
AN EFFICIENT DEADLOCK REMOVAL SCHEME FOR
NON-TWO-PHASE LOCKING PROTOCOLS*

2. KEDEMl
C. MOHAN2

A. SILBERSCHATZ3

ABSTRACT
Over the years several locking protocols

have been proposed for coordinating the
concurrent use of a data base by multiple
transactions. Of these, the non-two-phase
locking (non-2PL) protocols form a large class.
The Pitfall Protocol (PP) is one of the non-2PL
protocols. While the rules of PP assure
serializability, they do not prevent deadlocks
from occurring. Resolution of a deadlock by
partially/fully undoing (i.e. rolling back) the
actions of one of the transactions involved in
the deadlock may result in two undesirable
consequences: a) cascading rollbacks -- more
than one transaction may have to be rolled back,
b) rollback of completed transaction -- a
transaction that has terminated could be
required to be rolled back. Thus a complex
commit protocol may be necessary to determine
whether a transaction may be allowed to commit.

It is the goal of this paper to introduce a
simple additional condition to the rules of PP
that will allow very simple handling of
deadlocks by partial rollbacks, without causing
the above undesirable effects.

approach to dealing with this problem is to
define a transaction as a unit that preserves
consistency (e.g., it is assumed that each
transaction, when executed alone, transforms a
consistent state into a new consistent state),
and require that the outcome of processing a set
of transactions concurrently be the same as the
one produced by running these transactions one-
at-a-time (i.e. serially) in some order. A
system that ensures this property is said to be
serializable [2]. Associated with concurrent
access to data is the nroblem of deadlocks.
Deadlocks arise as a result of circular wait
conditions involving two or more transactions.
A system which does not allow deadlocks to occur
is said to be deadlock-free [l].

1. INTRODUCTION

When a data base is accessed and updated
concurrently by a number of asynchronously
running transactions it could lead to
inconsistencies in the stored/retrieved data if
such operations are not regulated. A common

Serializability can be ensured via a number
of concurrency control mechanisms, the most
common one being a locking protocol. Such a
protocol can be simply viewed as a restriction
on when a transaction may lock and unlock each
of the data base items. Locking a data item
inhibits certain types of concurrent activity on
that item until the lock is released. The first
useful locking protocol developed was the two-
phase locking (2PL) protocol [2], which is
characterized by the fact that a transaction is
not allowed to lock a data base item after it
has unlocked any other item.

Recently a number of non-2PL protocols have
been defined for data bases in which a pattern
of allowable accesses by a transaction is
described by a directed acyclic graph structure
superimposed the

[3, 6, 7, 8, lo,':, 131.
data items

One of the most

*This research was partially supported by NSF
Grant Numbers MCS 80-25376, 81-04017, 81-04886,
81-10097, by ONR Contract N00014-80-K-0987, and
by DARPA Contract N00039-82-C-0427.

'Department of Computer Science, Columbia
University, New York, NY, 10027, on leave from
Department of Computer Science, SUNY at Stony
Brook, Stony Brook, NY 11794.

21BM Reseach Laboratory, K55/61F, San Jose, CA
95193.

general non-2PL protocols is the pitfall
protocol (PP) presented in [7]. It is a
versatile protocol in the sense that several
previously developed protocols (e.g. the tree
protocol [lo], the majority protocol 161, and
the DAG protocol [13]) are special cases of it.
While PP assures serializability, it does not
assure freedom from deadlocks.

3Department of Computer Sciences, The University
of Texas, Austin, TX 78712.

One approach to dealing with deadlocks is
to prevent them by, for instance, enumerating
the vertices of the graph (a topological sort)
and requiring the transactions to acquire locks
on the vertices in the increasing order of their
enumeration. Another approach is to allow
deadlocks to occur and then take corrective

Proceedings of the Eighth International Conference
on Very Large Data Bases 91 Mexico City, September, 1982

action. Each approach has its own advantages
and disadvantages [l]. Here we are concerned
with only the latter approach.

A number of schemes have been proposed for
recovering froui deadlocks in general

[4, 5, 9, 121. These schemes usually require
one or more transactions to be rolled back
(i .e., the effects of the transactions to be
"undone"). Once a transaction has been chosen
for being rolled back it could be rolled back
completely (all the actions of the transaction
are "undone"), or partially (the transaction is
rolled back only to the point in its execution
where the deadlock cycle is broken). The notion
cf partial rollback was introduced in [4], in
the context of the 2PL protocol.

Rolling back one transaction may force some
other transactions which were dependent on the
former also to be rolled back. This phenomenon
is called cascading rollback. Clearly cascading
rollbacks are expensive to deal with and hence
should be avoided whenever possible. The
advantages of avoiding cascading rollbacks are:

1. Only one transaction needs to be rolled
back to resolve any deadlock. This
leads to a decrease in the amount of
partial transaction executions that are
repeated.

2. More importantly, transaction executions
need not be monitored to keep track of
transaction dependencies (information
like which transaction read which
transactions' output). In systems where
cascading rollbacks are inevitable, such
information is necessary to determine,
when a decision is made to rollback a
particular transaction, what other
transactions must also be rolled back.

If cascading rollbacks are not avoided then:

1.

2.

An increase in the delay between the
time at which a deadlock occurs and
the time at which It is detected
could potentially lead to an Increase
in the number of transactions that
need to be rolled back.

Even terminated transactions may have
to be rolled back, if cascading
rollbacks were to be necessary. This
may introduce considerable complexity
into the commit stage as a
transaction must not be allowed to
comadt, if it has to be rolled back
later.

In general, transaction failures/abortions
may also necessitate rollbacks. In this paper
hwever, we restrict our attention only to the

problem of cascading rollbacks due to the
occurrence of deadlocks. It is interesting to
note that while the 2PL protocol does not assure
deadlock-freedom it does however guard against
cascading rollbacks. Unfortunately this is not
the case with the Pitfall Protocol. We thus
propose a condition (called the Super Pitfall
Condition) which, when adhered to by all
transactions following PP, will guarantee that
no cascading rollbacks may result.

2. THE PITFALL PROTOCOL

Let the data base be organized in the form
of a directed acyclic graph (DAG) with each
vertex (in the set of vertices V) being a data
item. PP supports the X and S modes of locking.
An X mode lock on a data item allows read and
write access to the item, while an S mode lock
permits only read access to the item. A request
to lock an entry in X (S) mode is accomplished
through the LX (LS) instruction. Before
presenting the protocol a few definitions are in
order.

Definition 2-l: A history H is the trace, in
chronological order, of the concurrent execution
of a set of transactions r= {To,...,TN-~].

Definition 2-2: We define the <e and < relation
on a history H of a set T of transactions as
follows:

Ti <e Tj <=> Ti held an Mi mode lock on e
and T j held an M. mode lock on
e later, where X % {Ml, Mjl.

Ti < Tj <a> +e [Ti <e Tj]

If Ti and Tj are related via the < relation then
we shall say that Ti conflicts with T j .

Lemma 2-l: A protocol assures serializability if
for all concurrent executions of transact.ons
following it the associated relation < on T is
acyclic.

Definition 2-3: We define the ->e and ->
relations (the "wait-for" relations) as follows:

Ti ->e Tj <a> Tj is currently holding an Mj
mode lock on e and Ti has
requested an Mi mode lock on
e, where X e {Mj, Mj].

Ti -> Tj <=> +e [Ti ->e Tjl

Proceedings of the Eighth International Conference
on Very Large Data Bases

92 Mexico City, September, 1982

Note that the relation -> is time dependent.

Lemma 2-2: A protocol assures deadlock-freedom
if for all concurrent executions of transactions
following it the associated relation -> on T is
acyclic, at any instance of time during the
execution.

Definition 2-4:
vertices for

Let L(Ti) be the set of all
which Ti issued a locking

instruction, LX(Ti) be the set of vertices for
which Ti issued the instruction to lock in X
mode, and LS(Ti) be the set of vertices for
Which Ti issued the instruction to lock in S
mode.

Definition 2-5: For each transaction Ti,
certain subsets of L(Ti), called pitfalls, are
defined as follows. Consider the subgraph
spanned by the set LS(Ti). Generally it splits

into a number of connected components, say Al,
A2, . . . , Ak. A pitfall of Ti is defined as a
set of the form Aj U Iv f3 LX(Ti) I v is a
neighbor of some w S Aj).

Note that the pitfalls are not necessarily
disjoint and that the pitfalls of a given
transaction in no way depend upon the locking
activities of other transactions.

Definition 2-6: A transaction Ti is said to be

two-phase on a set of entities K 5 L(Ti) if and

only if the subsequence of Ti obtained by

deleting all instructions referring to entities

(vertices) in L(Ti) - A is two-phase.

Definition 2-7: We shall say that a graph is a
guarded graph if and only if with each v S V
(except the roots of the DAG) we associate a
non-empty set of pairs:

guard(v) = {<AT, BY>,...,< v +$, %>I

satisfying the conditions:

1. 0 I‘ B; 'A; GV,

2. Wu 6 Ai' [u is a parent of vl,

Proceedings of the Eighth International Conference
on Very Large Date Bases

3. if AVfl BV = 8,
s

the,rr there
bicoinec ed component of

exists no
the DAG that

includes vertices from both Af: and By.

The rules of the pitfall protocol for each ---- --
transaction are:

1. The first lock may be acquired on any
vertex.

2. Subsequently, a vertex v can be locked
only if locks are held on all vertices
in some Bf: (thus I$, > 0) and if all
vertices in the corresponding AT - BI
have been locked (and possibly
unlocked).

3. The transaction is two-phase on each of
its pitfalls
transaction be
its pitfalls).

Theorem 2-l: The
serializability.

Proof: See [7].

(it does not require a
two-phase on the union of

pitfall protocol assures

We show now that not only is the protocol
deadlock-prone, but that to handle deadlocks is
quite a complex task. Consider the database
graph of Figure 2-1,

Figure 2-l

where the guards are defined by:

**We remind the reader that a biconnected
component of a graph consists of a maximal
collection of vertices VI, ~2, . . . , vp, for
P 2 3s such that for any pair {vi,vj}, there
exist two (undirected) chains between vi and v
which are vertex-disjoint other than at th a
ends.

93 Mexico City, September, 1982

V I guard (u)
iI______ _-------------------- I
I A I 0
I B {<{Al, {Al>1
I c I {<{Al, {Al>1
I D I I<(B), {B)>)
IE I {<{Cl, {Cl>)

Note that the guard simply define the tree
protocol as described in [lo] with S locks
allowed.

Consider the (partial) history defined by
the table:

Tl T2 T3 T4 - - - -

LS A
LX B
LX D
UN D

LX D
UN D

LS A
LX c
LX E
UN E

LX E
UN E

LX c LX B

All the transactions followed the PP, but at
this point in time we have the following cycle:

Tl ->CT3 ->BT1

which implies the existence of a deadlock.

To resolve this deadlock, either Tl or T3
must be rolled back. Since the situation is
symmetric, assume Tl
can proceed.

is rolled back so that T3
Tl must be rolled back to a point

in time where the only locking instruction
executed by it was LS A. Since transaction T2
depends on Tl (T2 might have read the item D
which was possibly modified by Tl), it must also
be rolled back. At this point in time however,
T2 might have already terminated. Hence not
only do we have to worry about cascading
rollbacks but we must make sure that
transactions do not terminate (commit) too
early.

Proceedings of the Eighth International Conference
on Very Large Data Bases

3. THE SUPERPITFALL PROTOCOL

Let p be a pitfall of some transaction
T. Then r denotes the set of root vertices of
the subgr%ph spanned by the vertices of p and
nr denotes the set of the other (non-root)
ve tices of the subgraph. P

The instructions of T contain two
subsequences defined by the pitfall p:

1. Initial Phase (IP): This phase begins
at the point at which the first of
the vertices in r is locked and ends
at the point at w ich R the last of the
vertices in r p is locked.

2. Final Phase (FP): This phase begins
at the point at which the first of
the vertices in nr

P
is locked and

ends at the point a which the last
of the vertices in nrp is locked.

Note that the instructions in the two
phases may refer to vertices outside the
pitfall, and furthermore, the two phases may
overlap. To illustrate the latter point,
consider the database graph of Figure 3-1, and
the following segment of a &ansaction T
following the majority protocol defined in

[81:

LX R
LS B
LX c
LS E
LX D
LS F
UN X
. . .

For transaction T we have the following
pitfalls:

Pl = {R,B,C,Dl

~2 = {C,D,E,F}

For p2 the IP has to include the locking of the
vertices C and D, and the FP has to include the
locking of the vertices E and F. The two phases
overlap due to the acquisition of the lock on E
preceding the acquisition of the lock on D.

Definition 3-l: We shall say that a transaction
follows the superpitfall protocol if it follows
the pitfall protocol and in addition,

***A majority protocol is a special case of
the PP for which the guard(v) = {<A,ti I A is a
majority of fathers of v in some biconnected
component.)

94 Mexico Citv. Sentember. 1982

4. No unlocking instructions are issued in
the IP and the FP stages of any pitfall.

Note that unlocks may occur between IP and FP
(if they do not overlap).

Figure 3-l

Theorem 3-1: Let there be a set of transactions
following the Superpitfall protocol and assume
that a deadlock (cycle) of the following form
has occurred:

TO -> ulTl -> u2 l ** -> un,lTn-1 -> uGTO

Then for any i,

1.

2.

3.

T can be rolled back to the point at
w ich II it issued the instruction to
lock uiml'

No other transaction Tj* (j P i)
needs to be rolled back,

Tj will be able later to continue its
execution.

Proof: In order to aid in intuitive
understanding, we will prove the theorem only
for the case where the database graph is a
(directed) tree (i.e., for each vertex v,
guard(v)={<(w), {w}>l w is a parent of v}). We
emphasize however that our results apply to DAGs
as well. We will also break the proof into a
number of steps.

Before proceeding with the proof let us
briefly elaborate on statements (1) - (3) above.

Statements (1) and (2) will allow us to
pick any transaction to be rolled back, thus
allowing the system to make "progress". Indeed,
if the "youngest" transactions are chosen for
rollback, some older transactions will progress.
(For related issues see also [9, 121.)

Proceedings of the Eighth International Conference
on Very Large Data Bases

95

Statement (3) is not trivial. One can
imagine the case that a transaction is rolled
back so far that it no longer holds enough
elements in the appropriate guards so it can
lock the vertices it needs to access.
Fortunately, this will not be the case.

We will assume that the cycle is minimal
under the relation -> as any cycle can be broken
by successive breaking of minimal cycles.

Lemma 3-l: If a set of transactions is involved
in a cycle of the following form:

To -> ,+ -> u2 . . . -> un-lTn-l -> uoTo,

then in the partial history, obtained by
considering the instruction up to the point when
the deadlock occurred,

fi Uj [Ti r[Tj and Tj $ Tile

Proof: Similar to a proof of Theorem 11 in [13].

Definition 3-2: We will define the following two
sets:

Q(Q) = {vlv was locked (and possibly
unlocked) by T before it issued the
instruction to P ock u~+~I

R(Ti) = Q(Q) U {u~+~I'

Lemma 3-2: For any i, either ui and ui+l are in
the same pitfall, or ui is a parent of ui+l.

Proof: Note that {ui,ui+l} C_ Q(Ti) IJ {ui+l} and

that tui ,q+ll E tuil u tjji Q(Tj)). As we

assume that the underlying graph is a tree, it

follows that there is a unique chain, say

uj=q-j9q ,...,xq=uj+l, q 2 1, between uj and u,+~

in the graph. As both Q(Ti) and jji Q(Tj) are

connected, it follows that

If q=l (and {xl,...,xq-1) = 0), then by the

rules of the protocol ui is a parent of u~+~.

If q>l, it follows that each vertex between ui

and u~+~ in the chain was locked by both Ti and

some transaction Tj, j

e {O,l ,...,i-l,i+l,...,n-1). By Lemma 3-1, it

Mexico City, September, 1982

follows that it was locked by Ti only in the S

mode, and thus if q>l, {ui,ui+l} was a subset of

a single pitfall of Ti.

Any pitfall is a rooted directed tree. For
a pitfall p, we shall denote by r(p) its root.

Lemma 3-3: For any transaction T, and any
pitfall of p, (at least) one of the following
holds:

1. r(p) is the first element locked by
T,

2. r(p) e LX(T).

Proof: Assume that (1) does not hold. Then it
is a non-trivial descendant of the first vertex
locked by T, and thus the parent of r(p), say W,
is in L(T). Now as w $ p, and some child of
r(p) is in LS(T), it follows that p S LX(T).

Lemma 3-4: {u ,lQ+$ are a subset of some single
pitfall p of 4 i, and one of the two cases hold:

1. ui f r(p,),

2. r(p) is the first vertex locked by

Ti'

Proof: The following are the possible cases to

be considered.

(a> ~u~,u~+~~ i s a subset of some pitfall p

and r(p) is not the first vertex locked

by Ti.

(b) {u~,u~+~) i s a subset of some pitfall p

and r(p) is the first vertex locked by

Ti'

(cl tupu~+l~ i s not a subset of any pitfall

of Ti.

Assume that case (c) holds. Then ui is a parent

of ui+l and was locked by Ti in X mode. As Ti-1

is attempting to lock ui, it follows that no

vertex locked so far by Tim1 (including ~1-1)

lies in the partial tree rooted at ui and

consisting of the descendants of ~1. It easily

follows (see Figure 3-2) that any chain between

Proceedings of the Eighth international Conference
on Very Large Data Bases 96

y-1 and ui must include ui+l* As ty-1, y+l)
is a subset of the connected set & Q(T.J), it

follows by Lemma 3-l that ui $ LX(Ti), showing

that case (c) cannot hold.

Figure 3.2

We have thus shown that {u~,u~+~} is a subset of

some pitfall p. Assume that case (b) does not

hold. Then by Lemma 3-3, r(p) 8 LX(Ti). Assume

by contradiction that ui - r(p). We see that

I.Q+~ is a descendant of ui and that any chain

between uiml and IQ+~ must include ui. This IS
shown to be impossible similar to case (c).

Proof of the Theorem: We now show that Ti can
be rolled back to the point before the
instruction to lock u was Issued (the rollback
point). We consider t t e two cases of Lemma 3-4.

(1) Since u
1

+ r(p), it follows that no
unlock nstructions were issued by Ti
between the rollback point and the
deadlock point. Furthermore Ti was
holding a lock on the'parent of ui at the
rollback point. Thus it will be able to
restore correct data to all the vertices
whose value depends on the values in the
vertices locked between the rollback and
the deadlock points, and then proceed
following the protocol, when allowed by
the concurrency control.

Mexico City, September, 1982

(2) In this case no unlock instructions were
issued at all by Ti. The original values
in Q(Q) can be restored and the
transaction removed from the system. It
can then be restarted at the convenience
of the concurrency control.

We complete our discussion concerning the
superpitfall protocol by noting the following:

1. Rollbacks can be done in such a way
that progress is made. For example,
we can always let the oldest
transaction (in the overall priority)
proceed whenever a deadlock occurs.

2. Returning to the example of Figure
2-1, let us see when the two
transactions Tl and T2 violated
condition (4) of the Superpitfall
Protocol. For Tl, the vertices R, C
and A form a pitfall, say pl. Tl
violated condition (4) when it
unlocked B during the FP of pl. It
should be easy to see how T2 violated
condition (4).

4. CONCLUSION

After pointing out that the problem of
cascading rollbacks due to deadlocks could arise
only in non-2PL protocols, we discussed the
advantages of avoiding cascading rollbacks. We
described a non-PPL protocol (namely the Pitfall
Protocol (PP)) and illustrated a deadlock
situation requiring cascading rollbacks. Next
we presented the Superpitfall protocol and
proved that when all transactions follow the
protocol the need for cascading rollbacks will
not arise. While we have shown how to avoid
cascading rollbacks and thereby accrue some
advantages it should be recognized that there is
a cost associated with the condition. There is
potential for a decrease in the level of
concurrency supported when the condition is
adopted since the transactions may be forced to
hold locks for a longer time than was necessary
before.

5. REFERENCES

1. Coffman, E., Elphich, M., Shoshani, A.,
"System Deadlocks," Computing Surveys 2, 3
(June 1971), 67-78.

2. Eswaran, K.P., Gray, J.N., Lorie, R.A.,
Traiger, I.L., "The Notions of Consistency
and Predicate Locks in a Database System,"
CACM 10, 11 (November 1976), 624-723.

Proceedings of the Eighth International Conference
on Very Large Data Bases

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

97

Fussell, D.S., Kedem Z., Silberschatz, A.,
"A Theory of Correct Protocols for Database
Systems," Proc. Seventh International
Conference on Very Large Data Bases,
September 198x

Fussell, D., Kedem, Z., Silberschatz, A.,
"Deadlock Removal Using Partial Rollback in
Database Systems," Proc. ACM-SIGMOD
International Conferenceon Manageme= - -
Data, May 1981.

Gray, J., "Notes on Data Base Operating
Systems," Operating Systems, Lecture Notes
in Computer Science: Volume 60, Springer-
Verlag, 1978.

Kedem, Z., Silberschatz, A., "Controlling
Concurrency Using Locking Protocols," Proc.
Twentieth IEEE Symposium on Foundations of
Computer Science, October 1979.

-

Kedem, Z. and Silberschatz, A., Locking
protocols: from exclusive to shared locks, --
University of-as, Technical Report, 1980.

Kedem, Z., Silberschatz, A., "Non-Two-Phase
Locking Protocols with Shared and Exclusive
Locks," Proc. Sixth International Conference
on Very Large Data Bases, October 1980. - --

Rosenkrantz, D.J., Stearns, R., Lewis, P.M.,
"System Level Concurrency Control for
Distributed Database Systems," ACM
Transactions on Data Base Systems 3, 2 (JE ---
1978), 178-198.

Silberschatz, A., Kedem, Z., "Consistency in
Hierarchical Database Systems," JACK 27, 1
(January 1980), 72-80.

Silberschatz, A., Kedem, Z., "A Family of
Locking Protocols for Database Systems that
are Modeled by Directed Graphs," IEEE
Transactions on Software Engineering (to
appear). -

Stearns, R., Lewis, P.M., Rosenkrantz, D.J.,
"Concurrency Control for Database Systems,"
Proc. Seventeenth IEEE Symposium on
Foundations of ComputrScience, Octobz -
1976.

Yannakakis, M., Papadititriou, C., Kung,
H.T., "Locking Protocols: Safety and Freedom
from Deadlocks," Proc. Twentieth IEEE
Symposium on Founzons of
Science, OctXer 1979.

- coalpz

Mexico City, September, 1982

