
IDBD
AN INTERACTIVE DESIGN TOOL

FOR CODASYL-DBTG-TYPE DATA BASES

Roland Dahl'
Janis A. Bubenko jr*

The Systems Development Laboratory (SYSLAB)3

1. Introdmction

ABSTRACT

The Interactive Data Base Designer (IDBD)
assumes as input a conceptual description of
data to be stored in the data base (in terms
of a binary data model) and an expected work-
load in terms of navigations in the concep-
tual model. Extensive checking of input is
performed. The designer has the possibility
to restrict the solution space of the design
algorithm by prescribing implementation stra-
tegies for parts of the binary model.

1. Chalmers University of Technology, S-
41296 Gothenburg, Sweden

2. University of Stockholm, S-10691
Stockholm, Sweden

8. This work has been supported by the
National Swedish Board for Technical
Development

Proceedings of the Eighth International Conference
on Very Large Data Bases

Before we can design a data base schema, com-
patible with some existing Data Base Manage-
ment System, we have to determine what kind
of data it should contain and what kind of
work-load, in terms of queries, updates,
inserts and deletes it must be able to han-
dle. In order to permit examination of
alternative solutions the requirements must
be stated in as implementation independent
terms as possible. By 'implementation
independent' we mean that there have been
made no decisions on how to group data items
in records, which access techniques to use
and how to navigate in a structure of records
and sets.

Designing a data base is thus only a (rela-
tively small) part of a systems development
process. It is preceded by a number of
activities the purpose of which is to analyze
corporate information needs and to specify
the requirements of an information system to
be developed.

The Interactive Data Base Designer (IDBD)
presented in this paper has been developed to
be compatible with two kinds of system design
(philosophies) approaches.

The first kind, the analytical approach,
proceeds through development phases like

- goal and problem analysis

- activity analysis etc.

and arrives at a comprehensive set of
requirements specifications. This set also
includes a conceptual information model of
relevant parts of the enterprise and a set of
information requirements [Bub-801. The con-
ceptual information rode1 (CIM) describes and
defines relevant phenomena (entities, rela-
tions, events, assumptions, inference rules
etc.) of the Universe of Discourse (UoD).
The CIM models the UoD in an extended time

108 Mexico City, September, 1982

perspective in order to capture dynamic rules
and constraints.

The next step in this approach is to 'res-
trict' the CIM (from a time perspective point
of view) and to decide what information to
store in the data base and how to conceptu-
ally navigate in this set of information in
order to satisfy stated information require-
ments (see Gus-82 for a comprehensive exposi-
tion of this problem).
If the information to be stored in the data
base is defined in terms of a binary data
model and the conceptual navigations are
specified assuming such a model then this is
the required input to IDBD.

The other approach to data base design is the
experimental one. In this case we assume
that a 'fast prototype' is developed by the
use of the CS4 system [Ber-77A]. CS4 employs
a binary data model and is thus compatible
with IDBD. Experimental use of the prototype
system can provide us with statistics of
navigation types and frequencies.

It is, of course, also advantageous to use
the experimental approach as a complement to
the purely analytical one in order to avoid
guesswork concerning the requirements and the
work-load.

The DBTG-schema design algorithm of IDBD has
the binary data model and a set of implemen-
tation strategies in common with design-aids
developed at the University of Michigan
[Mit-75, Ber-77B, Pur-791. It differs, how-
ever, from them in several important respects

- the tool is interactive which gives the
designer a possibility to monitor the
design process

- comprehensive checking of the con-
sistency of input data is performed (we
have empirically found that it is diffi-
cult to supply a tool of this kind with
correct input the first time; a waste of
time and computer resources is the
result of optimizing incorrect input)

- the designer has a possibility to
prescribe certain implementation alter-
natives for parts of the model (or the
whole model). This has the following
advantages

the designer can test his/hers own
solution alternatives which may be
'natural' or which have other, pre-
ferred, non-quantifyable properties

unnormal or *non-sense- solutions can
be avoided

Proceedings of the Eighth International Conference
on Very Large Data Bases

+

+

the tool can be used to augment an
existing DB-schema

the solution space can be drastically
reduced thereby making IDBD a
realistic tool also for design of
large, complex data base schemata

- the description of the work-load is
practically realistic as navigation in
the conceptual binary model can be
defined.

This paper describes and explains IDBD in
terms of running a small sample case. Sec-
tion 2 describes the input to IDBD - the con-
ceptual binary data model and how to describe
the work-load in terms of navigating in the
model. User interaction, checking of input
and how to supply IDBD with design directives
is presented in section 3. The design algo-
rithm and the results of performing a design
run are given in section 4.

2. Input data

The input to the IDBD consists of the follow-
ing types of data:

- description of the conceptual data model
- its data item types (representing
entity types) and relations

- a description of the workload of the
model defined in terms of run-units

- a description of certain parameters to
be considered by the design algorithm

- a set of design directives to the design
algorithm restricting its solution
space.

A consistency check is performed on the model
and the work-load descriptions. Also an
analysis is performed to estimate the number
of references to the data items and the rela-
tions when navigating in the model.

The input, interaction and processing of IDBD
will be illustrated by a small practical
case, the enterprise GROSS. The following iS

assumed.

GROSS is a local supplier, i.e. it supplies
parts to customers located in the same city.
Parts are distributed by cars and one cargo
is called a delivery. One delivery can con-
tain several orders, 1 to 20. Every day
there are several deliveries, 1 to 20. Cus-
tomers send their orders to GROSS. An order
includes 1 to 25 parttypes. When an order
arrives, its day for delivery is determined. '

109 Mexico City, September, 1982

The following information requirements - in
terms of queries - are defined in the preced-
ing design stages.

1. For a particular day, all the customers
which are to he supplied, and for each
customer: name and address.

2. For a particular parttype, the orders in
which it is included and the day of
delivery for each order.

7 . . For a particular parttype and for a par-
t icular customer, the total dollar
amount for the part in order.

4. For all orders, print all parttypes with
their amounts.

Assume also that the following transactions
have been defined:

1. Deletion of a delivery.

2. Insertion of a delivery.

3. Insertion of a new customer.

4. Updating of part attributes.

This constitutes the basis for the conceptual
(binary) data model and its work-load.

2.1 Description of the conceptual data model

We assume that the following binary rela-
tional data structure has been created on the
basis of an analysis of the enterprise, the
conceptual information model and the informa-
tion requirements.

dday-dno cua t-ord

ord-o-p

part-o-p

Proceedings of the Eighth International Conference
on Very Large Data Bases

110

The model entity types are assumed
represented in this case by a set of data
item types. In fact, as “partinfo” in the
data structure, a data item type can also
represent a group of data item types.

Data item types are described with the word
ITEM (in capital letters) on one ‘line of
input and thereafter, on separate lines, one
per each data item:

name of the data item

size of the data item in number of char-
acters

cardinality of the data item

a security code (optional)

If different data items cannot be placed in
the same record, for instance because of
security constraints or distributed data,
then the data item types can be specified
with different security code numbers. If the
security code is not specified, it is put to
zero.

In our case the data item types are specified
as follows:

ITEM
delivno 5 150
delivday 6 30
orderno 6 300
ord-part 0 1500
partno 8 2000
partinfo 92 2000
amount 8 1500
custno 5 1000
custname 30 1000
custadr 30 1000

Rinary relations in the data model are
described with the word RELATION on one input
line followed by one line per relation con-
taining:

- name of the relation

- name of the data item from which the
relation origins (iteml)

- name of the data item to which the rela-
tion is directed (item2)

- the number of instances of the relation

- minimum number of item1 related to one
item2

- maximum number of item1 related to one
item2

- minimum number of item2 related to one
item1

Mexico City, September, 1982

- maximum number of item2 related to one
item1

The relations in our case are specified as
follows:

RELATION
dday-dno delivday delivno 150111 20
dno-ord delivno orderno 300 1 1 1 20
cust-ord custno orderno 300 1 1 0 50
c-cname custno custname 1000 1 1 1 1
c-cadr custno custadr 1000 1 1 1 1
ord-o-p orderno ord-part 1500 1 1 1 25
o-p-amnt ord-part amount 1500 1 1 1 1
part-o-p partno ord-part 1500 1 1 0 200
p-pinfo partno partinfo 2000 1 1 1 1

For the specified input data for a relation
and the cardinality of the participated data
items, IDBD determines the average number of
iteml(item2) related to item2(iteml), the
type of the relation (l:l, l:M, M:l, M:N) and
what type of mapping, total (T) and partial
(P), that the domain and range of the rela-
tion participates in. This will be further
discussed in section 3.1.

2.2 Description of the Pork-load

The work-load is generated by the information
requirements (queries) and the transactions.
They imply a need to navigate in the binary
relational structure.

In order to show how navigations can be
defined, two examples are given.

Example 1 For query 1 in our example the fol-
lowing access path is defined:

Proceedings of the Eighth International Conference
on Very Large Data Bases

111

dclivday
i.--,--

idday-dno

..!I .---,
delivno '
* ._-_ _.-_-.'

jdno-ord

,.. A-,
orderno ;

+-

cust-ord

I--
5 (custno

This access path could be described in natural
language as follows:

F’O~ a particular delivday
get all delivno related to it via the relation
dday-dno

for all these delivno get all orderno
which are related to all these delivno via
the relation dno-ord

for all these orderno get the custno
related to these orderno via the
relation cust-ord

for the custno, get
custname related to it

via the relation c-cname,
custadr related to it

via the relation c-cadr

The navigation starts always at the level 1,
where the entry-point, i.e. the starting
item, and the operation for it Is described.
In example I the starting item is dellvday.

After delivday has been accessed;alI delivno
related to delivday are to be accessed. This

is done at the next higher level. We call
the item delivday qualifier of delivno,.
because delivno related to delivday is
requested. In the access path, each time when
the latest accessed Item Is used as a qualif-
ier for next item wanted, a next higher level
is specified.

When the same item is used as qualifier for
several required items, that can be specified
at the same level. Custname and custadr have
the same qualifier custno and therefore they
are specified at the same level.

Mexico City, September, 1982

Example 2 In query 3 we want to get the dol-
lar amount for the parts in order for a par-
ticular parttype and for a particular custo-
mer.

ord-o-p

4
part-o-p

CL3 partno

We can start the navigation either with
access to partno or to custno. Here we
choose to start with partno.

We access a unique partno, thereafter all
ord-part related to it. At this stage we do
not know for which of the ord-part we want to
get the dollar amount, because we do not know
to which customer ord-part is related.
Therefore, we continue by accessing orderno
for each of ord-part and then access the cus-
tomer related to each order. Now we know
which orders are related to the required cus-
tomer. Now we need to know the ord-part
related to those orders. We have already
accessed ord-part and therefore we do not
need to access them again. By a SELECT
operation we can select the ord-part related
to the required customer without additional
accesses.

Going backwards in the access path can be
done in two different ways. If the item to
be accessed has the same qualifier as the
item at the next higher level, then that
higher level is specified. If one wants to
skip one or more higher levels without making
any access to the database, it can be done by
using the special operation SELECT.

The following example shows the way query 1
and 3 can be expressed in terms of a run-
unit.

Proceedings of the Eighth International Conference
on Very Large Data Bases 112 Mexico City, September, 1982

RUN-UNIT
RU custinf 30
1
FIND UNIQ delivday
2
GET ALL delivno
3
GET ALL orderno
4
GET custno
5
GET custname
GET custadr

RU amount 30
1
FIND UNIQ partno
2
GET ALL ord-part
3
GET orderno
4
GET custno
2 3
SELECT ord-part
3
GET amount

IDBD uses the following syntactical rules for
description of the run-units.

Run-units are described with the word RDN-
UNIT followed by the run-units themselves.
Every run-unit starts with a head line con-
taining :

- the word RU

- name of the run-unit

- cardinality of the run-unit

After the head line the run-unit is described
in a hierarchical way with level numbers much
like a COBOL data declaration. On each line
there is either a level description or a data
operation description.

The level description lines are numbered from
1 and upwards. The first line after the head
line is always a level description line with
level number 1.

Each level description line contains:

- the level number

- optionally a cardinality

Normally the cardinality for a level is one.
In that case there is no need to specify the
cardinality number. Otherwise, a real number
both < 1 (a probability) and > 1 (a fre-
quency) can be specified. This cardinality
multiplies with the cardinality on the next
lower level to give the cardinality on the
actual level. If a cardinality is specified
on level 1, it multiplies with the cardinal-
ity of the run-unit.

On each level there can be specified zero,
one or more occurrences of data operation
descriptions. Every data operation descrip-
tion is defined on one line and contains:

- data operation verb

- name of the required data item

- optionally a relation name

Usually there is no need to specify a rela-
tion name. Only if there are more than one
relation type between two data item types, it
is necessary to specify the relation name.
Otherwise the IDBD finds the relation type
itself. The data item at the previous level
is called the qualifier. At level 1, where
there is no lower level, the access is
directly to the data item type and not via a
relation as at levels > 1.

The different data operation verbs are:

TI 11 WIQ
FIND

GET

SELECT

LINK I 1 [1 ALL
UNLINK

where {) means one of the elements inside (
1 and [lmeans that the element inside [I

is optional.

FIND defines an entry point for the run-unit.
FIND UNIQ implies some sort of direct access
to the data item, while FIND SEQ implies a
sequential browse through all data items of
the mentioned data item type.
By GET one or all data items which are
related to the qualifier are accessed-

By SELECT no access is made, because already
accessed data items are selected. This nor-
mally also means a branch from a higher to
some lower numbered level.

By DELETE one or all data items related to
the qualifier are deleted. DELETE causes
also deletion (i.e. UNLINK) of the relation
instance, which has the deleted data item as
its destination.

Proceedings of the Eighth International Conference
on Very Large Data Bases

INSERT is analogous to DELETE.

By MODIFY one or all data items related to
the qualifier are modified.

By LINK one or all data items are linked to
the qualifier. This means that the relation
instance(s) is(are) stored in the data base.

By UNLINK one or all data items are unlinked.

At level 1 only the following data operation
verbs can be specified:

FIND

A final example shows the definition of a
run-unit describing the work-load of transac-
tion nr 2 for inserting a new delivery. For
the inserted delivno it is assumed that its
delivday is not already stored in the data
base with a probability of 20%.

RU ins-supp 30
1
INSERT UNIQ delivno
2 0.2
INSERT delivday
2 0.8
LINK delivday
2
INSERT ALL orderno
.l

LINK custno
INSERT ALL ord-part
4
INSERT amount
LINK partno

3. User interaction

3.1 Checking and anal~ais of input data

After the input phase and before the optimi-
zation phase, there is an interactive phase
where also certain consistency checks are
made.

First of all the IDBD asks for values of cer-
tain constants. These are

Mexico City, September, 1982

- maximum record length in number of char-
acters

- counter length in number of characters

- pointer length in number of characters

- maximum secondary storage in number of
characters that is allowed

- CALC storage factor, a factor greater or
equal to one, which tells how much more
secondary storage than nominal is
required for hashed storage

- CALC access factor, a factor greater or
equal to one, which tells how many more
accesses than one that is required due
to synonyms in hashed storage.

From the values of the first three of these
constants and from the earlier description of
data items, relations and run-units, the pro-
gram decides which consistency constraints
must hold. IDBD finds out for each relation
which implementation alternatives (IAs) are
possible , which are -wed and which IAs
are impossible (OFF). The lists of IAs for
these three cases can be displayed for the
DBA. For the possible and unwanted cases the
DBA can interactively change IAs. There is
also a fourth case that the DBA can use,
namely to specify that one special IA is to
be used (ON).

The reason for changing the lists of IAs can
be that an IA is already fixed or that the IA
gives an unnormal solution. (An example of
an unnormal solution would be the case, where
“article-number” is suggested to be aggre-
gated under “number-in-stock” instead of the
other way around.) If the DBA reduces the
solution space for the different relations,
the execution time during the optimization
phase is also substantially reduced. This is
necessary for a large data base.

There are 21 different implementation alter-
natives, numbered 1-21 (see also [Ber-77Bl).
The IAs are displayed with their number.
Here is a short description of each IA:

Proceedings of the Eighth International Conference
on Very Large Data Bases

1 = Fixed duplication
2 = Fixed duplication reversed
3 = Variable duplication
4 = Variable duplication reversed
5 = Fixed aggregation
6 = Fixed aggregation reversed
7 = Variable aggregation
8 = Variable aggregation reversed
9 = Chain, next pointer

10 = Chain, next pointer reversed
11 = Chain, next + owner pointer
12 = Chain, next + owner pointer reversed
13 = Chain, next + prior pointer
14 = Chain, next + prior pointer reversed
15 = Chain, next + owner + prior pointer
16 = Chain, next + owner + prior pointer rev.
17 = Pointer array
18 = Pointer array reversed
19 = Pointer array + owner pointer
20 = Pointer array + owner pointer reversed
21 = Dummy record

For illustration, the implementation alterna-
tives 15 and 17 are shown below.

: ---6-------m

114

After the user has finished the change of the
IAs, (see section 3.2) IDBD takes the best
remaining IAs for every relation, e.g. it
takes the set of IAs, which are either ON,
possible or unwanted, in that order. The
number of possible alternatives are multi-
plied and the total number of combinations of
DBTG-structures are displayed for the user.
The user has now the possibility to further
reduce the solution space. The reason for
this is that the computing time can be very
long, if there are many DBTG-structure alter-
natives to consider. It is also possible to
limit the processing time to some value.
After that time the optimizing phase is
interrupted and the next phase in the program
continues.

Mexico City, September, 1982

For the different valid DBTG-structures IDBD
calculates an estimate of the number of
accesses to the data base for every run-unit.
The need for secondary storage is also calcu-
lated.

The best solutions are presented to the user.
“The best solutions” are those with the least
number of accesses for a certain secondary
storage size. The solutions are presented in
the order of increasing number of accesses.
At the same time the secondary storage
requirements are decreasing in order to
belong to the set of best solutions. (The
first 10 solutions are always added to the
set .)

For different DBTG-structures IDBD also gives
some messages such as

- an entry point for an item is missing

- there is no access path to an item

- there is no SYSTEM entry (sequential
access) to an item

A typical user interaction is examplified in
the next section.

The analysis of input data will be illus-
trated by the following examples. IDBD has
given the following output from the input
data checking procedures for this particular
case :

Analysis of data items:

Data items
name size
delivno 5
delivday 6
orderno 6
ord-part 0
partno a
partinfo 9.2
amount a
C”6 tno 5
custname 30
custadr 30

card. DA-ref.no seq.ref.no secur.
150 120

30 30
300 300

1500
2000 1630
2000
1500
1000 20

1000
1000

Explanation:

- DA-ref.no means the number of references
(logical accesses), which are needed
directly to the data item type

- seq .ref .no means the number of sequen-
tial accesses, which are needed to the
data item type.

These numbers give the data base administra-
tor or designer some indication of to which
data items there will be a need for direct
access and/or sequential access.

Proceedings of the Eighth International Conference
on Very Large Data Bases 115 Mexico City, September, 1982

Explanation:

- type is the type of mapping (l:l, l:M,
M:l, M:N)

- T/P stands for total (T) and partial (P)
mappings between the data items in the

domain and range of the relation

- min/av/maxC! shows the minimum, average
and maximum number of item1 related to
i tern2

- min/av/max21 is analogous, but concerns
the reverse relation

Analysis of reference frequencies to relations:

Relations with reference count
rel .name item1 item2 ref.no fwd ref.no bwd

number % number X
dday-dno delivday delivno 150 1.2 141 1.1
dno-ord delivno orderno 540 4.2 75 0.6
cust-ord custno orderno 443 3.5
c-cname custno custname 320 2.5
c-cadr custno custadr 320 2.5
ord-o-p orderno ord-part 2700 21.1 98 0.8
o-p-amnt ord-part amount 2790 21.8
part-o-p partno ord-part 98 0.8 2100 16.4
p-pinfo partno partinfo 3000 23.5

Explanation :

- rel.no fwd shows the number of required
references from item1 to item2 in the
relation (forwards). Every update
operation (DELETE, INSERT and MODIFY) is
calculated as 2 references.

- rel.no bwd shows the number of required
references from item2 to item1 in the
relation (backwards).

These numbers give the designer some indica-
tion of which relations are critical for the
efficiency of the data base system. Those
relations can then be analyzed in greater
detail.

The analysis of run-units shows for each
run-unit the following type of output (exam-
plified for run-units “custinf”, “amount” and
“ins-supp”) .

Run-units
ru-name cardinality

level-no cardinality
operation item1 item2 relation reversed

custinf 30.00 ,
I

FIND UNIQ delivday
2

GET ALL delivno delivday dday-dno
3

GET ALL orderno delivno dno-ord
4

GET custno orderno cust-ord rev.
5

GET custname custno c-cname
GET custadr custno c-cadr

amount 30.00
1

FIND UNIQ partno
2

GET ALL ord-part partno part-o-p
3

GET orderno ord-part ord-o-p rev.
4

GET custno orderno cust-ord rev.
2 3.00

SELECT ord-part
3

GET amount ord-part o-p-amnt

ins-supp 30.00
1

INSERT UNIQ delivno
2 0.20

INSERT delivday delivno dday-dno rev.
2 0.80

LINK delivday delivno dday-dno rev.
2

INSERT ALL orderno delivno dno-ord .
1

LINE custno orderno cust-ord rev.
INSERT ALL ord-part orderno ord-o-p
4

INSERT amount ord-part o-p-amnt
LINK partno ord-part part-o-p rev.

Look at/change implementation alternatives? (y/n)Y

Instructions? (y/n)y

You will see all or specified relations with
their relation name and what consistency con-
straints that hold for the different imple-
mentation alternatives.

The different consistency constraints are:
ON - the relation shall have this impl. alt.
POSSIBLE = possible impl. alternatives
UNWANTED - not desirable impl. alternatives
OFF - these impl. alt. are not permitted

You can change among the ON, POSSIBLE and
UNWANTED implementation alternatives by writ-
ing the implementation alternative number and
the letter 0, P or IJ respectively on one line

Do you want all or specified relations
displayed? (a/s)a

dday-dno
ON=
POSSIBLE= 1 2 3 5 7 11 15 19
UNWNTED= 9 13 17
OFF= 4 6 8 10 12 14 16 18 20 21
change?y
change=15 o
more changes?n
dday-dno
ON= 15
POSSIBLE= 1 2 3 5 71119
UNWANTED= 9 13 17
OFF= 4 6 8 10 12 14 16 18 20 21
dno-ord
ON=
POSSIBLEJ- 1 2 3 5 7 11 15 19
UNWANTED= 9 13 17
OFF= 4 6 8 10 12 14'16 18 20 21

Explanation:

The "Run-units" listing is merely just a
structured reprint of the input data with the
relations expanded and a note "rev." if the
relation is used in backward direction, i.e.
from item2 to iteml.

3.2 Design directfree

Supplying design directives to the IDBD for
choosing among implementation alternatives is
best illustrated by showing part of a typical
interactive user-IDBD session.

The following is an example of a user
interaction with the IDBD:

Submit values to the following constants
maximum record length=512
counter length=2
pointer length=4
max. secondary storage=100000000
CALC storage factorll.2
CALC access factorl.5

Proceedings of the Eighth International Conference
on Very Large Data Bases

116

p-pinfo
ON-
POSSIBLE= 5
UNWANTED= 6 9 10 11 12
OFF- 1 2 3 4 7 8 13 14 15 16 17 18 19 20 21
change?n

Note: For all l:M-relations except for dno-
ord the suggested IA is in this example put
to 15, e.g. chain with both owner and prior
pointer. For all l:l-relations the only pos-
sible IA is left with number 5, e.g fixed
aggregation.

IDBD will then continue with the following
listing:

There are 8 different DBTG-structures to examine.
Do you want to reduce the solution space further7n
Do you want to limit the CPU-time when optimizing?n

Note: Normally IDBD will save the best 10
solutions (with least number of accesses to
the data base). In this case there are only
8 possible solutions, of which 6 of these are
accepted as correct DBTG-structures.

Mexico City, September, 1982

4. The Design-aid

4.1 The algorithm

4.1.1 Interactivity The three different
design tools developed at the University of
Michigan [Mit-75, Ber-77B, Pur-79] all work
in a similar way. The design aids are typi-
cally batch programs. From a specified input
the tools produce, sfter an optimization
phase, efficient data structures. Some prob-
lems with this type of tools are that

- they sometimes produce unnormal solu-
tions

- they restrict themselves to a reduced
solution space

- the designer has no possibility of test-
ing his/her own data structures, which
may be more natural or which may have
other (non-quantifiable) desirable pro-
perties

- they take, in spite of sophisticated
optimization algorithms, too long time
to run on a computer for normal sized
data bases.

To overcome these problems the design aid has
to be interactive. The data base designer
has then the possibility to manipulate with
the solution space so that these problems do
not have to arise.

4.1.2 Validity constraints Certain validity
constraints must be satisfied in order to
arrive at a valid DBTG data structure.

Some of these rules cannot be checked until a
DBTG structure with records and sets is
created. The validity constraints, which are

tested, are

record lengths are within permitted lim-
its

a record type has no repeating groups on
a level > 1

a data item type is not aggregated more
than once

that a set has not the same record me
both as an owner and as a member.

of the validity constraints can, how-
ever, be checked before the interaction with
the data base designer takes place. This is
done by determining which IAs are valid or
not valid for every relation. Unlike the
Michigan design tools, IDBD does not just
distinguish between valid and not valid IAs
but also categorizes valid IAs into

Proceedings of the Eighth International Conference
on Very Large Data Bases

preferable(possible) and unwanted IAs. In
this way the tool helps
choose good data structures.

the designer to
If the designer

lets IDBD to decide, IDBD has then a smaller
number of IAs to consider. The solution
space is thereby considerably reduced.

Some of the validity constraints, which are
checked before the interaction, are

- maximum record length is not violated

- if the data item types in the relation
have different security codes, duplica-
tion and aggregation are ruled out

- for a relation, where there exists a
partial mapping from A to B, such that
there exist B data items that are not
related to any A data item, it is impos-
sible to aggregate B under A such that
all B data items are represented.

Suppose there is a l:M-type of relation
between A and B data items so that one A data
item is related to zero, one or more B data
items. The validity constraints, which are
checked in this case, are (there are analo-
gous rules for l:l- M:l- and M:N-relations)

- it is impossible to aggregate A under B

- a chain or pointer array can not be used
in reversed direction

- there is no need for dummy records

- duplicating of A under B is done with
fixed length, not variable length

- if references in the run-units only
traverse in the direction of the rela-
tion, e.g. from A to B, there is no need
for owner pointers or for duplication of
A under B

- if there is only traversing in the oppo-
site direction, duplication or aggrega-
tion of B under A and chain or pointer
array without owner pointer are made
unwanted

- if there is traversing in both direc-
tnions, we need owner pointers, e-g*
chain or pointer array without owner
pointer are made unwanted.

4.1.3 Cost caIcul.ation The storage cost is
calculated as the sum of the lengths of all
records, pointers and wasted areas for hashed
record types. These wasted areas are
estimated by the aid of the parameter "CALC
storage factor".

117 Mexico City, September, 1982

There are a few assumptions about the record
type implementation and the DBTG data base
management system. If a record type is only
accessed with direct access, then it is
assumed that the record type will be hashed
(CALC in Codasyl). If a record type is
accessed sequentially, then the record type
is made a member in a Codasyl SYSTEM set
(Singular set). If there is a need for
direct access to more than one data item type
in a record type, then it is created a secon-
dary index. This index is assumed to be
implemented by a pointer array.

The access cost is calculated for each run-
unit. We differentiate between three types
of access costs.

These are the number of

- sequential accesses, where a scan
through the records for a certain record
type is made. These accesses can be
cheaper than the other types, if the
records are clustered into blocks.

- CALC accesses, which are accesses to
hashed records. The number is multi-
plied with the parameter “CALC access
factor”

- pointer accesses, which are the accesses
through pointers.

The number of accesses calculated is an esti-
mation of the number of physical accesses.
Records, which are stored in the same block
or already stored in primary storage in
buffers, are not considered.

To get an estimate of the number of accesses,
IDBD takes care of the hierarchical structure
in the run-units with different number of
data items required on each level. Average
values are used. IDBD also considers

- the cases where the data item types are
stored in the same record type

- what kind of data entry there is defined
to the record type

- the combination of IAs and verbs in the
run-unit .

As an example of the number of pointer
accesses calculated, consider the verbs GET
FIRST, MODIFY FIRST and INSERT FIRST for an
implementation alternative with a chain with
prior pointers, for instance IA=lS. Table 1
shows the figures.

Proceedings of the Eighth international Conference
on Very Large Data Bases

Run-unit verb Number of pointer
accesses

GET FIRST 1
MODIFY FIRST 2
INSERT FIRST 5

TABLE 1. Number of pointer accesses for cer-
tain verbs

In the case of INSERT FIRST both the owner
and the previous first member have to be read
and written and the new first member shall be
written, e.g. 5 accesses.

4.2

Each
tion

The results

solution alternative contains informa-
about

record structures

set types

total storage cost

total number of accesses and

the access cost for each run-unit.

This information is, for each solution,
displayed as follows (examplified by the
solution alternative with the lowest access
cost).

There are 6 record types

Record type no 1 (delivday) has 30 records
0 delivday 6 char. CALC access

Record length: 6 char.

Record type no 2 (delivno) has 150 records
0 delivno 5 char. CALC access

Record length : 5 char.

Record type no 3 (orderno) has 300 records
0 orderno 6 char. seq. access

Record length: 6 char.

Record type no 4 (custno) has 1000 records
0 custno 5 char. CALC access

1 custname 30 char.
1 custadr 30 char.

Record length: 65 char.

Record type no 5 (ord-part) has 1500 records
0 ord-part 0 char.

1 amount 8 char.
Record length: 8 char.

Record type no 6 (partno) has 2000 records
0 partno 8 char. CALC access

1 partinfo 92 char.
Record length: 100 char.

118 Mexico City, September, 1982

There are 5 set types

Set type no 1 (dday-dno) has 150 instances
Owner = record type no 1 30 records
Member = record type no 2 150 records
The set is implemented with DBTG-set
with owner pointer and prior pointer

Set type no 2 (dno-ord) has 300 instances
Owner = record type no 2 150 records
Member = record type no 3 300 records
The set is implemented with DBTG-set
with owner pointer

Set type no 3 (cust-ord) has 300 instances
Owner = record type no 4 1000 records
Member = record type no 3 300 records
The set is implemented with DBTG-set
with owner pointer and prior pointer

Set type no 4 (ord-o-p) has 1500 instances
Owner = record type no 3 300 records
Member = record type no 5 1500 records
The set is implemented with DBTG-set
with owner pointer and prior pointer

Set type no 5 (part-o-p) has 1500 instances
Owner = record type no 6 2000 records
Member = record type no 5 1500 records
The set is implemented with DBTG-set
with owner pointer and prior pointer

The storage cost for the data base is 391836 char.

Run-unit custinf has the access cost:
seq. access = 0
CALC access = 1
pointer access= 25

Ron-unit ord-day has the access cost:
seq. access - 0
CALC access - 1
pointer access- 3

Run-unit amount has the access cost:
seq. access = 0
CALC access - 1
pointer access- 2

Run-unit orders has the access cost:
seq. access = 300
CALC access - 0
pointer access- 3000

Run-unit del-supp has the accesr cost:
seq. access = 0
CALC access = 1
pointer access- 77

Run-unit ins-supp has the access cost:
seq. access - 0
CALC access = 1
pointer access= 106

Run-unit ins-cust has the access cost:
se*. access - 0
CALC access - 1
pointer access- 3

30 times

100 times

30 times

1 times

30 times

30 times

LO times

Run-unit upd-part has the access cost: 1500 times
seq. access - 0
CALC access - 1
pointer access- 1

The total number of accesses- 14045 I

Proceedings of the Eighth International Conference
on Very Large Data Bases

119

Table 2 shows the storage and access costs
for the 6 alternatives in this sample case.

Solution Access Storage
number cost cost

1 14045 391836
2 14165 393036
3 14315 420636
4 76512 390336

100025 391356
100025 410436

TABLE 2. Access and

No. of record No. of set
types types

6 5
6" 5 5

6
6 4"
6 4

storage costs

The schemata for solution alternatives 1 and
4 are graphically illustrated in figures 1
and 2.

delivday custno

1g

custadr

R
delivno - orderno

T
ord-part

amount

e partno
partinfo 1

R = DBTC-set implemented with chain
with owner pointer

El = record type = seq. access

- - set type +p = direct access

Figure 1. Solution alternative'no. 1

Mexico City, September, 1982

1 custadr
i

; amount

h---
r----

Y

‘-7
:partno

partinfo
L---d

Figure 2. Solution alternative no. 4

In solution alternative no. 4 is delivno
duplicated under orderno. This means that to
get an orderno from a given delivno in the
records with ordernotdelivno, those records
have to be scanned. That is why the access
cost in this case raises tremendously*

4.3 The too1

IDBD is running on VAX computers with UNIX
operating system. The program call is a
standard UNIX call:

idbd c-i infile. (-a outfild [-p parmfilel
1-r rfilel i-s sofilel

[-u sifilel

It is possible to name the different files at
the program call with parameters. Otherwise
the names of the files will be asked for by
the IDBD during execution. The different
files are

infile

outfile

parmfile

rfile

The name of the input data file,
which contains the data items, the
relations and the run-units.

The name of the file, where the
lengthy listings are stored. The
filename /dev/tty means the termi-
nal itself. The filename /dev/null
produces no output file.

Instead of answering questions
about the values for the different
parameters, these can be stored in
a file. The name of that file is
given with this parameter.

If there is just one DBTG structure
to analyze, Put the IAs for the
relations 1, 2 etc. in a file and
name that file with this parameter
at the program call.

Proceedings of the Eighth International Conference
on Very Large Data Bases 120

sofile It is possible to interrupt the
program after the input phase in
order to examine the output from
the input checking procedures.
Give in that case this parameter.
The data is saved in the file
sofile.

sifile TO continue processing after an
interrupt with -s aofile give the
name of the saved fi'le with this
parameter.

5. Mscur3sioll

Discussions with practitioners in the field
has disclosed that one is not always
interested in 'optimizing' the total DB-
schema. For many reasons (reliability, secu-
rity, modifyability, comprehensibility etc.)
the designers may wish to implement parts of
the data base in a specific way and leave the
rest of it (if any) to the 'optimizer'. The
difficulty of predicting future workloads may
also make optimization - in the strict sense
- more an intellectual exercise than a real-
istic approach. An optimal solution alterna-
tive may, nevertheless, have a merit. It
provides a 'base-line' against which other,
more 'natural', solutions can be measured in
terms of access and storage costs.

IDBD has the flexibility to optimize the
design from a predefined, desired scope.
Tests show that it is a valuable property in
order to make a tool useful in a variety of
practical design situations.

-s

[Ber-77A]

[Ber-77B?

[Bub-801

1 Gus-821

Berild S., Nachmens S.: A Tool for
Data Base Design by Infological
Simulation, Proc. 3rd Int. Conf.
on VLDB, Tokyo, 1977.

Berelian E.: A Methodology for
Data Base Design in a Paging
Environment, The University of
Michigan, Systems Engineering
Laboratory, Ann Arbor, USA, Ph.D.
Thesis, 1977.

Bubenko jr J.A.: Information
Modeling in the Context of Systems
Development, in S.H. Lavington
(Ed.) "Information Processing SO”,
North Holland, 1980, pp. 395-411.

Gustafsson M.R., Karlsson T.,
Bubenko jr J.A.: A Declarative
Approach to Conceptual Information
Modeling, IFIP WG8.1 Working
Conference "Comparative Review of
Information System Design Metho-

Mexico City, September, 1982

dologies", North Holland, 1982.

[Mit-751 Mitoma M-F., Irani K.B.: Automatic
Database Schema Design and Optimi-
zation, Proc. of 1st Int. Conf. on
VLDB, 1975.

[Pur-79] Purkayastha S.: Design of DBMS-
processable Logical Database
Structures, The University of
Michigan, Ann Arbor, USA, Ph.D.
Thesis, 1979.

Proceedings of the Eighth International Conference
on Very Large Data Bases 121 Mexico City, September, 1982

