
System D: A Distributed System for Availability 

S. Andler, I. Dingy K. Eswara~~r C. Hauser, 
W. Kim, J. Meld, R. Williams 

IBM Research Laboratory 
San Jose, California 95193 

Abstract 

System D is a distributed transaction-processing system which 
addresses the problems of data integrity, system availability, and 
incremental growth. It is an experimental research vehicle and has 
been prototyped on a local network of loosely coupled minicompu- 
ters. This paper describes the architecture of the system. Novel 
features of System D include the distributed Resource Manager 
that provides high availability by diagnosing and taking corrective 
actions against software-induced crashes, the two-phase Direct 
Commit protocols that require fewer messages and I/OS than 
conventional two-phase commit protocols, the datagram-based 
communications architecture, and the modular storage system. 

1. Introduction 

System D is a distributed transaction-processing system designed 
and prototyped at the IBM Research Laboratory in San Jose, 
Calif., as a vehicle for research into availability and incremental 
growth of a locally distributed network of computers. The system 
has been implemented in PASCAL and assembly language on a 
network of Series/l minicomputers running the Realtime Program- 
ming System (RPS). Six Series/is are interconnected with a 
ZMb/sec insertion ring [HAFN73], which is similar in functions to 
other local networks, such as token rings [FARB72], slotted rings 
[WILK79], and the Ethernet [METC76]. The software architec- 
ture of System D consists of three functionally distinct modules 
and instantiations of each of these modules may be replicated in 
the same or different processors. The modules, whether in the 
same or different processors, communicate solely via explicit mes- 
sages. 

One important goal of System D was to investigate techniques for 
achieving high availability in a computing system. Therefore, 
System D was built with a distributed network of computers which 
provides a natural opportunity for higher availability than a system 
running on a single processor. While it is important to preserve 
the local autonomy of database administrators and users at each 
computing site of a geographically dispersed system [LIND80b], 
this notion of site autonomy carries little importance in a locally 
distributed system. This difference distinguishes System D from 
geographically distributed systems, such as SDD-1 [ROTH801 and 
R* [LINDSOa, LINDBOb, WILLSl], and has an important impact 
on the choice of some of the algorithms used in the system. 

Another goal of the project was to develop a software architecture 
which will facilitate modular growth of a distributed system. The 
notion of decomposing System D into three distinct modules and 
replicating and distributing instantiations of any subset of of the 
modules anywhere in the network is introduced to determine feasi- 
bility of modular growth of the software beyond the simple expan- 
sion of the network by addition of new processors. The replication 
and distribution of software modules also enhance availability of 
the system. 

An obvious difficulty with distributed systems is the overhead 
incurred by the additional communications between processors. 
Therefore, a simple, relatively efficient message-based communica- 
tions subsystem was built for interprocessor communications. 

2. Overview of System D 

The System D software for transaction processing consists of three 
distinct types of modules: application modules, data manager 
modules, and storage manager modules. The application module, 
called A, provides user interfaces for interactive users or applica- 
tion programmers. An application operates on a set of records 
obtained from a data manager module. An application process 
specifies the set of records that it is interested in by key associa- 
tion or by positional values. The data manager module, called D, 
transforms the record-level requests from the A module to page- 
level requests for the storage module. The record-level requests 
may be directed to a file of the database or to access paths for the 
file. The data manager module computes the page numbers in 
which the desired records reside, and issues a calI to the local or 
remote storage manager module to fetch (or store) pages. All the 
changes made by an application are kept locally in the data manag- 
er module, and are sent to the storage manager by the D module 
only when the application commits the data changes to stable 
storage. The storage manager module, called S, supports multiple 
concurrent transactions against the physical database and database 
recovery from failures. 

We make a distinction between a module and an agent. A module 
is a function that exists in a node and can be addressed as a logical 
resource. A module may consist of one or more processes called 
agents. For example, nodes Nl and N2 may have S modules; i.e. 
Nl and N2 each have at least one process that can perform the 
storage manager function. If there are 3 processes (schedulable 
tasks) in Nl that perform the storage manager function, then there 
are three S agents in Nl. 

The System D agents communicate through a message-based com- 
munication subsystem (CSS). Any logical resource, whether an 
agent or a device, can communicate with any other logical resource 
using datagram messages [BOGG79]. An agent may be addressed 
by one or more logical resource numbers. A logical resource 
number is mapped by the CSS into a physical address, consisting 
of a (processor-id, mailbox-id) pair. Mailboxes may be shared by 
one or more agents on a processor. Messages can be sent by an 
agent to any logical resource known to it, and received from any 
(local) mailbox known to it. 

System D guarantees that the effect of running multiple concurrent 
transactions is equivalent to running transactions according to 

some serial schedule [GRAY78]. It also guarantees that the serial 
schedule is the same in all the processors. An interesting variation 
of the two-phase commit/recovery protocol has been developed 
for System D. It uses fewer I/OS and messages. 

* Current address is ESVEL, Inc. , 750A Camden Ave. , Campbell, CA 95008. 

Proceedings of the Eighth International Conference 33 
on Very Large Data Bases Mexico City, September, 1982 



The notion of a distributed Resource Manager (RM) has been 
developed and implemented in System D. RM software runs in 
each processor in the system. Its purpose is to diagnose the causes 
of failure and to take corrective actions. The RM maintains the 
system configuration information in a database, called the Re- 
source Manager Database (RMDB). An operator interface to the 
RM is also provided so that the operator may query and modify 
the status and configuration of the system: that is, the operator 
may forcibly shut down system resources or add new resources to 
the system. 

The locations of data and agents are transparent to all the agents 
in the system (including applications), because of the mapping 
from logical to physical addresses performed by the CSS. The RM 
effects reconfiguration of the system by updating the RMDB to 
reflect changes in logical resource number to physical address 
associations. When an agent discovers that such an association 
may be incorrect, it requests the RM in the same processor to 
verify the association. The RM checks the RMDB and updates the 
mapping if a change has occurred. 

These two features, mapping of a logical resource number to a 
mailbox and the use of the RMDB to reflect the system configura- 
tion, provide location transparency and allow resources to be 
moved as necessary. 

2.1 Transaction Flow in System D 

In order to motivate the detailed description of each of the major 
components of System D in the following sections, a brief discus- 
sion of how some of the System D components interact with one 
another to process a transaction is given here. When a transaction 
is initiated on node N, the A module binds the transaction to a D 
module mailbox. Each transaction is completely processed by a 
single D module. 

Disk storage is divided into pages which are numbered; the page 
numbers span the network of computers. To fetch a data record, 
each D agent computes the page number needed to obtain the 
required record; the page number is used to find the S module 
mailbox to which the page request should be sent. 

When a transaction T makes a database request for the first time, 
it specifies to the D module the maximum amount of time the 
transaction expects to execute before committing the data at the 
end of the transaction. When a D agent makes the first page 
request to an S module on behalf of a transaction, it passes a time 
value to the S module. The S module which services the first page 
request is called the master (or coordinator) for this transaction. 
The master initiates aborting of the transaction if it does not com- 
mit within the specified time limit, presuming that the communica- 

Fig. 1 Typical System D configuration 

Fig. 1 shows a typical configuration for System D. Note that the 
CSS and RM reside in every node. A, D, and/or S modules may 
appear in any node. The LCCs are the Local Communication 
Controllers that send and receive messages from the insertion ring. 
Terminals and shared disks can be connected to a pair of proc- 
essors through a switch, called a Two-Channel Switch (TCS). The 
TCS is switched from processor A to processor B under program 
control, when processor A fails and processor B has to take over 
the terminals and the disks. 

Proceedings of the Eighth International Conference 
on Very Large Data Bases 

tion medium or the node in which the transaction and/or the D 
module runs has failed. Whenever the D module makes subse- 
quent page requests for T, it tells the identity of the master to each 
S module called. The other S modules are slaves with respect to 
the master for this transaction. 

When a transaction is finished, a command is sent to the D module 
to initiate the commit procedure. All the changes made by T (i.e., 
the log) have been kept locally in the D module. The D module 
sends the log to the master S module, which is the commit coordi- 
nator for this transaction. The master S module records the infor- 
mation in stable storage and, when this is done, notifies the D 
module that commit is complete as far as the D module is con- 
cerned and that the D module may notify the A module of transac- 

34 Mexico City, September, 1982 



tion completion. The master S module (or the D module) then 
communicates with the slaves to complete commit processing, 
including actual database changes. 

also returned to the caller which, in the case of a Request, is used 
as the destination for the answer. 

Associated with T, there is also a time limit that T is willing to 
wait for a lock. If a lock cannot be granted within this time limit, 
termination of T is initiated. The S module that times out is called 
the termination initiator for T. The initiator communicates to the 
D module that there has been a time-out and that the transaction 
is to be terminated (the presumption is that there has been a dead- 
lock). The D module sends the list of slaves to the master S mo- 
dule and asks that T be aborted. The master S module aborts the 
transaction and orders all the slaves to abort T. The master S 
module then communicates to the D module that the transaction 
has been aborted. The D module does the necessary cleanup and 
informs the A module that the transaction has been aborted. The 
transaction may be retried either immediately or after a time delay. 

3. Communication Subsystem 

3.1 Introduction 

The System D communication subsystem (CSS) is a message-based 
interprocess communication mechanism. The CSS is part of a 
framework for distributed applications and provides the following 
main features: (1) simple user-process interface, (2) generic serv- 
ices, (3) location independence, (4) failure detection, and (5) 

efficient message passing. This section examines these features in 
detail and describes the architecture of the CSS. 

3.2 Main Features 

3.2.2 Generic Services 

A decoupling between a particular process requesting a service 
(the “client”) and the process(es) performing that service (the 
“server(s)“) is provided by the concept of a “mailbox”, to which 
all messages are sent. A mailbox (also known as a “socket” in 
other systems [ANDL80]) is unique within a host and must be 
explicitly opened and closed by a user process. Messages can be 
received from any specified open mailbox. The CSS also provides 
“temporary” mailboxes to be used in multi-message communica- 
tions. This addressing mechanism is completely general. Not only 
may a single user process have many mailboxes open at the same 
time, but also many user processes may share a common mailbox. 

Fig. 2 shows the use of a shared mailbox to provide a generic 
service and the use of a temporary mailbox to achieve 
request/response pairing. The client sends a request message to a 
globally known mailbox, which is shared by a group of processes, 
all providing the same service. The message is queued in the 
mailbox and the client is free to perform other work until it needs 
the response. Any of the servers can receive the request. After 
processing the request, the server sends the result to the temporary 
mailbox that was automatically created for the reply message from 
the server. The temporary mailbox has a unique number, and will 
automatically be deleted after being used. 

If the server were to return a request (using Request rather than 
Send), a temporary mailbox will be created that allows the client 
further communication with the particular server that handled its 
request. By continuing in this manner, an arbitrarily long connec- 
tion can be sustained. The following regular expression describes 
all possibilities: 

3.2.1 User-Process Interface 

The CSS presents a very simple user-process interface, consisting 
of only a few primitives for sending and receiving messages 
(Request/Receive/Send), similar to the ones introduced by Brinch 
Hansen [BRIN’IO], and a minimum of other primitives for main- 
taining the mailboxes (Open/Close) and map tables 
(SetRef/UnSetRef/DeRef) and for initial program load of remote 
nodes (IPL). The primitives are callable as subroutines from user 
processes written in PASCAL. There are two routines which may 
be used to send a message from one logical resource to another: 
Request and Send. Both routines are synchronous, i.e., they do 
not return to the caller until the message has been copied out of 
the caller’s address space. One requests a response to the mes- 
sage, while the other simply sends a notice. The Request routine is 
used to send a request to a remote server and to receive a corre- 
sponding answer. A mailbox, in which the answer will be placed, 
is returned to the caller. The response may be either another 
request or a notice. 

The Send routine sends a message which does not require a re- 
sponse, i.e. a notice or answer, to the specified logical resource. 
At the receiving end, all arriving messages are queued in storage 
maintained by the CSS until received by the user process. 

The Receive routine allows the user process to receive a message 
addressed to a particular mailbox. Receiving a message is a synch- 
ronous operation. In order to receive a message, the user process 
must specify the mailbox from which it wishes to receive a mes- 
sage, that is, the mailbox to which the message is to be addressed. 
If no messages are in the specified mailbox then the caller will wait 
for the arrival of a message to that mailbox. A “return address” is - . * 

(Request . Receive)* . Send . Receive 

where “.” means “followed by” and “*” means “repeated zero or 
more times”. Some important special cases follow: 

Send . Receive 
Request . Receive . Send . Receive 
Request . Receive . (Request . Receive)n . Send . Receive 

The first of these examples represents a notice (or hint) that is 
sent to a process and where it is not crucial that the message is 
ever received. The second example is the most typical use in 
System D, and represents a message with acknowledgement, or a 
remote procedure call. The third example represents a remote 
procedure call with a transfer of n messages intervening between 
the initial request and the final response. In either case, the com- 
pletion of the entire exchange is detected by the final Receive. 

3.2.3 Location Independence 

A client sends a request to a server using a resource number 
(“logical” address, or simply “address”) for the service it requires. 
The CSS maps the resource number to a physical address COnSiSt- 

ing of the processor-id on which the service resides, and a mailbox 
that has been established (by the RM) for that service. The use of 
logical addresses allows process location independence. LOCatiOn 
independence plays an important role in recovery from failure and 
dynamic reconfiguration of System D. 

The map table that allows the translation from logical to physical 
addresses is kept in the CSS but is maintained (by calls to the 
SetRef/UnSetRef/DeRef primitives of the CSS) by the Resource 
Manager. 

Proceedings of the Eighth International Conference 
on Very Large Data Bases 35 Mexico City, September, 1982 



client 

globally 
known 

mailbox 
servers 

---I 

temporary 
mailbox 

Fig. 2 Shared mailbox and request/response pairing. 

3.2.4 Failure Detection 

Failure detection in System D is accomplished through time-outs. 
The CSS provides the mechanism whereby a user process can wait 
for a message from a mailbox (permanent or temporary), while 
specifying an upper lhnit for how long it is willing to wait. If no 
message arrives in the prescribed time limit, the user process is 
notified of a time-out. In most cases the user process (e.g., a D or 
A agent) notifies the Resource Manager of the problem, and the 
RM attempts to determine the cause of the problem and reconfig- 
ure the system as necessary. Depending on the degree of success 
of the RM, the user process may abort its current transaction or 
attempt to recover from the failure. 

3.2.5 Message Passing 

There is often a high overhead associated with message-based 
communication systems because of the copying of messages from 
one address space to another and the context switching between 
tasks. This overhead is especially noticeable when messages are 
local within a node, i.e., when message passing is compared to 
more traditional methods of transfer of control and data (i.e. a 
procedure-call mechanism). The CSS takes care to reduce both 
the amount of copying that needs to be done and the number of 
task switches incurred. Copying is reduced by remapping areas of 
storage from one address space to another, and task switching is 
reduced by performing the network tasks on behalf of the process 
that performs a send or receive operation. To allow remapping, 
message size is limited to the page size of the machine. If a mes- 
sage is short, it is simply copied from the Receive buffer into the 
receiver’s buffer. If a message is long and the user process’s buff- 
er is on a page boundary, the page table entries for the Receive 
buffer and the user process’s buffer are swapped. 

3.3 Program Structure 

The CSS has been designed in a hierarchical fashion, such that 
each layer provides increased function and hides unnecessary detail 
at the next lower level. 

Level 2 provides the user-process interface 
(Request/Receive/Send, etc.), and is coded entirely in PASCAL. 
It implements the abstractions of mailboxes and logical addresses, 
end performs the mapping from logical to physical addresses. 
Level 2 also maintains message queues for each mailbox. and 
supplies the information for the header that is appended to the 
front of each message. 

Level 1, on the other hand, consists of both PASCAL code and 
routines w&ten in assembly language. It implements the buffering 

Proceedings of the Eighth international Conference 

of messages, and distinguishes between long and short messages. 
The device drivers for the communication device are integrated 
with the operating system and are written mostly in assembly 
language. 

Level 0 handles the link-level protocol and is implemented by 
micro-code and hardware in the communication device itself. 
Level 0 handles such tasks as fragmenting/reassembling of mes- 
sages that are larger than the frame size on the ring network, 
hardware acknowledgements of physical delivery of messages, etc. 
The communication device guarantees that error-free, non- 
duplicated messages are delivered in sequence to the destination. 

3.4 CSS Rationale 

In this section we will discuss the rationale for some of the design 
choices that were made in the CSS, and how they relate to the 
particular system the CSS was intended to support. 

Fit, mailboxes were chosen as the destination and repository for 
messages to allow complete de-coupling of client and server proc- 
esses. A mailbox allows a one-or-many to one-or-many relation- 
ship between clients and servers. Send and receive operations on 
the mailbox are synchronous, but the storage capability of the 
mailbox allows the processes to be asynchronous. 

Second, virtual circuits (or connections), as provided by several 
proposed or existing networks, were deemed too costly in terms of 
setup/breakdown effort (negotiating parameters, etc.) for the kind 
of brief and sporadic communication needs of a distributed trans- 
action system. Typical interactions resemble remote procedure 
calls to various components of the system, involving a single re- 
quest message and a single response message. Requests and re- 
sponses are often small messages, less than a hundred bytes, and 
sometimes the size of a page of data on secondary storage. Much 
more seldom a longer transfer is needed, requiring a sustained 
connection between the two processes involved. Some messages 
(a.k.a. hints) do not require any confiiation at all, and can be 
sent as datagrams without requesting acknowledgements. The CSS 
request-response pairing is especially suited for the implementation 
of interactions resembling remote procedure calls, but allows shn- 
ple datagrams in cases where no response is needed and sustained 
connections at the expense of a little extra bookkeeping by the 
user when needed for transfer of larger amounts of data. 

Third, the CSS does not guarantee delivery of messages but mes- 
sages, if delivered, will be error-free and appear in the right order. 
The reasons for not guaranteeing delivery are that every compo- 
nent of a distributed system needs to detect failures of other com- 
ponents, and a mechanism for diagnosing and recovering from 
failures must exist in the system. Since failures are not very fre- 
quent, there is no reason for separately implementing those mecha- 

36 Mexico City, September. 1982 on Very Large Data Bases 



nisms in the communication subsystem (the “end-to-end” argu- 
ment [SALTSl]). 

In a distributed system, different hardware and software compo- 
nents have different failure modes. For example, a remote proc- 
essor may fail while performing a remote procedure call on behalf 
of a process running on another processor, otherwise unaffected by 
the failure. It is imperative that the system continues to function 
in such situations. This requires a mechanism for the caller of a 
service to detect failures in a remote service (the timeout feature in 
CSS). When a failure is detected, the system must be diagnosed as 
to where the error has occurred, so that the faulty path or compo- 
nent can be avoided, the system reconfigured, and the operation 
re-tried. In System D, this function is handled by the Resource 
Manager, which is informed of the failure by the user of a service 
after a timeout. 

In a loosely coupled (locally distributed) system of the kind under 
investigation, communication takes place over local network Iinks 
with much lower expected failure rates than are typically seen in 
regular telecommunication networks (e.g., on the order of one 
error per day or week instead of one per minute). This means that 
the loss of a message is no more likely than other hardware and 
software errors, such as a processor failure, memory parity error, 
or a server program crash, and can be handled by the same mecha- 
nism. A separate mechanism to reduce the number of observed 
failures by guaranteeing delivery of messages is not needed and 
will cause unnecessary communication overhead. Such a re- 
transmission mechanism, present in most long-haul network proto- 
cols, is an optimization for transmission on lines with much higher 
error rates, involving a large number of store-and-forward hops 
before reaching the final destination. 

4. Resource Manager 

4.1 Introduction 

The Resource Manager (RM) is a distributed subsystem and re- 
sides in each node of the network. Besides preparing a node or the 
entire system for operation, it is responsible for diagnosing the 
failures of the System D modules and agents and the operating 
system on which System D runs, and for taking appropriate actions 
to recover from the failures. The RM communicates via the com- 
munication subsystem (CSS) with System D modules as well as 
other RMs in performing its functions. The notion of a Resource 
Manager Database (RMDB) has been introduced in order to pro- 
vide the RM (and the operator) with system configuration infor- 
mation. The RM consults the RMDB to perform system or node 
startup as well as to diagnose resource failures. The RM has been 
designed to provide System D with resiliency to a single failure of 
a processor or the software (OS, RM, CSS, A, D, or S) running in 
a processor. The design assumes an installation environment in 
which each processor is connected to a dual-disk system and in 
which there is a dual communication path which connects to all the 
nodes. Under these assumptions, it is sufficient, and efficient, to 
store the RMDB in only one dual-disk system and have it accessed 
through one primary-backup processor pair. If the primary proc- 
essor goes down, the RMDB will be accessed through the backup 
processor. If one of the disks crashes, the other disk will still have 
the stable, up-to-date RMDB. The RMDB is a table in which each 
record contains information about a logical resource (an A, D. or S 
module): the node-id of the primary processor in which it is to run, 
the node-id of the backup processor, the status of the resource 
(UP or DOWN), and the type of the resource (A, D. S, or RM). 
Other hardware or system-resource data can be maintained in the 
RMDB in the same way. 

Proceedings of the Eighth International Conference 
on Very Large Data Bases 

4.2 Task Structure 

The Resource Manager consists of five tasks: the main (IPL) task, 
the local message task, the network message monitoring task, the 
Two-Channel Switch (TCS) task, and the console task. The func- 
tions of each of these tasks are described in this section. 

4.2.1 Main Task 

The main task of the RM is started as part of the Initial Program 
Load (IPL) of a node of System D. A node may be IPLed manu- 
ally or remotely. A manual IPL is used to start up one node or the 
entire system; whereas a remote IPL always starts up only one 
node, either during system start up or as the last resort by the local 
message task to recover from software-induced crashes. 

The main task reads the RMDB from the node that has access to 
the stable RMDB and caches it in a local data structure. It then 
fills in the map table of the CSS (using the SetRef primitive of the 
CSS) and opens the mailboxes for each of the modules in the 
node. It then starts each of the agents and all other tasks of the 
RIM. 

4.2.2 Local Message Task 

The local message task wakes up when it receives a message from 
an A or D agent that has not received a reply, within a specified 
time limit, to a request for services to a D or S module. Tie-out 
is the sole mechanism upon which the RM relies to be able to 
initiate a sequence of actions for failure diagnosis and recovery. 
Also the local message task is invoked only by an agent residing in 
the same node: hence the name ‘local message’ task. 

The local message task fit locks exclusively the stable RMDB and 
then reads it. The reason for the exclusive lock is to prevent 
conflict with the RMDB-read request that the Two-Channel Switch 
task may make, as will be described below. If the RMDB indicates 
that the resource in question is now running in its backup proc- 
essor, the problem must have been detected by another agent 
already, because the resource has been relocated. This is where 
the cached RMDB comes in handy. If the cached RMDB entries 
do not match with the corresponding entries in the newly read 
stable RMDB, the changes must have been recorded as a result of 
a local message task running in another node. Then the local 
message task merely modifies the routing table entry of the CSS, 
so that all subsequent requests to the resource will be routed to the 
backup node. 

If the cached RMDB entry for the resource in question matches 
the corresponding entry in the stable RMDB, the local message 
task attempts to diagnose the cause of the problem by fit at- 
tempting to establish communication with the node in which the 
resource is running. The local message task does this by sendiug 
an ‘ARE-YOU-ALIVE’ message to the RM (more precisely, the 
network message monitoring task of the RM) running in that node. 
If the response is positive (that is, ‘I-AM-ALIVE’), the louI 
message task issues an ‘ABORT-TRANSACTION’ command to 
the agent involved. The rationale here is that the service-request 
message may have experienced a data- or timing-dependent error 
which may not recur if the transaction under consideration is 
aborted and resubmitted. Successful processing of the ‘ABORT- 
TRANSACTION’ command also serves to indicate that the agent 
involved probably has not crashed. It is noted here that if the 
local message task has been invoked as a result of a time-out ou a 
reply to the commit message to the master S module, commit maY 
have taken effect and the transaction may not be aborted. If thh~ 
is the case, the local message task returns to the wait state. 

Mexico City, September, 1982 



If the S agent successfully aborts the transaction, the local message 
task returns to the wait state after notifying the agent which in- 
voked the RM. Otherwise, it will attempt to bring down and 
restart the agent, since the code or the control structure of the 
agent may have been destroyed. The request to bring down the 
agent is routed to the network message monitoring task running in 
the node where the agent resides. If the agent is successfully 
brought down by the operating system, probably the code was 
corrupted. After notifying the invoking agent, the local message 
task goes back to sleep. 

If the agent cannot be brought down, the local message task at- 
tempts to shut down and restart the module itself, since the control 
structures shared by the agents of the module may have crashed. 
If this is successful, the local message task goes into the wait state. 

If the local message task fails to shut down and restart the module, 
probably the remote RM or the operating system has crashed. 
Then the node in which the resource in question is running must 
be remotely IPLed. 

Now, if the local message task fails to establish communication 
with the node in which the resource resides or if the remote IPL 
was not successful, it will try to communicate with the RM 
(network message monitoring task) in the backup node of the 
resource, since the TCS has probably switched. After waiting for 
a time interval sufficient to guarantee that the TCS will have 
switched over and the TCS task will have set the TCS- 
SWITCHED flag (to be explained later), the local message task 
will query the status of the Two-Channel Switch. The network. 
message monitoring task in the backup node will examine the 
TCS-SWITCHED flag to determine if the TCS has switched over 
from the primary node. If the TCS has switched over, the local 
message task will modify the stable RMDB to reflect the new 
system configuration and refresh the cached RMDB in the local 
node. The RM issues a transaction to an S agent to update the 
RMDB. The RM will also update the map table of the CSS in the 
local node and, after notifying the agent that invoked it, will go 
back to the wait state. 

If the TCS has not switched over, the local message task will 
attempt to remotely IPL the node in which the resource resides, if 
the remote IPL has not already been tried. The reason is that 
initially it may have failed to communicate with the RM in that 
node because the RM, the CSS or the operating system in that 
node may have crashed. If the remote IPL fails, the RM decides 
that both the primary and the backup processors have failed and 
notifies the operator to take appropriate measures to prevent any 
further damage to the database. 

4.2.3 Network Message Monitoring Task 

The network message monitoring task responds to status queries 
from the local message task and performs services requested by the 
local message task. It waits on a message from the local message 
task or the console task. The local message task may query the 
status of a remote processor by sending the customary ‘ARE- 
YOU-ALIVE’ message to the network message monitoring task of 
the RM running in that processor. It may query the status of the 
Two-Channel Switch (that is, whether it has switched to the bac- 
kup processor) by sending the ‘WHERE-IS-TCS’ message to the 
network message monitoring task running in the backup processor. 
The network message monitoring task also brings down an agent, 
brings down and restarts a module, and coordinates reintegration 
of a repaired processor into the system. 

Proceedings of the Eighth International Conference 
on Very Large Data Bases 

4.2.4 Two-Channel Switch Task 

The Two-Channel Switch (TCS) task waits on the TCS-event. 
The Two-Channel Switch has a timer which must be periodically 
reset by the primary processor to which it is connected. When the 
primary processor fails to reset the timer, the TCS interrupts the 
backup processor, which then posts the TCS event. When the 
TCS task wakes up, it reads the RMDB in order to determine the 
agents to bring up in the backup processor to replace the agents 
that have been running in the primary processor. Then it invokes 
the S-node recovery manager to clean up resources such as lock 
tables. Finally, it sets the TCS-SWITCHED flag, for use by the 
network message monitoring task in response to a query from the 
local message task about the status of the Two-Channel Switch. 

4.2.5 Console Task 

The console task is provided in order to allow the operator to 
query and control the system configuration via commands on a 
system console. The operator may query the system configuration 
by reading the RMDB. The operator may initiate the integration 
into (or removal from) the system of a processor (either new or 
repaired), along with the various agents that will run in it. 

4.3 Perspectives 

The Resource Manager reflects two important concepts. One is 
the notion of using a database for keeping system-configuration 
information to resolve contention among different agents that 
simultaneously detect the same failure and require the same correc- 
tive action, as well as to facilitate orderly reconfiguration of the 
system resources. The RM reads and updates the configuration 
database via the transaction capabilities of System D, primarily so 
that the RM does not have to do the logging and recovery of the 
configuration database. 

Another is the notion of isolating a failure and applying a correc- 
tive action suitable for the particular failure that has been diag- 
nosed, rather than simply resorting to the IPLing of a processor. 
This approach represents a fist cut at the seemingly intractable 
problem of diagnosing and recovering from failures induced by 
logical errors in software. 

The local message task of the Resource Manager is invoked by an 
A, D or S agent when the agent times out on its request to another 
agent. Our thesis is that the time-out mechanism detects all fail- 
ures, be it a deadlock, agent or module crash, communication 
medium failure or a processor failure. In the current design of the 
Resource Manager, failures of software or hardware modules are 
detected only when service requests are directed to them. This 
passive approach is in direct contrast to the approach adopted in 
the Tandem Nonstop Computing System [KATZ77, KATZ78]. 
Each processor in the Tandem system must broadcast an ‘I-AM- 
ALIVE’ message every 1 second and it also checks for the ‘I-AM- 
ALIVE’ message from every processor every 2 seconds [BART78]. 
If a processor decides that another processor has failed to send it 
the ‘I-AM-ALIVE’ message, it initiates recovery actions. The 
‘active’ failure-detection approach of the Tandem system may help 
to detect a processor failure soon after it occurs even if no service 
requests are directed to it. It will require minor changes to the 
Resource Manager to incorporate this feature. However, the 
problem is just what is meant by ‘I-AM-ALIVE’? It is clearly not 
accurate to say that a processor is ‘alive’ simply because it can 
send the ‘I-AM-ALIVE’ message, when agents running in it may 
have crashed. Detection of software failures must then rely on 
message timeouts. It does not appear that the Tandem system 
attempts to diagnose message timeouts. 

38 Mexico City, September, 1982 



Another important difference in the approach to availability taken 
by System D and Tandem’s Nonstop Computing System lies in the 
notion of primary and backup processes. System D supports multi- 
ple agents of a module to run in the same processor and the Re- 
source Manager attempts to bring down and restart failed agents 
while normal service requests may be handled by other agents. In 
case of a processor failure, agents are brought up in the backup 
processor and inflight transactions are all aborted. The Tandem 
approach, on the other hand, is to maintain at all times a primary- 
backup pair of processes, each in a different processor. The pri- 
mary process periodically sends checkpoint data to its paired bac- 
kup process, so that the backup will stand ready to take over as 
soon as the primary process fails. In the low-end processor envi- 
ronment for which System D has been designed, this difference in 
design approach does not appear significant. The IPL of a low- 
end processor normally takes under 1 minute, and this fact must be 
weighed against the message and processing overhead incurred to 
maintain the primary-backup pairs of processes. However, in 
systems that require terminals to be switched and terminal sessions 
established via a terminal access method, the Tandem approach is 
desirable. 

5. Data Manager 

5.1 Introduction 

The A and D modules together support simple transaction- 
processing capabilities. The A module provides a simple interface 
for interactive users and translates a user transaction into a se- 
quence of record-level requests to the D module. The A and D 
modules support a transaction which consists of any combination 
of FETCH, INSERT, DELETE, and ABORT commands sand- 
wiched between BEGIN TRANSACTION and 
END-TRANSACTION. Inthe current implementation, the 
FETCH, DELETE, and INSERT comma& each apply to a single 
record identified by a unique key value. Also the ABORT com- 
mand allows the user to abort a transaction so that the effect of 
the transaction will not be recorded in the database. 

5.2 Search and Data Manipulation 

The prototype D module only supports record-level requests 
against single files; that is, no requests which require more than 
one file to be correlated, such as the relational join, product, or 
division operations [CODD70], are allowed. Further, the only 
access path to the stored data that the D module understands is a 
hashed file, although an interface has also been defined to support 
B-tree structured secondary indexes to the database. 

The D module transforms the record-level request it receives from 
the A module into a sequence of page-level requests to the S 
module in order to fetch, insert, or delete a desired record from 
the database. ‘The address of a record, consisting of the page id of 
the page in which the record is stored and the byte offset within 
the page, is obtained by hashing the primary-key value of the 
record indicated in the user request. In the System D database, 
records of each fide are stored by hashing their primary-key values 
and those records whose hash values collide are linked on a colli- 
sion chain. In case of hash collision, both during database loading 
and during search by the D module, rehash is attempted a few 
times and then a linear search of the database pages is done to 
locate an empty slot for a new record (during loading and IN- 
SERTing) or to locate a desired record (for FETCH or DELETE). 
To support the linear search, and record insertion, a bit map is 
maintained in each data page to indicate empty slot positions. 

Proceedings of the Eighth International Conference 
on Very Large Data Bases 

39 

The D module guarantees serializability of transactions by imple- 
menting two-phase locking [ESWA76], which requires that all 
locks for a transaction be acquired during one phase and that they 
be released during a second phase without acquiring any new 
locks. Further, the D module maintains an auxiliary lock table in 
order to allow maximum concurrency of transactions. The auxilia- 
ry lock table contains the page ids of the pages that must be 
locked until the end of a transaction. When the D module follows 
the hash-collision chain to locate a desired record, it must first 
request the S module to lock the page. However, if the desired 
record is not found in the fetched page, the D module requests the 
S module to release the lock on the page so that the page may be 
accessed by other transactions. Before requesting the S module to 
unlock the page, the D module looks up the auxiliary lock table to 
make sure the page has not already been locked by the current 
transaction. 

Since System D does not make updates to the data pages until 
transactions are to be committed, the problem of making updates 
to the database immediately visible within a transaction must be 
addressed. For example, if a record has been inserted, the D 
module~must be able to subsequently fetch the record; if a record 
has been deleted, the D module must return 
‘RECORD NOT-FOUND’ to the A module in response to a 
subsequentFETCH command within the same transaction. The D 
module maintains internal auxiliary data structures, created from 
the log records, for the inserted and deleted records and the modi- 
fied bit map entries to give the A module the illusion that updates 
to the database are immediately and permanently recorded in the 
database. 

5.3 Log Management and Commit/Abort Coordination 

Besides responding to each record-level request from the A mo- 
dule, the D module must generate and maintain the log for the 
transaction for which the record-level request (INSERT and DE- 
LETE) is processed. A log record consists of the transaction id, 
address (page id and byte offset within the page) of the record 
inserted or modified, the length of the record, and the new value 
stored. The commit/recovery protocols developed for System D 
require only the new values to be logged for RE-Doing committed 
updates. That is, the old values for UN-Doing updates are not 
necessary. When a record is deleted, the NEXT-POINTER field 
of the predecessor record is modified to point to the successor 
record of the record being deleted. When a record is inserted, the 
NEXT POINTER field of the current last record on the collision 
chain corresponding to the key value of the record must also be 
modified to point to the new record. The bit map entries corre.- 
sponding to records being deleted or inserted are also updated and 
logged. 

When a transaction is to be committed, that is, 
END-TRANSACTION is given, the D module sends all the log 
records for the transaction to the master S module for the transac- 
tion. When the master S module forces the log to stable storage 
and acknowledges this to the D module, the effects of the transac- 
tion can be recovered. Then the D module sends to each slave S 
module to which it made page-level requests only those log records 
that refer to the part of the database that the S node owns. In 
order to simplify the task of the S module, the D module sorts the 
log records in page-id order before sending them to the S modules. 
As will be shown later on in this paper, it is also possible for the 
master S module to distribute portions of the log to the slave S 
modules. 

Upon receiving the LOCKWAIT-TIMEOUT message from an S 
module, the D module sends the master S module for the transac- 
tion involved the list of slave S modules to abort the transaction. 

Mexico City, September, 1982 



6. Storage Manager 6.2.2 Transaction Table Manager 

6.1 Introduction 

The S module receives requests from three sources: (1) from a D 
module to read a data page from the database, to commit or abort 
a transaction, etc.; (2) from the Lock Manager or the 
Commit/Log/Recovery Manager (which are its own subfunctions), 
for example, to re-process a data page request that has previously 
attempted to acquire a lock and failed, and (3) from the Resource 
Manager to fetch or store the FUvIDB, or to prepare for termina- 
tion and/or restart of the S module itself or the entire node. 

An S module is bound to any D module it services for the duration 
of a transaction, from the request for the very first data page to 
the completion of the commit processing, but the binding of an S 
agent to a D module lasts only while the S agent processes a re- 
quest it receives from the shared mailbox. 

6.2 Program Structure 

As a part of the S module initialization processing, a transaction 
table is allocated and initialized by the fist S agent to be started 
within the module. Each entry in the table is initially marked as 
being ‘idle’ or ‘not-in-use’. When the S module is functioning, 
entries in the transaction table contain information regarding the 
status and the resources associated with the corresponding transac- 
tions. A transaction may be in either active or inactive state after a 
unique transaction identification number, or transaction-ID, is 
assigned to it when the very first data page from any S module is 
requested by a D module. A transaction is active whenever an S 
agent in the module runs on its behalf. 

In a multiple S module environment, it is conceivable that a trans- 
action initiated by a D module requires data pages from more than 
one S module. Therefore, there is a need to distinguish the master 
S module and the slave S modules. The master, also known as the 
commit coordinator, is responsible for (1) creating a unique 
transaction-ID, (2) writing all log pages to the disk storage during 
commit processing, (3) assisting with recovery processing of the 
transaction after a failure, and (4) separating and distributing the 
updates to the slaves that have access to the partitioned databases. 

The S Agent Main Program 

Transaction Table Manager 

Lock Manager 

il.7 

-xr ShutDown 

__ LockRelease Request 
Commit 

DataPage Recovery 
Request Log Manager 

Fig. 3 The S Agent Program Structure 

As shown in Fig. 3, an S agent consists of two general service 
subfunctions, namely a Transaction Table Manager and a Lock 
Manager, and five specific request handling subfunctions. The 
general service subfunctions are invoked wheneyer an S agent is 
given work to do. The other subfunCtions are only invoked to 
perform specific services, such as to fetch a data page or to man- 
age lock and log data structures. This section describes the opera- 
tion of each of these subfunctions, except the ShutDown subfunc- 
tion and the Commit/Log/Recovery Manager. The ShutDown 
subfunction is invoked to terminate an S module. The 
Commit/Log/Recovery Manager will be discussed in the context 
of System D commit/recovery protocols in the next section. 

6.2.1 Main Program 

Each S agent issues Receive’s from the shared mailbox to demand 
work. It passes the input to specific request handling subfunctions 
for further processing if it finds work to do; otherwise it goes into 
a wait state. The subfunctions communicate directly with the 
requesters through the CSS and return control to the main program 
only when the requested services have been provided or rejected. 
An S agent awakens (1) when the shared mailbox is not empty, or 
(2) when a predefined time limit has elapsed, and it is time to call 
upon the Lock Manager for deadlock detection. 

Proceedings of the Eighth International Conference 
on Very Large Data Bases 

The slaves, on the other hand, work passively under the direction 
of the D module and the master S module. 

Three linked lists emanate from each transaction table entry: (1) 
one for the locks held for all data pages referenced by the corre- 
sponding transaction from the beginning to the completion of its 
processing, (2) one for the log pages containing changes associated 
with this paiticular transaction, and (3) one for the logical re- 
source numbers of all the slaves that are also bound to this trans- 
action if the S module is the master. 

6.2.3 Lock Manager 

The System D locking protocol ensures that no concurrent transac- 
tions see changes of a transaction until it has safely committed its 
updates. The Lock Manager guarantees that only requests for 
locks that are compatible with locks held by other transactions are 
granted. For example, a shared lock on a page for one transaction 
is compatible with shared lock on the same page held by other 
transactions; however, an exclusive lock on a page for one trans- 
action is not compatible with an exclusive lock or shared locks on 
the same page held by other transaction(s); see [GRAY781 for a 
discussion of lock compatibility. Requests for incompatible locks 
are delayed and granted only after all conflicting requests have 
disappeared. At commit, exclusive locks on changed pages are 
released only after updates have been applied to the database; this 

40 Mexico City, September, 1982 



is critical to the commit, logging and recovery techniques adopted 
in System D. Shared locks are released by the Log Manager sub- 
function as soon as the D module initiated 
END TRANSACTION processing, since no changes need be 
applied. All locks are released in case a transaction is aborted. 

database. Exclusive locks, on the other hand, are released after all 
the updates of a transaction have been committed. Further, the 
Release-Lock Request Handler releases locks one at a time, upon 
request from the D module. 

Actions pertaining to a particular transaction are executed sequen- 
tially while actions of different transactions can be interleaved on 
an S module. Whenever the Data-Page Request Handler receives a 
data-page request from the shared mailbox, it will first request a 
lock from the Lock Manager. The Lock Manager either grants the 
lock or timestamps the request and places it on a wait queue. In 
either case it returns control to the S agent main program, which 
either proceeds to fetch a page and send it to the waiting D mo- 
dule or processes the next request on the shared mailbox, depend- 
ing on whether the lock has been obtained or deferred. 

Before granting a request the Lock Manager scans its wait queues 
to see if any transaction has timed out. The Lock Manager also 
gets periodically prompted by the main program to examine the 
wait queues. If the S module detects that a transaction has timed 
out (e.g. because of a global deadlock), it sends a 
LOCKWAIT TIMEOUT reply to the waiting D module. In case 
the S moduleis the master for the transaction, it also instructs all 
slaves to abort the transaction. 

When a transaction terminates, all participating S modules are 
asked to release all locks held for the transaction. The Lock Man- 
ager selects one or more transactions for execution once it releases 
the locks they have been waiting on. The Lock Manager re-enters 
the data-page request to the S module input queue. A processing S 
agent would see that the lock has been granted and proceeds to 
fetch the page and send it to the waiting D module. 

The reader may note that our use of the time-out mechanism 
makes it unnecessary to introduce a global deadlock-detection 
algorithm. In view of the observation that typically less than one 
transaction in one thousand experiences a deadlock [GRAY811 and 
because transactions for this type of system would be short trans- 
actions, we have decided that it is reasonable to arbitrarily termi- 
nate and restart transactions that cannot acquire locks within some 
time limit. It may perhaps be noted here that the allocation and 
management of the lock table uses the extendible hashing scheme 
[FAGI79]. Further, System D supports automatic conversion of 
shared locks to exclusive locks within a transaction. However, for 
simplicity, it does not support the intention mode locking described 
in [GRAY78]. 

6.2.4 Data-Page Request Handler 

The Data-Page Request Handler gets control after a transaction is 
created or activated by the Transaction Table Manager. It simply 
reads a page into its storage pool and then sends a copy to the 
requester if it could successfully acquire an appropriate lock. Oth- 
erwise, it suspends processing of the request and leaves it to the 
Lock Manager to resubmit the request at a later time. 

6.2.5 Release-Lock Request Handler 

Thii subfunction is responsible for releasing locks held by a trans- 
action. A lock-release request may be for all locks held by a 
transaction or only for shared locks. All locks must be released 
when a transaction is aborted by the master S module or the D 
module. All shared locks may be released for performance reasons 
as soon as the D module initiates END-TRANSACTION proc- 
essing, since shared locks imply no changes to be recorded in the 

Proceedings of the Eighth International Conference 
on Very Large Data Bases 

41 

6.2.6 Abort Request Handler 

The Abort Request Handler gets control each time there is a spe- 
cific request to abort. If the transaction is active or it is being 
processed by another S agent, the Abort Request Handler merely 
marks the entry for this transaction ABORT-PENDING in the 
Transaction Table and returns control to the S Agent main pro- 
gram. If the transaction is inactive, it invokes the Lock Manager 
to release all locks held by the transaction and places the transac- 
tion in an idle state. 

In addition to a direct invocation from the main program, the 
Abort Request Handler gets control at two other points. It is 
called before the Transaction Table Manager activates an entry for 
a data-page request. It is called immediately after handling of a 
data-page request is completed and the transaction becomes inac- 
tive again. At one of these points, it purges the transaction (i.e. 
returns it to the idle state), if it is marked ABORT-PENDING. 

It is important to note that the implementation of the abort proc- 
essing is based on the assumption that all S agents are created with 
equal dispatching priority and that no task switch could occur until 
a running agent schedules I/O or completes its processing and 
voluntarily gives up control. Once the Abort Request Handler 
starts to process an inactive transaction, no other transactions may 
manipulate the Transaction Table entries until the abort processing 
is completed. For the same reason, it leaves the responsibility of 
purging an active transaction to the Data Page Request Handler by 
branching into the abort processing logic at a later time; therefore, 
consistency of the transaction status can be adequately maintained. 

6.3 Distributed Direct Commit/Recovery 

The standard two-phase commit protocol gives each node a high 
degree of autonomy in deciding the fate of a transaction. In a 
locally distributed environment like System D, autonomy of the 
nodes is not so important. Performance is more important. This 
section describes the variation of the standard two-phase commit 
protocol developed and implemented in System D. The protocol 
results in a reduced number of messages and I/O operations. The 
two-phase locking with exclusive and shared locks is essential for 
the correct operation of this protocol. Likewise, no “real updates” 
are performed on the recoverable database objects until a transac- 
tion commits. At transaction commit, the transaction’s log, main- 
tained by the D module, is sent to the master S module (the com- 
mit coordinator). 

6.3.1 Direct Commit Protocol (DC) 

The six steps of the commit protocol, termed the Direct Commit, 
follow. 

1. When a transaction is ready to commit, the D module sends the 
log of all the updates performed by the transaction to the master S 
module, which in turn forces the log onto stable storage. 

2. The master then sends “commit” messages to other nodes and 
begins recording updates to the database it owns. Note that the D 
module may just as well send “commit” messages to the slave S 
modules, upon receiving acknowledgement from the master S 
module that the log has been forced to stable storage. 

Mexico City, September, 1982 



3. Each slave node then forces its log to stable storage in the 
order in which transactions committed at that node. 

4. Each slave node then acknowledges entry into the committed 
state to the master with an “ack” message. After this, the node 
begins making the required database changes. 

the portion of the database stored at S2). It is of course still 
possible for unknowing D modules to request actions on behalf of 
transactions not discovered during this recovery processing. Such 
transactions will be told to abort either by the S2 or by their own 
master. They are never allowed to commit, since their locks at S2 
were lost and consistency can no longer be guaranteed. 

5. When the master has received all of the acknowledgements 
from the slaves and has made all of its own updates, it discards its 
log (returns the transaction to the idle state), and notifies the slave 
nodes that this has occurred with a “finish” message. 

6.3.3 Perspectives 

6. Upon receipt of a “finish” message and when done updating its 
own database, a slave node can dispose of its local transaction log, 
thus entering the idle state. Note however that, as in other log 
management schemes, the log for a transaction cannot be disposed 
of until all previous transactions have been returned to the idle 
state. Otherwise, at node restart those previous transactions would 
be redone, erasing the updates of later transactions. 

We have also developed a variant of the DC. This protocol re- 
places the synchronized log disposal of DC with a begin- 
transaction record in the log of each participant. Before doing 
anything on behalf of a transaction a node recoverably records the 
begin record. Commit proceeds exactly as before through step 4. 
At step 5, the master now discards its log without sending any 
message to the slaves. At step 6, a slave may discard its log of a 
transaction as soon as it is locally done with the updates. 

6.3.2 Recovery Protocol 

The recovery procedure for this Direct Commit protocol is as 
follows: Upon restart, a module re-Does the changes in its local 
transaction log, and then and only then it requests complete logs 
from any master modules for transactions that are known to them 
but unknown to the recovering module. Any serial schedule of 
these transactions is compatible with their earlier concurrent 
schedule, because the two-phase locking protocol ensures that the 
updated objects in such transactions must have been locked at the 
time of node failure. Thus, there can be no interference among 
such unknown transactions or between them and earlier known 
transactions. Thus the final recovery operation is to run these 
transactions serially in any order. 

The recovery protocol replaces the request to all the masters for 
“any transactions that are unknown” with specific requests to the 
masters for “update records for transactions which are known to 
have begun, but for which no commit record has been written”. 
Since the the local log provides no order information about these 
updates, they are done after the changes specified in the local log, 
and in any order among themselves, just as in the DC recovery 
protocol. The locking protocol insures non-interference. 

If n denotes the number of nodes participating in a transaction, the 
DC protocol has 2n recoverable state changes per transaction (i.e. 
2 per node) and requires 3(n-1) messages, n-l each of “commit”, 
“ack”, and “finish”. Of these, only the n-l “commits” are time 
critical in the sense that database resources are tied up until they 
are delivered. The “ack” and “finish” messages are used only to 
dispose of logs (recover log space), so they can be batched to 
reduce network traffic if necessary. 

A formal proof of the correctness of the Direct Commit/Recovery 
protocols will not be given here. Rather, we will illustrate the 
operation of these protocols by the following example. Consider 
two transactions, Tl and T2 running on D modules Dl and D2. 
Modules Sl and S2 store pages X(l..n) and Y(1.n). respectively. 
Tl touches an X page fist so Sl is its master. Likewise T2 has S2 
as its master. The two transactions run and commit. That is, each 
sends its log to its master where the log is’recorded on stable 
storage. At this point, the transactions are committed and must 
occur uniformly throughout the system: in this case both must 
occur at Sl and S2. Upon receiving the acknowledgements of 
commit the D modules distribute the slave log for Tl to S2 and for 
T2 to Sl. Suppose S2. fails in the meantime so that the slave log 
for Tl is lost. 

The variant protocol replaces one set of messages (the “finish”es) 
with a recoverable state transition at transaction begin. Again, 
only the “commit” messages are time critical. 

Contrast these numbers with two-phase commit where about 3n 
messages are needed just to inform all the nodes that a transaction 
is to be committed. Thus, each message is time critical, since 
resources are tied up until they have all been delivered. The 
fourth set of messages in two-phase commit is used for return to 
idle state and is not time critical. 

Concluding Remarks 

When S2 is restarted (possibly in a different processor node), it In this paper we have described the architecture of System D. The 
must execute the recovery protocol, bringing its part of the data- system was intended to be a vehicle for research into availability 
base into a state consistent with the rest of the database. Transac- and modular growth of a transaction-processing system. We be- 
tions in the commit process at the time of the failure are complet- lieve that the notion of decomposing a transaction-processing 
ed. Others must be aborted. We first observe that while S2 is not system into the application, data manager and storage manager 
working, Sl is forced to hold the log for Tl since no “ack” mes- modules and distributing any subset of these modules to different 
sage has arrived from S2. Thus, the data needed by S2 to DO Tl processors is an interesting contribution of System D. Running 
is guaranteed to exist in Sl. Following the restart protocol, S2 multiple agents of any of these modules in the same processor, 
fist Does or re-Does the changes it finds in its local log -- in this where each of the agents resides in a different address space, 
case the changes of T2. An inquiry to Sl then produces the log of 
Tl for S2. This log is used to DO the changes made by Tl at S2. 

provides an alternative to the current approach to crash recovery 
which is based on maintaining a primary-backup pair of processes. 

At this point, S2 can begin processing new transactions. The 
database at S2 is in the consistent state it would have had were T2 
run before Tl. The locking protocol assures us that this is suffi- 
cient for consistency since either T2 precedes Tl in the system- 
wide serial schedule, or the database state at S2 is also compatible 
with Tl run before T2 (i.e. the two transactions had no conflict in 

The distributed Resource Manager has considerably enhanced our 
understanding of system failures and availability. The Resource 
Manager ideas provide a first-cut solution to the baffling problem 
of detecting crashes induced by software failures. We have also 
introduced the notion of using a database to maintain system- 

Proceedings of the Eighth International Conference 
- 42 Mexico City. SeDtember. 1982 . . . on Very Large Data Bases 



configuration information to drive the failure-recovery actions of 
the Resource Manager and to facilitate system reconfiguration. 

Further, to support multiple concurrent transactions, a variation of 
the standard two-phase commit protocol and its accompanying 
recovery protocol were developed. This new set of protocols 
appears to be highly effective for the locally distributed network 
environment like System D, where, unlike a geographically dis- 
persed network, autonomy of the processors is not important. 

We designed and implemented a communication subsystem which 
supports, with a small number of primitives, all the requirements of 
a distributed transaction processing system designed to provide 
high availability. In particular, the communication subsystem 
supports generic services through the use of shared mailboxes, 
location independence through mapping of logical resource num- 
bers to corresponding physical addresses, and failure detection 
through user-supplied time-outs. 

What we have learned from our work on System D point to a 
number of interesting problems that warrant further research. As 
with other systems designed for high availability, System D was 
designed to provide resiliency to single failure of software or 
hardware modules. An investigation of the robustness of the con- 
ventional single-failure assumption is certainly of value. It is also 
important to more systematically address the problems of detecting 
failures and recovering from failures caused by logical errors in 
software. The knowledge gained from such studies may serve as a 
basis for establishing methodology for developing more robust 
software in the first place. 

The CSS is being expanded for use in an office system internet- 
work. Future work includes transferring the CSS to other machine 
architectures (e.g., the IBM System/370), and extending it for 
internetworking by providing gateways and other provisions for 
naming, addressing, and routing functions. 

More work could be done on decomposing software into function- 
ally distinct modules. Although we initially liked the idea, we did 
not examine in depth the tradeoffs and limitations of such an 
approach. 

Acknowledgements 

Doug Terry, as a Graduate Student Associate from the University 
of California at Berkeley, participated in the design and implemen- 
tation of the Communication Subsystem. While visiting the IBM 
San Jose Research Laboratory as a post doctoral scientist, Tom 
Neumann of the Technical University at Darmstadt, W. Germany 
implemented the loader and the initial version of the Lock Manag- 
er. Other contributors to the System D project include Felix 
Closs, Dean Daniels, Cesare Galtieri, Ralph Pipitone, and Wiiam 
Osborne. 

Proceedings of the Eighth International Conference 
on Very Large Data Bases 43 Mexico City, September, 1982 



References 

[ANDLIO] Andler, S., D. Daniels, and A. Spector. On Enhanc- 
ing Local Network Communication Devices. in 
Proc. IFIP WG 6.4 Intl. Workshop on Local-Area 
Computer Networks, Zurich, Switzerland, Aug. 
1980. (also available as IBM Research Report: 
RJ3094, March 1981) 

[BART78] Bartlett, J.F. A Nonstop Operating System, Proc. 
1978 Hawaii Intl. Conf. on System Sciences, Jan. 
1978. 

[BOGG79] Boggs, D.R., J.F. Shoch, E.A. Taft, and R.M. Met- 
calfe. PUP: An Internetwork Architecture, Xerox 
PARC Technical Report: SSL-79-10, July 1979. 

[BRIN’IO] Brinch Hansen, P. The Nucleus of a Multiprogram- 
ming System, Comm. ACM, vol. 13, no. 4 (April 
1970), pp. 238-241,250. 

[CODD70] Codd, E.F. A Relational Model of Data for Large 
Shared Data Banks, Comm. ACM, vol. 13, no. 6 
(June 1970), pp. 377-387. 

[ESWA76] Eswaran, K.P., J.N. Gray, R.A. Lorie, and I.L. 
Traiger. On the Notions of Consistency and Predi- 
cate Locks in a Relational Database System, 
Comm. ACM, vol. 19, no. 11 (Nov. 1976). 

[FAG1791 Fagin, R., Nievergelt, J., Pippenger, N. and Strong, 
H.R. Extendible Hashing - A Fast Access Method 
for Dynamic Files. ACM Transactions on Database 
Systems, Vol. 4, No. 3, Sept. 1979, pp. 315-344. 

[FARB72] Farber, D.J., and K.C. Larson. The System Archi- 
tecture of the Distributed Computer System--The 
Communications System, Proc. Symposium on 
Computer Communications Networks and Tele- 
traffic, Polytechnic Institute of Brooklyn, 1972, pp. 
21-27. 

[GRAY781 Gray, J. Notes on Data Base Operating Systems, 
IBM Research Report: RJ2188, Feb. 1978. 

[GRAY811 Gray, J., et al. A Straw Man Analysis of Probability 
of Waiting and Deadlock, IBM Research Report: 
RJ3066, Feb. 1981. 

[HAFN73] Hafner, E.R.. Z. Nenadal, and M. Tschanx. A Digi- 
tal Loop Communication System, ICC ‘73. June 
1973. Revised version in IEEE Trans. on Comm., 
June 1974, pp. 877-881. 

[KATZ771 Katxman. J.A. System Architecture for Nonstop 
computing, Proc. CompCon, Feb. 1977, pp. 
77-80. 

[KATZ781 Katxman, J.A. A Fault Tolerant Computer System, 
Proc. 1978 Hawaii Intl. Conf. on System Sciences, 
Jan. 1978. 

[LINDSOal Lindsay, B. Object Naming and Catalog Manage- 
ment for a Distributed Database Manager, IBM 
Remarch Report: RJ2914, August 1980. 

[LINDSObl 

[METC76] 

[ROTHSO] 

[SALT8 l] 

[WILK79] 

[WILL811 

Lidsay, B., ana r.cr. Jennger. JILG ALLL”LL”my 

Issues in R*: A Distributed Database Management 
System, IBM Research Report: RJ2927, Septem- 
ber 1980. 

Metcalfe, R.M. and D.R. Boggs. Ethernet: Distrib- 
uted Packet Switching for Local Computer Net- 
works, Comm. ACM, vol. 19, no. 7 (July 1976), 
pp. 395-404. 

Rothnie, J.B., Jr., et al. Introduction to System for 
Distributed Databases (SDD-I), ACM Trans. on 
Database Systems, vol. 5, no. 1 (March 1980) 

Saltzer, J.H., D.P. Reed, and D.D. Clark: End-to- 
End arguments in system design. Second Interna- 
tional Conference on Distributed Systems, Vers- 
ailles, April 198 1. 

Wilkes, M.V., and D.J. Wheeler. The Cambridge 
Digital Computer Ring, Proc. Local Area Commu- 
nication Network Symposium, NBS, May 1979. 

Williams, R., et al. R*: An Overview of the Archi- 
tecture, IBM Research Report: RJ3325, Dec. 
1981. 

Proceedings of the Eighth International Conference 
on Very Large Data Bases 

44 Mexico City, September, 1982 


