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ABSTRACT 
Over the years several locking protocols 

have been proposed for coordinating the 
concurrent use of a data base by multiple 
transactions. Of these, the non-two-phase 
locking (non-2PL) protocols form a large class. 
The Pitfall Protocol (PP) is one of the non-2PL 
protocols. While the rules of PP assure 
serializability, they do not prevent deadlocks 
from occurring. Resolution of a deadlock by 
partially/fully undoing (i.e. rolling back) the 
actions of one of the transactions involved in 
the deadlock may result in two undesirable 
consequences: a) cascading rollbacks -- more 
than one transaction may have to be rolled back, 
b) rollback of completed transaction -- a 
transaction that has terminated could be 
required to be rolled back. Thus a complex 
commit protocol may be necessary to determine 
whether a transaction may be allowed to commit. 

It is the goal of this paper to introduce a 
simple additional condition to the rules of PP 
that will allow very simple handling of 
deadlocks by partial rollbacks, without causing 
the above undesirable effects. 

approach to dealing with this problem is to 
define a transaction as a unit that preserves 
consistency (e.g., it is assumed that each 
transaction, when executed alone, transforms a 
consistent state into a new consistent state), 
and require that the outcome of processing a set 
of transactions concurrently be the same as the 
one produced by running these transactions one- 
at-a-time (i.e. serially) in some order. A 
system that ensures this property is said to be 
serializable [2]. Associated with concurrent 
access to data is the nroblem of deadlocks. 
Deadlocks arise as a result of circular wait 
conditions involving two or more transactions. 
A system which does not allow deadlocks to occur 
is said to be deadlock-free [l]. 

1. INTRODUCTION 

When a data base is accessed and updated 
concurrently by a number of asynchronously 
running transactions it could lead to 
inconsistencies in the stored/retrieved data if 
such operations are not regulated. A common 

Serializability can be ensured via a number 
of concurrency control mechanisms, the most 
common one being a locking protocol. Such a 
protocol can be simply viewed as a restriction 
on when a transaction may lock and unlock each 
of the data base items. Locking a data item 
inhibits certain types of concurrent activity on 
that item until the lock is released. The first 
useful locking protocol developed was the two- 
phase locking (2PL) protocol [2], which is 
characterized by the fact that a transaction is 
not allowed to lock a data base item after it 
has unlocked any other item. 

Recently a number of non-2PL protocols have 
been defined for data bases in which a pattern 
of allowable accesses by a transaction is 
described by a directed acyclic graph structure 
superimposed the 

[3, 6, 7, 8, lo,':, 131. 
data items 

One of the most 
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general non-2PL protocols is the pitfall 
protocol (PP) presented in [7]. It is a 
versatile protocol in the sense that several 
previously developed protocols (e.g. the tree 
protocol [lo], the majority protocol 161, and 
the DAG protocol [13]) are special cases of it. 
While PP assures serializability, it does not 
assure freedom from deadlocks. 

3Department of Computer Sciences, The University 
of Texas, Austin, TX 78712. 

One approach to dealing with deadlocks is 
to prevent them by, for instance, enumerating 
the vertices of the graph (a topological sort) 
and requiring the transactions to acquire locks 
on the vertices in the increasing order of their 
enumeration. Another approach is to allow 
deadlocks to occur and then take corrective 
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action. Each approach has its own advantages 
and disadvantages [l]. Here we are concerned 
with only the latter approach. 

A number of schemes have been proposed for 
recovering froui deadlocks in general 

[4, 5, 9, 121. These schemes usually require 
one or more transactions to be rolled back 
(i .e., the effects of the transactions to be 
"undone"). Once a transaction has been chosen 
for being rolled back it could be rolled back 
completely (all the actions of the transaction 
are "undone"), or partially (the transaction is 
rolled back only to the point in its execution 
where the deadlock cycle is broken). The notion 
cf partial rollback was introduced in [4], in 
the context of the 2PL protocol. 

Rolling back one transaction may force some 
other transactions which were dependent on the 
former also to be rolled back. This phenomenon 
is called cascading rollback. Clearly cascading 
rollbacks are expensive to deal with and hence 
should be avoided whenever possible. The 
advantages of avoiding cascading rollbacks are: 

1. Only one transaction needs to be rolled 
back to resolve any deadlock. This 
leads to a decrease in the amount of 
partial transaction executions that are 
repeated. 

2. More importantly, transaction executions 
need not be monitored to keep track of 
transaction dependencies (information 
like which transaction read which 
transactions' output). In systems where 
cascading rollbacks are inevitable, such 
information is necessary to determine, 
when a decision is made to rollback a 
particular transaction, what other 
transactions must also be rolled back. 

If cascading rollbacks are not avoided then: 

1. 

2. 

An increase in the delay between the 
time at which a deadlock occurs and 
the time at which It is detected 
could potentially lead to an Increase 
in the number of transactions that 
need to be rolled back. 

Even terminated transactions may have 
to be rolled back, if cascading 
rollbacks were to be necessary. This 
may introduce considerable complexity 
into the commit stage as a 
transaction must not be allowed to 
comadt, if it has to be rolled back 
later. 

In general, transaction failures/abortions 
may also necessitate rollbacks. In this paper 
hwever, we restrict our attention only to the 

problem of cascading rollbacks due to the 
occurrence of deadlocks. It is interesting to 
note that while the 2PL protocol does not assure 
deadlock-freedom it does however guard against 
cascading rollbacks. Unfortunately this is not 
the case with the Pitfall Protocol. We thus 
propose a condition (called the Super Pitfall 
Condition) which, when adhered to by all 
transactions following PP, will guarantee that 
no cascading rollbacks may result. 

2. THE PITFALL PROTOCOL 

Let the data base be organized in the form 
of a directed acyclic graph (DAG) with each 
vertex (in the set of vertices V) being a data 
item. PP supports the X and S modes of locking. 
An X mode lock on a data item allows read and 
write access to the item, while an S mode lock 
permits only read access to the item. A request 
to lock an entry in X (S) mode is accomplished 
through the LX (LS) instruction. Before 
presenting the protocol a few definitions are in 
order. 

Definition 2-l: A history H is the trace, in 
chronological order, of the concurrent execution 
of a set of transactions r= {To,...,TN-~]. 

Definition 2-2: We define the <e and < relation 
on a history H of a set T of transactions as 
follows: 

Ti <e Tj <=> Ti held an Mi mode lock on e 
and T j held an M. mode lock on 
e later, where X % {Ml, Mjl. 

Ti < Tj <a> +e [Ti <e Tj] 

If Ti and Tj are related via the < relation then 
we shall say that Ti conflicts with T j . 

Lemma 2-l: A protocol assures serializability if 
for all concurrent executions of transact.ons 
following it the associated relation < on T is 
acyclic. 

Definition 2-3: We define the ->e and -> 
relations (the "wait-for" relations) as follows: 

Ti ->e Tj <a> Tj is currently holding an Mj 
mode lock on e and Ti has 
requested an Mi mode lock on 
e, where X e {Mj, Mj]. 

Ti -> Tj <=> +e [Ti ->e Tjl 
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Note that the relation -> is time dependent. 

Lemma 2-2: A protocol assures deadlock-freedom 
if for all concurrent executions of transactions 
following it the associated relation -> on T is 
acyclic, at any instance of time during the 
execution. 

Definition 2-4: 
vertices for 

Let L(Ti) be the set of all 
which Ti issued a locking 

instruction, LX(Ti) be the set of vertices for 
which Ti issued the instruction to lock in X 
mode, and LS(Ti) be the set of vertices for 
Which Ti issued the instruction to lock in S 
mode. 

Definition 2-5: For each transaction Ti, 
certain subsets of L(Ti), called pitfalls, are 
defined as follows. Consider the subgraph 
spanned by the set LS(Ti). Generally it splits 

into a number of connected components, say Al, 
A2, . . . , Ak. A pitfall of Ti is defined as a 
set of the form Aj U Iv f3 LX(Ti) I v is a 
neighbor of some w S Aj). 

Note that the pitfalls are not necessarily 
disjoint and that the pitfalls of a given 
transaction in no way depend upon the locking 
activities of other transactions. 

Definition 2-6: A transaction Ti is said to be 

two-phase on a set of entities K 5 L(Ti) if and 

only if the subsequence of Ti obtained by 

deleting all instructions referring to entities 

(vertices) in L(Ti) - A is two-phase. 

Definition 2-7: We shall say that a graph is a 
guarded graph if and only if with each v S V 
(except the roots of the DAG) we associate a 
non-empty set of pairs: 

guard(v) = {<AT, BY>,...,< v +$, %>I 

satisfying the conditions: 

1. 0 I‘ B; 'A; GV, 

2. Wu 6 Ai' [u is a parent of vl, 
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3. if AVfl BV = 8, 
s 

the,rr there 
bicoinec ed component of 

exists no 
the DAG that 

includes vertices from both Af: and By. 

The rules of the pitfall protocol for each ---- -- 
transaction are: 

1. The first lock may be acquired on any 
vertex. 

2. Subsequently, a vertex v can be locked 
only if locks are held on all vertices 
in some Bf: (thus I$, > 0) and if all 
vertices in the corresponding AT - BI 
have been locked (and possibly 
unlocked). 

3. The transaction is two-phase on each of 
its pitfalls 
transaction be 
its pitfalls). 

Theorem 2-l: The 
serializability. 

Proof: See [7]. 

(it does not require a 
two-phase on the union of 

pitfall protocol assures 

We show now that not only is the protocol 
deadlock-prone, but that to handle deadlocks is 
quite a complex task. Consider the database 
graph of Figure 2-1, 

Figure 2-l 

where the guards are defined by: 

**We remind the reader that a biconnected 
component of a graph consists of a maximal 
collection of vertices VI, ~2, . . . , vp, for 
P 2 3s such that for any pair {vi,vj}, there 
exist two (undirected) chains between vi and v 
which are vertex-disjoint other than at th a 
ends. 
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V I guard (u) 
iI______ _-------------------- I 
I A I 0 
I B {<{Al, {Al>1 
I c I {<{Al, {Al>1 
I D I I<(B), {B)>) 
IE I {<{Cl, {Cl>) 

Note that the guard simply define the tree 
protocol as described in [lo] with S locks 
allowed. 

Consider the (partial) history defined by 
the table: 

Tl T2 T3 T4 - - - - 

LS A 
LX B 
LX D 
UN D 

LX D 
UN D 

LS A 
LX c 
LX E 
UN E 

LX E 
UN E 

LX c LX B 

All the transactions followed the PP, but at 
this point in time we have the following cycle: 

Tl ->CT3 ->BT1 

which implies the existence of a deadlock. 

To resolve this deadlock, either Tl or T3 
must be rolled back. Since the situation is 
symmetric, assume Tl 
can proceed. 

is rolled back so that T3 
Tl must be rolled back to a point 

in time where the only locking instruction 
executed by it was LS A. Since transaction T2 
depends on Tl (T2 might have read the item D 
which was possibly modified by Tl), it must also 
be rolled back. At this point in time however, 
T2 might have already terminated. Hence not 
only do we have to worry about cascading 
rollbacks but we must make sure that 
transactions do not terminate (commit) too 
early. 
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3. THE SUPERPITFALL PROTOCOL 

Let p be a pitfall of some transaction 
T. Then r denotes the set of root vertices of 
the subgr%ph spanned by the vertices of p and 
nr denotes the set of the other (non-root) 
ve tices of the subgraph. P 

The instructions of T contain two 
subsequences defined by the pitfall p: 

1. Initial Phase (IP): This phase begins 
at the point at which the first of 
the vertices in r is locked and ends 
at the point at w ich R the last of the 
vertices in r p is locked. 

2. Final Phase (FP): This phase begins 
at the point at which the first of 
the vertices in nr 

P 
is locked and 

ends at the point a which the last 
of the vertices in nrp is locked. 

Note that the instructions in the two 
phases may refer to vertices outside the 
pitfall, and furthermore, the two phases may 
overlap. To illustrate the latter point, 
consider the database graph of Figure 3-1, and 
the following segment of a &ansaction T 
following the majority protocol defined in 

[81: 

LX R 
LS B 
LX c 
LS E 
LX D 
LS F 
UN X 
. . . 

For transaction T we have the following 
pitfalls: 

Pl = {R,B,C,Dl 

~2 = {C,D,E,F} 

For p2 the IP has to include the locking of the 
vertices C and D, and the FP has to include the 
locking of the vertices E and F. The two phases 
overlap due to the acquisition of the lock on E 
preceding the acquisition of the lock on D. 

Definition 3-l: We shall say that a transaction 
follows the superpitfall protocol if it follows 
the pitfall protocol and in addition, 

***A majority protocol is a special case of 
the PP for which the guard(v) = {<A,ti I A is a 
majority of fathers of v in some biconnected 
component.) 
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4. No unlocking instructions are issued in 
the IP and the FP stages of any pitfall. 

Note that unlocks may occur between IP and FP 
(if they do not overlap). 

Figure 3-l 

Theorem 3-1: Let there be a set of transactions 
following the Superpitfall protocol and assume 
that a deadlock (cycle) of the following form 
has occurred: 

TO -> ulTl -> u2 l ** -> un,lTn-1 -> uGTO 

Then for any i, 

1. 

2. 

3. 

T can be rolled back to the point at 
w ich II it issued the instruction to 
lock uiml' 

No other transaction Tj* (j P i) 
needs to be rolled back, 

Tj will be able later to continue its 
execution. 

Proof: In order to aid in intuitive 
understanding, we will prove the theorem only 
for the case where the database graph is a 
(directed) tree (i.e., for each vertex v, 
guard(v)={<(w), {w}>l w is a parent of v}). We 
emphasize however that our results apply to DAGs 
as well. We will also break the proof into a 
number of steps. 

Before proceeding with the proof let us 
briefly elaborate on statements (1) - (3) above. 

Statements (1) and (2) will allow us to 
pick any transaction to be rolled back, thus 
allowing the system to make "progress". Indeed, 
if the "youngest" transactions are chosen for 
rollback, some older transactions will progress. 
(For related issues see also [9, 121.) 
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Statement (3) is not trivial. One can 
imagine the case that a transaction is rolled 
back so far that it no longer holds enough 
elements in the appropriate guards so it can 
lock the vertices it needs to access. 
Fortunately, this will not be the case. 

We will assume that the cycle is minimal 
under the relation -> as any cycle can be broken 
by successive breaking of minimal cycles. 

Lemma 3-l: If a set of transactions is involved 
in a cycle of the following form: 

To -> ,+ -> u2 . . . -> un-lTn-l -> uoTo, 

then in the partial history, obtained by 
considering the instruction up to the point when 
the deadlock occurred, 

fi Uj [Ti r[ Tj and Tj $ Tile 

Proof: Similar to a proof of Theorem 11 in [13]. 

Definition 3-2: We will define the following two 
sets: 

Q(Q) = {vlv was locked (and possibly 
unlocked) by T before it issued the 
instruction to P ock u~+~I 

R(Ti) = Q(Q) U {u~+~I' 

Lemma 3-2: For any i, either ui and ui+l are in 
the same pitfall, or ui is a parent of ui+l. 

Proof: Note that {ui,ui+l} C_ Q(Ti) IJ {ui+l} and 

that tui ,q+ll E tuil u tjji Q(Tj)). As we 

assume that the underlying graph is a tree, it 

follows that there is a unique chain, say 

uj=q-j9q ,...,xq=uj+l, q 2 1, between uj and u,+~ 

in the graph. As both Q(Ti) and jji Q(Tj) are 

connected, it follows that 

If q=l (and {xl,...,xq-1) = 0 ), then by the 

rules of the protocol ui is a parent of u~+~. 

If q>l, it follows that each vertex between ui 

and u~+~ in the chain was locked by both Ti and 

some transaction Tj, j 

e {O,l ,...,i-l,i+l,...,n-1). By Lemma 3-1, it 
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follows that it was locked by Ti only in the S 

mode, and thus if q>l, {ui,ui+l} was a subset of 

a single pitfall of Ti. 

Any pitfall is a rooted directed tree. For 
a pitfall p, we shall denote by r(p) its root. 

Lemma 3-3: For any transaction T, and any 
pitfall of p, (at least) one of the following 
holds: 

1. r(p) is the first element locked by 
T, 

2. r(p) e LX(T). 

Proof: Assume that (1) does not hold. Then it 
is a non-trivial descendant of the first vertex 
locked by T, and thus the parent of r(p), say W, 
is in L(T). Now as w $ p, and some child of 
r(p) is in LS(T), it follows that p S LX(T). 

Lemma 3-4: {u ,lQ+$ are a subset of some single 
pitfall p of 4 i, and one of the two cases hold: 

1. ui f r(p,), 

2. r(p) is the first vertex locked by 

Ti' 

Proof: The following are the possible cases to 

be considered. 

(a> ~u~,u~+~~ i s a subset of some pitfall p 

and r(p) is not the first vertex locked 

by Ti. 

(b) {u~,u~+~) i s a subset of some pitfall p 

and r(p) is the first vertex locked by 

Ti' 

(cl tupu~+l~ i s not a subset of any pitfall 

of Ti. 

Assume that case (c) holds. Then ui is a parent 

of ui+l and was locked by Ti in X mode. As Ti-1 

is attempting to lock ui, it follows that no 

vertex locked so far by Tim1 (including ~1-1) 

lies in the partial tree rooted at ui and 

consisting of the descendants of ~1. It easily 

follows (see Figure 3-2) that any chain between 
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y-1 and ui must include ui+l* As ty-1, y+l) 
is a subset of the connected set & Q(T.J), it 

follows by Lemma 3-l that ui $ LX(Ti), showing 

that case (c) cannot hold. 

Figure 3.2 

We have thus shown that {u~,u~+~} is a subset of 

some pitfall p. Assume that case (b) does not 

hold. Then by Lemma 3-3, r(p) 8 LX(Ti). Assume 

by contradiction that ui - r(p). We see that 

I.Q+~ is a descendant of ui and that any chain 

between uiml and IQ+~ must include ui. This IS 
shown to be impossible similar to case (c). 

Proof of the Theorem: We now show that Ti can 
be rolled back to the point before the 
instruction to lock u was Issued (the rollback 
point). We consider t t e two cases of Lemma 3-4. 

(1) Since u 
1 

+ r(p), it follows that no 
unlock nstructions were issued by Ti 
between the rollback point and the 
deadlock point. Furthermore Ti was 
holding a lock on the'parent of ui at the 
rollback point. Thus it will be able to 
restore correct data to all the vertices 
whose value depends on the values in the 
vertices locked between the rollback and 
the deadlock points, and then proceed 
following the protocol, when allowed by 
the concurrency control. 
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(2) In this case no unlock instructions were 
issued at all by Ti. The original values 
in Q(Q) can be restored and the 
transaction removed from the system. It 
can then be restarted at the convenience 
of the concurrency control. 

We complete our discussion concerning the 
superpitfall protocol by noting the following: 

1. Rollbacks can be done in such a way 
that progress is made. For example, 
we can always let the oldest 
transaction (in the overall priority) 
proceed whenever a deadlock occurs. 

2. Returning to the example of Figure 
2-1, let us see when the two 
transactions Tl and T2 violated 
condition (4) of the Superpitfall 
Protocol. For Tl, the vertices R, C 
and A form a pitfall, say pl. Tl 
violated condition (4) when it 
unlocked B during the FP of pl. It 
should be easy to see how T2 violated 
condition (4). 

4. CONCLUSION 

After pointing out that the problem of 
cascading rollbacks due to deadlocks could arise 
only in non-2PL protocols, we discussed the 
advantages of avoiding cascading rollbacks. We 
described a non-PPL protocol (namely the Pitfall 
Protocol (PP)) and illustrated a deadlock 
situation requiring cascading rollbacks. Next 
we presented the Superpitfall protocol and 
proved that when all transactions follow the 
protocol the need for cascading rollbacks will 
not arise. While we have shown how to avoid 
cascading rollbacks and thereby accrue some 
advantages it should be recognized that there is 
a cost associated with the condition. There is 
potential for a decrease in the level of 
concurrency supported when the condition is 
adopted since the transactions may be forced to 
hold locks for a longer time than was necessary 
before. 
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