute type called Type.

Inter-view assertions are also used to
specify prime and candidate keys in representa-
tion equivalent views. The inter-view asser-
tions for Figure 15 are:

1. View 1 = REP[View 21 '_.

2. Prime key: ServiceNo.; Candidate key:
ServiceName.

Proceedings of the Eighth international Conference
on Very Carge Date Bases 146

_ .~

3.2 OUTPUTS OF THE VIEW INTEGRATOR

A. THE GLOBAL VIEW

A Global View is a conceptual model of data
which subsumes the Enterprise View and all
pertinent user views within an organization.
The Global View is characterized by a minimum of
data redundancy and inclusion of all access
paths for data retrieval of object instances
from all user views. A Global View is the most
significant output of the View Integrator; it is
input to the next phase in logical database
design namely, Schema Analysis and Mapping,
which maps the database design to a target
database management system.

B. MAPPING RULES

Mapping rules state the access paths for
data and include the deletion and insertion
rules for views which are equivalent. Mapping
Rules are derived from inter-view assertions.
They represent the means by which data specified
in a non-preferred view may be obtained from the
Global View. The complexity of mapping rules
depends upon the number and type of restructur-
ing operations required to transform one view
into its equivalent.

Mapping rules may be illustrated with
reference to Fiqure 6 which shows two restruc-
ture equivalent views. Inter-view assertions
for these views have been stated earlier. A
mapping rule for these views would be:

DEPTS ==> DEPTS t MEDICAL t SURGICAL
t NON-MEDICAL/NON-SURGICAL

where t indicates a union operation for access
paths.

The mapping rule siqnifies that references
to the entity DEPTS of the non-preferred view -
View 1 requires access to all the entities named
on the right hand side of the mapping rule in
the Global View. For Fig. 10, a maopinq rule to
obtain View 1 would indicate that XCeSSiW

DEPARTMENT by Oeptname would involve a table-
look-up operation of looking up a Deptno for
Deptname first.

3.3

tion

A GENERAL PROCEDURE FOR VIEW INTEGRATION

In a semi-formal manner the view integra-
process may be described as follows.

Inputs

Assume an enterprise view E and local views
VI, . . . V, as given.

Mexico City, Septem&$B2

P = given integration policy

:
= a set of intra-view assertions
= a set of inter-view assertions

R = a set of processing requirements

outputs

G= global view set
M = a set of mapping rules
S = a set of conflicts
A modified set of assertions

A step-by-step procedure for view integration:

Step 1: Divide views V
classes CI, . . . v l ** vn into such that each
class contains eitker

- a set of equivalent views
(either restructure or represen-
tation equivalent), or

- a set of identical views, or

- a sinqle view (which is not
identical nor equivalent to a
view in another class).

Verif.y the classes b.y checking with
the designer.

Set class index i to 1.

Step 2: Perform an inteqration on class Ci.

If the class contains identical
views, select one as the integrated
result: IVi.

If a class contains equivalent
views, attempt to generate an
integrated view IVi,

- by applying P

- by treating views in descending
order of preference

- by reporting back conflicts to the
designer and asking the designer to
make a choice (of names, of keys
etc.) or making new assertions or
modifyinq old ones.

- by considering I and J during
inteqration.

If a single integrated view cannot be
generated, multiple intermediate views
may be generated and passed to the next
step.

Proceedings of the Eighth International Conference

Step 3: Provide feedback to the desiqner on
the intermediate results of
integration IVI, . . . IV . (These
include local views whichPwere in a
class by themselves). Ask designer
to provide a preference ordering of
these semi-integrated views.

Step 4: Integrate views IVi into E in
descendinq order of preference in a
way similar to step 2.

- Modifv assertions in I and J on
the basis of how the inteqration
orocess affects the components
of an assertion.

- Report conflicts back to the
designer and ask the designer to
make a choice, add or modify an
assertion etc. If a conflict
cannot be resolved add it to set
S.

- Repeat step 4 as long as view
inteqration operations are
applicable.
specific

The applicatlP,;i;;
operations

integration is extremely diffi-
cult to figure out automatically
on the basis of naming, struc-
tural similarities and asser-
tions. The designer may be
required to control this process
(see [21).

The result of step 4 is the set G
of global views. Ideally G should
contain a single view but practi-
cally it may not. Step 4 may need
to be reapplied after some modifi-
cations.

Step 5: Generate M b.y determininq how each
of the requirements in R is satis-
fied by using G. (Generation of M
may alternately be carried out
during Steps 2 and 4).

4. THE MATCHING PROCESS IN VIEW INTEGRATION

The view integration operations to be
applied to views are determined b.v comparing the
views to be inteqrated. At the object type
level, simi1arit.y of objects is determined by
comparison of attributes and keys; at the view
level, the comparison is between objects and
connectors from one view with another. The
matching process is used in Step 1 of the view
integration procedure to divide views into
classes. There are three possible outcomes of

on Very Large Data Bases 1 r-1 Mexico City, September,. 1982

the matching process: complete match, partial
match or mismatch.

It is assumed that two completely matching
object types will have completely matching
instances. The reason behind such an assumption
is that at the logical database design stage no
conclusions can be drawn regarding actual values
in instances of data. If details about the
values are available, they may be supplied by
means of inter-view assertions:

e.g., Value-set (View 1 l PLACE-OF-ORIGIN)
I 'US','OTHER' , -

Value-set (View 2 l PLACE-OF-ORIGIN)
= 'US' ,' EUROPE','ASIA','OTHER'

4.1 OBJECT SIMILARITY

Object similarity is determined first by
comparing the names of the object types and then
by comparing the attribute names and definitions
of the object types. This matching results in
either a complete match or a partial match or a
mismatch. The conditions of complete match and
complete mismatch are easy to visualize. Match-
ing names are reported to the designer for con-
firmation that they have identical meanings.
The partial match conditions arise out of a com-
bination of complete match, partial match, and
mismatch when key attributes and non-key attri-
butes from different objects are compared.

The range of outcomes of the matching
process is illustrated in Table 1.

The general rules for resolving partial
matches and mismatches are described below.

Let 0 be an object type being matched; 0
is from a preferred local view, O2 is from a
non-preferred view and OS is the result of
integrating OI and 02.

Let Key(Oi) = set of key attribute types in
Oi'

N-Key(Oi) = set of non-key attributes
types in Oi.

a) Partial match on key -

W(Og) = W(Ol)

N-Key(03) = N-Key(OI)u N-KeY(02)u
{KeY(O2) - Key(OI)}

b) Mismatch on key -

Kw(Og) = @Y(Ol)

N-Kw(03) = N-Key(OI) u {N-Key(02)
- IVY) u Key(02)

Proceedings of the Eighth International Conference
on Very Large Data Bases

The union operation on the attribute sets
above is supposed to eliminate duplicate
attributes although their names may not be
identical. The duplication is inferred from
assertions.

Figure 9 illustrates a partial match on
key; the entity type *DEPARTMENT has key attri-
bute UivNo, UaptNo in view 1 which is preferred.
After integration, the same key applies to
DEPARTMENT. Figure 10 illustrates a mismatch on
key. Deptno from the preferred view 2 is
selected as a key in the target view. Ueptname
remains as a non-key attribute type. Figure 11
illustrates a case with no match on name between
entity types NURSE-STATION and RECEPTION-
STATION. However, an inter-view assertion
(possibly input by the designer after ascertain-
ing that they mean the same) forces a match
among them. Matronname and Head-nurse-name are
also supposed to be declared as identical attri-
bute types. The names, key etc. from the pre-
ferred view are carried to the integrated view.

Table 1: Outcomes of Object type matching

Match Type Match On

Name Key attributes attributes

Complete 1 Completer Complete 1 \y;:eate

Partial

Partial
No Match _
Complete
Partial
No Match

No Match Complete
Partial
No Match

No Match Complete Complete
Partial
No Match

Partial Complete
Partial
No Match

No Match
I

Complete
Partial

Mismatch 1 No Match No Match No Match

4.2 SUBVIEW OR VIEW SIMILARITY

Assume a situation in which local views are
matched by extracting subviews made up of one or
more unary, binary or n-ary associations and
matching them among themselves. A subview thus
has at least two objects and may have ownership
and deletion dependency characteristics by
virtue of directed connectors. Subview similar-
ity may be determined by a comparison of object
types and a comparison of dependencies. At a
minimum we can consider two object types and the
ownership and deletion dependency, whichever are
applicable, between them. Object matching has
already been discussed in terms of name, key
attributes and non-key attributes of the object

148 Mexico City, September, 1982

types. As regards different dependencies, we
have three states, viz., ownership, deletion
dependency and null dependenc.v in each of two
views, giving a total of nine combinations. In
the matching process we consider the combination
[Ownership (View l), Deletion Dependency (View
2)] the same as [Deletion Dependency (View l),
Ownership (View 2)]. Therefore, we have to
consider only the following six cases:

Table 2: Different combinations of dependencies
Type of Dependency

Combination # View 1 View 2 Match Outcome

:
Ownership Ownership
Deletion Deletion Complete Match

3 Null Null
4 Ownership Null Partial Match
5 Deletion Null
6 Ownership Deletion Conflict

Combinations 1, 2 and 3 represent condi-
tions of complete match and the merging process
can continue. Combinations 4 and 5 represents a
partial match and require resolution in one of
two ways: maintain both relationships with
re ndant object types or provide mapping rules
so that data for each of the two views can be
ob ained from the Global View without any redun-

/

da cy. The latter method is chosen in keepinq
with one of the objectives of inteqration
n mely, to minimize redundancy. This is in con-
trast to El Masri and Wiederhold's approach [5]
where they require that partially matched
objects from equivalent views in the Global
Model be maintained AND consequent insertion and
deletion of instances of these objects be
handled consistently. The approach in [5] has
the advantage of preserving the same view of
data as originally defined by each user in the
Global View but results in a heavy data redun-
dancy as well as increases processing overhead.

As a general policy, the integrated view
for Combinations 4 and 5 will include the more
constrained of the views being integrated
namely, View 1 in Table 2. Combination 6 shows
a conflict in two views which cannot be resolved
automatically. This condition requires designer
intervention followed by a specification as to
the preferred view.

4.3 VIEW INTEGRATION OPERATIONS

View Integration operations permit the
merging of user views to develop a Global View.
Operations are performed on targets of integra-
tion namely, object types and connector types.
One operation on a target of integration may
trigger several operations with the object and
connector types which were involved in the
former operation as targets. View integration

operations can be defined at two levels: schema
(type) operations and instance operations.
Instance operations would apply to individual
instances of objects (e.g., delete instances
where age > 75). A view integrator need not
really support such operations during desiqn.
They may be provided in the form of modifica-
tions of-assertions.

Schema operations consist of operations on
associations and connectors. The former operate
on the three kinds of special associations:
categorization, partitioning and subsetting.
The latter operate on connector types.

4.3.1. ASSOCIATION TYPE OPERATIONS

Categorization Addition Is the additon of a
new categorlzatlon of an entity-type. Figure 12
shows the integration of two views with differ-
ent categorizations of the same object PATIENT.
The integrated view is obtained b.y merging the
PATIENT entity and the addition of categoriza-
tion ADMISSION-STATUS to an existing cateqorira-
tion AGE-GROUP. Assume that mutual exclusivfty
was given as an intra-view assertion. The
implication on instances is that a given patient
has one instance of type PATIENT, one of either
type INPATIENT or type OUTPATIENT and one of
either type PEDIATRIC or type ADULT.

Category Enhancement is the addition of a
new category type supplementinq an existinq
categorization. Category, enhanckent is illus-
trated in Figure 13. The two input views show
different categorizations of the PROCEDURE
entity type. The integratlon of these views
results in one categorization association of the
PROCEDURES entity type into four entity types.
This operation is similar to the categorization
addition except that (i) no new categorization
association is added here; only new category
types are added to an existing categorization.
If mutual exclusivity is to be enforced, cate-
gorization addition is preferred.

Partition Enhancement involves the addition
of partitions to an existing partitioning asso-
ciation. Partition enhancement is illustrated
in Figure 14 where View 1 and View 2 have a par-
titioning of the EMPLOYEE by EMPLOYEE TYPE. The
entity type called EMPLOYEE-TYPE is shown in
terms of its instances, e.g., NURSE and DOCTOR
in View 1. Each of these instances is supposed
to be associated with a partition of the set of
instances of EMPLOYEE. In the integrated view
the partitioning association includes EMPLOYEE-
TYPE partitions from View 1 enhanced by
EMPLOYEE-TYPE partitions from View 2. Mutual
exclusivity must be obeyed, otherwise partition
enhancement is disallowed. In this example an
EMPLOYEE instance must map into one of the four
partitions defined b.y the four instances of
EMPLOYEE-TYPE.

Proceedings of the Eighth International Conference
ols very Large Data Bases 149 MsxicoCity,G&embr,1982

Partition Addition is the addition of a new
aartitioninq association for a given entity
tvne. In the above example of EMPLOYEE-TYPE
partitions, if the partitions from two views
cannot be disjoint (e.g. a Nurse can also be a
Surgical-assistant), then the two EMP-TYPE-SEL
partitionings need to be kept separate in the
inteqrated view. From any single preferred
view's standpoint, this amounts to adding a new
partitioning association to that view.

Subset Addition is the addition of one or
more subsets to an existing association to allow
a different subset of association instances to
be a named subset. Figure 15 illustrates subset
addition. The integrated view shows the five
association types which are subsets of the
association type DRUG-SCHEDULE from View 1 and
View 2.

4.3.2 ATTRIBUTE TYPE OPERATIONS

Attribute Enhancement is the addition of
new attribute types to an object type to account
for the partial match or mismatch of that object
type with other views. Fiqure 10 shows how
attribute enhancement is applied to the entity
type DEPARTMENT. Considering that each view
contributes instances of an entity type, the
attributes which are not present in a particular
view are supposed to be given null values in the
integrated view.

Attribute Creation is an operation where a
new attribute is created in an object tvoe to ._
convey the same information as is contained in
another view by means of a categorization or
partitioning association. Fiqure 16 shows an
example where object-type STUDENT is being
matched in two views. To convey the categorita-
tion information about a STUDENT, a new
attribute called Category is created in the
integrated view. The value set for Category
will be assigned (by the designer); e.g.,
Category = 0 for graduate, 1 for undergradu-
ate. Note that the attributes, Degree and Rank,
which are a part of the entity type GRAD-STUD
'and UG-STUD are used for an attribute enhance-
ment of STUDENT.

4.3.3 CONNECTOR TYPE OPERATIONS

Restriction is defined as the-selection of
the most restrictive connector specification for
representation in the integrated view. Connec-
tor types show three types of dependency:
ownership, deletion and null dependency. When
merging two views the combinations of dissimilar
connector types may be integrated as follows:

Proceedings of the Eighth International Conference
on Very Large Data Bases

150

Conflict in connector tvpes calls for
desiqner intervention.

5. CONFLICTS IN VIEW INTEGRATION

Conflicts in the integration process arise
during the matching and integration of views for
several reasons. They are presented to the
designer for resolution. If the designer is
able to resolve them (possibly with the help of
users) integration continues with the new infor-
mation; otherwise the conflict is added to the
set of unresolved conflicts. Conflicts may
partly be caused b.v incomplete or erroneous
specification of input and partly due to differ-
ences in modelinq. Conflicts may be classified
by considerinq their source into the following
classes:

a) Object descriptions, includinq naminq
and dependency conflicts

b Equivalent View conflicts
C Modelinq conflicts

5.1 OBJECT DESCRIPTION CONFLICTS

These can occur in the form of synonyms
(different names referring to the same objects)
or homonyms (one name referring to different
ob.jects). In the proposed matching scheme
synonyms will cause a complete match on key and
non-key attributes but no match on name; and
.homon.vms will be shown up b,v a condition where
two objects have the same name but the ke.y and
non-key attributes do not match completely. In
either case, our current implementation scheme
requires designer confirmation before any merg-
ing of object types is attempted. A designer
should allow two object types, whether with the
same name or different names, to be integrated
(merged) only after ascertaining that they have
the same set of instances. A wronq choice of
name could cause the reportinq of more conflicts
as additional views are inteqrated.

As discussed previously, several dependency
conflicts may occur. These conflicts are gener-
ally resolved by adopting the most restrictive
specification out of those in different views
and then providing mapping rules wherever necei-
sary for individual views. One case where the

Mexico Cii, September;‘7982

conflict cannot be resolved (see Restri'
Operation) is when the same object is an
of association A in view 1 and is del'
dependent on association A in view 2.

5.2 EQUIVALENT VIEW CONFLICTS

ction
owner
etion

The integration process assumes that equiv-
alent views will be accompanied by inter-view
assertions stating equivalence. When equivalent
views are not accompanied by inter-view asser-
tions, the integration process cannot detect
equivalence and hence yields redundancies of
data. In addition, partial match conditions may
be detected and the designer warned of possible
conflicts. Figure 6 shows two views which are
equivalent. However, without. an inter-view
assertion about equivalence, the integrator will
report that object-type DEPTS from View 1
partially matches with DEPTS as well as with
MEDICAL, SURGICAL, etc. from View 2. The con-
flict may arise whenever no equivalence is
stated by an assertion, yet there is a total
match or a partial match among either key or
non-key attributes which indicates a possibility
of equivalence. This signals an equivalent view
conflict and warrants designer intervention.

5.3 MODELING CONFLICTS

Differences in representation of views can
potentially lead to redundant data after inte-
gration. However, genuine cases exist where the
same situation may be modeled differently by
different users. Figure 17 illustrates a model-
ing conflict involving the use of partitioning
and categorization associations. The instance
implications of Views 1 and 2 are drastically
different, Consider the following situation.
Entities 'of type PATIENT are partitioned in two
ways in View 1: by admission status and b.v age-
group. ADMISSION-STATUS is an entity type with
two instances and so is AGE-GROUP. In View 2
the infbrmation about patients is more detailed
- there is an instance of one of the category
types INPATIENT or OUTPATIENT for every PATIENT;
similarly there is an instance of category types
PEDIATRIC or ADULT for every PATIENT too. To.
support both views, the designer must allow the
categorization association as well as the parti-
tioning associations to be preserved.

Between the conditions of a complete match
and a complete mismatch of objects we have a
range of partial matches. Table 1 shows the
match conditions when matching on Object names,
key attributes and non-key attributes. An
integrator nust provide for a set of actions in
each of those cases.

6. CONCLUSIONS

which
We are currently implementing a design aid

allows user views to be input using the N-
S model, builds a dictionary of views and
performs view integration using the approach
described above. Emphasis is being placed on
desiqner interaction and ouraim is to produce a
workable solution for dealing with large prob-
lems of integration which designers cannot cope
with manually.

The conclusions of our investigation into
the view integration process are as follows:

a) The success or failure of view inteqra-
tion is largely dependent on getting as explicit
a statement of user views as possible. The job
of extracting all relevant information from each
user (or user group) is a major challenge to the
designer. It is not clear whether the designer
should do an ad hoc analysis of user views to
detect equivalences (e.g. restructure equiva-
lence) and then try to specify them on his own
or whether he should expect different user areas
to know of the similarities and differences in
their data needs.

b) From the detailed discussion of object
and connector matching it is clear that the task
of matching and integrating views represented by
objects and connectors is non-trivial.
Decisions made in the automatic View Integrator
should be confirmed at every step and the
designer/user should bring in his instance
level knowledge about data to evaluate the
matches or mismatches. User help may be sought
from time to time to guide this process.

c) In the conflict resolution area, consi-
derable human involvement is necessary. It is
possible to classify conflicts and help the user
in an understanding of the conflict, but the
ultimate repsonsibility to resolve them will be
up to the users and management who set policies.

d) Given that users are kept actively/
interactively involved in the view integration
effort, the main advantage a machine can provide
is to deal with a large number of integration
alternatives and present them to the user. An
automated or semi-automated approach is still
beneficial when the volume of comparisons of
data names and data characteristics is too high
to deal with manually. The actual view integra-
tion operations at the object and connector
level were shown to be straightforward and can
be easily automated.

The overall conclusion from the above,
therefore, is that a View Integrator can be a

Proceedings of the Eighth International Conference
on Very Large Data Bases

151
Mexico City, September, 1982

valuable aid in design for realistic
“integrated“ databases used in most organiza-
tions. It is however futile to expect that such
a system could solve the problem completely on
its own and produce a tailored design of the
database. The system has to be an interactive
one where the user/designer team will navigate
the course to an acceptable design.

ACKNOWLEDGEMENT

The authors wish to thank Melanie Smith for
her comments on an earlier version of the paper.
Discussions with Maurizio Lenzerini of the
University of Rome have been useful. This work
was supported in part by DOE grant No. DE-ASOS-
81ERl0977.

APPENDIX:

View modeling in the Navathe-Schkolnick Model

This appendix describes the essentials of
the View Representation model [ll] which was
introduced as a vehicle for expressing the views
of data held by user groups or individual users
of a database prior to its design. Most of the
terms used below are identical with those in
c111. Some terminology has been changed to
improve claritiy and understandability. The
reader is referred to [ll] for a comprehensive
discussion about the model.

General Description

The model expresses a user's view of data
by employing the following type constructs:
entity, association, attribute, connector.
These types are divided into subtypes as shown
in Figure 2. Assertions are used additionally
to state interrelationships and constraints
which cannot be otherwise expressed. The term
object type is used to stand for either an
entity type or an association type. In general,
the model allows the user to start with the
entity types of interest, describe each entity
type with a nested list of attribute types and
build any number of levels of association types.
No instance information is captured in a view
diagram besides that in the form of assertions.

The model provides conventions for a visual
description of a user view. This visual
description, called a view diagram, is in the
form of a graph with object types as nodes and
connector types as edges. Assertions are not
graphically represented.

The semantics of the model include rules of
insertion and deletion at both the type and
instance level. Some of them are covered below
and in Fig. 3. In the following we define each

important concept in the model and provide some
explanation. References are made to the
examples used in the bod.y of the paper.

Terminology

An entity ty e refers to a physical thing,
object, &son document etc whose
existence is of inte:est to tke usi'r. An
association type is an n-ary relationship among
n object types. An object type is either an
entity type or an association type. An
association type is .a fact, a concept or a
relationship among its components.

Each object type has a descriptor set which
is a list of attribute types used to describe
the object type. An attribute type may' be
atomic in which case it is a propertv. aualitv
or characteristic of the object types-which it
can describe. Otherwise, an attribute type may
be defined as a list of other attribute types.
The attribute type structure within an object
type can thus be hierarchically orqanized and is
shown by a nested parenthetical notation (e.g.
see Figure 4).

A connector type shows the linkage or the
logical access path among two object types where
one of them is an association type and the other
is a participant in that association type. A
connector type, if undirected, is represented by
a two tuple. When directed it is represented by
an ordered two tuple. An assertion is a
statement (in some assertion specification
language) which describes a specfic relationship
among instances of object types from one view or
multiple views; the term intra-view and inter-
view assertions are used correspondingly.
Assertions are used when the semantics of the
directed connectors is inadequate to model
instance interdependencies.

A list of key attribute types of an entity
type provide a .total identification to it when
each instance omnique value
list of the ke.v attribute types. Such entity
types are called self-identified. Partial
identification of an entity type by its
attributes implies the need for external identi-
fication. External identification is defined as
the process of augmenting the partial internal
identifier (p1D) of an entity with the key
attributes of other objects. E.g., in Fig. 8,
CHIEF has a key attribute Chiefname (key-
attributes are always underlined in view
diagrams) which is a partial identifier. CHIEF
is externally identified from entity type LAB.
The model allows an object type to have several
external identifications.

Association types are divided into two
subtypes: simple and identifier. An identifier
association is an n-ar.y association which

Proceedings of the Eighth International Conference
on Very Large Dete Beses 152

J _

Mexico Citi, Seqtemk, 1962

provides external identification to uniquely
identify an instance of a partially identified
object type from the remaining (n-l) objects
types. An association is called a simple
association if it is not an identifier associa-
tion. (See [8] for a detailed discussion of
identification of data).

Diagrammatic Notation

The visual description of a view is real-
ized in the form of an acyclic graph called a
view diagram where object types are nodes and
connector types are edges. All of the concepts
mentioned above, except intra-view assertions,
are used in the view diagram. Object types
!;xc;;;,identifier association) are represented,

In the view diagram, association
types are'grouped on one side of the diagram and
entity types are grouped on the other. Object
types are described by descriptor sets within
the diagram underneath the object type if
possible. A self identified object type is
represented by placing a # symbol next to the
object type in the view diagram (e.g. SERVICE in
Fig 18). An identifier association is repre-
sented as a rectangle with undirected connectors
from the identifying object type(s) to the iden-
tifier association and a directed connector from
the identifier association to the identified
object type.

Simple Association Type

A simple association type is a way of
relating instances of one object type with
instances of another object type, The content
of a simple association contains tuples composed
of the total internal identfiers TIDs) of all

t- object types involved in the assoc ation type,
as well as any attribute types describing the
simple association type. This type of associa-
tion is represented with undirected connectors
between the objects (involved in the associ-
ation) and the simple association. Identifica-
tion of simple association types is achieved by
concatenating the TIDs of all of the object
types involved in the association type. There
is no restriction on the number of simple
association types that an object type can be
involved in.

Directed Connector Types
Directed connector types express different

kinds of dependence among object types to which
they relate. In an n-ary simple association
there is a directed connector from an entity to
the association if it plays the role of an Owner
of the association. If deletion of the associa-
tion implies that certan entity instances get
deleted, this is also indicated by a directed
conector type from the association type to those

Proceedings of the Eighth International Conference

entity types. Lack of directed connectors in a
simple association implies that there is no
specification of the ownership of the associa-
tion nor of any deletion dependency. Fig. 3
shows the above possibilities and explains the
insertion/deletion rules. In an identifier
association type a directed connector tvoe
points to the entity type which is identified by
the rest (see Fig. 8).

Three special types of simple associations
are defined:

1. categorization is an n-ary relation
between an owner object type and member
object types called category t,vpes.

2. partitioning is a binary relation among
object types; an instance of the object
We which causes partitioning is
associated with a set of instances (a
partition) of the other object type.

3. subsettinq is a unar.y association over
an object type.

Cateqorization A of an object type X into
objet ttypes
association ty& A i,, P

. ..X is denoted by an
X2"1 . ..X) which is

marked "cat" in a view diagram. Ffqures 12, 13
show examples of categorization. Categorization
A implies that there exists a mapping f which
maps every instance of X into a subset o P cate-
gories XI, X2, . ..X..

A binary partitioning association type
S(X,Y) associates an instance of X with a subset
of the instances of Y. Typically, X and Y are
entity types but either one or both may be asso-
ciation types. Partitions of the instances of Y
are non-overlapping, such that each partition
has a different instance of X associated with it
via S. A partitioning association is marked
"partition" in a view diagram.

Mathematically,

let Iy be the set of instances of Y.

2'y denotes the power set of Iy,

i.e. the set of all its subsets.

Then there is a function G, associated
with S:

Gs: Ix + 2Iy, such that

IY = iCl Gs(xi)

and Gs(Xijn Gs(Xj) = * for i f 5,

where XI x2 . ..xm are all instances of X.

on Very Large Data Bases 153 Mexico City, Septemkr, 1geZ

The partitioning association EMP-TYPE-SEL in
View 2 of Figure 14 implies that the instances
of entity type EMPLOYEE are partitioned into 2
sets. One is associated with the first instance
of the entity type EMPLOYEE-TYPE representing
surgeons,' the other with the second instance of
the entity type EMPLOYEE-TYPE representing
surgical assistants.

A unary subsetting association type T(A)
provides a means of givfng the name T to a'sub-
set of the instances of A. In the view diagram
such an association is marked "sub". A is typi-
cally another association type (e.g., DRUG-
SCHEDULE in Figure 15) but could also be an
entity type. There is no mutual exclusiveness
constraint among the subsets of instances of A
defined by subsetting associations TI(A), T2(A),
. . . . etc.

View Representation using the N-S model is
illustrated with the example in Figure 18: The
figure shows six entity types: SERVICE,
PROCEDURE, SCHEDULE, PERSONNEL, INPATIENT-
PROCEDURES, OUTPATIENT-PROCEDURES; an identifier
association PROCEDURE-IDENTIFIER which identi-
fies instances of SERVICE with instances of
PROCEDURE; a simple association type PERFORMED;
the categorization association PROCEDURE-
CATEGORIES which categorizes PROCEDURE. into
INPATIENT-PROCEDURES and OUTPATIENT-PROCEDURES
and subsetting association types PERFORMED-FREE
and PERFORMED-REPEATEDLY. The figure also shows
with directed connectors that the object type
PROCEDURE is identified by .association type
PROCEDURE-IDENTIFIER, and owns the categoriza-
tion PROCEDURE-CATEGORIES, and that the entity
type SCHEDULE is deletion dependent on the
association type PERFORMED, PERFORMED is shown
to be the owner of the subsetting association
types T

REFERENCES

1. Arora, A.K. and Robert C. Carlson, "The
information preserving properties of relational
database transformations", Proceedings of the
3rd Very'Large Database Conference, Berlin, West
Germany, Ittt, 1978.

2. Batini, C., M. Lenterini and G.
Santucci, "A Computer-aided Methodology for

,Conceptual Database Design", Information
Systems, Vol.
'appear).

7, No. 3, Pergammon Press (to

3. Chen, P.P.S., "The entity-relationship
model: towards a unified view of data". ACM
Transactions on Database Systems, Vol. 1, ho7 16. Yao, S.B., S.B. Navathe, and
(March 1976). J.L. Weldon, "An integrated approach to logical

database design", Proceedings of the NYU Sympo-
sium on Database Design, May 1978, [in 171; 4. Codd, E. F., "Normalized data baSe

structure: a brief tutorial", Proceedings of

the 1971 ACM-SIGFIDET Workshop on Data
Description, Access and Control, Ann Arbor, MI
May 1974.

5. El-Masri, R., and G. Wiederhold, "Data
model integration using the structural model",
Proceedings ACM SIGMOD International Conference,
Boston, MA, June 1979, pp. 191-202.

6. Kahn, B.K., "A method for describing
information required by the database design
process", Proceedings
tional Conference on Management-of Data, June
1976, ACM, New York.

7. Lum. V.Y. et al.. “1978 New Orleans
data base design working report", Proceedings of
the 5th International Conference on Ver.y Large
Data Bases, Rio de Janiero, Brazil, October
1979, pp. 328-339.

8. Navathe, S.B., "Schema analysis for
database restructuring", ACM Transactions on
Database Systems, 5, 2, June 1980.

9. Navathe, S.B., "An intuitive procedure
to normalize network structured data", Proceed-
ings of the 6th Very Large Database Conference,
Montreal, Canada, October 1980, pp. 350-358.

10. Navathe, S.B., and J.P. Fry, "Restruc-
turing for large databases: three levels of
abstraction", ACM Transactions on Database
Systems, 1, 2, June 1976.

11. Navathe S.B., and M. Schkolnick, "View
representation in logical database design",
Proceedings of the ACM-SIGMOD International Con-
-ference, Austin, TX, Junea.;I9!?, ACM, New York.

12. Raver, N. and G.U. Hubbard, "Automated
logical database design: concepts and applica-
tions", IBM Systems Journal, No. 3, 1977.

13. Smith, J.M. and D.C.P. Smith, "Data-
base abstractions: aggregation and generaliza-
tion", ACM Transactions on Database Systems, 2,
2, June 1971.

14. Teichroew, D. and E.A. Hershey, III,
"PSL/PSA: A computer-aided technique for struc-
.tured documentation and analysis of information
processing systems", IEEE Transactions on Soft-
ware Engineering, Vol. S.t-3, No. 1, January
1977.

15. Weldon, J.L., "Integrating database
logical views", Unpublished Working Paper, New
York University, 1979.

Proceedings of the Eighth International Conference
on Very Large Data Bases 154 Mexico City, September; l-982

17. Yao, S.B., S.B. Navathe, J.L. Weldon,
T.L. Kunii [eds.], Database Design Techniques I:
Requirements and Logical Structures, Springer
Verlag, New York, 1982.

Proceedings of the Eighth International Conference
on Very Large Data Bases 155 Mexico City, September, 1982

~~~ _ 



attribute 

I I 
Information 
Structure(lS) 

Processing 
Requirements (PR) 

User View, Ehterprise View 

Global Model 

Logical Functional 
DBMS Design of 

SChpi3 Applications 

t 
Physical 

t 
Detailed 

DBMS Transaction 
Schema Processing 

Fig. 1: Conceptual Framework for Database Design [ll] 

/ObiO\ 
entity association 

/\ 
aAyg?on ;~$& 

’ I \&e*ing categorization partitioning 

/ LLted directed 
connector connector 

Figure 2: The Type Hierarchy in the View Representation Model 

Proceedings of the Eighth International Conference 
on Very Large Data Bases 156 Mexico City, September; 1982 



Debtion Dapmdmq 

C 
0 

73 
E 

..c 
--- ----: 

i- - -- 
*t 

D 

Null Dapmtd~q 

F 

---- ---- --- cl% E G 

Airthe-cbjectty~inassohtii 
tvp B. 
C and D an “owner dqmncbnt” on A. 

(iI instances of A can be frmly in-. 

(ii) instanar of C or D annot ba insermd 
u”lCS suodatd with mm8 A. 

(iii) if an instance u of A is d&ted, its 
its anociatiin instances in 6 a. .<(*. 
bb, cc>containing u am also Ill leted; 
instancaofCuldofDwldchwa 
not refermad in any other instant 
of B an also d&tad. 

DiSthOmankrObjscttypin8WCi4tii 
tvp c. 
D b “daktiin &pandmt” on C and E. 
Dalatiin of n instance cc of C implies 
wtomatic &lotion of the amxiaal 
imtanaddofD,rubjucttotwocondi- 
tii”S: 

(i) ~~tio;cxwnnwmt of any other 
. 

(ii1 dd is not a componmt in anothat 
asswiation instance (differant from C, 
Slldl~E~ 

No ownership and no deletion depabncy 
fwwociation(ypeFandrmongobjact 
twms E and 0. 

Implies that E and G on b frnhl inwtad 
and &lomd. 

Fig. 3: Diiemnt Typm of apandencia 

A - h. b. (c. dl. (e, (f)l) a, b, c, d, ., f w l ttrii m. 
lh”omtio”o”umbftlhomeNir 
natal rtructu~ withii w-typa A. 
Clmton such ill (cd) mq have thdt 
OW”“8”lSS. 

Fig. 4: Vii Repmmtation with N-3 maW thawing npmmtbn of 
amity-types from assacinbn tvpl l d . hiuuchy of 
atwlbum typa within an mtity 

huisHi&. Srvico-Nam. Typ) mavi~No., a&a&m, Typo) 

Fii. 6: R wnmnmtkmEquivafana-&mob&ctsintwo 
v*mbutwitbdiffaantprinnLyr. 

Proceedings of the Eighth International Conference 
on Very Large Data Bases 



View 1 

CONTAINS (7 
(Dept-No., Dept-name, 

Dept-type, Budget) 

View 2 

bntername, City) (Dept-No., Dept-name) (Budget) (Budget) (Budget) 

Fig. 6: Restructure Equivalenw 

Enterprise Local 

View Views 

Intra-view Interview 

Assertions Assertions 

Integrator 

1 :iq, i..:,. ,>it 

Fig. 7: A Model for View Integration 

Proceedings of the Eighth International Conference 
on Very Large Data Bases 

158 
Mexico City, September, 1982 



I LAB-CHIEF 
IDENTIFIER I 

Lab-No., Lab-Name Type) , , (Chief-Name, Title) Building-Name, Floor 34 

(Lab-No.. Lab-Name, Type) (Lab-Name Chief-Name Title) (9uildin9-Nwnq %#I A-, 

Fig. 9: Normalization of Idantifiw Associations 

View 1 

(Preferred) 

View 2 

(CONSISTS-OF\ 

(DivNo, DeptNo, LOCI -- 

(@AZ) (+zz-- 
WeptNo, Lot) 

(e-j (ii&h&) (-&-i&-j 
(DivNo, DeptNo, Lot) 

F@ 9: lntsgation of vials when them is a complete match on 
name, partial match on key attributes and complete match 
on non-key attributes. 

Proceedings of the Eighth international Conference 
on Very Large Date Bases 

159 
Mexico City, September, 1982 



View 1 

Integrated View 

(CenterName, City) WeptName, Sire) 

f --- -- 
View 2 (Preferred) 

(DeptNo., DeptName, 
Lot, Size) 

(OEP/\RTMENT) (G] 
(DeptNo., Lot) 

Fig. 10: Integration of views when there is a complete match on name, 
no metch on key or non-key attributes. 

View 1 (Preferred) 

MAINTAINS s=? 
----f---t-- 

(CLINICAL-UNIT) (NURSESTATION) 
(w, Flood, 

Matronname) 

View 2 

(CLINICAL-UNIT) (W) 
(E&&g Unit-name, 
Heed-nurse-name) 

Integreted View: Same as View 1 

Fii.11: lntegretion of views with object types 
having different names. 

Proceedings of the Eighth International Conference 
on Very Large Data Bases 160 Mexico Cii, Sf1ptembm;-~W82 



(Room Q Admissiondate) (Date-last-visit) 

View 2 

;gjsii?; 
(Immuniz-cod4 (BPhigh, BPlow) 

Integrated View 

Fig. 12: Categorization Addition 

lntegmted View 

Fig. 13: Category Enhancenttmt (type dim) 

Proceedings of the Eighth International Conference 
on Very Large Data Bases 161 Mexico City, September, 1962 : 

.__-__~ .~ -~ i 



V*rr 1: Medial Smio Empkwm 

partition. 

Intapatd View: Ydiol and Surgical Employrr 

partition. 

EMP-TYPE-SEL 

Fii. 14: Putiiion Enhm-t Mow immca of an ntity 
type afled EMPLOYEE-TYPE) 

rub. sub. rub. 

O.D. B.I.D. T.I.D. 

I/ 

y*rrl DRUG SCHEDULE 

PATIENT DRUG 

sub. sub. 

KAY: 
O.D. = Ona , day 
E.I.D. = Twice . dam 
T.I.D. - Thrr rimes a dq 
O.I.D. - Four times a dy 
PRN = Talc. m mqui,.,, 

ub. sub. sub. rub. sub. 

E.I.D. T.I.D. D.I.D. PRN 

l/g2 

DRUG-SCHEDULE 

DRUG 

Fig. 16: SubsM Addition ItYP dim) 

Procwdings of the Eighth International Conference 
4Mr‘very Large Data Bases 162 



View 1 
wt. 

ST-CATEGORIES 

\ 

ggg2y-&; 
STUDENT = (SS#i GRAD-STUD = UG-STUD = (Rank) 
Name, Grade-pt-avg.) (Deer4 

Interview constraint: s < STUDENT = is. g. - > 6 ST-CATEGORY pB 
(s. -, u > t ST-CATEGORY 

(mutual exclusion) 

View 2 (preferred) 
(STUDENT) 

STUDENT = ($j& Name, Grade-pt-avg.) 

Integrated View 
STUDENT 

STUDENT = (E+ Name, Grade-pt-avg., Category, Degree, Rank) 

Fig. 16: Creation of a new attribute type called 
‘Category’ during integration. 

View 1 (Higher Administration View) 

\~ --/ . / 
(Status-type, Total-no., 

Capacity) 
(Gro~iads, 

View 2 (Operational View) 

. 

Fig. 17: Two different views of patient information; which may coexist. 

Proceedings of the Eighth International Conference 
al Very Large Data Bases 163 Mexico City, SW&amber, Q#@2 



- ___ 

sub., 
f PERFORMED- \ 

sub. 
f PERFORMED- \ 

FREE \ REPEATEDLY / 

PROCEDURE- 
IDENTIFIER 

Entity Types 

SERVICE (Service-Name, Location) 
PROCEDURE (Procedure-No., Procedure-Name, Type) 
PERSONNEL (Emolovee-No., Employee-Name, Title, Sex) 
SCHEDULE (Qg&, Time-start, Time-finish) 
INPATIENT-PROCEDURE (Labname) 
OUTPATIENT-PROCEDURE (Outpatient-unit-no.) 

Association Types 

PROCEDURE-IDENTIFIER (identifier-association tvoe) 
PERFORMED 

. . 

PROCEDURE-CATEGORIES fcategorizationessociation type) 
PERFORMED-FREE (subsettingessocietion tvpa) 
PERFORMED-REPEATEDLY (s&setting-association tvpa) 

Fig. 18: View Representation using the NS model. 

Pkceedings of the Eighth International Conference 
on very Large Data Bases 164 Mexico City, September, 19S2 


