
A FORMAL MODEL FOR MAXIMUM CONCURRENCY IN TRANSACTION SYSTEMS WITH PREDECLARED WRITESETS

J. XU

Universitg Catholique de Louvain, Unit6 d'Informatique
Chemin du Cyclotron 2, B-1348 Louvain-la-Neuve, Belgium

ABSTRACT: This paper presents a formal
model for studying the computation complex-
ity of scheduling a whole set of transac-
tions simultaneously in a transaction sys-
tem with predeclared writesets. Our study
clearly shows that there exists a fundsmen-
tal tradeoff between the amount of con-
currency achieved and the computation over-
head necessary to achieve that amount of
concurrency. However, it is suggested that
based on variants of the model introduced
here, schedulers which schedule a whole
set of transactions simultaneously may
still be able to achieve a higher level of
concurrency than conventional schedulers
within reasonable computation complexity
constraints.

1 .INTRODUC?l'ION :

This paper is concerned with the computation
complexity of obtaining maximum concurrency in a
transaction system with predeclared writesets.
Previous work has shown that in transaction sys-
tems with predeclared writesets, it is possible
to achieve more concurrency than systems where
writesets are not predeclared by eliminating
restarts k’l[Sl. This implies that in a tran-
saction system with predeclared writesets, in
order to achieve more concurrency, a preventive
strategy is one of the best strategies that can
be used, i.e., the scheduler puts a requesting
transaction into execution only if it determines
beforehand that the execution of that transac-
tion will never compromise consistency of the
database system.

Previously proposed algorithms for concurrency
control in transaction systems with predeclared
writesets typically schedule requesting transac-
tions only one at a time, even if a large number
of transactions have arrived and are requesting
execution simultaneously. In this case, the
scheduler may chose for first execution a tran-
saction which precludes the simultaneous execu-
tion of any other requesting transaction, while
at the same time there may exist among other re-
questing transactions a large subset which could
be simultaneously executed in parallel with all

transactions currently in execution if they were
chosen for execution first. For this reason,
previously proposed algorithms do not achieve
the potentional level of concurrency that may
possibly be achieved.

In this paper, we present a formal model for
studying the computation complexity of achieving
maximum concurrency in a transaction system with
predeclared writesets. In contrast to the com-
mon approach of scheduling transactions only one
at a time, our model allows one to find either
an optimal solution (at a higher computation
cost, but still feasible when the total number
of transactions in the system is small), or a
suboptimal solution, by analyzing the whole set
of requesting transactions to determine the
largest subset, or simply any large subset which
can be simultaneously put into execution in
parallel with all transactions currently in exe-
cution in the system.

We begin with a most unrestricted model where
the only correctness criterion is serializabili-
ty and each transaction can read one out of
several versions for each data item in its read-
set. Then we gradually add various restrictions
on the model, while studying the effect of these
restrictions on concurrency and computation com-
plexity. Finally, we show by example, how a
scheduler based on the concepts developed in our
model can achieve a higher level of concurrency
under reasonable computation complexity con-
straints, while avoiding certain anomalies which
could be present in the less restrictive models.

It is suggested here that although there ex-
ists a fundamental tradeoff between the amount
of concurrency achieved and the computation
overhead necessary to achieve that amount of
concurrency, it is still possible, under reason-
able computation complexity constraints, to
design schedulers in a transaction system with
predeclared writesets which achieve a higher
level of concurrency by scheduling a whole set
of transactions simultaneously instead of
scheduling transactions one at a time.

We emphasize that this is only a formal model,
an approximation to the way a scheduler may ac-
tually function in a transaction system with
predeclared writesets. No implementation details
are discussed in this paper. We also leave out

Proceedings of the Eighth International Conference
on Very Large Data Bases 77 Mexico City, September, 1982

the problem of preventing starvation in the
present discussion.

2. PRELIMINARIES : TRANSACTIONS AND SERIAL
SCHEDULES.

In order to develop our model in the following
section, we first introduce some basic defini-
tions of transactions, schedules, serial
schedules and "read from" relations between
transactions in a schedule.

In our model, we consider transactions that
consist of two atomic steps : a read of the
values of a set of database entities --- called
the "readset" of the transaction, followed by a
write on a set of database entities --- the
"write set". The notation adopted here is simi-
lar to that used in [q].

DEFINITION 2.1 : A transaction Ti :
[SWil)

([SRil,
is a mapping from a readset SRi of vari-

able names to a writeset SWi of variable names.

The variables are abstractions of data enti-
ties, whose granularity is not important for the
present discussion. The variables can represent
bits, files or records, as long as they are in-
dividually accessible. The set of all variable
names in the database is denoted by V.

Each transaction Ti can be thought of as first
reading a set of values for each variable name
in its readset, then performing a possibly
lengthy local computation based on that set of
values. The results of the computation are fi-
nally used to produce a new set of values for
each variable name in its writeset. The first
step, i.e., the read step is denoted by Ri[SRi],
while the last step, i.e.,
denoted by Wi[SWi].

the write step is

DEFINITION 2.2 : A schedule of a set of transac-
tions T = {Tl, T2

ii.

pin ;, T2 = ([SR2], tSW;jj:
Tn/ : Tl = (SRI ,

. . . . E 7

Rl[SRl],i~l[~~l 'i
ermutation of tit Set' Z"," ' =

that for every i':
. . . Rn SRn], Wn[SWn] such
Ri SRi precedes Wi Z&i]. We t 5 1

abbreviate Ri[SRi] as Ri and Wi[SWi] as Wi when-
ever we need not specify SRi and SWi. We also
introduce a function w : v is a one to one map-
ping from a permutation of Sn to the set 11, 2,
. . . . 2n1, such that for all i, j, Qi C Sn,
ti j i Sn, if Qi precedes Uj in the permuta-
tion, then B(Ui) < a(Uj).

Below we define a serial schedule, which
models the situation where all transactions are
executed sequentially.

DEFINITION 2.3 : A schedule of a set of transac-
tions T = {Tl, Tn) is a serial schedule of
T iff T (Wi) = 1T(Ri) + 1 for all i = 1, 2,
n. i.e. A read Ri always immediately precedes a
write Wi of the same transaction.
In the following sections, we shall use 0 II (Ti)
< v (Tj) " to specify that in a serial schedule
the following holds :

Proceedings of the Eighth International Conference
on Very Large Data Bases

fl (Wi) < Ir(Wj) and fl(Ri) < r(Rj)

DEFINITION 2.4 : We say 11 Rj reads x from Wi" in
schedule s of T = {Tl, T2,7..,}-i~o~some . .
X, 1, J, xcV,l<i&n,ldj<n:

(A2.1) x e (SWifl SRj) and
(A2.2) n(Wi) < Ir(Rj) and
(A2.3) there is no k, 1 (k Q n, such that

xCSWk and ir(Wi) < n(Wk) < 7l(Rj>

In the following sections, we shall also say "Tj
reads x from Ti", when Rj reads x from Wi.

EXAMPLE 2.1.:

= Rl x]Wl[y z b]R2
:: = R3 E y,b]W3[yjR2[z

sl and s2 are both serial schedules of the set
of transactions T = IT1 t T2, T3] where Tl =
([xl, ikd) ~‘2 = ([zl, [Y]) T3 = ([y,bl,
[YIL In serial schedule sl of T : R2 reads z
from Wl, R3 reads b from Wl, R3 reads y from W2.
In serial schedule s2 of T : no transaction
reads from any other transaction.

3. THE FORMAL MODEL

In a database system, the task of a scheduler
is to maintain consistency of the database sys-
tem while allowing as many user transactions as
possible to simultaneously access the database
system. In a transaction system with prede-
clared writesets, in order to obtain higher con-
currency by preventing restarts, the scheduler
puts requesting transactions into execution only
if it determines beforehand that the execution
of those transactions will never compromise con-
sistency of the database s

Since serializability [5 [g] is used as the "j
stem.

consistency criterion here, the scheduler must
guarantee that the reads and writes of all tran-
sactions in the system have the same overall ef-
fect as if all transactions were executed in
some serial order. (We shall call such an order
which is not necessarily identical to the actual
time order in which reads and writes are pro-
cessed a "virtual order").

We model this as the following problem: Given
a database system state consisting of 4 elements
: an executing set of transactions, a terminated
set of transactions, a requesting set of tran-
sactions, and a serial schedule defining the
virtual ordering of all executing and terminated
transactions; construct a new database system
state, such that requesting transactions can be
put into execution in parallel with all transac-
tions already in execution, while the new virtu-
al ordering is consistent with the previous vir-
tual ordering.

To begin, we start with a most unrestrictive
model, where the only correctness criterion is
serializability, and each requesting transaction
may read any one out of all existing version

78 Mexico Citv. Seotember. 1982 -,, . ,

?,re:; for eaci: "'iri:t' ;F name in its readset.

'+'LiiITitjM 3.1 . : A database system state is a ------ __ _- -
~?.i~i~ple Q x f'".',, 'J"Y, 'I'!{. s), where

: ~:alle.i: the executing set of transactions ---- - - ---
i ' ::ai Ieij the terminated set of transactions

i i : CB‘: CiCj
II ----- - ---

the requesting set of transactions ---
: ir, :I :serial schedule of T TTEU TT), called
: :I*> -lirt:lal schedule. ----.--- --__ _.~

In definition 3.1., an executing transaction
is a transaction which has already been put into
execution by reading some existing values of the
variable names in its readset, but has NOT yet
made the set of values for all variable names in
its writeset available for reading by other
transactions.

A terminated transaction is a transaction
which has made a set of values for all variable
names in its writeset available for reading by
other transactions.

A requesting transaction is a transaction
which has arrived in the system and is request-
ing execution, but has not been yet put into ex-
ecution.

A virtual schedule is a serial schedule of all
executing and terminated transactions. The
scheduler guarantees that the reads and writes
of all executing transactions and all terminated
transactions will have the same overall effect
as if they were executed sequentially in the
same order as the virtual schedule. A virtual
schedule completely defines which transaction
has read the values of which variable names from
the writeset of which transaction so far up to
the present system state.

DEFINITION 3.2.: Database system state Ql =
(TEl . 'IT1 , TRl , sl) is a valid extension of da- -.
tabase system state Q = (TE, TT,ms),-iff :

(A3 .l.) (consistency condition)
(A3.1.1.) TTl = TT and TRl 2 TR, and
(A3.1.2.) TEl = (TE U TRs), where TRs 5 TR and

TRl = (TR - TRs), and
(A3.1.3.) For all i, j, X, Tie (TTUTE),

T~~(TTUTE), xev :
Rj reads x from Wi in s
<==> Rj reads x from Wi in sl, and

(A3.2.) (existence condition)
For all i, j, X, TiC (TT~UTE~), TJC (TT~UTE~),
xev :

Rj reads x from Wi in sl ==> TiQ TTl

Definition 3.2. defines the conditions under
which successive new valid system states can be
constructed by putting requesting transactions
into execution, i.e. by transfering a subset of
transactions from the requesting set of the pre-
vious system state into the executing set of the
new system state.

The "consistency condition" (A3.1.) guarantees
that all the effects of the previous system
state are preserved in the succeeding system
state. Here we only give the minimum consistency
conditions, while additional restrictions will

Proceedings of the Eighth International Conference
on Very Large Data Bases

be discussed (A3.1.3.) statEadually, later on: Condition
that if transaction j reads a

value from transaction i in the previous virtual
ordering, then transaction j should read the
same value from transaction i in the new virtual
ordering.

The "existence condition" (A3.2.) states that
no transactions in the virtual ordering should
read a value which has not yet been produced, in
other words, transaction j can read a value from
transaction i only if transaction i has ter-
minated.

Note that for the same set of executing tran-
sactions, more than one virtual schedule can be
constructed by rearranging the virtual schedule
while keeping all the consistency and existence
conditions invariant.

DEFINITION 3.3. : Database system state QI =
(TEE, TT~, TRY, sl) is a valid termination of --
database system state Q = (TE, TT,miiff:

(B3.1.) TTl = (TTUTES), where TEs C_ TE and
TEl = (TE - TEs), and

(B3.2.) TRl = TR, and
(B3.3.) For all i, j, TiG (TE U TT),

Tj 6 (TE u TT) :
s(Tj) <n(Ti) in s <==> Ir(Tj) <Ir(Ti) in sl

Definition 3.3. defines the conditions in
which executing transactions are terminated,
i.e., when a subset Of transactions are
transfered from the executing set of the previ-
ous system state into the terminated set of the
new system state.

Note that whenever a transaction terminates,
it creates a new version value for each variable
name in its writeset. Thus, more than one ver-
sion value may coexist for each variable name in
the current database system state, including the
initial version value of each variable name of
the initial database system state.

DEFINITION 3.4. : Database system state Ql =
(TEl, TTI, TRl, sl) is a valid request of of da-
tabase system state Q = (TE, TT, TR, s)Tff:

(C3.1.) TTl = TT and TEl = TE, and
(C3.2.) TR C TRl, and
(C3.3.) For all i, j, TiC (TEU TT),

T,jC (TE U TT) :
W (Tj) < w(Ti) in s <==> V (Tj) < rr(Ti) in sl

Definition 3.4. defines the conditions in
which new transactions are admitted into the re-
questing set of transactions.

DEFINITION 3.5. : A database system state Q =
(TE, TT, TR, s) is a valid 3stem state iff one --
of the following conditions aresatisfied :

(D3.1.) TE = 0 and TT = 0 and TR = 0 and s is
empty (called the initial system state), or

(D3.2.) Q is a valid extension of a valid
system state, or

(D3.3.) Q is a valid termination of a valid

79 Mexico City, September, 1982

system state, or

(D3.4.) Q is a valid request of a valid system
state.

Definition 3.5. precisely defines which data-
base system states are considered to be valid,
1 .e., preserve consistency. Here it is assumed
that all valid system states are derived from
the initial state, i.e., a state in which no
transaction exists within the system.

A valid system state corresponds to a state in
which for all transactions currently executing
in parallel in the database system, we can
guarantee that their final writing on the data-
base global variables can be arranged to produce
the same overall effect as if they were executed
sequentially in the same order as the serial
schedule s.

DEFINITION 5.6.: Given the current valid data-
base system state Q = (TE, TT, TR, s), we call
the valid database system state Ql = (TEI, PI,
TRI, sl) a maximum concurrency extension of Q ___-~--
iff :

Fig.1.

i: database system state.
TE : executing set of transactions.
TT : terminated set of transactions.
TR : requesting set of transactions.
si : virtual ordering.

i TE TT TR

2 Tl 0 0 92 = Tl = Rl[x]Wl[y]

3 Tl

4 'PI, T2 0 0

5 Tl, T2 0

6 T2 Tl T3, T4, 6 96 = T2 Tl'

7 T2, T4, T5 Tl TJ

8 T4,TS Tl, TZ T3 & = T2'Tl'T4 T5

9 T4, T5 11, *2
~~4[YlJYl)

10 T4, 9'5, T6 Tl, T2 T3

Proceedings of the Eighth International Conference
on Very Large Data Bases 80

(E3.1.) Ql is a valid extension of Q, and
(E3.2.) No other valid system state

Q2 = (TE2, TT2, TR2, 92) exists, such
that Q2 is also a valid extension of Q,
and [TR21 < 1~~1 I.

In order to have an intuitive notion of how a
scheduler would work according to such a model,
let us first examine the following example :
(All terminated transactions are primed.)

EXAMPLE 3.1. : Fig l.demonstrates how a database
scheduler may transform one system state to
another system state while preserving serializa-
bility of all transactions currently executing
in parallel.

Relow, some explanation may be useful :
In the transformation from database system

state 3 to state 4, the scheduler is able to put
transaction T2 into execution in parallel with
T1 . because there exists a virtual ordering
identical to the serial schedule 94, where all
the values corresponding to the variable names
in T2's readset are available, and Tl reads the

si

s3 = 92

& = T2 Tl
= R2h'lW2b,ylR1 [x]Wl [yl

s5 = 94

8/ = T2 Tl &T4 T5

& = s8

s10 = T2'T6 Tl *T4 T5

= R4Ef:yjW4i..;SRs[J.d]W5~e.y~
~2 c y wY[b]~6[yl~6[]RI X]WI’[Y]

Mexico City, September, 1982

same values as in the previous virtual ordering
s3. Note that T2 is not restricted to read the
most recent version value of y in its readset in
this first model. Note also that T2 cannot be
executed according to the virtual ordering s =
Tl T2, because in that virtual ordering T2 is
supposed to read the the value of the variable
name y in Tl's writeset, which has not yet been
produced, since Tl has not yet terminated.

In database system state 5, no transaction
among the requesting set can be executed, be-
cause none of them can be inser,ted into the
serial schedule without creating a virtual ord-
ering in which at least one transaction is sup-
posed to read a value which has not yet been
produced.

In the transformation from database system
state 6 to state 7, since Tl has terminated pre-
viously, each single transaction in the request-
ing set can be put in execution by reading the
values produced by Tl. But because T4 and T5 is
the largest subset of all requesting transac-
tions which can be simultaneously put into exe-
cution in parallel with T2, we chose T4 and T5
to be executed first. On the contrary, if we
chose T3 for execution first, then both T4 and
T5 would be blocked from execution, since no
virtual ordering can be found which allows T4
and T5 to be executed in parallel with T3.

In the transformation from database system
state 9 to state 10, T6 is put into execution by
reading an old value of y from T2. Note that
there exists no virtual ordering in which T6 can
read the most recent value of y (produced by Tl)
and which is consistent with the previous virtu-
al ordering sq.

And we can continue like this constructing
successive new valid system states.

In this example, we obtain the following valid
system states :

QO = (0, 0, 0, <>,I (the initial system
state)

Ql = (0, 0, {Tl j, 0) (Tl requests) Ql is a
valid re

Q2 = (3
uest of QO by definition 3.4.
Tl], 0, 0, <Tl>) (Tl is put into execu-

tion) Q2 is a valid extension of Ql by defini-
tion 3.2.

Q3 = (Tl), 0 {T2),<Tl>)
94 = (Tl, T21, 0, 0, <T2 Tl>) I

(T2 requests)
(T2 is put

into execution in parallel with Tl)
Q5 = ({Tl, T2}, 0, {T3, T4, T5], CT2 Tl>)

(T3, T4, T5 re uests)
96 = ({T2], PTl] {T3 T4 T5j <T2 Tl'>) (Tl

terminates) Q6 ii a vkid'termkation of Q5 by
definition 3.3.

Q7 = ((T2, T4, T5j, {Tl), {T31, CT2 Tl' T4
T5>) (T4 and T5 are put into execution in paral-
lel with T2) $7 is a valid extension of 96 by
definition 3.2.

Q8 = ({T4, T5], {Tl, T2j, {T3], <T2'Tl'T4 T5>)
(T2 terminates)

Q9 = ({T4, T5] {Tl, T2), (T3, T6], <T2'Tl'T4
T5>) (T6 requests)

QlO = ({T4, T5, T6], {Tl, T2), {T3], <T2'T6
Tl'T4 T5> (T6 is put into execution in parallel
with T4 and T5).

Proceedings of the Eighth International Conference
on Very Large Data Bases 81

.,-. Mexico Citv. SeDtember _ 1982

Note that all valid extensions in this example
are maximum concurrency extensions of the previ-
ous state.

4. THE COMPUTATION COMPLEXITY

Since we are interested in obtaining.practical
schedulers, it is necessary to study the compu-
tation complexity involved in constructing valid
extensions of a given valid system state.

The following theorem suggests that general
valid extensions may be impractical to obtain
when the number of transactions is very large :

(see Appendix for proof)

THEOREM 4.1. : The following problem (VE) is NP
complete :

Given a valid system state Q = (TE, TT, TR,
s>. does there exist a valid system state Ql =
(TEE, TT~, TRY, sl) such that Ql is a valid ex-
tension of Q and TEl = (TE U TR) and TRl = 0 ?

Theorem 4.1. states that given an arbitrary
valid system state Q, the problem of whether
there exists a valid system state Ql, such that
all requesting transactions in Q are put into
execution in paralIe1 with all currently execut-
ing transactions while guaranteeing that their
final writing on the database global variables
can be arranged to produce the same overall ef-
fect as if all transactions in the system were
executed sequentially is NP complete.

The theorem above suggests that even for the
sole reason of reducing computation complexity,
it would prove beneficial to investigate possi-
ble restrictions to obtain subsets of valid ex-
tensions of a given valid system state. Below,
we define several subsets of valid extensions in
increasing order of restrictiveness and study
their implications on performance and computa-
tion complexity.

For each restrictive condition defined below,
we shall show by example one case in which the
restrictive condition prevents a transaction
from being immediately put into execution,
whereas if the condition is removed, then that
transaction could be immediately executed in
parallel with all transactions currently in exe-
cution.

Conventional concurrency control schemes im-
pose a fixed explicit total ordering of all ex-
isting version values of each data variable.
This implies a fixed ordering of all terminated
transactions which nave produced different ver-
sion values of the same variable. If we adopt
this restriction, then we have the following de-
finition :

DEFINITION 4.1.: Database system state Ql =

(TEl t TTl, TRl, sl) is a valid fixed terminated
write position extension (.m of database sys-
tem state Q = (m%, s), iff :
(F4.1.) Ql is a valid extension of Q, and
(F4.2.) For all i, j,:

if SWin SWj # 0 and (TiC TT and Tje TT) then:
s(Wi) < Ir(Wj) in s <==> r(Wi) <n(Wj) in sl

Condition (F4.2.) states that if two transac-
tions have terminated and their writesets inter-
sect, then their relative ordering in a valid
system state is restricted to be kept invariant
when constructing the new valid system state,
i.e. the FTWP of Q.

Below, we show by an example how condition
(F4.2.) restricts concurrency :

EXAMPLE 4.1.:

One can check (e.g.,by exhaustive checking of
all possible serial schedules), that there does
not exist any valid system state Ql = (TEl, TTl,
TRl, sl) such that Ql is a FTWP of Q.

But there exists a valid system state Q2 =
({T3, T4], {Tl, T2), 0, <T2*T3 Tl'T4>) such that
92 is a valid extension of Q.

Alternatively speaking, condition (F4.2.)
prevents T4 from being immediately put into exe-
cution, whereas if condition (F4.2.) is removed,
then T4 can be executed in parallel with T3,
while guaranteeing serializability of all tran-
sactions executing in the database system.

In definition 3.2., when a requesting transac-
tion is put into execution, it may read any one
out of existing version values for each variable
name in its readset.

There may well exist applications in which
reading an "old" version of a data item is not
acceptable, or in which the extra cost of memory
required to store multiversions of data is con-
sidered excessive. In such cases, we have the
following more restrictive definition of a valid
extension :

DEFINITION 4.2.: Database svstem state Ql =
(TEl , Trl,. TRl, sl) is a" valid latest read
version extension (LTRD) of databasesystem
state Q =(TE,TT, TR, s), iff :

(G4.1.) Ql is a FTWP of Q, and
(G4.2.) For all Tje(TE1 - TE), Tie TT, x C V:

if Rj reads x from Wi in sl, then there
exists no k, Tk @ YP, such that x t SWk
and TT(Wk) > v(Wi) in s.

Condition (G4.2.) states that when a request-
ing transaction is put into execution, for each
variable name in its readset, it is restricted
to read the "latest" available version value in
the virtual ordering.

EXAMPLE 4.2.

It is easy to check that there
does not exist any valid system state Ql = ((T3,

Proceedings of the Eighth International Conference
on Verv Larae Data Bases

T4], {Tl, T2), 0, sl) such that Ql is a LTRD of
Q. But there exists a valid system state Q2 =
((T3, T4], {Tl, T2), 0, <Tl'T4 T2'T3>) such that
Q2 is a valid extension of Q.

In other words, condition (G4.2.) prevents T4
from being immediately put into execution,
whereas if condition (G4.2.) is removed, then T4
can be executed in parallel with T3, while
guaranteeing serializability of all transactions
executing in the database system.

In conventional concurrency control schemes,
the restriction (H4.2) below is also imposed :

DEFINITION 4.3.: Database system state Ql =
(TEE, TT~, TRl, sl) is a valid invariant write

(IVW)
.- ~

position extension of database system
state Q =-(TE, TR, s), iff :

(H4.1.) Ql is a valid extension of Q, and
(H4.2.) For all i, j, x, TiC (TTUTE),

T~E(TTUTE), xev :
if SWifl SWj # 0 and (Tit TT or Tj E TT) then:
w(Wi) < Ir(Wj) in s <==> Ir (Wi) < Ir(Wj> in sl

Condition (H4.2.) states that if the writesets
of two transactions intersect, and at least one
of them has terminated, then their relative ord-
ering in the previous valid system state is res-
tricted to be kept invariant when constructing
the new valid system state, i.e. the IVWP of Q.

EXAMPLE 4.3. : Sup ose we have a valid system
state Q = ({T2], PTlI, {T3[, <Tl’ T2>) where Tl
= ([a], [xl), T2 = ([a], [xl), T3 = ([xl, [al).
It is easy to check that there does not exist
any valid system state Ql = ((T2, T3), (Tl), 0,
sl] such that Ql is a IVWP of Q. But there ex-
ists a valid system state Q2 = ({T2, T3], {Tl 1,
0, <T2 Tl'T3>] such that Q2 is a valid extension
of Q.

In this example, condition (H4.2.) prevents T3
from being immediately put into execution,
whereas if condition (H4.2.) is removed, then T3
can be executed in parallel with T2, while
guaranteeing serializability of all transactions
executing in the database system.

In all previous definitions, a requesting
transaction may write a value which is to be
overwritten by a terminated transaction coming
later in the virtual ordering. This may result
in new transactions being inserted before a ter-
minated transaction in the virtual ordering.
One of the possible ways of preventing this
phenomenon is to adopt the following restrictive
definition :

DEFINITION 4.4.: Database system state Ql =
(TEE, ~pi, TRY, sl) is a valid uptodate write
extension (UPDW) of database system state Q
(TE, TT, TR, s), iff :

(14.1.) Ql is a valid extension of Q, and
(14.2.) For all TjC(TE1 - TE), x&V:

if xCSWj, then there exists no TkCTT,

82 Mexico City, September, 1982

such that xe SWk and n(Wj) <r(Wk) in sl.

Condition (14.2.) states that when a request-
ing transaction is put into execution, for each
variable name in its writeset, if any terminated
transaction produced a value for that variable
then the requesting transaction must be posi-
tioned after (to the right of) that terminated
transaction in the schedule. This restricts
that no transaction is to produce a value which
is to be overwritten by a terminated transaction
even before it has started.

(L4.1.) for each x, x6V and for all TiQ TT
such that xe SWi :](TijI < 1

Only by combining all the restrictions given
above together (with the exception of (L4.1.)),
we manage to substantially reduce the computa-
tion complexity of our problem :

DEFINITION 4.5.: Database svstem state Ql =

EXAMPLE 4.4.
Suppose we have the valid system state Q =

(iv2 {Tl), {T3), <Tl'T2>) where T1 = ([b]
[b])f'T2 = ([a], [xl), T3 = ([xl, [a]) ther;
does not exist any valid system state Ql = ({T2,
T3], /Tl], 0, sl) such that Ql is a UPDW of Q.
But there exists valid system state Q2 = ({T2,
T3], {Tl], 0, <TJ Tl'T2>) such that Q2 is a
valid extension of Q.

(TEl , TTl, TRl, sl) is a" valid fixed write
position uptodate read write extensiomRFf
database svsztxQ=(TE. TT. TR. s). iff :
(K4.1.) Ql"is a LTRD of Q,.and ' .'
(K4.2.) Ql is a UTDW of Q, and
(K4.3.) Ql is a IVWP of Q.

DEFINITION 4.6. We call a directed graph G = (X,
u), the "FWRW dependency gra h" of a valid sys-
tem state Q = (TE, TT, TR, * s iff in Q :

Here, condition (14.2.) prevents T3 from being
immediately put into execution, whereas if con-
dition (14.2.) is removed, then T3 can be exe-
cuted in parallel with T2, while guaranteeing
serializability of all transactions executing in
the database system.

X= xi
I

I Tic (TTU TE U TR)~,
U = (xi, xj)c X x X 1 (if j) and

t
(54 .l.) ‘(SWjI\SRi # 0) and (TjC TT) and

(TiC TE) and (w(Tj)< w(Ti) in s)
(54 .2.) (SWjn SWi # 0) and ((TjC TT) or

(TiCTT)) and (lT(Tj)< w(Ti) in s)
(54.3.) (SRiT\SWj # 0) and (TiC TR) and

(Tj 4 TT)
However, the combination of any two single

restrictions given above still does not reduce
the computation complexity of our problem to an
acceptable level, as evidenced by the following
three theorems :

(54.4.) (SWjnSWi # 0) and (TieTR) and
(Tj 6 Tp)

(54.5.) (SWinSRj # 0) and (Tic TR) and
(TjC(TTUTEUTR))

(see Appendix for the proofs)

THEOREM 4.2. : The following problem (LI) is NP
complete :

Given a valid system state Q = (TE, TT, TR,
s), does there exist a valid system state Ql =
(TEl , TTl, TRl , sl) such that Ql is both a LTRD
and a IVWP of Q and TEl = (TEU TR) ?

(54.6.) (SWinSRj # 0) and (TjCTR) and
(TiC TE) and
(there does not exist k = 1,2,...,p,
such that :

(SWinSRj)G($,SWk) and

for all k = 1,2,...,p :
TkCTT and 7T(Ti) < rT (Tk)

THEOREM 4.3. : The following problem (LU) is NP
complete : THEOREM 4.6.

Given a valid system state Q = (TE, TT, TR,
91, does there exist a valid system state Ql =
(TEl , TT1, TRl , sl) such that Ql is both a LTRD
and a UPDW of Q and TEl = (TE U TR) ?

Given a valid system state Q = (TE, TT, TR,
s), there exists a valid system state Ql = (TEl,
TTl, TRl, sl) such that Ql is a FWRW of Q and
TEl = (TE U TR) and TRl = 0, if and only if the
FWRW dependency graph of Q is acyclic.

THEOREM 4.4. : The following problem (UI) is NP
complete : Proof :

Given a valid system state Q = (TE, !lT, TR,
s), does there exist a valid system state Ql =
(TEE, TT~, TRY, sl) such that Ql is both a UPDW
and a IVWP of Q and TEl = (TE U TR) ?

THEOREM 4.5. : All the problems stated in the
theorems 4.2., 4.3.. 4.4. above are NP complete,
even if there exists no more than two version
values for each variable name in the valid sys-
tem state Q = (TE, TT, TR, s). (including the
initial version value of each variable name of
the initial database system state). That is,
even if the following restriction is imposed in
Q:

Suppose G is acyclic, then according to graph
theory [1], the set of nodes in G can be totally
ordered, such that if (xi, xj>e U, then xi is
ordered after xj. Thus, we can obtain a serial
schedule sl of the set of transactions T =
(TTUTE U TR), in which if (xi, xj>t U, then
n(Tj) < TI(Ti). We can prove that the valid

system state Ql = (TEl, TTl, TRl, sl) is a FWRW
of Q where TEl = (TEU TR) and TRl = 0.

To see this, we can verify that the following
assertions hold for s and sl :

for all i, j, (SWjnSRi # 0) and (TjeTT) and
(TiC TE) and (n(Tj)<n(Ti)) in s :

Proceedings of the Eighth International Conference
on Verv Lame Data Bases . - 83 Mexico City, September, 1982

') <Ir(Ti) in sl H ‘ITj
for all i, j,
(TiC TT)) and

IT (Tj
for all i, j,
(TjCTT) :

n(Tj
for all i, j,
(TjCTT) :, .

(el>
(SWj0 SWi # 0) and ((Tj cTT) or
(T(Tj)< w(Ti)) in s :
< ll(Ti) in sl (e2)

(SRi/\ SWj # 0) and (TieTR) and

< TT(Ti) in sl (e3)
(SWjflSWi # 0) and (TieTR) and

n(Tj) <w(Ti) in sl (e4)
for all i, j, (SWinSRj # 0) and (TieTR) and
(Tj c (TTUTEUTR)) :

H(Tj) <,n(Ti) in sl (e5)
for all i, j, k, (SWifiSRj f 0) and (TjCTR) and

(Tit TE) and
(there does not exist k = 1,2,...,p$
such that

(SWi/\ SRj)g (i,SWk) and

for all k = 1,2,...,p :
Tkt TT and Ir(Ti) < 7l(Tk) in s
:

w(Tj) < TT(Ti) in sl (e6)
)

(el) and (e2) and (e5) ==> (A3.1.3.)
(e2) ==> (F4.2.) and (H4.2.)
(e5) and (e6) and (A3.1.3.) ==> (A3.2.)
(e3) ==> (G4.2.)
(e4) ==> (14.2.) (see def.4.4.)

Finally, (A3.1.3.) and (F4.2.) and (H4.2.) and
(A3.2.) and (G4.2.) and (14.2.) together with
the fact that all transactions in TR are includ-
ed in sl imply that Ql is a FWRW of Q.

Suppose G contains a loop. Then there does not
exist
(

any total ordering at all, such that if
xi, xj)C U, then xi is ordered after xj. This

implies that there exists no serial schedule sl
of the set of transactions T = TTUTEUTR, such
that if (xi, xj)C U, then a(Tj) < B (Tj). This
in turn implies that (A.3.1.3.) and (F4.2.) and
(H4.2.) and (A3.2.) and (G4.2.) and (14.2.) can-
not simultaneously hold for any serial schedule
sl 9 such that 61 = (TEl, Tl!l, TRl, sl) is a FWRW
of Q.

Q.E.D.

Theorem 4.6. states that given an arbitrary
valid system state Q = (TE, TT, TR, s), the
problem of deciding whether there exists a valid
system state Ql = (TEl, !ITl, TRl, sl), such that
QI is a FWRW of Q, and all requesting transac-
tions are put into execution in $1 while guaran-
teeing serialieability can be reduced to the
problem of determining whether the FWRW depen-
dency graph G of Q is acyclic. This can be done
quite
O(lV, 1x1

, , , e~$i;;yW, the computation time being

Now suppose the FWRW dependency graph G of Q
is cyclic, what can we do then ? An optimal
solution can be found by finding the largest
subset TRs of the requesting set of transactions
TR, such that the subgraph Gs of G is acyclic
and Gs is obtained by removing nodes belonging

Proceedings of the Eighth International Conference
on Very Large Data Bases

to the requesting set (TR - TRs). Then a virtu-
al schedule sl in which all requesting transac-
tions in that largest subset TRs can be put into
execution in Ql can be constructed by topologi-
cal sorting Gs [l] .

This is explained by an example below :

EXAMPLE 4.5.
Suppose initially we have a set of 4

ing transactions: Tl = ([a] [b]) T2 ='~~Ube~~~
[a,y]), T3 = (Lb], [a,x]), Ti = i[y,b], [HI).
and we start at a time when there is no activity
at all in the database.

At this moment, the database system state is
Ql = (0, 0, {Tl, T2, T3, T4], <>)

According to theorem 4.6., since the FWRW
dependency graph Gl of Ql is cyclic, there ex-
ists no valid state Q2 = ({Tl, T2, T3, T4], 0,
0, 92) such that Q2 is a FWRW of Ql and the
whole set of requesting transactions TRl can be
Put into execution in parallel in Q2 while
preserving serializability. Here, the largest
subset TRls of TRl for which the subgraph Gls of
Gl is acyclic and the nodes removed from Gl be-
long to (TRl-TRls) contains 3 transactions, i.e.
T2, T3, T4. Thus we determine that in order to
achieve maximum concurrency, TRls = {T2, T3, T4)
should be put into execution in parallel first.

By topological sorting Gls, we can find at
least one schedule s3 such that a new valid sys-
tem state Q3 = ({T2, T3, T4), 0, (Tl), s3) can
be constructed, in which T2, T3, and T4 can be
put into execution in parallel, and Q3 is a FWRW
of Ql. In this example

and we can continue like this constructing suc-
cessive new valid system states. Notice that Q3
is a maximum concurrency extension of Ql.

The problem of finding an optimal solution in
the example above, can be transformed to the
Feedback Vertex Set (FVS) problem [6][8].
Although the FVS problem is known to be NP com-
plete, there exist several factors which imply
that higher concurrency by scheduling a whole
set of requesting transactions can be achieved
at a reasonable computation time cost :
(1) In real world applications, there may exist
only a very small number of arcs in the FWRW
dependency graph of a valid system state, even
if the total number of nodes is very large.
Thus, the actual computation time necessary to
obtain an optimal solution could be quite short.
(2) We can always limit computation complexity
by using efficient heuristics to find good ap-
proximations to an optimal solution.
(3) Algorithms actually exist which either find
an optimal solution or a suboptimal solution for
the FVS problem and which are known by experi-
ence to have a good performance. (For example,
see [4][7][10]. An algorithm for a suboptimal
solution described in [7] has a computation time
upper bound of only O(IX13>.)

a4 Mexico City, September, 1982

In any case, we should be able to obtain more
concurrency than any scheduler which schedules
only one requesting transaction for execution at
a time.

5. SUMMARY

In this paper we presented a formal model for
studying the computation complexity of schedul-
ing a whole set of transactions simultaneously
in a transaction system with predeclared wri-
tesets. Cur study clearly shows that there ex-
ists a fundamental tradeoff between the amount
of concurrency achieved and the computation
overhead necessary to achieve that amount of
concurrency. However, it is suggested that based
on variants of the model introduced here,
schedulers which schedule a whole set of tran-
sactions simultaneously may still achieve a
higher level of concurrency than conventional
schedulers within reasonable computation com-
plexity constraints.

ACKNOWLEDGEMENTS

I am greatly indebted to Professors
P.J.Courtois and E.Milgrom for reading of this
paper and many stimulating discussions. Without
their help and encouragement, this paper could
not have been written. I also wish to thank all
members of the Department of Informatics at
U.C.L. for kindly helping in numerous ways. The
referees provided valuable comments and sugges-
tions.

REFERENCES :

[I] B.Carre, "Graphs and Networks"
Clarendon Press, Oxford, 1979.

[2] M.A.Casanova, "The Concurrency Control Prob-
lem for Database Systems"

Lecture Notes in Computer Science 116,
Springer-Verlag, 1981.

[3] M.A.Casanova and P.A.Bernstein, "General
Purpose Schedulers for Database Systems".

Acta Informatica 14, 195-220 (1980).

[4] M.Diaz et al, "A note on minimal and quasi-
minimal essential sets in complex directed
graphs"

IEEE Trans. Circuit Theory, vol CT-19, pp.512,
Sept, 1972.

c51 K.P.Eswaran et al, "The Notions of Con-
sistency and Predicate Locks in a Database Sys-
tem"

CACM, 19, 11, Nov, 1976. 624-633.

[6] M.R.Garey and D.S.Johnson, "Computers and
Intractability : A Guide to the Theory of NP- '
Completeness".

Freeman, San Francisco, 1979.

[7] G.Guardabassi, "A note on minimal essential
sets"

IEEE Trans. Circuit Theory, vol CT-18, pp.557,
Sept. 1971.

[8] R.M.Karp, "Reducibility Among Combinatorial
Problems"

in R.E.Miller and J.W.Thatcher teds). "Com-
plexity of Computer Computation". Plenum Press,
New York, 85-103. 1972

[9] C.H.Papadimtriou, "The Serializability of
Concurrent Database Updates"

JACM, 26, 4, Oct. 1979. 631-653.

[IO] G.W.Smith and R.B.Walford, "The Identifica-
tion of a Minimal Feedback Vertex Set of a
Directed Graph".

IEEE Trans. on Circuits and Systems, Vol.
Cas-22, I, Jan, 1975. g-15.

APPENDIX :

1. PROOF OF THEOREM 4 .I.
Proof :
It is easy to see that VEeNP, because a non

deterministic algorithm need only guess a new
valid system state Ql, in which sl is a serial
schedule of T = (TE UTTU TR) and check in poly-
nomial time that Ql is a valid extension of Q.

Further more, it is easy to see that VE con-
tains LI (see theorem 4.2. and def.4.2. and
def.4.3.) as a special case. Since LI is proved
below to be NP complete, VE is also a NP com-
plete problem. (Q.E.D.)

2. PROOF OF THEOREM 4.2.
(see example at end of proof)
Proof :
It is easy to see that Lie NP, because a non

deterministic algorithm need only guess a new
valid system state Ql, in which sl is a serial
schedule of T = (TEU TTU TR) and check in poly-
nomial time that Ql is both a LTRD and a IVWP of
Q.

Below, we accomplish our proof by transforming
a well known NP complete problem --- the II GRAPH
K-COLORABILITY II problem (GKC) [5][6] to LI.

GKC is as follows : Given a graph G = (V, E)
and a 'positive integer K 6 N, where N = IV!,
determine whether graph G is K-colorable, i.e.,
is it possible to assign each node in G one out
of K colors, such that no two connected nodes
are assigned the same color ?

Suppose G = (V, E) and a positive integer K +$
N, where N = IV!, is an arbitrary instance of
GKC. We now construct a valid system state Q =
(TE, TT, TR, s), such that there exists a valid
system state Ql = (TEl, TTI, TRI, sl) which is
both a LTRD and a IVWP of Q and TEI = (TE UTR)
if and only if G is K-colorable.

Proceedings of the Eighth International Conference
on Very Large Data Bases Mexico City, September, 1982

We construct 1~ One in K choice components I'. -- --
Each " One in K choice component - p " cor~s$&ds
to one node in the craph G. We call the " One in
K choice component " corresponding to node i in
G as " One in K choice component i I'. Each One
in K choice component i is in turn composed of K
" triangle components I'. Each triangle com- --~ -~
ponent corresponds to one color. We call the
triangle component in One in K choice component
i corresponding to color j as triangle component
[i.jl.

Each triangle component [i,j] is composed of 3

ing transaction

. . . . N, j = 1, 2, K, we let :

transaction
one execut-
([SRe[i,jll,
transaction

By the way we have constructed triangle com-
ponent [i,j], it is easy to verify that in any
serial schedule sl which includes Tr[i,,i).
Tt[i,j] and Te[i,j] and Ql is a valid extension
of 9, one and only one of the following formuia:;
must hold for the three transactions ?'r[i,.i:,
T;i:ljj and Te[i,j] in each triangle component

(Ml) n(Tr[i,j]) < iF(Tt[i,j]) < v(Te[i,j]j.

(exclusive) or

i = 1, 2, (M2) n(Tt[i,j]) < rr(Te[i,j]) < v(Tr[i,j])

(O’) ;[i;;\i g;[i;j g[:;;]n” ;;;[;jj I “0
7

In each One in K choice component i, i = 1, 2,
. . . . N, we let :

For all 1 < p,q \< N, p # q and node p and node
q are connected, we let :

(04)

We further construct a serial schedule

Notice that in s :

(Pi) for all i, j, i = 1, 2, N,
K:

reads'a[i,j] from Tt[i,j

Then we collect all the transactions con-
structed above together to form the three sets :

TE =
TT =
TR =

for all i, j :
i = 1, 2, N
j = 1, 2, . ..) K

It is not difficult to see that the valid sys-
tem state Q = (TE, TT, TR s) thus constructed
can be constructed in polynomial time.

Proceedings of the Eighth international Conference
on Very Large Data Bases

We now prove that there exists a valid system
state Ql = (TEl, TTl, TRl, sl) which is both a
LTRD and a IVWP of Q and TEl = (TEUTR) if and
only if G is K-colorable.

This is because if neither (Ml) nor (M2) holds
in sl, then (Pl) will not hold in sl, which
violates (A3.1.3.). and Ql would not be a valid
extension of Q.

We now prove that in any serial schedule sl,
such that Ql is both a LTRD and a IVWP of Q, in
each One in K choice component i, (M2) holds for
one and only one triangle component [i,j].

Suppose in One in K choice component i, (M2)
holds for any two triangle components : triangle
component [i,j] and triangle component [i,k].

This means n(Te i,j) < n(Tr'i,j)
and t 1 t 3 r(Te i,k) < n (Tr i,k) I:;

But according to (02) : ,"[f:;;g]; ;;$::;j

which implies that in sl of Ql,
TT (Tr[i,k]) < T (Te[i,j]) (3)

must hold, otherwise Te[i,j] will read b[i,j,k]
from Tr[i,k], which violates (A3.2.).
Similarly, according to (02) the following must
also hold :

TT (Tr[ij]) < Ir(Te[i,k]) (4)

But (3) and (4) contradicts (1) and (2).

Next, suppose in One in K choice component i,
(M2) does not hold for any triangle component,
then (Ml) must hold for all triangle components

for j =I &i;;jj ! k(Tt[i,j])

But accor~~~~~~,~~:k;ti*~i'l

for all'j : 1 \< j'< K-l

$9; $1 f ;;$+]

which implie; ihat in ani sl of Ql :
~r(Tt[i,j]) < It (Tr[i, j+l])

(5)

86 Mexico City, September, 1982

for all j : 1 \< j \< K-l

n (Ttli,K]) < T (Tr[i,l]) (6)

must hold, otherwise Tt[i,j

But (5) and (6) leads to a contradiction.

Now we prove that if node p and node q are
connected, then in sl of Ql, (M2) cannot simul-
taneously hold for any two triangle components
in One in K choice components p and q which
correspond to the same color x.

Suppose the contrary, then we have

H) < m (Tr p,x)
and IT E 3) < IT (Tr q,x)
But according to (04), we have

~[~'~'~~: ~~$~'~~ for all j : 1 (j \< K
which imilies that i; any sl of Ql :

JT (Tr s,xl) < JT (Te
E

(9)
and H (Tr p,xl) < T (Te (10)

must hold, otherwise either will read
will read

which violates (A3.2.).
But (9) and (10) contradicts (7) and (8).

So far we have proved that in any serial
schedule sl of valid system state Ql = (TEl,
IVWP of Q, in each One in K choice component,
(M2) must hold for one and only one triangle
ed, then (M2) cannot simultaneously hold for two
triangle components in One in K choice com-
ponents p and q which correspond to the same
color.

Suppose there exists Ql which is both a LTRD
and a IVWP of Q, we set node i to color j iff
(M2) holds for triangle component [i,j] in sl in
Qt. Then each node will be set to one and only
one color, and connected nodes will be set to
different colors.

Conversely, we show that if the graph G is K-
colorable, then for valid system state Q = (TE,
TT, TR, s), there exists a valid system state Ql
= (TEE, TT~, TRY, sl) such that Ql is both a
LTRD and IVWP of Q, and TEl = (TEUTR).

Suppose that graph G = (X, U) is K-colorable.
We construct a graph Gl = (Xl, Ul) as follows:

Xl = ((xr[i,j]I U (xt[i,jlI U {xe[i,jlI)
for 1 < i(N, 1 (j \< K.

Ul =
{ (xe[i,j], xt[i,j])] 1 \< i \< N, 1 4 j 6 K]

(Yl >
((xr[i,j], xe[i,j]) 1 1 ,< i \< N, 1 4 j d K :

node i is colored j] (Y2)
{(xt[i,j], xr[i,j])] 1 ,< i (N, 1 < j < K :

node i is NOT colored j] (Y3)

{(xe[i,j~,,x;[~,~) 1 1 -$ i \< N, 1 < j,k \< K(y4)

{(xr[i,j+l], xt[i,j]) I 1 < i \< N, 1 < j 4 K-l]
(Y5)

First we show that the graph Gl is acyclic. We
divide all nodes in Gl into 3 + 2K - 1 disjoint
sets.

SET[l] = (xe[i,j]] l<i&N,l<jdK:
node i is NOT colored j]

SET[2] = (xr[i,j]] 1 < i \< N, 1 < j < K :
node i is colored j]

SET[3] = {xe[i,j] 1 1 4 i 4 N, 1 < j \< K :
node i is colored j]

SET[4] = (xt[i,j] 1 1 < i < N, 1 \< j < K :
node i is colored (j mod K)+l}

SET[5] = {xr[i,j]] l&idN,l<j<K:
node i is colored (j mod K)+l 7

.

SET[3+2m-1] = {xt[i,j]] 1 S i \< N, 1 4 j \< K :
node i is colored ((j + m - 1)mod K) + l]

SET[3+2m] = {xr[i,j]] ldidN,l&jdK:
node i is colored ((j + m - 1)mod K) + 11

.

SET[3+2(K-1)-l] = {xt[i,j] I 1 \< i \< N,

SET[3:2;K$]K
: node i is colored
= {xr[i,j]] 1 4 i 6 N,

node i is colored
SET[312i-:]<=K{&[i.j]]l<i(N,l<jdK:

node i is colored j]

It should not be difficult to verify that the
nodes in SET[l] have no incoming arcs, the nodes
in SET[2] have on1

T
incoming arcs from SET[l],

the nodes in SET 3 have only incoming arcs from
SET[l] and SET[2 , i the nodes in SET[3+2K-11
have only incoming arcs from SET[l], SET[2]
. . . . SET[3+2K-21, and the nodes in SET[3+2K-11
has no outgoing arcs. According to graph theory
bl1 this proves that graph Gl is acyclic.

Since Gl is acyclic, it is possible to
renumber all nodes in Gl, that is, reassign new
indices i = 1, 2, NK to each node in Xl,
such that if (xi, xj)C U then j < i.

We can then obtain a serial schedule sl, in
which if j < i then
W(Tj) < ly (Ti), where Tj and Ti are the tran-
sactions corresponding to the nodes which have
been renumbered j and i.

Now we prove that the valid system state Ql =
(TEE, Tri, TRl, sl) thus obtained is both a LTRD
and IVWP of Q = (TE, TT, TR, s) as defined be-
fore, and TEl = (TE U TR).

From the construction of the graph Gl defined
before, the following assertions hold in sl :

for all i, j, 1 < i \< N, 1 \(j < K :

Proceedings of the Eighth International Conference
on Very Large Data Bases

87
Mexico City, September, 1982

T ('di,jl> <v(Te[i,j]) (Yl >
for all i, j, 1 (i\< N, 1 < j \< K and node i is
colored j : H (Te[i,jl) < H(Tr[i,jl) (Y2)
for all i, i. 1 \< i\< N, 1 \< j < K and node i is
NOT colored j :"(Tr[i,j]) < m(Tt[i,j]) (Y3)
for all i, j, 1 6 i \< N, 1 \(j,k \(K and j # k :

fl(Tr[i,j]) <m(Te[i,k]) (Y4)
for all i, j, 1 < id N, 1 < j \< K-l :

v(Tt[i,j]) <TT(Tr[i,j+l]) (Y5)
for all i, j, 1 \< i \< N :

m(Tt[i,K]) C v(Tr[i,l]) (fi)
for all i, j, 1 \< i(N, 1 \(j \< K and node p
and node q are connected :

n(Tds,jl) < H(Te[p,jl) (Y-f)

Prom these assertions, we derive :

(~1) and (~2) and (~3) and (01)
==> (PI) holds in sl in Ql. (yS)

(~4) and (02) ==> for all i, j, k, u, v,
Tut (TEUTT~TR), TVC(TEUWUTR) :

l(Tu reads b[i,j,k] from TV in sl) (Y9)
(~5) and (~6) and (03) ==> for all i, j, k,
u* v, Tut(TEU!lTUTR), TvC(TEUTTUTR) :

~(Tu reads c[i,j,k] from TV in sl)
(~7) and (04) ==> for all p, q, j, u, v,

(YIO)

TU~(TEUTIJUTR), TV((TEUTTUTR) :
~(Tu reads d[p,q,j] from TV in sl)

(98) and (~9) and (~10) and (~11)
(Yll)

==> (A3.1.) and (A3.2.) (Yi2)
==> Ql is a valid extension of Q.

(01) and (02) and (03) and (04)
==> for all U, V, TuC (TEUTTUTR).,

TV~ (TEUTPUTR) : SWUM swv = 0
==> (H4.2.) ==> Ql is a IVWP of Q. (Y13)

(~8) and (~9) and (~10) and (~11) and (~12)
and (~13) ==> Ql is a LTRD of Q.

(Q.E.D.)

EXAMPLE :
Suppose we have an instance of the graph G
below, and K = 2 :

node 1

node 2 node 3

node 4

We construct a valid s stem state Q = (TE TT,
TR, s), where TE = (Te i,j]), f lT = (Tt[i,jj], TR
= {Tr[i,j]) 1 4 i \< N, 1 \< j (K as following :

Tdl ,I 1

Tdl 21

Td2,ll

T42 21

= ([

= ([

= (r

= <c

b[f 12,119

b[l ,I 21,

bbG’,ll,

?-d&I ,219

Tr[3,1] = ([b[3,2,1], d[l 3,111 &4,3911 1
[a[3,1], c[3,1,2j I>

Tr[3,2] = ([b[3,1,2], d[l 3,2], d[4,3,2I 1
td3.21 c[3215])

Tr[4,1] = ([b[4,2,1], d[2 4911: dIf3,4,;I’I
[a[4,1] c[4,1,25 I)

Tr[4,2] = ([b[4,1 ,2I, dL.2 4,219 dC3,4,2I 1
[a[4,2], c[4,2,11 I>

Te[l,l] = ([a[1,1] 1, [b[l,l,2], d[l,2,1]
d[l,3915 1)

Te[l,2] = ([all,21 1, [b[l ,2,1], dl,2,2]
d[l,3,2j 1)

Te[2,1] = ([a[2,1] 1, [b[2,1,2], d[2,1,II
d2,4Jj 1)

Te[2,2] = ([a[2,2] 1, [b[2,2,1], d[2,1,2]
d[2,4,2j 1)

Te[3,1] = ([a[3,1] 1, [b[3,1,2], d[3,1 ,l]
d[3,4Jj 1)

Te[3,2] = ([a[3,21 I, [b[3,2,11, d[391p21
d[3,4,2j 1)

Te[4,1] = ([a[4,1] 1, [b[4,1,21, d4,2,111 _
d[4,3,11 1)

Te[4,2] = ([a[4,2] I, [b[492,11v d[4,2,21
d[4,32j 1)

Ttrl ,I.
Tt-I,2
Tt-2,1-
Tt.2,2
Ttm3,1.
Tt.3,2-
Tt.4,1*
Tt-412s

The serial schedule s is as followin
s =Tt[l,1]Te[l,l]Tt[l,2]Te[l,2]...Tt 4,2]Te[4,2] I

:

Since the graph G above is K=2 colorable, we can
assign color 1 to node 1 and node 4, and assign
color 2 to node 2 and node 3. Then we can con-
struct Gl = (Xl, Ul), and divide all nodes in Xl
into 3 + 2(2) - 1 = 6 disjoint sets :

SET-I. =
SET-2 =
SET3 =
SET.4. =
SET.5. =
SET-6- =

xe-1,2., xe-2,1., xe.3,1., xe.4,2.
xr I,1 , xr 2,2 , xr.3,2., xr.4,1.
ie I,1 , xe 2,2 , xe 3,2 , xe.4.1.
xt1,2 , xt-2,1., xt.3,1,, xt.4,2.
kr I,2 , xr.2.1.. xr 3.1,. x1-.4,2.
xt-l,l-, xt-2,2,, xt-3,2-, xt..4,1-

It is easy to verify that the valid system state
QI = (TEI, WI, ml, ~1) where TEI = (TE U TR) =
({Te[i,j]] U {Tr[i,j]]), lT1 = TT = (Tt[i,j]i,
!CRl = 0 and,

sl = xt i,j
i 3 xr i,j

xe i,j
xt i,j

i i
xr i,j
xt i,j

Proceedings of the Eighth International Conference
on Very Large Data Bases 88 Mexico City, September, 1982

is both a LTRD and a IVWP of Q = (TE, 'PI', TR, s)
as defined above.
Note that (M2) i.e.
w(Tr[i j]) holds for triangle
b;W;e;'949 [3,2], since node 1 and node 4 wq

color 1, and node 2 and node 3 was as-
signed color 2.
Also (Ml) i.e. T (Tr[i,j]) < TT (Tt[i,
w (Te[i j]) holds for triangle component
[4,2], f2,1], [3,1], since node
NOT assigned color 2, and node
NOT assigned color 1.

1 and node 4 was
2 and node 3 was

3. THE PROOF OF THEOREM 4.3.
proof :
The proof of theorem 4.3 is similar to the

proof of theorem 4.2. We transform the " GRAPH
K-COLORABILITY It problem to LU in the same
fashion as above. Here, for sake of brevity, we
shall only show the construction of the valid
system state Q = (TE, IT, TR, s), for which
there exists a valid system state Ql = (TEE,
TTl, TRl, sl) which is both a ,LTRD and a UPDW of
Q and TEl = (TE U TR) if and only if graph G is
K-colorable.

In each triangle component [i,j], i = 1, 2,
. . . . N, j = 1, 2, K, we let :

In each One in K choice component i, i = 1, 2,
. . . . N, we let :

For all 1 \< p,q \< N, p #
q are connected, we let :

K-I

q and node p and node

K

We further construct a serial schedule

;tfl ,l]Tt[1,2] . ..Tt[N.K]Te[l,l]Te[l,2]...Te[N,K]

Then we collect all the transactions con-
structed above together to form the three sets :

TE= Te i,j
TT = Tt i,j I t TR = Tr i,j Ii
i = 1, 2, N, j = 1, 2, K

It is not difficult to see that the valid sys-
tem state Q = (TE, Tl!, TR s) thus constructed
can be constructed in polynomial time.

In the proof of theorem 4.3., the following
formulas can be put into one to one correspon-
dence with those in the proof of theorem 4.2. :

(Ml >’ Ir(Te[i,j]) < w(Tt[i,j]) < rr(Tr[i,j])

(exc'us~~~t~~,j]) < Ir(Tr[i,j]) < lr(Te[i,j]) 042)

Ir(Te i,k) <
E 1

Ir(Tr i,j)
H (Te i,j > < E 3 rr(Tr i,k >

w (Tt[i,j]) < m(Te[i,j+l])
':14 j\<K-1

and w ;,"f[Ii:]; < H(Te[i,l]) (6)’

> < * (Tr P*X >
E 3

(9)’
> < ‘IT (Tr q,x) (10)’

whereas formulas (I)', (2)', (5)‘, (7)‘, (8)’
are directly derived from (Ml)' and (M2)' above.

The rest of the proof of theorem 4.3. follows
exactly the same scheme as that in the proof of
theorem 4.2.

4. PROOF OF THEOREM 4.4.
Proof :
The proof of theorem 4.4 is also similar to

the proof of theorem 4.2. We transform the "
GRAPH K-COLORABILITY II problem to UI in the same
fashion as above. Here, for sake of brevity, we
shall also only show the the construction of the
valid system state Q = (TE, TT, TR, s), for
which there exists a valid system state Ql =
(TEE, TT~, TRl, sl) which is both a UPDW and a
IVWP of Q and TEl = (TEU TR) if and only if
graph G is K-colorable.

In each triangle component [i,j], i = I, 2,
. . . . N, j = 1, 2, K, we let :

(O')
-*a i,j t SWt i,j SWr i,j n SRe i,j = 0

;[i::]::;;[:,;] SWdi,j!/ fJ SRdi.j] = 0
9

In each One in K choice component i, i = 1, 2,
. . . . N, we let :

-$ K and j # k

Proceedings of the Eighth International Conference
on Very Large Data Bases 89 Mexico City, September, 1982

For all 1 .$ p,q ,< N, p # q and node p and node for each valid system state Q = (TE, TT, TR, s)
q are connected, we let : constructed above in each of the proofs of

theorem 4.2., 4.3., and 4.4. (Q.E.D)
(o4)** d”;[;,;,;] s ;;:[y]

for Al; j :1&K

We further construct two sets of auxiliary ex-
ecuting transactions TBE and TDE as follows :

TDE = ~Tde[p,q,jl~ for all 1 4 p,q < N, P # q
and node p and node

We then construct a serial schedule

Then we collect all the transactions con-
structed above together to form the three sets :

i = 1, 2, N, j = 1, 2, K

It is not difficult to see that the valid sys-
tem state Q = (TE, TT, TR s) thus constructed
can be constructed in polynomial time.

In the proof of theorem 4.3., the following
formulas cull be put into one to one correspon-
dence with those in the proof of theorem 4.2. :

(Ml)" d (Tr[i,j]) <Ir(Te[i,j]) <W(Tt[i,j])
(exclusive) or
(M2)" W (Te[i,j]> < n(Tt[i,j]) < n(Tr[i,j])

H(Tr ik) <K(Tbe i j k) <n(Tt i j)
,(Tr[iIjj) <n(Tbe[i:k:jj) <Jr(Tt[i:kj) [zi"

V (Teli,j]) <r(Tr[i,j+l])
. :l(

and H ;iE[$]f <r(Tr (6 1”

whereas formulas Cl)“, (2)“, (5)‘-, (7)“,
(8)” are directly derived from (Ml)** and
(M2)" above.

The rest of the proof of theorem 4.4. follows
exactly the same scheme as that in the proof of
theorem 4.2.

5. PROOF OF THEOREM 4.5.
Proof :
It can be easily verified that (L4.1.) holds

Proceedings of the Eighth International Conference
on Very Large Data Bases 90 Mexico City, September, 1982

