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ABSTRACT. Dozens of articles have been published 
describing "new" concurrency control algorithms 
for distributed database systems. All of these 
algorithms can be derived and understood using a 
few basic concepts. We show how to decompose the 
concurrency control problem into several sub- 
problems, each of which has iust a few known 
solutions. By appropriately combining known 
solutions to the subproblems, we show that all 
published concurrency control algorithms and many 
new ones can be constructed. The glue that binds 
the subproblems and solutions together is a 
mathematical theory known as serializability 
theory. 

This paper does not assume previous knowledge of 
distributed database concurrency control algo- 
rithms, and is suitable for both the uninitiated 
and the cognoscente. 

1. INTRODUCTION 

A distributed database system (DDBS) is a 
database system (DBS) that provides commands to 
read and write data that is stored at multiple 
sites of a network. If users access a DDBS con- 
currently, they may interfere with each other by 
attempting to read and/or write the same data. 
Concurrency control is the activity of preventing 
such behavior. 

Dozens of algorithms that solve the DDBS 
concurrency control problem have been published 
(see [BGl] and the references). Unfortunately, 

many of these algorithms are so complex that 
only an expert can understand'them. 

To remedy this situation, we have developed 
a simple framework for understanding concurrency 
control algorithms. The framework decomposes 
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the problem into subproblems and gives basic 
techniques for solving each subproblem. To 
understand a published algorithm, one first 
identifies the technique used for each subproblem 
and then checks that the techniques are 
appropriately combined. The framework can also 
be used to develop.new algorithms by combining 
existing techniques in new ways. 

The paper has 10 sections. Sections 2 and 3 
set the stage by describing a simple DDBS archi- 
tecture and sketching the framework in terms of 
the architecture. The framework itself appears 
in Sections 4-8. Section 9 uses the framework to 
explain several published algorithms. Section 10 
is the conclusion. 

This paper refines an earlier survey of con- 
currency control algorithms [BGl]. The earlier 
paper includes many technical details that are 
omitted here. We urge the interested reader to 
consult [BGl] for more details. 

2. DISTRIBUTED DBS ARCHITECTURE 

We use a simple model of DDBS structure and 
behavior. The model highlights those aspects of 
a DDBS that are important for understanding con- 
currency control, while hiding details that don't 
affect concurrency control. 

A database consists of a set of data items, 
denoted {...,x,y,z]. In practice, a data item 
can be a file, record, page, etc. But for the 
purposes of this paper, it's best to think of a 
data item as a simple variable. For now, assume 
each data item is stored at exactly one site. 

Users access data items by issuing Read and 
Write operations. Read(x) returns the current 
value of x. Write(x,new value) updates the 
current value of x to new-value. 

Users interact with the DDBS by executing 
programs called transactions. A transaction only 
interacts with the outside world by issuing Reads 
and Writes to the DDBS or by doing terminal I/O. 
We assume that every transaction is a complete 
and. correct computation; each transaction, if 
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abort the transaction that issued the operation: 
every Write processed on behalf of the trans- 
action is undone (restoring the old value of the 
data item), and every transaction that read a 
value written by the aborted transaction is also 
aborted. This phenomerion of one abort triggering 
other aborts is called cascading aborts. (It is 
usually avoided in commercial DBS's by not allow- 
ing a transaction to read another transaction's 
output until the DBS is certain that the latter 
transaction will not abort. In this paper, we 
will not try to prevent cascading aborts.) This 
paper does not discuss techniques for implementing 
abort. See [GMBL,HS,LS]. 

executed alone on an initially consistent data- 
base, would terminate, produce correct results, 
and leave the database consistent. 

Each site of a DDBS runs one or more of the 
following software modules (see Figures 1 and 2): 
a transaction manager (TM), a data manager (DM) 
or a scheduler. Transactions talk to TM's; TM's 
talk to schedulers; schedulers talk among them- 
selves and also talk to DM's: and DM's manage the 
data. 

. hA 

transactio 
Scheduler- 

transaction/ 

Figure 1. DDBS Architecture 
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Figure 2. Processing Operations 

Each transaction issues all of its Reads 
and Writes to a single TM. A transaction also 
issues a Begin operation to its TM when it starts 
executing and an End when it's finished. 

The TM forwards each Read and Write to a 
scheduler. (Which scheduler depends on the con- 
currency control algorithm; usually, the scheduler 
is at the same site as the data being read or 
written. In some algorithms, Begins and Ends are 
also sent to schedulers.) 

The scheduler controls the order in which 
DM's process Reads and Writes. When a scheduler 
receives a Read or Write operation, it can'either 
OU@ut the operation right away (usually to a DM, 
sometimes to another scheduler), deZay the opera- 
tion by holding it for later action, or reject 
the operation. A rejection causes the system to 
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The DM executes each Read and Write it re- 
ceives. For Read, the DM looks in its local 
database and returns the requested value. For 
Write, the DM modifies its local database and 
returns an acknowledgment. The DM sends the re- 
turned value or acknowledgment to the scheduler, 
which relays it back to the TM, which relays it 
back to the transaction. 

DM's do not necessarily execute operations 
first-come-first-served. If a DM receives a 
Read(x) and a Write(x) at about the same time, 
the DM is free to execute these operations in 
either order. If the order matters (as it 
probably does in this case), it is the scheduler's 
responsibility to enforce the order. This is 
done by using a handshaking communication dis- 
cipline between schedulers and DM's (see Figure 3): 
if the scheduler wants Read(x) to be executed 
before Write(x), it sends Read(x) to the DM, 
waits for the DM's response, and then sends 
Write(x). Thus the scheduler doesn't even send 
Write(x) to the DM until it knows Read(x) was 
executed. Of course, when the execution order 
doesn't matter, the scheduler can send operations 
without the handshake. 

Handshaking is also used between other 
modules when execution order is important. 

To execute Read(x) on behalf of transaction 1 
followed by Write(x) on behalf of transaction 2 

Scheduler 

send Read(x)\receive Read(x) 
execute Read(x) 

receive value Nsend va1ue 

send write(X)\receive Write(x) 
execute Write(x) 
send ack 

Figure 3. Handshaking 
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3. THE FRAMEVORY \ 

The DDBS modules most important to con- 
currency control are schedulers. A concurrency 
control algorithm consists of some number of 
schedulers, running some type of scheduling algo- 
rithm, in a centralized or distributed fashion. 
In addition, the concurrency control algorithm 
must handle "replicated data" somehow. (TM' s 

often handle this problem.) 

To understand a concurrency control algo- 
rithm using our framework one determines 

(i) the type of scheduZing algorithm 
used (discussed in Sections 5 and 8), 

(ii) the location of the scheduler(s), 
i.e. centralized vs. distributed 
(Section 6), and 

(iii) how repzicated data is handled 
(Section 7). 

The framework also includes rules that tell 
when a concurrency control algorithm is correct. 
These rules give precise conditions under which 
a DDBS produces correct executions. These rules, 
called serializability theory, are discussed in 
the next section. 

4. SERIALIZABILITY THEORY 

Serializability theory is a collection of 
mathematical rules that tell whether a concurrency 
control algorithm works correctly [BSW,Casa,EGLT, 
Papa,PBR,SLR]. Serializability theory does its 
job by looking at the executions allowed by the 
concurrency control algorithm. The theory gives 
a precise condition under which an execution is 
correct. A concurrency control algorithm is then 
judged to be correct if all of its executions are 
correct. 

4.1 Logs 

Serializability theory models executions by 
a construct called a log. A log identifies the 
Read and Write operations executed on behalf of 
each transaction, and tells the order in which 
those operations were executed. Following 
Lamport, we allow an execution order to be a 
partial order [Lamp]. 

A tranSactiOn log represents an allowable 
execution of a single transaction. Formally, a 
transaction log is a partially ordered set (poset) 
Ti= (Ci,<i) where xi is the set of Reads and 
Writes issued by (an execution of) transaction i, 
and 'i tells the order in which those operations 
must be executed. We write transaction logs as 
diagrams. 

Tl = 
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Tl represents a transaction that reads x and 
2 in parallel, and then writes x. (Presumably, 
the value written depends on the values read.) 
We use ri [Xl (resp. , Wi [Xl ) to denote a Read 
(resp. , Write) on x issued by Tie To keep 
this notation unambiguous, we assume that no 
transaction reads or writes a data item more 
than once. 

Let T={TD,..., Tn) be a set of transaction 
logs. A DDBS log (or simply a log) over T 
represents an execution of TD,...,T,. Formally, 
a log over T is a poset L= (c,<) where 

1. C = UyEo C., and I. 

2. <JU’: < - 1=0 i' 

Condition (1) states that the DDBS executed all, 
and only, the operations submitted by TO,...,Tn. 
Condition (2) states that the DDBS honored all 
operation orderings stipulated by the trans- 
actions. 

The following are all possible logs over 
the example transaction log Tl from above. 

(1) 
rl [xl\ 

r [z]/w~~xl 1 (2) 
rl[xl 

f \w 
r [zlH ’ 

[xl 

1 1 

(3) 
rl [xl 

r Lzl>wlLxl 
1 

Notice that the DDBS is not required to process 
Read(x) and Read(z) in parallel, even though 

Tl allows this parallelism. However, the DDBS 
is not allowed to reverse or eliminate any 
ordering stipulated by Tl. The following is 
not a log over Tl 

(4) 
rl [xl 2 

rl[zl /Iwlrxl 

because it reverses the order in which Tl 
reads and writes x. 

There is one further constraint on the form 
of logs. Two operations conflict if they operate 
on the same data item and (at least) one of them 
is a Write. To ensure that logs represent 
unique computations, we require that all pairs 
of conflicting operations be ordered. This 
constraint applies to transaction logs as well 
as DDBS logs. 

Given transaction logs 

w. [xl 

TO = W,[Yl 

w. [zl 

rl [xl 
\ 

T = 
1 w1 [xl 

rl[zl / 
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T2 = r2[xl+wW2ty1 T3 
= r3 [z](w31Y1 

w3 tz3 

the following is a log over ~T~,T~,T~,T~}. 

=1 = 

w. [xl /’ 
rltxl 

‘w [xl 
rl[zl /' 

w. [Yl 

+\ 

r [xl-w,[yl 2 
w,[zl 

1 
r3 [zl---*w,[~l 

\w3[ zl 

(Note that orderings implied by transitivity are 
usually not drawn. E.g. W"[Yl <W,[Yl is not 
drawn in the diagram, althouqh it follows from 
w,ty1 <W,[Yl and w,[yl <w,[yl .I 

4.2 Log Equivalence 

Let L be a log over some set T, and 
suppose wi[xl and rj [xl are operations in L. 
We say rj [xl reads-from Wi[X] if wi[xl < r [xl 
and no Wk [xl falls between ri[xl and Wj[X . I 
In this log 

w,[xl +rl[xl +w2[xl +r3[xl +r4[xl 

rl [xl reads-from w,[xl, and r3[xl and r4[xl 
read-from w2 [xl . We call Wi[xl a finaLwrite 
in L if no w,[xl follows it. In this log 

w,[xl *w1[x3 +w,[ul +r2[yl 

w1 [xl and w,[yl are final-writes. 

Intuitively, two logs over T are equi- 
valent if they represent the same computation. 
Formally, two logs over T are eqUiVakZt if 

(1) each Read reads-from the same Write in 
both logs, and 

(2) they have the same final-writes. 

Condition (1) ensures that each transaction reads 
the same values from the database in each log. 
Condition (2) ensures that the same transaction 
writes the final value of a given data item in 
both logs. 

The following log L2 is equivalent to 
log Ll of Section 4.2. 

L2 = wO~xlwO[ylwO[zlr2[xlw2tylrl[x]rl[z] 

w1[x1r3[~1~3ty1~3[~1 . 
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(When we write a log as a sequence, e.g. L2, we 
mean that the log is totally ordered: each 
operation precedes the next one and all subse- 
quent ones in the sequence. Thus, in L2, 
w,txl <wOtyl <wOtzl < r2txl . . . .) 

4.3 Serializable Logs 

A serial, log is a total order on C such 
that for every pair of transactions Ti and Tj, 
either all of Ti's operations precede all of 
Tj’S, or vice versa (e.g., L2 in Section 4.2). 
A serial log represents an execution in which 
there is no concurrency whatsoever; each trans- 
action executes from beginning to end before the 
next transaction begins. From the point of view 
of concurrency control, therefore, every serial 
log represents an obviously correct execution. 

What other logs represent correct executions? 
From the point of view of concurrency control, a 
correct execution is one in which concurrency is 
invisible. That is, an execution is correct if 
it is equivalent to an execution in which there 
is no concurrency. Serial logs represent the 
latter executions, and so a correct log is any 
log equivalent to a serial log. Such logs are 
termed serializable (SR). Log L1 of Sec. 4.1 
is SR, because it is equivalent to serial log L2 
of Sec. 4.2. Therefore Ll is a correct log. 

Serializability theory is the study of 
serializable logs. 

4.4 The Serializability Theorem 

This section presents the main theorem of 
serializability theory. Later sections rely on 
this theorem to analyze concurrency control 
algorithms. This theorem uses a graph derived 
from a log, called a serialization graph. 

Suppose L is a log over {TO,...,Tn}. 
The serialization graph for L, SG(L), is a 
directed graph whose nodes are TO,...,Tn, and 
whose edges are all Ti IT' 
x, either (i) ri[xl <wj[x , or 3 

such that, for some 
(ii) Wi[Xl < 

rj[xl, or (iii) Wi[XI ' Wj[XI. The serialization 
graphs for example log Ll is 

Edge TO+Tl is present because w,[xl <rl[xl. 
Edge T2+Tl is caused by r2[xl <wl[xl. Edge 

T2+T3 arises from w2ty1 <w3[yl. And so 
forth. 

SERIALIZABILITY THEOREM. If SG(L) is 
acycZic then L is sR. a 
For example, since SG (I$ is acyclic, L 1 is 
SR. 
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We can also use the Serializability Theorem 
to determine if a scheduler produces SR logs. 
First, we characterize the logs produced by the 
scheduler. Then we prove that every such log 
has an acyclic SG [BSW, Papa]. 

Some concurrency control algorithms schedule 
read-write conflicts separately from write-write 
conflicts. It is easier to analyze such algo- 
rithms using a restatement of the Serializability 
Theorem. Define the read-write se&aZization 
graph for L,.SG,(L), as follows: SGIw(L) has 
nodes TG,...,T, and edges Ti+T' 
for some X, either (i) ri[xl <wj xl, or 7 

such that, 

(ii) Wi[Xl <rj [Xl. In other words, SG,(L) is 
like SG(L) except we don't care about write- 
write conflicts. The write-write serialization 
graph for L, SGww(L), is defined analogously: 
the nodes are TD,...,T,, and the edges are 
Ti+T. 

3 
such that, for some x, wi[xl <wj[x]. 

SG ,JLl) T3 
21 SGww(Ll) = TG--+T 

\T^/I 3 

Of course, SG(L) =SGm(L) USGW CL). 

RESTATED SERIALIZABILITY THEOREH I'll]. If 
the following four conditions hold, then L is 
SR 

(i) SGm(L) is aeycZic. 

(ii) SGww(L) is acyclic. 

(iii) For all Ti and T,, if Ti pre- 
cedes Tj in SGw L) 1 then either 
Ti precedes T' zn SGww(L), or 
there is no pat ?l between them in 
SG,, UJ . 

(iv) For all Ti 
cedes T. in 

and T-j> if Ti pre- 
SG,,(L) then either 

Ti peeides T. in SG,(L), or 
there is no patA between them in 
SGm CL) . 0 

Conditions (i)-(iv) are just another way of 
saying that SG(L) is acyclic. The conditions 
allow us to analyze the correctness of read- 
write (IX) scheduling almost independently of 
write-write (ww) scheduling. 

5. SCHEDULERS 

There are four types of schedulers for 
producing SR executions: two-phase locking, 
timestamp ordering, serialization graph checking 
and certifiers. Each type of scheduler can be 
used to schedule rw conflicts, ww conflicts, 
or both. This section describes each type of 
scheduler assuming it is used for both kinds of 
conflict. Ways of combining scheduler types 
(e.g. two-phase locking for rw conflicts and 
timestamp ordering for ww conflicts) are 
d.escribed in Section 9. This section also 

assumes that the scheduler runs at a single site, 
see Figure 4; Section 6 lifts this restriction. 

transaction . 

transaction 

transaction 
. 
. . 

transaction 

trans;ction>d 

. 
transaction/ 

Figure 4. DDBS Architecture with Centralized 
Scheduler 

5 .l Two-Phase Locking. 

A two-phase locking (2PL) scheduler is 
defined by three rules [EGLT]: 

i. Before outputting ri [Xl Crew. Wi [Xl 1 , 
set a read-lock (resp. write-lock) for Ti 
on x. The lock must be held (at least) 
until the operation is executed by the 
appropriate DM. (Handshaking can be used 
to guarantee that locks are held long 
enough.) 

ii. Different transactions cannot simultaneously 
hold "conflicting" locks. Two locks con- 
flict if they are on the same data,item and 
(at least) one is a write-lock. If rw and 

ww scheduling is done separately, the de- 
finition of "conflict" is modified. For 
rw scheduling, two locks on the same data 
item conflict if exactly one is a write- 
lock; i.e., write-locks don't conflict with 
each other. For ww scheduling, both 
locks must be write-locks. 

iii. After releasing a lock, a transaction can- 
not obtain any more locks. 

Rule (iii) causes locks to be obtained in a 
two-phase manner, During its growing phase, a 
transaction obtains locks without releasing any. 
By releasing a lock, the transaction enters its 
shrinking phase during which it can only release 
locks. Rule (iii) is usually implemented by 
holding all of a transaction's locks until it 
terminates. 

2PL THEOREM. A ~PL scheduler only produces 
SR logs. 

Proof Sketch. Consider a log L produced 
by a 2PL scheduler. If Ti+T. 3 is in SG(L), 
then Ti released some lock before Tj obtained 
that lock. If there's a nonempty path in SG (L) 
from Ti to Ti (i.e., a cycle) then, by 
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transitivity, Ti released a lock before Ti 
obtained some lock, thereby breaking rule (iii). 
So, SG(L) is acyclic. By the Serializability 
Theorem, this implies that L is SR. 0 

Several varieties of T/O schedulers have 
been proposed. We only sketch these variations 
here. Full details appear in [BGl]. 

Due to rule (ii), an operation received by 
a scheduler may be delayed because another trans- 
action already owns a conflicting lock. Such 
blocking situations can lead to deadlock. For 
example, suppose r1 [xl and r2[y1 set read- 
locks, and then the scheduler receives wl[y] 
and w2txl. The scheduler cannot set the write- 
lock needed by wl[y] because T2 holds a read- 
lock on y. Nor can it set the write-lock for 
w2 [xl because Tl holds a read-lock on x. 
And, neither Tl nor T2 can release its read- 
lock before getting the needed write-lock 
because of rule (iii). Hence, we have a dead- 
lock: Tl is waiting for T2 which is waiting 
for Tl. 

A basic T/O scheduler outputs operations in 
essentially first-come-first-served order, as 
long as the T/O scheduling rule holds. When the 
scheduler receives ritxl it does the following. 

if TS(i) <largest timestamp of any Write on - 
x yet "accepted" 

then reject ri[xl 

else "accept" ri [Xl and output it as soon as 
all Writes on x with smaller timestamp 
have been acknowledged by the DM. 

When the scheduler receives Wi[Xl it behaves as 
follows. 

Deadlocks can be characterized by a waits- 
for graph [Halt, KC], a directed graph whose 
nodes represent transactions and whose edges re- 
present waiting relationships: edge Ti+Tj 
means Ti is waiting for a lock owned by Tj. 
A deadlock exists if and only if (iff) the 
waits-for graph has a cycle. E.g., in the above 
example the waits-for graph is 

if TS(i) <largest timestamp of any Read or - 
Write on x yet "accepted" 

then reject Wi[X] 

else "accept" wi [xl and output it as soon as 
all Reads and Writes on x with smaller 
timestamp have been acknowledged by the 
DM. 

T- lT2 * 

A popular way of handling deadlock is to 
maintain the waits-for graph and periodically 
search it for cycles. (See [Chap. 5, AHU] for 
cycle detection algorithms.) When a deadlock is 
detected, one of the transactions on the cycle 
is aborted and restarted, thereby breaking the 
deadlock. 

5.2 Timestamp Ordering 

In timestamp ordering (T/O) each trans- 
action is assigned a globally unique timestamp 
by its TM. (See [BGl, Thorn] for how this is 
done.) The TM attaches the timestamp to all 
operations issued by the transaction. A T/O 
scheduler is defined by a single rule: output 
all pairs of conflicting operations in timestamp 
order. Make sure conflicting operations are 
executed by DMs in the order they were output. 
(Handshaking can be used to make sure of this.) 

As for 2PL, the definition of "conflicting 
operation" is modified, if rw and ww 
scheduling are done separately. 

A conservative T/O scheduler avoids rejec- 
tions by delaying operations instead. An opera- 
tion is delayed until the scheduler is sure that 
outputting it will cause no future operations to 
be rejected. Conservative T/O requires that each 
scheduler receive Reads and Writes from each TM 
in timestamp order. To output any operation, the 
scheduler must have an operation from each TM in 
its "input queue." The scheduler then "accepts" 
the operation with smallest timestamp. "Accept" 
means remove the operation from the input queue, 
and output it as soon as all conflicting opera- 
tions with smaller timestamp have been acknow- 
ledged by the DM. Variations on conservative 
T/O are discussed in [BGl,BSR]. 

Basic T/O and conservative T/O are endpoints 
of a spectrum. Basic T/O delays operations very 
little, but tends to reject many operations. 
Conservative T/O never rejects operations, but 
tends to delay them a lot. One can imagine T/O 
schedulers between these extremes. To our 
knowledge, no one has yet proposed such a 
scheduler. 

T/O THEOREM. A T/O scheduler only produces 
SR logs. 

Proof Sketch. Since every pair of con- 
flicting operations is in timestamp order, each 
edge Ti+Tj in SG has TS(i) < TS(j) (where 
TS (i) is the timestamp of Ti). Thus, SG 
cannot have any cycles. So, by the Serializabi- 
lity Theorem, the log produced by the scheduler 
is SR. 0 

Thomas' write rule (TWR) is a technique that 
reduces delay and rejection [Thorn]. TWR can Only 

be used to schedule Writes, and needs to be com- 
bined with basic or conservative T/O to yield a 
complete scheduler. If we're only interested in 
ww scheduling, TWR is simple. When the 
scheduler receives Wi[xI it does the following. 
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if - TS(i) <largest timestamp of any Write on 
x yet "accepted" 

then "pretend" to execute Wi[xI--i.e., send an 
acknowledgement back to the TM, but don't 
send the Write to the DM 

else "accept" Wi [Xl and process it as usual. 

The basic T/O-TWR combination works like this. 
Reads are processed exactly as in basic T/O. But 
when the scheduler receives a wi[x], it combines 
the basic T/O rule and TWR as follows. 

if - TS(i) <largest timestamp rw scheduling 
of any Read on x yet (basic T/O) 
"accepted" 

then reject wi[x) 

else if TS(i) <largest time- ww scheduling 

then 

else 

stamp of any Write on x (TWR) 
yet "accepted" 

"pretend" to execute wi[xl 

"accept" the Wi[xl and output it as soon 
as all operations on x with smaller 
timestamp has been acknowledged by the DM. 

The conservative T/O-TWR combination is 
described in [BGl]. 

5.3 Serialization Graph Checking 

This type of scheduler works by explicitly 
building a serialization graph, SG, and checking 
it for cycles. Like basic T/O, an SG checking 
scheduler never delays an operation (except for 
handshaking reasons). Rejection is the only 
action used to avoid incorrect logs. 

An SG checking scheduler is defined by the 
following rules. 

1. ' When transaction Ti Begins, add node 
Ti tO SG. 

ii. When a Read or Write from Ti is re- 
ceived, add all edges T' -fTi such that T. is 
a node of SG, and the SC eduler has already'out- 2l 
put a conflicting operation from T.. As for the 
previous schedulers, the definitionjof "con- 
flicting operation" is modified if r-w and ww 
conflicts are scheduled separately. 

iii. If after step (ii) SG is still acyclic, 
output the operation. Make sure that conflicting 
operations are executed by DM's in the order they 
were output. (Handshaking can be used for this.) 

iv. If after (ii) SG has become cyclic, 
reject the operation. Delete node Ti and all 
edges Ti+T. 
acyclic agai?.) 

or TjtTi from SG. (SG is now 

SG CHECKER THEOREM. An SG checking scheduler 
onzy produces SR zogs. 
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Proof Sketch. Every log produced by the 
scheduler has an acyclic SG. So, by the Serial- 
izability Theorem, every log is SR. q 

One technical problem with SG checkers is 
that a transaction must remain in SG even after 
it has terminated. A transaction can only be 
deleted from SG when it is a source node of the 
graph, i.e., when it has no incoming edges. See 
[Casa] for a discussion of this problem and 
techniques for efficiently encoding information 
about terminated transactions that remain in SG. 

5.4 Certifiers 

The term "certifier" refers to a scheduling 
philosophy, not a specific scheduling rule. A 
certifier is a scheduler that makes its decisions 
on a per-transaction basis. When a certifier 
receives an operation, it internally stores in- 
formation about the operation and outputs it as 
soon as all earlier conflicting operations have 
been acknowledged. When a transaction ends, its 
TM sends the End operation to the certifier. At 
this point, the certifier checks its stored in- 
formation to see if the transaction executed 
serializably. If it did, the certifier certifies 
the transaction, allowing it to terminate; other- 
wise, the certifier aborts the transaction. 

All of the earlier schedulers can be adapted 
to work as certifiers. Here is an SG checking 
certifier. When the certifier receives an 
operation, it adds a node and some edges to SG 
as explained in the previous section. The certi- 
fier does not check for cycles at this time. 
When a transaction, Ti, ends, the certifier 
checks SG for cycles. If Ti does not lie on a 
cycle, it is certified; otherwise it is aborted. 

SG CERTIFIER THEOREM. An SG checking certi- 
fier only produces SR logs. 

Proof.Sketch. Consider any "completed" log 
produced by the certifier. Conp~eted means that 
all uncertified transactions are aborted and 
removed from the log. (As always, any trans- 
action that read data written by an aborted 
transaction is also aborted; this may include 
some certified transaction.) The completed log 
has an acyclic serialization graph. So by the 
Serializability Theorem, the log is SR. 0 

Here is a 2PL certifier [Thom,KR]. Define 
a transaction to be active from the time the 
certifier receives its first operation until the 
certifier processes its End. The certifier 
stores two sets for each active transaction Ti: 

Tits readset, RS(i) = {xlthe certifier has 
output ri [XII 

Ti's writeset, WS(i) = {xlthe certifier has 
output wi [xl I. 
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The certifier updates these sets as it receives 
operations. When the certifier receives End,, 
it runs the following test. 

Let RS(active) = U (RS(j), such that Tj is 
active, but j fi) 

WS(active) = U (WS(j), such that Tj is 
active, but j fi) 

if - 

then 

else 

RS(i) nWS(active) = @, and 
WS(i) fl (RS(active) UWS(active)) = Q 

certify Ti 

abort T.. 1 

I 

This amounts to pretending that transactions 
hold imaginary locks on their readsets and write- 
sets. When transaction Ti ends, the certifier 
sees if Ti’S imaginary locks conflict with the 
imaginary locks held by other active transactions. 
If there is no conflict, Ti is certified; else 

Ti is aborted. 

2PL CERTIFIER THEOPEM. A ~PL certifier on& 
produces SR logs. 

Proof Sketch. Consider a completed log L 
produced by the certifier. If Ti+T. is in 
SG CL) , then since both Ti and T. 

3 

fied, the certifier processed End: 
were certi- 

If there's a nonempty path in SG(L) 
before Endj. 

from Ti 
tO Ti (i.e., a cycle) then, by transitivity, 
the certifier processed Endi before Endi. 
This is absurd. So, SG(L) is acyclic, and by 
the Serializability Theorem, L is SR. 0 

T/O certifiers are also possible. To our 
knowledge, no one has proposed this algorithm yet. 

Certifiers can also be built that check for 
serializable executions during transactions' 
executions, not just at the end. The extreme 
version of this idea is to check for serializabi- 
lity on every operation. At this extreme, the 
certifier reduces to a "normal" scheduler. 

6. SCHEDULER LOCATION 

The schedulers of Section 5 can be modified 
to work in a distributed manner. Instead of one 
scheduler for the whole system, we now assume one 
scheduler per DM (refer back to Figure 1). The 
scheduler normally runs at the same site as the 
DM, and schedules all operations that the DM 
executes. 

The new issue in this setting is that the 
distributed schedulers must cooperate to attain 
the scheduling rules of Section 5. 

The main problem caused by distributing 
schedulers is the maintenance of global data 
structures. Distributed 2PL schedulers need a 
global waits-for graph. Distributed SG checkers 

need a global SG. In distributed T/O scheduling, 
no global data structures are needed; each 
scheduler can make its scheduling decisions using 
local copies of R-TS(x) and W-TS(x) for each 
X at its,DM. Distributed certifiers generally 
manifest the same problems as their corresponding 
schedulers. 

6.1 Distributed Two-Phase Locking 

Refer to the 2PL scheduling rules of Section 
5.1. Rules (i) and (ii) are "local." The 
scheduler for data item x schedules all opera- 
tions on x. Hence this scheduler can set all 
locks on x. Rule (iii) requires a small amount 
of inter-scheduler cooperation: no scheduler can 
obtain a lock for transaction Ti after any 
scheduler releases a lock for Ti. This can be 
done by handshaking between TMs and schedulers. 
When Ti Ends, its TM waits until all of Ti's 
Reads and Writes are acknowledged. At this point 
the TM knows that all of T.'s locks are set, 
and it's safe to release lokks. The TM forwards 
Endi to the schedulers which then release Ti'S 

locks. 

One problem with distributed 2PL is that 
multi-site deadlocks are possible. Suppose x 
and y are stored at sites A and B, respectively. 
Suppose ri [Xl is processed at A, setting a 
read-lock on x for Ti at A; and rj[y] is 
processed at B, setting a read-lock on y for 
Tj at B. If Wj[Xl and wiLyI are now 
issued, a deadlock will result; Tj will be 
waiting for Ti to release its lock on x at 
A and Ti will be waiting for T. to release 
its lock on y at B. Unfortunatlly, the dead- 
lock isn't apparent by looking at site A or B 
alone. Only by taking the union of the waits-for 
graphs at both sites does the deadlock cycle 
materialize. 

See [MM,Ston,GlSh,Lomet l-4,RSLl for 
solutions to this problem. 

6.2 Distributed Timestamp Ordering 

T/O schedulers are easy to distribute, 
because the T/O scheduling rule of Section 5.2 
is inherently local. Consider a basic T/O 
scheduler for data item x. To process an 
operation on x, the scheduler only needs to 
know if a conflicting operation with larger 
timestamp has been accepted. Since the scheduler 
handles all operations on x, it can make this 
decision itself. 

6.3 Distributed Serialization tiraph Checking 

SG checkers are harder to distribute than 
the other scheduler because the serialization 
graph, SG, is inherently global: Z$ transaction 
that accesses data at a single site can become 
involved in a cycle spanning many sites. See 
[Casal for a discussion of this problem. 
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6.4 Distributedicertifiers 

Distributed certifiers have a synchronization 
requirement a little like rule (iii) of 2PL: 
Ti's TM must not send Endi to any certifier, 
until all of Ti’S Reads and Writes have been 
acknowledged. I.e., we must not try to certify 

Ti at any site until we are ready to certify 
Ti at all sites. 

Beyond this, each distributed certifier be- 
haves like the corresponding scheduler. A 
distributed 2PL certifier needs little inter- 
scheduler cooperation (beyond the previous para- 
graph). The certifier at each site keeps track 
of the data items at its site read or written by 
active transactions. When the certifier at site 
A receives Endi, it sees if any active trans- 
action conflicts with Ti at site A. If not, 
Ti is certified at site A. If Ti is certified 
at all sites at which it accessed data, then it 
is "really" certified; else Ti is aborted. 

A distributed SG certifier shares the prob- 
lems of distributed SG schedulers: the certifier 
needs to check for cycles in a global graph 
every time a transaction ends. 

6.5 Other Architectures 

Centralized and distributed scheduling are 
endpoints of a spectrum. One can imagine hybrid 
architectures with multiple DM's per scheduler. 
See Figure 5. This architecture adds no technical 
issues beyond those already discussed. 

Figure 5. Hybrid Architecture 

Hierarchical scheduler architectures are 
also possible. See Figure 6. To our knowledge, 
one one has studied this approach yet. 

7. DATA REPLICATION 

In a replicated database, each logical data 
item, x, can have many physica copies, denoted 
{Xl,... ,xm,), which are resident at different 
DM's. Transactions issue Reads and Writes on 
logical data items. TM's translate those opera- 
tions into Reads and Writes on physical data. 
The effect, as seen by each transaction, must be 
as if there were only one copy of each data item. 
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sched H 

sched +--jEJ 

Figure 6. Hierarchical Architecture 

There is a simple way to obtain this effect. 
Each TM translates ri [Xl into 
some copy xj of x and wi[xl 

ri Lxj 1 for 

all copies Xj Of Xl. 

into {wi[xjl / 
If the scheduler(s) is 

SR, the effect is just like a nonreplicated 
database. To see this, consider a serial log 
equivalent to the SR log that executed. Since 
each transaction writes into ali! copies of each 
logical data item, each ri[Xjl reads from the 
'latest' transaction preceding it that wrote 
into any copy of x. But this is exactly what 
would have happened had there been only one copy 
of x. (For a more rigorous explanation, see 
[ABC-I. 1 Consider this example. 

w,[x,l -rl [x,1 

XW”“” 
L3 = 

:"::2x:::::$12: 
01 1 

w. [Y,l -r2 [Y,l 

x1 and x2 are copies of logical data item x; 
y1 and y2 are copies of y. To produces 
initial values for both copies of each data 
item. Tl reads x and Y, and writes xi T2 
reads x and Y, and writes y. 

L3 is SR. It is equivalent to the follow- 
ing serial log: 

L4 = w Lx lw Ix lw ty lw [y lr Ix lr [y lw ix 1 01020102111111 

w Lx lr tx lr [Y lw [Y lw '[Y 1 . 1222222122 

Note that each Read, e.g. r2 [x21 
reads 5,:lrn the 'latest' 

or r2 [y21 , 
transaction preceding it 

that wrote into any copy of the data item. 
Therefore, L4 has the same effect as the 
following log in which there is no replicated 
data: 

Lh = w. [XlW, [Yl r1 [xl’l tylw, [xl r2 [xl r2 [yl w2 [y] . 
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We call this the do nothing approach to 
replication--just write into all copies of each 
data item and use an SR scheduler. 

Two other approaches to replication have 
been suggested. In the primary copy approach, a 
copy of each x, say xp, is designated its 
primary copy [Stan] . Each TM translates ri [Xl 
into ri tXj 1 for some copy x., as before. 
Writes are translated differen ly, 2 though. The 
TM translates Wi[XI into a single Write, 
WitX I, 

P 
on the primary copy. When the primary 

copy s scheduler outputs Wi [Xpl r it also issues 
Writes on the other copies of x (i.e., 
Wi[X~l~~~~rwitx~3)~ See Figure 7. These Writes 
are processed by the schedulers for Xl!. . . ,xm 
in the usual way. For example, in 2PL, the 
scheduler for xj must get a write-lock on x' 
for Ti before outputting Wi[Xj]. The primazy 
copy's scheduler may be centralized (in which 
case the technique is called primary site [AD]), 
or distributed with the primary copy's DM. 

Transaction 

Begin TM Scheduler DM 
. 

Write(x) 
. 

w[x 1 

End 

I- 

IL-8 
Scheduler DM 

Figure 7. Processing Writes in Primary Copy 

Primary copy is a good idea for 2PL 
schedulers. It eliminates the possibility of 
deadlock caused by Writes on different copies of 
one data item. Suppose x has copies xl and 
x2. Suppose Tl and T2 want to Write x at 
about the same time. In the do nothing approach, 
the following execution is possible: Tl locks 
x1; T2 locks x2; Tl tries to lock x2 but is 
blocked by T2's lock; T2 tries to lock x1 
but is blocked by Tl's lock. This is a dead- 
lock. Primary copy avoids this possibility 
because each transaction must lock the primary 
copy first. 

In the voting approach to replication, TM's 
again distribute Writes to all copies of each 
data item [Thorn]. Assume we are using distributed 
schedulers. When a scheduler is ready to output 
Wi[Xjl I it sends a vote of yes to the vote 
colZector for 
this time. 

X; it does not output Wi[j'j] at 
When the vote collector recieves yes 

votes from a majority of schedulers, it tells 
all schedulers to output their Writes. (Each 
scheduler may need to update its local data 
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structures before outputting 
a write-lock on 

Wi[Xjl, e.g., set 
x,.) Assume each scheduler is 

correct (i.e., il pro uces an acyclic SG). Then, 
since every pair of conflicting operations was 
voted yes by some correct scheduler (both opera- 
tions got a majority of yes's), the SG must be 
acyclic and the result is correct. 

The principal benefit of voting is fault 
tolerance; it works correctly as long as a 
majority of sites holding a copy of x are 
running. See [Thorn, Giff] for details. 

b. MULTIVERSION DATA 

Let us return to a database system model 
where each logical data item is stored at one DM. 

In a muZtiversion database each Write, 
wi [Xl I produces a new copy (or version) of x, 
denoted xi. Thus, the value of x is a set of 
versions. For each Read, ri[X], the scheduler 
selects one of the versions of x to be read. 
Since Writes don't overwrite each other, and 
since Reads can read any version, the scheduler 
has more flexibility in controlling the effective 
order of Reads and Writes. 

Although the database has multiple versions, 
users expect their transactions to behave as if 
there were just one copy of each data item. 
Serial logs don't always behave this way. For 
example, 

wO[xolrl[xolwl[x1y1]r2[xoy1]w2[y2] 

is a serial log, but its behavior cannot be re- 
produced with only one copy of x. We must 
therefore restrict the set of allowable serial 
logs. 

A serial.logis ~zcopy serial (or l-serial) 
if each ri[xj] reads from the last trans- 
action preceding it that wrote into any version 
of x. The above log is not l-serial, because 
r2 reads 
r2[x"l. 

x from wo, but wo[xo] <wl[xl] < 
A log is I-seria~i2abZe (l-SR) if it's 

equivalent to a l-serial log. l-serializability 
is our correctness criterion for multiversion 
database systems. 

All multiversion concurrency control algo- 
rithms (that we know of) totally order the 
versions of each data item in some simple way. 
A version order, <<, for L is an order rela- 
tion over versions such that, for each x, << 
totally orders the versions of x. 

Given a version order <<, we define the 
multiversion SG w.r.t. L and << (denoted 
MVSG(L,<<)) as SG(L) with the following edges 
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* 
added: for each ri[xJl and wk[xkl in L, 
if xk << ,I then include Tk+T., else include 
T. +T 3 

1 k' 

MULTIVERSION THEOREM [ BGj]. A muZtiversion 
log is I-SR iff there exists a version order <c 
such that MVSG(L,<<) is acyclic. 

This theorem enables us to prove multi- 
version concurrency control algorithms to be 
correct. We must argue that for every log L 
produced by the algorithm, MVSG(L,<<) is acyclic 
for some <<. 

The types of multiversion schedulers that 
have been proposed fall into two classes that 
approximately correspond to timestamping and 
locking. 

8.1 Multiversion Timestamping 

Multiversion concurrency control was first 
introduced by Reed in his multiversion time- 
stamping method [Reed]. In Reed's algorithm, 
each transaction has a unique timestamp. Each 
Read and Write carries the timestamp of the 
transaction that wrote it. The version order is 
defined by xi<< xj if TS(i) <TS(j). 

0p:sations are processed first-come-first- 
served. However, the version selection rules 
ensure that the overall effect is as if opera- 
tions were processed in timestamp order. To 
process ri[xl, the scheduler (or DM) returns 
the version of x with largest timestamp <TS(i). 
To process Wi[xl, version x1 is created, 
unless some Ij [Xl has already been processed 
with TS(j) <TS(i) <TS(k). If this condition 
holds, the Write is rejected. 

An analysis of MVSG(L,<<) for any L 
produced by this method shows that every edge 
TijT. is in timestamp order. (TS(i) <TS(j)). 
Thus 'MVSG(L,<<) is acyclic, and so L is l-SR. 

8.2 Multiversion Locking 

In multiversion locking, the Writes on each 
aata item, x, must be ordered. We define 
,i << ,j if Wi[X’] <W*[X3]. 

the certified or uncer zfied state. When a 6 
Each version is in 

version is first written, it is uncertified. 
Each Read, ri[xI, reads either the last (wrt <<) 
certified version of x or Qny uncertified 

* 
Note that two operations conflict (and produce 
an edge in SG(L) if they operate on the same 
version and one of them is a write. 

** 
Handshaking is used to ensure that logically 
conflicting operations are executed by DM's 
in the order the scheduler output them. 

version of x. When a transaction finishes 
executing, the database system attempts to certi- 
fy it. To certify Ti, three conditions must 
hold: 

Cl. For each ri[x71, x3 is certified. 

c2. For each x <<x i are 
certified. 

wi[xll, all ' 

C;. For each w.[xi] and each x' << x=, 
all transac ions that read xj t, have 
been certified. 

These conditions must be tested atomically. When 
they hold, Ti is declared to be certified and 
all versions it wrote are (atomically) certified. 

An analysis of MVSG(L,<<) for any L 
produced by this method shows that every edge 
Ti-fT' is consistent with the order in which 
transictions were certified. Since certification 
is an atomic event, the certification order is a 
total order. Thus, MVSG(L,<<) is acyclic, and 
so L is l-SR. 

Two details of the algorithm require some 
discussion. First, the algorithm can deadlock. 
For example, in this log 

Tl and T2 are deadlocked due to certification 
condition C3. As in 2PL, deadlocks can be 
detected by cycle detection on a waits-for graph 
whose edges include Ti-fTj such that Ti is 
waiting for Tj to become certified (so that Ti 
will satisfy Cl-C3). 

Second, Cl-C3 can be tested atomically with- 
out using a critical section. Once Cl or C2 is 
satisfied for some ri[xj] or Wi[X1], no future 
event can falsify it. When C3 becomes true for 
some Wi[X’], we "lock" X1 so that no,future 
reads can read versions that precede xi. This 
allows Cl93 to be checked one data item at a 
time. Of course, the waits-for graph must be 
extended to account for these new version locks. 

Two similar multiversion locking algorithms 
have been proposed which allow at most one un- 
certified version of each data item. In Stearns' 
and Rosenkrantz's method [SRI, the waits-for 
graph is avoided by using a timestamp-based 
deadlock avoidance scheme. In Bayer et aZ.'s 
method [BHR,BEHR], a waits-for,graph is used to 
help prevent deadlocks. This algorithms con- 
sults the waits-for graph before selecting a 
version to read, and always selects a version 
that creates no cycles. 

Multiversion locking algorithms in which 
queries (read-only transactions) are given 
special treatient are described in [Dubol, [BG41. 
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s. COKEiINING Tt!E TECHNID,UES 

The techniques described in Sections 4-8 
can be combined in almost all possible ways. 
The three basic scheduling techniques (2PL, T/O, 
SG checking) can be used in scheduler mode or 
certifier mode. This gives six basic concurrency 
control techniques. Each technique can be used 
for rw or ww scheduling or both (62=36). 
Schedulers can be centralized or distributed 
(36x 2 = 72), and replicated data can be handled 
in three ways (Do Nothing, Primary Copy, Voting) 
(72 X 3 = 216). Then, one can use multiversions 
or not (216x2=432). By considering the multi- 
facious variations of each technique, the number 
of distinct algorithms is in the thousands. 

To illustrate our framework, we describe 
some of these algorithms that have already 
appeared in the literature. 

The distributed locking algorithm proposed 
for System R* uses a 2PL scheduler for rw 
and ww synchronization. The schedulers are 
distributed at the DM's. Replication is handled 
by the do nothing approach. 

Distributed INGRES uses a similar locking 
algorithm [Ston]. The main difference is that 
distributed INGRBS uses primary copy for 
replication. 

Many researchers have proposed algorithms 
that use conservative T/O for all scheduling 
[SM,Lela,KNTH,CB]. They typically distribute 
the schedulers at DM's and take the do nothing 
approach to replication. 

SDD-1 uses conservative T/O for rw 
scheduling and Thomas' write rule for ww 
scheduling. The algorithm has distributed 
schedulers and takes the do nothing approach to 
replication [BSR]. SDD-1 also uses conflict 
graph analysis, a technique for preanalyzing 
transactions to determine which run-time 
conflicts need not be synchronized. 

A method using 2PL for rw scheduling and 
Thomas' write rule for ww scheduling is 
described in [BGLI. Distributed schedulers and 
the do nothing approach to replication were 
suggested. To ensure that the locking order is 
consistent with the timestamp order, one can use 
a Lamport clock: Each message is timestamped 
with the local clock time when it was sent; if 
a site receives a message with a timestamp, TS, 
greater than its local clock time, the site 
pushes its clock ahead to TS. After a trans- 
action obtains all of its locks, it is assigned 
a timestamp using the TM's local Lamport clock. 

Thomas' majority consensus algorithm was 
one of the first distributed concurrency control 
algorithms. It uses a 2PL certifier for rw 
scheduling and Thomas' write rule for ww 
scheduling. Schedulers are distributed and 
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voting is used for replication. Bach trans- 
action is assigned a timestamp from a Lamport 
clock when it is certified. This ensures that 
the certification order (produced by rw 
scheduling) is consistent with the timestamp 
order used for ww scheduling. 

Each of these algorithms is quite complex. 
A complete treatment of each would be lengthy. 
Yet by understanding the basic techniques and 
how they can be correctly combined, we can ex- 
plain the essentials of each algorithm in a few 
sentences. 

10. PERFORMANCE 

Given that thousands of concurrency control 
algorithms are conceivable, which one is best for 
each type of application? Every concurrency 
control algorithm delays and/or aborts some 
transactions, when conflicting operations are 
submitted concurrently. The question is: which 
algorithms increase overall transaction response 
time the least? 

Although there have been several performance 
studies of some of these algorithms, the results 
are still inconclusive [GS,GMl,GM2,Lee,Lin,LN, 
MNl,MN2,Riesl,RiesZ]. There is some evidence 
that 2PL schedulers perform well at low to 
moderate intensity of conflicting operations. 
However, we know of no quantitative results that 
tell when 2PL thrashes due to too many deadlocks. 
There are similar gaps in our understanding of 
the performance of other types of schedulers. 
More analysis is badly needed to help us learn 
how to predict which concurrency control algo- 
rithms will perform well for the applications 
and systems we will encounter in practice. 
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