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ABSTRACT: This paper presents a formal 
model for studying the computation complex- 
ity of scheduling a whole set of transac- 
tions simultaneously in a transaction sys- 
tem with predeclared writesets. Our study 
clearly shows that there exists a fundsmen- 
tal tradeoff between the amount of con- 
currency achieved and the computation over- 
head necessary to achieve that amount of 
concurrency. However, it is suggested that 
based on variants of the model introduced 
here, schedulers which schedule a whole 
set of transactions simultaneously may 
still be able to achieve a higher level of 
concurrency than conventional schedulers 
within reasonable computation complexity 
constraints. 

1 .INTRODUC?l'ION : 

This paper is concerned with the computation 
complexity of obtaining maximum concurrency in a 
transaction system with predeclared writesets. 
Previous work has shown that in transaction sys- 
tems with predeclared writesets, it is possible 
to achieve more concurrency than systems where 
writesets are not predeclared by eliminating 
restarts k’l[Sl. This implies that in a tran- 
saction system with predeclared writesets, in 
order to achieve more concurrency, a preventive 
strategy is one of the best strategies that can 
be used, i.e., the scheduler puts a requesting 
transaction into execution only if it determines 
beforehand that the execution of that transac- 
tion will never compromise consistency of the 
database system. 

Previously proposed algorithms for concurrency 
control in transaction systems with predeclared 
writesets typically schedule requesting transac- 
tions only one at a time, even if a large number 
of transactions have arrived and are requesting 
execution simultaneously. In this case, the 
scheduler may chose for first execution a tran- 
saction which precludes the simultaneous execu- 
tion of any other requesting transaction, while 
at the same time there may exist among other re- 
questing transactions a large subset which could 
be simultaneously executed in parallel with all 

transactions currently in execution if they were 
chosen for execution first. For this reason, 
previously proposed algorithms do not achieve 
the potentional level of concurrency that may 
possibly be achieved. 

In this paper, we present a formal model for 
studying the computation complexity of achieving 
maximum concurrency in a transaction system with 
predeclared writesets. In contrast to the com- 
mon approach of scheduling transactions only one 
at a time, our model allows one to find either 
an optimal solution (at a higher computation 
cost, but still feasible when the total number 
of transactions in the system is small), or a 
suboptimal solution, by analyzing the whole set 
of requesting transactions to determine the 
largest subset, or simply any large subset which 
can be simultaneously put into execution in 
parallel with all transactions currently in exe- 
cution in the system. 

We begin with a most unrestricted model where 
the only correctness criterion is serializabili- 
ty and each transaction can read one out of 
several versions for each data item in its read- 
set. Then we gradually add various restrictions 
on the model, while studying the effect of these 
restrictions on concurrency and computation com- 
plexity. Finally, we show by example, how a 
scheduler based on the concepts developed in our 
model can achieve a higher level of concurrency 
under reasonable computation complexity con- 
straints, while avoiding certain anomalies which 
could be present in the less restrictive models. 

It is suggested here that although there ex- 
ists a fundamental tradeoff between the amount 
of concurrency achieved and the computation 
overhead necessary to achieve that amount of 
concurrency, it is still possible, under reason- 
able computation complexity constraints, to 
design schedulers in a transaction system with 
predeclared writesets which achieve a higher 
level of concurrency by scheduling a whole set 
of transactions simultaneously instead of 
scheduling transactions one at a time. 

We emphasize that this is only a formal model, 
an approximation to the way a scheduler may ac- 
tually function in a transaction system with 
predeclared writesets. No implementation details 
are discussed in this paper. We also leave out 
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the problem of preventing starvation in the 
present discussion. 

2. PRELIMINARIES : TRANSACTIONS AND SERIAL 
SCHEDULES. 

In order to develop our model in the following 
section, we first introduce some basic defini- 
tions of transactions, schedules, serial 
schedules and "read from" relations between 
transactions in a schedule. 

In our model, we consider transactions that 
consist of two atomic steps : a read of the 
values of a set of database entities --- called 
the "readset" of the transaction, followed by a 
write on a set of database entities --- the 
"write set". The notation adopted here is simi- 
lar to that used in [q]. 

DEFINITION 2.1 : A transaction Ti : 
[SWil) 

([SRil, 
is a mapping from a readset SRi of vari- 

able names to a writeset SWi of variable names. 

The variables are abstractions of data enti- 
ties, whose granularity is not important for the 
present discussion. The variables can represent 
bits, files or records, as long as they are in- 
dividually accessible. The set of all variable 
names in the database is denoted by V. 

Each transaction Ti can be thought of as first 
reading a set of values for each variable name 
in its readset, then performing a possibly 
lengthy local computation based on that set of 
values. The results of the computation are fi- 
nally used to produce a new set of values for 
each variable name in its writeset. The first 
step, i.e., the read step is denoted by Ri[SRi], 
while the last step, i.e., 
denoted by Wi[SWi]. 

the write step is 

DEFINITION 2.2 : A schedule of a set of transac- 
tions T = {Tl, T2 

ii. 

pin ;, T2 = ([SR2], tSW;jj: 
Tn/ : Tl = ( SRI , 

. . . . E 7 

Rl[SRl],i~l[~~l 'i 
ermutation of tit Set' Z"," ' = 

that for every i': 
. . . Rn SRn], Wn[SWn ] such 
Ri SRi precedes Wi Z&i]. We t 5 1 

abbreviate Ri[SRi] as Ri and Wi[SWi] as Wi when- 
ever we need not specify SRi and SWi. We also 
introduce a function w : v is a one to one map- 
ping from a permutation of Sn to the set 11, 2, 
. . . . 2n1, such that for all i, j, Qi C Sn, 
ti j i Sn, if Qi precedes Uj in the permuta- 
tion, then B(Ui) < a(Uj). 

Below we define a serial schedule, which 
models the situation where all transactions are 
executed sequentially. 

DEFINITION 2.3 : A schedule of a set of transac- 
tions T = {Tl, . . . . Tn) is a serial schedule of 
T iff T (Wi) = 1T(Ri) + 1 for all i = 1, 2, . . . . 
n. i.e. A read Ri always immediately precedes a 
write Wi of the same transaction. 
In the following sections, we shall use 0 II (Ti) 
< v (Tj) " to specify that in a serial schedule 
the following holds : 
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fl (Wi) < Ir(Wj) and fl(Ri) < r(Rj) 

DEFINITION 2.4 : We say 11 Rj reads x from Wi" in 
schedule s of T = {Tl, T2,7..,}-i~o~some . . 
X, 1, J, xcV,l<i&n,ldj<n: 

(A2.1) x e (SWifl SRj) and 
(A2.2) n(Wi) < Ir(Rj) and 
(A2.3) there is no k, 1 ( k Q n, such that 

xCSWk and ir(Wi) < n(Wk) < 7l(Rj> 

In the following sections, we shall also say "Tj 
reads x from Ti", when Rj reads x from Wi. 

EXAMPLE 2.1.: 

= Rl x]Wl[y z b]R2 
:: = R3 E y,b]W3[yjR2[z 

sl and s2 are both serial schedules of the set 
of transactions T = IT1 t T2, T3] where Tl = 
([xl, ikd) ~‘2 = ([zl, [Y]) T3 = ([y,bl, 
[YIL In serial schedule sl of T : R2 reads z 
from Wl, R3 reads b from Wl, R3 reads y from W2. 
In serial schedule s2 of T : no transaction 
reads from any other transaction. 

3. THE FORMAL MODEL 

In a database system, the task of a scheduler 
is to maintain consistency of the database sys- 
tem while allowing as many user transactions as 
possible to simultaneously access the database 
system. In a transaction system with prede- 
clared writesets, in order to obtain higher con- 
currency by preventing restarts, the scheduler 
puts requesting transactions into execution only 
if it determines beforehand that the execution 
of those transactions will never compromise con- 
sistency of the database s 

Since serializability [5 [g] is used as the "j 
stem. 

consistency criterion here, the scheduler must 
guarantee that the reads and writes of all tran- 
sactions in the system have the same overall ef- 
fect as if all transactions were executed in 
some serial order. (We shall call such an order 
which is not necessarily identical to the actual 
time order in which reads and writes are pro- 
cessed a "virtual order"). 

We model this as the following problem: Given 
a database system state consisting of 4 elements 
: an executing set of transactions, a terminated 
set of transactions, a requesting set of tran- 
sactions, and a serial schedule defining the 
virtual ordering of all executing and terminated 
transactions; construct a new database system 
state, such that requesting transactions can be 
put into execution in parallel with all transac- 
tions already in execution, while the new virtu- 
al ordering is consistent with the previous vir- 
tual ordering. 

To begin, we start with a most unrestrictive 
model, where the only correctness criterion is 
serializability, and each requesting transaction 
may read any one out of all existing version 
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?,re:; for eaci: "'iri:t' ;F name in its readset. 

'+'LiiITitjM 3.1 . : A database system state is a ------ __ _- - 
~?.i~i~ple Q x f'".',, 'J"Y, 'I'!{. s), where 

: ~:alle.i: the executing set of transactions ---- - - --- 
i ' ::ai Ieij the terminated set of transactions 

i i : CB‘: CiCj 
II ----- - --- 

the requesting set of transactions --- 
: ir, :I :serial schedule of T TTEU TT), called 
: :I*> -lirt:lal schedule. ----.--- --__ _.~ 

In definition 3.1., an executing transaction 
is a transaction which has already been put into 
execution by reading some existing values of the 
variable names in its readset, but has NOT yet 
made the set of values for all variable names in 
its writeset available for reading by other 
transactions. 

A terminated transaction is a transaction 
which has made a set of values for all variable 
names in its writeset available for reading by 
other transactions. 

A requesting transaction is a transaction 
which has arrived in the system and is request- 
ing execution, but has not been yet put into ex- 
ecution. 

A virtual schedule is a serial schedule of all 
executing and terminated transactions. The 
scheduler guarantees that the reads and writes 
of all executing transactions and all terminated 
transactions will have the same overall effect 
as if they were executed sequentially in the 
same order as the virtual schedule. A virtual 
schedule completely defines which transaction 
has read the values of which variable names from 
the writeset of which transaction so far up to 
the present system state. 

DEFINITION 3.2.: Database system state Ql = 
(TEl . 'IT1 , TRl , sl) is a valid extension of da- -. 
tabase system state Q = (TE, TT,ms),-iff : 

(A3 .l.) (consistency condition) 
(A3.1.1.) TTl = TT and TRl 2 TR, and 
(A3.1.2.) TEl = (TE U TRs), where TRs 5 TR and 

TRl = (TR - TRs), and 
(A3.1.3.) For all i, j, X, Tie (TTUTE), 

T~~(TTUTE), xev : 
Rj reads x from Wi in s 
<==> Rj reads x from Wi in sl, and 

(A3.2.) (existence condition) 
For all i, j, X, TiC (TT~UTE~), TJC (TT~UTE~), 
xev : 

Rj reads x from Wi in sl ==> TiQ TTl 

Definition 3.2. defines the conditions under 
which successive new valid system states can be 
constructed by putting requesting transactions 
into execution, i.e. by transfering a subset of 
transactions from the requesting set of the pre- 
vious system state into the executing set of the 
new system state. 

The "consistency condition" (A3.1.) guarantees 
that all the effects of the previous system 
state are preserved in the succeeding system 
state. Here we only give the minimum consistency 
conditions, while additional restrictions will 
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be discussed (A3.1.3.) statEadually, later on: Condition 
that if transaction j reads a 

value from transaction i in the previous virtual 
ordering, then transaction j should read the 
same value from transaction i in the new virtual 
ordering. 

The "existence condition" (A3.2.) states that 
no transactions in the virtual ordering should 
read a value which has not yet been produced, in 
other words, transaction j can read a value from 
transaction i only if transaction i has ter- 
minated. 

Note that for the same set of executing tran- 
sactions, more than one virtual schedule can be 
constructed by rearranging the virtual schedule 
while keeping all the consistency and existence 
conditions invariant. 

DEFINITION 3.3. : Database system state QI = 
(TEE, TT~, TRY, sl) is a valid termination of -- 
database system state Q = (TE, TT,miiff: 

(B3.1.) TTl = (TTUTES), where TEs C_ TE and 
TEl = (TE - TEs), and 

(B3.2.) TRl = TR, and 
(B3.3.) For all i, j, TiG (TE U TT), 

Tj 6 (TE u TT) : 
s(Tj) <n(Ti) in s <==> Ir(Tj) <Ir(Ti) in sl 

Definition 3.3. defines the conditions in 
which executing transactions are terminated, 
i.e., when a subset Of transactions are 
transfered from the executing set of the previ- 
ous system state into the terminated set of the 
new system state. 

Note that whenever a transaction terminates, 
it creates a new version value for each variable 
name in its writeset. Thus, more than one ver- 
sion value may coexist for each variable name in 
the current database system state, including the 
initial version value of each variable name of 
the initial database system state. 

DEFINITION 3.4. : Database system state Ql = 
(TEl, TTI, TRl, sl) is a valid request of of da- 
tabase system state Q = (TE, TT, TR, s)Tff: 

(C3.1.) TTl = TT and TEl = TE, and 
(C3.2.) TR C TRl, and 
(C3.3.) For all i, j, TiC (TEU TT), 

T,jC (TE U TT) : 
W (Tj) < w(Ti) in s <==> V (Tj) < rr(Ti) in sl 

Definition 3.4. defines the conditions in 
which new transactions are admitted into the re- 
questing set of transactions. 

DEFINITION 3.5. : A database system state Q = 
(TE, TT, TR, s) is a valid 3stem state iff one -- 
of the following conditions aresatisfied : 

(D3.1.) TE = 0 and TT = 0 and TR = 0 and s is 
empty (called the initial system state), or 

(D3.2.) Q is a valid extension of a valid 
system state, or 

(D3.3.) Q is a valid termination of a valid 
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system state, or 

(D3.4.) Q is a valid request of a valid system 
state. 

Definition 3.5. precisely defines which data- 
base system states are considered to be valid, 
1 .e., preserve consistency. Here it is assumed 
that all valid system states are derived from 
the initial state, i.e., a state in which no 
transaction exists within the system. 

A valid system state corresponds to a state in 
which for all transactions currently executing 
in parallel in the database system, we can 
guarantee that their final writing on the data- 
base global variables can be arranged to produce 
the same overall effect as if they were executed 
sequentially in the same order as the serial 
schedule s. 

DEFINITION 5.6.: Given the current valid data- 
base system state Q = (TE, TT, TR, s), we call 
the valid database system state Ql = (TEI, PI, 
TRI, sl) a maximum concurrency extension of Q ___-~-- 
iff : 

Fig.1. 

i: database system state. 
TE : executing set of transactions. 
TT : terminated set of transactions. 
TR : requesting set of transactions. 
si : virtual ordering. 

i TE TT TR 

2 Tl 0 0 92 = Tl = Rl[x]Wl[y] 

3 Tl 

4 'PI, T2 0 0 

5 Tl, T2 0 

6 T2 Tl T3, T4, 6 96 = T2 Tl' 

7 T2, T4, T5 Tl TJ 

8 T4,TS Tl, TZ T3 & = T2'Tl'T4 T5 

9 T4, T5 11, *2 
~~4[YlJYl) 

10 T4, 9'5, T6 Tl, T2 T3 
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(E3.1.) Ql is a valid extension of Q, and 
(E3.2.) No other valid system state 

Q2 = (TE2, TT2, TR2, 92) exists, such 
that Q2 is also a valid extension of Q, 
and [TR21 < 1~~1 I. 

In order to have an intuitive notion of how a 
scheduler would work according to such a model, 
let us first examine the following example : 
(All terminated transactions are primed.) 

EXAMPLE 3.1. : Fig l.demonstrates how a database 
scheduler may transform one system state to 
another system state while preserving serializa- 
bility of all transactions currently executing 
in parallel. 

Relow, some explanation may be useful : 
In the transformation from database system 

state 3 to state 4, the scheduler is able to put 
transaction T2 into execution in parallel with 
T1 . because there exists a virtual ordering 
identical to the serial schedule 94, where all 
the values corresponding to the variable names 
in T2's readset are available, and Tl reads the 

si 

s3 = 92 

& = T2 Tl 
= R2h'lW2b,ylR1 [x]Wl [yl 

s5 = 94 

8/ = T2 Tl &T4 T5 

& = s8 

s10 = T2'T6 Tl *T4 T5 

= R4Ef:yjW4i..;SRs[J.d]W5~e.y~ 
~2 c y wY[b ]~6[yl~6[ ]RI X]WI’[Y] 
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same values as in the previous virtual ordering 
s3. Note that T2 is not restricted to read the 
most recent version value of y in its readset in 
this first model. Note also that T2 cannot be 
executed according to the virtual ordering s = 
Tl T2, because in that virtual ordering T2 is 
supposed to read the the value of the variable 
name y in Tl's writeset, which has not yet been 
produced, since Tl has not yet terminated. 

In database system state 5, no transaction 
among the requesting set can be executed, be- 
cause none of them can be inser,ted into the 
serial schedule without creating a virtual ord- 
ering in which at least one transaction is sup- 
posed to read a value which has not yet been 
produced. 

In the transformation from database system 
state 6 to state 7, since Tl has terminated pre- 
viously, each single transaction in the request- 
ing set can be put in execution by reading the 
values produced by Tl. But because T4 and T5 is 
the largest subset of all requesting transac- 
tions which can be simultaneously put into exe- 
cution in parallel with T2, we chose T4 and T5 
to be executed first. On the contrary, if we 
chose T3 for execution first, then both T4 and 
T5 would be blocked from execution, since no 
virtual ordering can be found which allows T4 
and T5 to be executed in parallel with T3. 

In the transformation from database system 
state 9 to state 10, T6 is put into execution by 
reading an old value of y from T2. Note that 
there exists no virtual ordering in which T6 can 
read the most recent value of y (produced by Tl) 
and which is consistent with the previous virtu- 
al ordering sq. 

And we can continue like this constructing 
successive new valid system states. 

In this example, we obtain the following valid 
system states : 

QO = (0, 0, 0, <>,I (the initial system 
state) 

Ql = (0, 0, {Tl j, 0) (Tl requests) Ql is a 
valid re 

Q2 = ( 3 
uest of QO by definition 3.4. 
Tl], 0, 0, <Tl>) (Tl is put into execu- 

tion) Q2 is a valid extension of Ql by defini- 
tion 3.2. 

Q3 = ( Tl), 0 {T2),<Tl>) 
94 = ( Tl, T21, 0, 0, <T2 Tl>) I 

(T2 requests) 
(T2 is put 

into execution in parallel with Tl) 
Q5 = ({Tl, T2}, 0, {T3, T4, T5], CT2 Tl>) 

(T3, T4, T5 re uests) 
96 = ({T2], PTl] {T3 T4 T5j <T2 Tl'>) (Tl 

terminates) Q6 ii a vkid'termkation of Q5 by 
definition 3.3. 

Q7 = ((T2, T4, T5j, {Tl), {T31, CT2 Tl' T4 
T5>) (T4 and T5 are put into execution in paral- 
lel with T2) $7 is a valid extension of 96 by 
definition 3.2. 

Q8 = ({T4, T5], {Tl, T2j, {T3], <T2'Tl'T4 T5>) 
(T2 terminates) 

Q9 = ({T4, T5] {Tl, T2), (T3, T6], <T2'Tl'T4 
T5>) (T6 requests) 

QlO = ({T4, T5, T6], {Tl, T2), {T3], <T2'T6 
Tl'T4 T5> (T6 is put into execution in parallel 
with T4 and T5). 
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Note that all valid extensions in this example 
are maximum concurrency extensions of the previ- 
ous state. 

4. THE COMPUTATION COMPLEXITY 

Since we are interested in obtaining.practical 
schedulers, it is necessary to study the compu- 
tation complexity involved in constructing valid 
extensions of a given valid system state. 

The following theorem suggests that general 
valid extensions may be impractical to obtain 
when the number of transactions is very large : 

(see Appendix for proof) 

THEOREM 4.1. : The following problem (VE) is NP 
complete : 

Given a valid system state Q = (TE, TT, TR, 
s>. does there exist a valid system state Ql = 
(TEE, TT~, TRY, sl) such that Ql is a valid ex- 
tension of Q and TEl = (TE U TR) and TRl = 0 ? 

Theorem 4.1. states that given an arbitrary 
valid system state Q, the problem of whether 
there exists a valid system state Ql, such that 
all requesting transactions in Q are put into 
execution in paralIe1 with all currently execut- 
ing transactions while guaranteeing that their 
final writing on the database global variables 
can be arranged to produce the same overall ef- 
fect as if all transactions in the system were 
executed sequentially is NP complete. 

The theorem above suggests that even for the 
sole reason of reducing computation complexity, 
it would prove beneficial to investigate possi- 
ble restrictions to obtain subsets of valid ex- 
tensions of a given valid system state. Below, 
we define several subsets of valid extensions in 
increasing order of restrictiveness and study 
their implications on performance and computa- 
tion complexity. 

For each restrictive condition defined below, 
we shall show by example one case in which the 
restrictive condition prevents a transaction 
from being immediately put into execution, 
whereas if the condition is removed, then that 
transaction could be immediately executed in 
parallel with all transactions currently in exe- 
cution. 

Conventional concurrency control schemes im- 
pose a fixed explicit total ordering of all ex- 
isting version values of each data variable. 
This implies a fixed ordering of all terminated 
transactions which nave produced different ver- 
sion values of the same variable. If we adopt 
this restriction, then we have the following de- 
finition : 

DEFINITION 4.1.: Database system state Ql = 

(TEl t TTl, TRl, sl) is a valid fixed terminated 
write position extension (.m of database sys- 
tem state Q = (m%, s), iff : 
(F4.1.) Ql is a valid extension of Q, and 
(F4.2.) For all i, j,: 



if SWin SWj # 0 and (TiC TT and Tje TT) then: 
s(Wi) < Ir(Wj) in s <==> r(Wi) <n(Wj) in sl 

Condition (F4.2.) states that if two transac- 
tions have terminated and their writesets inter- 
sect, then their relative ordering in a valid 
system state is restricted to be kept invariant 
when constructing the new valid system state, 
i.e. the FTWP of Q. 

Below, we show by an example how condition 
(F4.2.) restricts concurrency : 

EXAMPLE 4.1.: 

One can check (e.g.,by exhaustive checking of 
all possible serial schedules), that there does 
not exist any valid system state Ql = (TEl, TTl, 
TRl, sl) such that Ql is a FTWP of Q. 

But there exists a valid system state Q2 = 
({T3, T4], {Tl, T2), 0, <T2*T3 Tl'T4>) such that 
92 is a valid extension of Q. 

Alternatively speaking, condition (F4.2.) 
prevents T4 from being immediately put into exe- 
cution, whereas if condition (F4.2.) is removed, 
then T4 can be executed in parallel with T3, 
while guaranteeing serializability of all tran- 
sactions executing in the database system. 

In definition 3.2., when a requesting transac- 
tion is put into execution, it may read any one 
out of existing version values for each variable 
name in its readset. 

There may well exist applications in which 
reading an "old" version of a data item is not 
acceptable, or in which the extra cost of memory 
required to store multiversions of data is con- 
sidered excessive. In such cases, we have the 
following more restrictive definition of a valid 
extension : 

DEFINITION 4.2.: Database svstem state Ql = 
(TEl , Trl,. TRl, sl) is a" valid latest read 
version extension (LTRD) of databasesystem 
state Q =(TE,TT, TR, s), iff : 

(G4.1.) Ql is a FTWP of Q, and 
(G4.2.) For all Tje(TE1 - TE), Tie TT, x C V: 

if Rj reads x from Wi in sl, then there 
exists no k, Tk @ YP, such that x t SWk 
and TT(Wk) > v(Wi) in s. 

Condition (G4.2.) states that when a request- 
ing transaction is put into execution, for each 
variable name in its readset, it is restricted 
to read the "latest" available version value in 
the virtual ordering. 

EXAMPLE 4.2. 

It is easy to check that there 
does not exist any valid system state Ql = ((T3, 
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T4], {Tl, T2), 0, sl) such that Ql is a LTRD of 
Q. But there exists a valid system state Q2 = 
((T3, T4], {Tl, T2), 0, <Tl'T4 T2'T3>) such that 
Q2 is a valid extension of Q. 

In other words, condition (G4.2.) prevents T4 
from being immediately put into execution, 
whereas if condition (G4.2.) is removed, then T4 
can be executed in parallel with T3, while 
guaranteeing serializability of all transactions 
executing in the database system. 

In conventional concurrency control schemes, 
the restriction (H4.2) below is also imposed : 

DEFINITION 4.3.: Database system state Ql = 
(TEE, TT~, TRl, sl) is a valid invariant write 

(IVW) 
.- ~ 

position extension of database system 
state Q =-(TE, TR, s), iff : 

(H4.1.) Ql is a valid extension of Q, and 
(H4.2.) For all i, j, x, TiC (TTUTE), 

T~E(TTUTE), xev : 
if SWifl SWj # 0 and (Tit TT or Tj E TT) then: 
w(Wi) < Ir(Wj) in s <==> Ir (Wi) < Ir(Wj> in sl 

Condition (H4.2.) states that if the writesets 
of two transactions intersect, and at least one 
of them has terminated, then their relative ord- 
ering in the previous valid system state is res- 
tricted to be kept invariant when constructing 
the new valid system state, i.e. the IVWP of Q. 

EXAMPLE 4.3. : Sup ose we have a valid system 
state Q = ({T2], PTlI, {T3[, <Tl’ T2>) where Tl 
= ([a], [xl), T2 = ([a], [xl), T3 = ([xl, [al). 
It is easy to check that there does not exist 
any valid system state Ql = ((T2, T3), (Tl), 0, 
sl] such that Ql is a IVWP of Q. But there ex- 
ists a valid system state Q2 = ({T2, T3], {Tl 1, 
0, <T2 Tl'T3>] such that Q2 is a valid extension 
of Q. 

In this example, condition (H4.2.) prevents T3 
from being immediately put into execution, 
whereas if condition (H4.2.) is removed, then T3 
can be executed in parallel with T2, while 
guaranteeing serializability of all transactions 
executing in the database system. 

In all previous definitions, a requesting 
transaction may write a value which is to be 
overwritten by a terminated transaction coming 
later in the virtual ordering. This may result 
in new transactions being inserted before a ter- 
minated transaction in the virtual ordering. 
One of the possible ways of preventing this 
phenomenon is to adopt the following restrictive 
definition : 

DEFINITION 4.4.: Database system state Ql = 
(TEE, ~pi, TRY, sl) is a valid uptodate write 
extension (UPDW) of database system state Q 
(TE, TT, TR, s), iff : 

(14.1.) Ql is a valid extension of Q, and 
(14.2.) For all TjC(TE1 - TE), x&V: 

if xCSWj, then there exists no TkCTT, 
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such that xe SWk and n(Wj) <r(Wk) in sl. 

Condition (14.2.) states that when a request- 
ing transaction is put into execution, for each 
variable name in its writeset, if any terminated 
transaction produced a value for that variable 
then the requesting transaction must be posi- 
tioned after (to the right of) that terminated 
transaction in the schedule. This restricts 
that no transaction is to produce a value which 
is to be overwritten by a terminated transaction 
even before it has started. 

(L4.1.) for each x, x6V and for all TiQ TT 
such that xe SWi : ](TijI < 1 

Only by combining all the restrictions given 
above together (with the exception of (L4.1.)), 
we manage to substantially reduce the computa- 
tion complexity of our problem : 

DEFINITION 4.5.: Database svstem state Ql = 

EXAMPLE 4.4. 
Suppose we have the valid system state Q = 

(iv2 {Tl), {T3), <Tl'T2>) where T1 = ([b] 
[b])f'T2 = ([a], [xl), T3 = ([xl, [a]) ther; 
does not exist any valid system state Ql = ({T2, 
T3], /Tl], 0, sl) such that Ql is a UPDW of Q. 
But there exists valid system state Q2 = ({T2, 
T3], {Tl], 0, <TJ Tl'T2>) such that Q2 is a 
valid extension of Q. 

(TEl , TTl, TRl, sl) is a" valid fixed write 
position uptodate read write extensiomRFf 
database svsztxQ=(TE. TT. TR. s). iff : 
(K4.1.) Ql"is a LTRD of Q,.and ' .' 
(K4.2.) Ql is a UTDW of Q, and 
(K4.3.) Ql is a IVWP of Q. 

DEFINITION 4.6. We call a directed graph G = (X, 
u), the "FWRW dependency gra h" of a valid sys- 
tem state Q = (TE, TT, TR, * s iff in Q : 

Here, condition (14.2.) prevents T3 from being 
immediately put into execution, whereas if con- 
dition (14.2.) is removed, then T3 can be exe- 
cuted in parallel with T2, while guaranteeing 
serializability of all transactions executing in 
the database system. 

X= xi 
I 

I Tic (TTU TE U TR)~, 
U = (xi, xj)c X x X 1 (if j) and 

t 
(54 .l.) ‘(SWjI\SRi # 0) and (TjC TT) and 

(TiC TE) and (w(Tj)< w(Ti) in s) 
(54 .2.) (SWjn SWi # 0) and ((TjC TT) or 

(TiCTT)) and (lT(Tj)< w(Ti) in s) 
(54.3.) (SRiT\SWj # 0) and (TiC TR) and 

(Tj 4 TT) 
However, the combination of any two single 

restrictions given above still does not reduce 
the computation complexity of our problem to an 
acceptable level, as evidenced by the following 
three theorems : 

(54.4.) (SWjnSWi # 0) and (TieTR) and 
(Tj 6 Tp) 

(54.5.) (SWinSRj # 0) and (Tic TR) and 
(TjC(TTUTEUTR)) 

(see Appendix for the proofs) 

THEOREM 4.2. : The following problem (LI) is NP 
complete : 

Given a valid system state Q = (TE, TT, TR, 
s), does there exist a valid system state Ql = 
(TEl , TTl, TRl , sl) such that Ql is both a LTRD 
and a IVWP of Q and TEl = (TEU TR) ? 

(54.6.) (SWinSRj # 0) and (TjCTR) and 
(TiC TE) and 
(there does not exist k = 1,2,...,p, 
such that : 

(SWinSRj)G($,SWk) and 

for all k = 1,2,...,p : 
TkCTT and 7T(Ti) < rT (Tk) 

THEOREM 4.3. : The following problem (LU) is NP 
complete : THEOREM 4.6. 

Given a valid system state Q = (TE, TT, TR, 
91, does there exist a valid system state Ql = 
(TEl , TT1, TRl , sl) such that Ql is both a LTRD 
and a UPDW of Q and TEl = (TE U TR) ? 

Given a valid system state Q = (TE, TT, TR, 
s), there exists a valid system state Ql = (TEl, 
TTl, TRl, sl) such that Ql is a FWRW of Q and 
TEl = (TE U TR) and TRl = 0, if and only if the 
FWRW dependency graph of Q is acyclic. 

THEOREM 4.4. : The following problem (UI) is NP 
complete : Proof : 

Given a valid system state Q = (TE, !lT, TR, 
s), does there exist a valid system state Ql = 
(TEE, TT~, TRY, sl) such that Ql is both a UPDW 
and a IVWP of Q and TEl = (TE U TR) ? 

THEOREM 4.5. : All the problems stated in the 
theorems 4.2., 4.3.. 4.4. above are NP complete, 
even if there exists no more than two version 
values for each variable name in the valid sys- 
tem state Q = (TE, TT, TR, s). (including the 
initial version value of each variable name of 
the initial database system state). That is, 
even if the following restriction is imposed in 
Q: 

Suppose G is acyclic, then according to graph 
theory [1], the set of nodes in G can be totally 
ordered, such that if (xi, xj>e U, then xi is 
ordered after xj. Thus, we can obtain a serial 
schedule sl of the set of transactions T = 
(TTUTE U TR), in which if (xi, xj>t U, then 
n(Tj) < TI(Ti). We can prove that the valid 

system state Ql = (TEl, TTl, TRl, sl) is a FWRW 
of Q where TEl = (TEU TR) and TRl = 0. 

To see this, we can verify that the following 
assertions hold for s and sl : 

for all i, j, (SWjnSRi # 0) and (TjeTT) and 
(TiC TE) and (n(Tj)<n(Ti)) in s : 
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' ) <Ir(Ti) in sl H ‘ITj 
for all i, j, 
(TiC TT)) and 

IT (Tj 
for all i, j, 
(TjCTT) : 

n(Tj 
for all i, j, 
(TjCTT) :, . 

(el> 
(SWj0 SWi # 0) and ((Tj cTT) or 
(T(Tj)< w(Ti)) in s : 
< ll(Ti) in sl (e2) 

(SRi/\ SWj # 0) and (TieTR) and 

< TT(Ti) in sl (e3) 
(SWjflSWi # 0) and (TieTR) and 

n(Tj) <w(Ti) in sl (e4) 
for all i, j, (SWinSRj # 0) and (TieTR) and 
(Tj c (TTUTEUTR)) : 

H(Tj) <,n(Ti) in sl (e5) 
for all i, j, k, (SWifiSRj f 0) and (TjCTR) and 

(Tit TE) and 
(there does not exist k = 1,2,...,p$ 
such that 

(SWi/\ SRj)g (i,SWk) and 

for all k = 1,2,...,p : 
Tkt TT and Ir(Ti) < 7l(Tk) in s 
: 

w(Tj) < TT(Ti) in sl (e6) 
) 

(el) and (e2) and (e5) ==> (A3.1.3.) 
(e2) ==> (F4.2.) and (H4.2.) 
(e5) and (e6) and (A3.1.3.) ==> (A3.2.) 
(e3) ==> (G4.2.) 
(e4) ==> (14.2.) (see def.4.4.) 

Finally, (A3.1.3.) and (F4.2.) and (H4.2.) and 
(A3.2.) and (G4.2.) and (14.2.) together with 
the fact that all transactions in TR are includ- 
ed in sl imply that Ql is a FWRW of Q. 

Suppose G contains a loop. Then there does not 
exist 
( 

any total ordering at all, such that if 
xi, xj)C U, then xi is ordered after xj. This 

implies that there exists no serial schedule sl 
of the set of transactions T = TTUTEUTR, such 
that if (xi, xj)C U, then a(Tj) < B (Tj). This 
in turn implies that (A.3.1.3.) and (F4.2.) and 
(H4.2.) and (A3.2.) and (G4.2.) and (14.2.) can- 
not simultaneously hold for any serial schedule 
sl 9 such that 61 = (TEl, Tl!l, TRl, sl) is a FWRW 
of Q. 

Q.E.D. 

Theorem 4.6. states that given an arbitrary 
valid system state Q = (TE, TT, TR, s), the 
problem of deciding whether there exists a valid 
system state Ql = (TEl, !ITl, TRl, sl), such that 
QI is a FWRW of Q, and all requesting transac- 
tions are put into execution in $1 while guaran- 
teeing serialieability can be reduced to the 
problem of determining whether the FWRW depen- 
dency graph G of Q is acyclic. This can be done 
quite 
O(lV, 1x1 

, , , e~$i;;yW, the computation time being 

Now suppose the FWRW dependency graph G of Q 
is cyclic, what can we do then ? An optimal 
solution can be found by finding the largest 
subset TRs of the requesting set of transactions 
TR, such that the subgraph Gs of G is acyclic 
and Gs is obtained by removing nodes belonging 
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to the requesting set (TR - TRs). Then a virtu- 
al schedule sl in which all requesting transac- 
tions in that largest subset TRs can be put into 
execution in Ql can be constructed by topologi- 
cal sorting Gs [l] . 

This is explained by an example below : 

EXAMPLE 4.5. 
Suppose initially we have a set of 4 

ing transactions: Tl = ([a] [b]) T2 ='~~Ube~~~ 
[a,y]), T3 = (Lb], [a,x]), Ti = i[y,b], [HI). 
and we start at a time when there is no activity 
at all in the database. 

At this moment, the database system state is 
Ql = (0, 0, {Tl, T2, T3, T4], <>) 

According to theorem 4.6., since the FWRW 
dependency graph Gl of Ql is cyclic, there ex- 
ists no valid state Q2 = ({Tl, T2, T3, T4], 0, 
0, 92) such that Q2 is a FWRW of Ql and the 
whole set of requesting transactions TRl can be 
Put into execution in parallel in Q2 while 
preserving serializability. Here, the largest 
subset TRls of TRl for which the subgraph Gls of 
Gl is acyclic and the nodes removed from Gl be- 
long to (TRl-TRls) contains 3 transactions, i.e. 
T2, T3, T4. Thus we determine that in order to 
achieve maximum concurrency, TRls = {T2, T3, T4) 
should be put into execution in parallel first. 

By topological sorting Gls, we can find at 
least one schedule s3 such that a new valid sys- 
tem state Q3 = ({T2, T3, T4), 0, (Tl), s3) can 
be constructed, in which T2, T3, and T4 can be 
put into execution in parallel, and Q3 is a FWRW 
of Ql. In this example 

and we can continue like this constructing suc- 
cessive new valid system states. Notice that Q3 
is a maximum concurrency extension of Ql. 

The problem of finding an optimal solution in 
the example above, can be transformed to the 
Feedback Vertex Set (FVS) problem [6][8]. 
Although the FVS problem is known to be NP com- 
plete, there exist several factors which imply 
that higher concurrency by scheduling a whole 
set of requesting transactions can be achieved 
at a reasonable computation time cost : 
(1) In real world applications, there may exist 
only a very small number of arcs in the FWRW 
dependency graph of a valid system state, even 
if the total number of nodes is very large. 
Thus, the actual computation time necessary to 
obtain an optimal solution could be quite short. 
(2) We can always limit computation complexity 
by using efficient heuristics to find good ap- 
proximations to an optimal solution. 
(3) Algorithms actually exist which either find 
an optimal solution or a suboptimal solution for 
the FVS problem and which are known by experi- 
ence to have a good performance. (For example, 
see [4][7][10]. An algorithm for a suboptimal 
solution described in [7] has a computation time 
upper bound of only O( IX13>.) 
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In any case, we should be able to obtain more 
concurrency than any scheduler which schedules 
only one requesting transaction for execution at 
a time. 

5. SUMMARY 

In this paper we presented a formal model for 
studying the computation complexity of schedul- 
ing a whole set of transactions simultaneously 
in a transaction system with predeclared wri- 
tesets. Cur study clearly shows that there ex- 
ists a fundamental tradeoff between the amount 
of concurrency achieved and the computation 
overhead necessary to achieve that amount of 
concurrency. However, it is suggested that based 
on variants of the model introduced here, 
schedulers which schedule a whole set of tran- 
sactions simultaneously may still achieve a 
higher level of concurrency than conventional 
schedulers within reasonable computation com- 
plexity constraints. 
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APPENDIX : 

1. PROOF OF THEOREM 4 .I. 
Proof : 
It is easy to see that VEeNP, because a non 

deterministic algorithm need only guess a new 
valid system state Ql, in which sl is a serial 
schedule of T = (TE UTTU TR) and check in poly- 
nomial time that Ql is a valid extension of Q. 

Further more, it is easy to see that VE con- 
tains LI (see theorem 4.2. and def.4.2. and 
def.4.3.) as a special case. Since LI is proved 
below to be NP complete, VE is also a NP com- 
plete problem. (Q.E.D.) 

2. PROOF OF THEOREM 4.2. 
(see example at end of proof) 
Proof : 
It is easy to see that Lie NP, because a non 

deterministic algorithm need only guess a new 
valid system state Ql, in which sl is a serial 
schedule of T = (TEU TTU TR) and check in poly- 
nomial time that Ql is both a LTRD and a IVWP of 
Q. 

Below, we accomplish our proof by transforming 
a well known NP complete problem --- the II GRAPH 
K-COLORABILITY II problem (GKC) [5][6] to LI. 

GKC is as follows : Given a graph G = (V, E) 
and a 'positive integer K 6 N, where N = IV!, 
determine whether graph G is K-colorable, i.e., 
is it possible to assign each node in G one out 
of K colors, such that no two connected nodes 
are assigned the same color ? 

Suppose G = (V, E) and a positive integer K +$ 
N, where N = IV!, is an arbitrary instance of 
GKC. We now construct a valid system state Q = 
(TE, TT, TR, s), such that there exists a valid 
system state Ql = (TEl, TTI, TRI, sl) which is 
both a LTRD and a IVWP of Q and TEI = (TE UTR) 
if and only if G is K-colorable. 
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We construct 1~ One in K choice components I'. -- -- 
Each " One in K choice component - p " cor~s$&ds 
to one node in the craph G. We call the " One in 
K choice component " corresponding to node i in 
G as " One in K choice component i I'. Each One 
in K choice component i is in turn composed of K 
" triangle components I'. Each triangle com- --~ -~ 
ponent corresponds to one color. We call the 
triangle component in One in K choice component 
i corresponding to color j as triangle component 
[i.jl. 

Each triangle component [i,j] is composed of 3 

ing transaction 

. . . . N, j = 1, 2, . . . . K, we let : 

transaction 
one execut- 
([SRe[i,jll, 
transaction 

By the way we have constructed triangle com- 
ponent [i,j], it is easy to verify that in any 
serial schedule sl which includes Tr[i,,i). 
Tt[i,j] and Te[i,j] and Ql is a valid extension 
of 9, one and only one of the following formuia:; 
must hold for the three transactions ?'r[i,.i:, 
T;i:ljj and Te[i,j] in each triangle component 

(Ml) n(Tr[i,j]) < iF(Tt[i,j]) < v(Te[i,j]j. 

(exclusive) or 

i = 1, 2, (M2) n(Tt[i,j]) < rr(Te[i,j]) < v(Tr[i,j]) 

(O’) ;[i;;\i g;[i;j g[:;;]n” ;;;[;jj I “0 
7 

In each One in K choice component i, i = 1, 2, 
. . . . N, we let : 

For all 1 < p,q \< N, p # q and node p and node 
q are connected, we let : 

(04) 

We further construct a serial schedule 

Notice that in s : 

(Pi) for all i, j, i = 1, 2, . . . . N, 
K: 

reads'a[i,j] from Tt[i,j 

Then we collect all the transactions con- 
structed above together to form the three sets : 

TE = 
TT = 
TR = 

for all i, j : 
i = 1, 2, . . . . N 
j = 1, 2, . ..) K 

It is not difficult to see that the valid sys- 
tem state Q = (TE, TT, TR s) thus constructed 
can be constructed in polynomial time. 
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We now prove that there exists a valid system 
state Ql = (TEl, TTl, TRl, sl) which is both a 
LTRD and a IVWP of Q and TEl = (TEUTR) if and 
only if G is K-colorable. 

This is because if neither (Ml) nor (M2) holds 
in sl, then (Pl) will not hold in sl, which 
violates (A3.1.3.). and Ql would not be a valid 
extension of Q. 

We now prove that in any serial schedule sl, 
such that Ql is both a LTRD and a IVWP of Q, in 
each One in K choice component i, (M2) holds for 
one and only one triangle component [i,j]. 

Suppose in One in K choice component i, (M2) 
holds for any two triangle components : triangle 
component [i,j] and triangle component [i,k]. 

This means n(Te i,j ) < n(Tr'i,j ) 
and t 1 t 3 r(Te i,k ) < n (Tr i,k ) I:; 

But according to (02) : ,"[f:;;g]; ;;$::;j 

which implies that in sl of Ql, 
TT (Tr[i,k]) < T (Te[i,j]) (3) 

must hold, otherwise Te[i,j] will read b[i,j,k] 
from Tr[i,k], which violates (A3.2.). 
Similarly, according to (02) the following must 
also hold : 

TT (Tr[ij]) < Ir(Te[i,k]) (4) 

But (3) and (4) contradicts (1) and (2). 

Next, suppose in One in K choice component i, 
(M2) does not hold for any triangle component, 
then (Ml) must hold for all triangle components 

for j =I &i;;jj ! k(Tt[i,j]) 

But accor~~~~~~,~~:k;ti*~i'l 

for all'j : 1 \< j'< K-l 

$9; $1 f ;;$+] 

which implie; ihat in ani sl of Ql : 
~r(Tt[i,j]) < It (Tr[i, j+l]) 

(5) 
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for all j : 1 \< j \< K-l 

n (Ttli,K]) < T (Tr[i,l]) (6) 

must hold, otherwise Tt[i,j 

But (5) and (6) leads to a contradiction. 

Now we prove that if node p and node q are 
connected, then in sl of Ql, (M2) cannot simul- 
taneously hold for any two triangle components 
in One in K choice components p and q which 
correspond to the same color x. 

Suppose the contrary, then we have 

H ) < m (Tr p,x ) 
and IT E 3 ) < IT (Tr q,x ) 
But according to (04), we have 

~[~'~'~~: ~~$~'~~ for all j : 1 ( j \< K 
which imilies that i; any sl of Ql : 

JT (Tr s,xl) < JT (Te 
E 

(9) 
and H (Tr p,xl) < T (Te (10) 

must hold, otherwise either will read 
will read 

which violates (A3.2.). 
But (9) and (10) contradicts (7) and (8). 

So far we have proved that in any serial 
schedule sl of valid system state Ql = (TEl, 
IVWP of Q, in each One in K choice component, 
(M2) must hold for one and only one triangle 
ed, then (M2) cannot simultaneously hold for two 
triangle components in One in K choice com- 
ponents p and q which correspond to the same 
color. 

Suppose there exists Ql which is both a LTRD 
and a IVWP of Q, we set node i to color j iff 
(M2) holds for triangle component [i,j] in sl in 
Qt. Then each node will be set to one and only 
one color, and connected nodes will be set to 
different colors. 

Conversely, we show that if the graph G is K- 
colorable, then for valid system state Q = (TE, 
TT, TR, s), there exists a valid system state Ql 
= (TEE, TT~, TRY, sl) such that Ql is both a 
LTRD and IVWP of Q, and TEl = (TEUTR). 

Suppose that graph G = (X, U) is K-colorable. 
We construct a graph Gl = (Xl, Ul) as follows: 

Xl = ((xr[i,j]I U (xt[i,jlI U {xe[i,jlI) 
for 1 < i( N, 1 ( j \< K. 

Ul = 
{ (xe[i,j], xt[i,j]) ] 1 \< i \< N, 1 4 j 6 K] 

(Yl > 
((xr[i,j], xe[i,j]) 1 1 ,< i \< N, 1 4 j d K : 

node i is colored j] (Y2) 
{(xt[i,j], xr[i,j]) ] 1 ,< i ( N, 1 < j < K : 

node i is NOT colored j] (Y3) 

{(xe[i,j~,,x;[~,~ ) 1 1 -$ i \< N, 1 < j,k \< K(y4) 

{(xr[i,j+l], xt[i,j]) I 1 < i \< N, 1 < j 4 K-l] 
(Y5) 

First we show that the graph Gl is acyclic. We 
divide all nodes in Gl into 3 + 2K - 1 disjoint 
sets. 

SET[l] = (xe[i,j] ] l<i&N,l<jdK: 
node i is NOT colored j] 

SET[2] = (xr[i,j] ] 1 < i \< N, 1 < j < K : 
node i is colored j] 

SET[3] = {xe[i,j] 1 1 4 i 4 N, 1 < j \< K : 
node i is colored j] 

SET[4] = (xt[i,j] 1 1 < i < N, 1 \< j < K : 
node i is colored (j mod K)+l} 

SET[5] = {xr[i,j] ] l&idN,l<j<K: 
node i is colored (j mod K)+l 7 

. . . . . . 

SET[3+2m-1] = {xt[i,j] ] 1 S i \< N, 1 4 j \< K : 
node i is colored ((j + m - 1 )mod K) + l] 

SET[3+2m] = {xr[i,j] ] ldidN,l&jdK: 
node i is colored ((j + m - 1 )mod K) + 11 

. . . . . . 

SET[3+2(K-1)-l] = {xt[i,j] I 1 \< i \< N, 

SET[3:2;K$]K 
: node i is colored 
= {xr[i,j] ] 1 4 i 6 N, 

node i is colored 
SET[312i-:]<=K{&[i.j] ]l<i(N,l<jdK: 

node i is colored j] 

It should not be difficult to verify that the 
nodes in SET[l] have no incoming arcs, the nodes 
in SET[2] have on1 

T 
incoming arcs from SET[l], 

the nodes in SET 3 have only incoming arcs from 
SET[l] and SET[2 , . . . . i the nodes in SET[3+2K-11 
have only incoming arcs from SET[l], SET[2] 
. . . . SET[3+2K-21, and the nodes in SET[3+2K-11 
has no outgoing arcs. According to graph theory 
bl1 this proves that graph Gl is acyclic. 

Since Gl is acyclic, it is possible to 
renumber all nodes in Gl, that is, reassign new 
indices i = 1, 2, . . . . NK to each node in Xl, 
such that if (xi, xj)C U then j < i. 

We can then obtain a serial schedule sl, in 
which if j < i then 
W(Tj) < ly (Ti), where Tj and Ti are the tran- 
sactions corresponding to the nodes which have 
been renumbered j and i. 

Now we prove that the valid system state Ql = 
(TEE, Tri, TRl, sl) thus obtained is both a LTRD 
and IVWP of Q = (TE, TT, TR, s) as defined be- 
fore, and TEl = (TE U TR). 

From the construction of the graph Gl defined 
before, the following assertions hold in sl : 

for all i, j, 1 < i \< N, 1 \( j < K : 
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T ('di,jl> <v(Te[i,j]) (Yl > 
for all i, j, 1 ( i\< N, 1 < j \< K and node i is 
colored j : H (Te[i,jl) < H(Tr[i,jl) (Y2) 
for all i, i. 1 \< i\< N, 1 \< j < K and node i is 
NOT colored j :"(Tr[i,j]) < m(Tt[i,j]) (Y3) 
for all i, j, 1 6 i \< N, 1 \( j,k \( K and j # k : 

fl(Tr[i,j]) <m(Te[i,k]) (Y4) 
for all i, j, 1 < id N, 1 < j \< K-l : 

v(Tt[i,j]) <TT(Tr[i,j+l]) (Y5) 
for all i, j, 1 \< i \< N : 

m(Tt[i,K]) C v(Tr[i,l]) (fi) 
for all i, j, 1 \< i( N, 1 \( j \< K and node p 
and node q are connected : 

n(Tds,jl) < H(Te[p,jl) (Y-f) 

Prom these assertions, we derive : 

(~1) and (~2) and (~3) and (01) 
==> (PI) holds in sl in Ql. (yS) 

(~4) and (02) ==> for all i, j, k, u, v, 
Tut (TEUTT~TR), TVC(TEUWUTR) : 

l(Tu reads b[i,j,k] from TV in sl) (Y9) 
(~5) and (~6) and (03) ==> for all i, j, k, 
u* v, Tut(TEU!lTUTR), TvC(TEUTTUTR) : 

~(Tu reads c[i,j,k] from TV in sl) 
(~7) and (04) ==> for all p, q, j, u, v, 

(YIO) 

TU~(TEUTIJUTR), TV((TEUTTUTR) : 
~(Tu reads d[p,q,j] from TV in sl) 

(98) and (~9) and (~10) and (~11) 
(Yll) 

==> (A3.1.) and (A3.2.) (Yi2) 
==> Ql is a valid extension of Q. 

(01) and (02) and (03) and (04) 
==> for all U, V, TuC (TEUTTUTR)., 

TV~ (TEUTPUTR) : SWUM swv = 0 
==> (H4.2.) ==> Ql is a IVWP of Q. (Y13) 

(~8) and (~9) and (~10) and (~11) and (~12) 
and (~13) ==> Ql is a LTRD of Q. 

(Q.E.D.) 

EXAMPLE : 
Suppose we have an instance of the graph G 
below, and K = 2 : 

node 1 

node 2 node 3 

node 4 

We construct a valid s stem state Q = (TE TT, 
TR, s), where TE = (Te i,j]), f lT = (Tt[i,jj], TR 
= {Tr[i,j]) 1 4 i \< N, 1 \< j ( K as following : 

Tdl ,I 1 

Tdl 21 

Td2,ll 

T42 21 

= ([ 

= ([ 

= (r 

= <c 

b[f 12,119 

b[l ,I 21, 

bbG’,ll, 

?-d&I ,219 

Tr[3,1] = ([ b[3,2,1], d[l 3,111 &4,3911 1 
[ a[3,1], c[3,1,2j I> 

Tr[3,2] = ([ b[3,1,2], d[l 3,2], d[4,3,2I 1 
td3.21 c[3215]) 

Tr[4,1] = ([ b[4,2,1], d[2 4911: dIf3,4,;I’I 
[ a[4,1] c[4,1,25 I) 

Tr[4,2] = ([ b[4,1 ,2I, dL.2 4,219 dC3,4,2I 1 
[ a[4,2], c[4,2,11 I> 

Te[l,l] = ([ a[1,1] 1, [ b[l,l,2], d[l,2,1] 
d[l,3915 1) 

Te[l,2] = ([ all,21 1, [ b[l ,2,1], dl,2,2] 
d[l,3,2j 1) 

Te[2,1] = ([ a[2,1] 1, [ b[2,1,2], d[2,1,II 
d2,4Jj 1) 

Te[2,2] = ([ a[2,2] 1, [ b[2,2,1], d[2,1,2] 
d[2,4,2j 1) 

Te[3,1] = ([ a[3,1] 1, [ b[3,1,2], d[3,1 ,l] 
d[3,4Jj 1) 

Te[3,2] = ([ a[3,21 I, [ b[3,2,11, d[391p21 
d[3,4,2j 1) 

Te[4,1] = ([ a[4,1] 1, [ b[4,1,21, d4,2,111 _ 
d[4,3,11 1) 

Te[4,2] = ([ a[4,2] I, [ b[492,11v d[4,2,21 
d[4,32j 1) 

Ttrl ,I. 
Tt-I,2 
Tt-2,1- 
Tt.2,2 
Ttm3,1. 
Tt.3,2- 
Tt.4,1* 
Tt-412s 

The serial schedule s is as followin 
s =Tt[l,1]Te[l,l]Tt[l,2]Te[l,2]...Tt 4,2]Te[4,2] I 

: 

Since the graph G above is K=2 colorable, we can 
assign color 1 to node 1 and node 4, and assign 
color 2 to node 2 and node 3. Then we can con- 
struct Gl = (Xl, Ul), and divide all nodes in Xl 
into 3 + 2(2) - 1 = 6 disjoint sets : 

SET-I. = 
SET-2 = 
SET3 = 
SET.4. = 
SET.5. = 
SET-6- = 

xe-1,2., xe-2,1., xe.3,1., xe.4,2. 
xr I,1 , xr 2,2 , xr.3,2., xr.4,1. 
ie I,1 , xe 2,2 , xe 3,2 , xe.4.1. 
xt1,2 , xt-2,1., xt.3,1,, xt.4,2. 
kr I,2 , xr.2.1.. xr 3.1,. x1-.4,2. 
xt-l,l-, xt-2,2,, xt-3,2-, xt..4,1- 

It is easy to verify that the valid system state 
QI = (TEI, WI, ml, ~1) where TEI = (TE U TR) = 
({Te[i,j]] U {Tr[i,j]]), lT1 = TT = (Tt[i,j]i, 
!CRl = 0 and, 

sl = xt i,j 
i 3 xr i,j 

xe i,j 
xt i,j 

i i 
xr i,j 
xt i,j 
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is both a LTRD and a IVWP of Q = (TE, 'PI', TR, s) 
as defined above. 
Note that (M2) i.e. 
w(Tr[i j]) holds for triangle 
b;W;e;'949 [3,2], since node 1 and node 4 wq 

color 1, and node 2 and node 3 was as- 
signed color 2. 
Also (Ml) i.e. T (Tr[i,j]) < TT (Tt[i, 
w (Te[i j]) holds for triangle component 
[4,2], f2,1], [3,1], since node 
NOT assigned color 2, and node 
NOT assigned color 1. 

1 and node 4 was 
2 and node 3 was 

3. THE PROOF OF THEOREM 4.3. 
proof : 
The proof of theorem 4.3 is similar to the 

proof of theorem 4.2. We transform the " GRAPH 
K-COLORABILITY It problem to LU in the same 
fashion as above. Here, for sake of brevity, we 
shall only show the construction of the valid 
system state Q = (TE, IT, TR, s), for which 
there exists a valid system state Ql = (TEE, 
TTl, TRl, sl) which is both a ,LTRD and a UPDW of 
Q and TEl = (TE U TR) if and only if graph G is 
K-colorable. 

In each triangle component [i,j], i = 1, 2, 
. . . . N, j = 1, 2, . . . . K, we let : 

In each One in K choice component i, i = 1, 2, 
. . . . N, we let : 

For all 1 \< p,q \< N, p # 
q are connected, we let : 

K-I 

q and node p and node 

K 

We further construct a serial schedule 

;tfl ,l]Tt[1,2] . ..Tt[N.K]Te[l,l]Te[l,2]...Te[N,K] 

Then we collect all the transactions con- 
structed above together to form the three sets : 

TE= Te i,j 
TT = Tt i,j I t TR = Tr i,j Ii 
i = 1, 2, . . . . N, j = 1, 2, . . . . K 

It is not difficult to see that the valid sys- 
tem state Q = (TE, Tl!, TR s) thus constructed 
can be constructed in polynomial time. 

In the proof of theorem 4.3., the following 
formulas can be put into one to one correspon- 
dence with those in the proof of theorem 4.2. : 

(Ml >’ Ir(Te[i,j]) < w(Tt[i,j]) < rr(Tr[i,j]) 

(exc'us~~~t~~,j]) < Ir(Tr[i,j]) < lr(Te[i,j]) 042) 

Ir(Te i,k ) < 
E 1 

Ir(Tr i,j ) 
H (Te i,j > < E 3 rr(Tr i,k > 

w (Tt[i,j]) < m(Te[i,j+l]) 
':14 j\<K-1 

and w ;,"f[Ii:]; < H(Te[i,l]) (6)’ 

> < * (Tr P*X > 
E 3 

(9)’ 
> < ‘IT (Tr q,x ) (10)’ 

whereas formulas (I)', (2)', (5)‘, (7)‘, (8)’ 
are directly derived from (Ml)' and (M2)' above. 

The rest of the proof of theorem 4.3. follows 
exactly the same scheme as that in the proof of 
theorem 4.2. 

4. PROOF OF THEOREM 4.4. 
Proof : 
The proof of theorem 4.4 is also similar to 

the proof of theorem 4.2. We transform the " 
GRAPH K-COLORABILITY II problem to UI in the same 
fashion as above. Here, for sake of brevity, we 
shall also only show the the construction of the 
valid system state Q = (TE, TT, TR, s), for 
which there exists a valid system state Ql = 
(TEE, TT~, TRl, sl) which is both a UPDW and a 
IVWP of Q and TEl = (TEU TR) if and only if 
graph G is K-colorable. 

In each triangle component [i,j], i = I, 2, 
. . . . N, j = 1, 2, . . . . K, we let : 

(O') 
-*a i,j t SWt i,j SWr i,j n SRe i,j = 0 

;[i::]::;;[:,;] SWdi,j!/ fJ SRdi.j] = 0 
9 

In each One in K choice component i, i = 1, 2, 
. . . . N, we let : 

-$ K and j # k 

Proceedings of the Eighth International Conference 
on Very Large Data Bases 89 Mexico City, September, 1982 



For all 1 .$ p,q ,< N, p # q and node p and node for each valid system state Q = (TE, TT, TR, s) 
q are connected, we let : constructed above in each of the proofs of 

theorem 4.2., 4.3., and 4.4. (Q.E.D) 
(o4)** d”;[;,;,;] s ;;:[y] 

for Al; j :1&K 

We further construct two sets of auxiliary ex- 
ecuting transactions TBE and TDE as follows : 

TDE = ~Tde[p,q,jl~ for all 1 4 p,q < N, P # q 
and node p and node 

We then construct a serial schedule 

Then we collect all the transactions con- 
structed above together to form the three sets : 

i = 1, 2, . . . . N, j = 1, 2, . . . . K 

It is not difficult to see that the valid sys- 
tem state Q = (TE, TT, TR s) thus constructed 
can be constructed in polynomial time. 

In the proof of theorem 4.3., the following 
formulas cull be put into one to one correspon- 
dence with those in the proof of theorem 4.2. : 

(Ml)" d (Tr[i,j]) <Ir(Te[i,j]) <W(Tt[i,j]) 
(exclusive) or 
(M2)" W (Te[i,j]> < n(Tt[i,j]) < n(Tr[i,j]) 

H(Tr ik ) <K(Tbe i j k ) <n(Tt i j ) 
,(Tr[iIjj) <n(Tbe[i:k:jj) <Jr(Tt[i:kj) [zi" 

V (Teli,j]) <r(Tr[i,j+l]) 
. :l( 

and H ;iE[$]f <r(Tr (6 1” 

whereas formulas Cl)“, (2)“, (5)‘-, (7)“, 
(8)” are directly derived from (Ml)** and 
(M2)" above. 

The rest of the proof of theorem 4.4. follows 
exactly the same scheme as that in the proof of 
theorem 4.2. 

5. PROOF OF THEOREM 4.5. 
Proof : 
It can be easily verified that (L4.1.) holds 
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