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ABSTRACT
Debugging a performance issue in databases is notoriously hard.
Wouldn’t it be convenient if there exists an oracle or a co-pilot for
every database system which users can query in natural language
(NL) — ‘what’s wrong? ’, or even better— ‘How to fix it? ’. Large Lan-
guage Models (LLMs), like ChatGPT, seem to be a natural surrogate
to this oracle given their ability to answer a wide range of questions
by efficiently encoding vast amount of knowledge for e.g., a major
chunk of the internet. However, prompting ChatGPT with database
performance queries often results in ‘technically correct’ but highly
‘vague’ or ‘generic’ recommendations typically rendered useless
and untrustworthy by experienced Database Engineers (DBEs).

In this work we propose Panda, a framework to provide context
grounding to pre-trained LLMs in order to generate more ‘useful’
and ‘in-context’ troubleshooting recommendations. Panda draws
inspiration from the way experienced DBEs perform debugging,
and puts a system in place with necessary components required
to robustly deploy pre-trained LLMs in production for debugging.
The 4 key components of Panda are: (1) Grounding; (2) Verification;
(3) Affordance; and (4) Feedback. We describe the necessity and use-
fulness of each component and how they communicate internally
to transform a given pre-trained LLM into generating in-context,
actionable, useful and accurate recommendation for debugging a
given database system.

CCS CONCEPTS
• Computer systems organization → Embedded systems; Re-
dundancy; Robotics; • Networks→ Network reliability.
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Figure 1: Pre-trained LLMs (like GPT-4) generate recommen-
dations that are universally true but aren’t actionable given
the context of query, and hence deemed useless by DBEs for
troubleshooting. Panda builds the right context and gener-
ates a specific actionable recommendation using a smaller
cost-effective pre-trained LLM (GPT-3.5).
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1 INTRODUCTION
We propose Panda, a simple yet effective mechanism which enables
database owners to quickly analyze a database performance degra-
dation and obtain recommendations to fix. Given that foundation
models like LLMs [7, 18] are trained on a vast majority of internet
corpus, they naturally appear to be a good candidate to answer
these NL debugging questions as compared to classical approaches
that require building complex models from telemetry or system
logs, followed by human labeling to either identify the root causes

https://doi.org/XXXXXXX.XXXXXXX
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Figure 2: Panda Architecture: The system consists of– (a) Grounding mechanism that provides the necessary context about the
user query; (b) Verification mechanism verifies for correctness and attributes sources in form of troubleshooting docs and
resolved customer tickets; (c) Affordance mechanism estimates the performance impact for each of the generated recommenda-
tions; and (d) Feedback mechanism collects and stores feedback that LLM uses as context to improve its generation.

[9, 14, 16, 23] or potential knobs to tune [17, 22]. However, using
these pre-trained LLMs in their natural form pose 2 key limitations
that quickly render the generated recommendations useless— (a)
Debugging is always contextual, i.e root cause of a performance
degradation can vary from database to database, and time to time.
(b) Debugging requires analysis of multi-modal data, i.e unstruc-
tured texts in form of logs, troubleshooting docs, and telemetry in
form of database metrics (eg: query latency, memory pressure, cpu
utilization, etc). Lacking the right context of the problem makes
the LLM generate answers that are true in expectation but aren’t
particularly useful for the given issue. For e.g., in Fig 1 all the 6 rec-
ommendations made by GPT-4 [3] are technically correct, but are
mere facts or best practices that hold true in almost every situation.
Thus, to an experienced DBE these recommendations don’t add
any value in identifying the root cause or fixing the issue. This is a
common problem seen in other domains like Robotics [5] where
knowledge of physical world is necessary for the LLM to gener-
ate contextually correct answers. Retrieval Augmented Generation
(RAG) [12] has emerged as an effective prompt tuning technique
to augment the user prompt with necessary information to gener-
ate context specific answers without fine-tuning the model. RAG
relies on an Information Retrieval (IR) approach where it uses an
embedding model to embed the user prompt and a set of natural
language documents, retrieves the relevant documents using a dis-
tance based similarity search, and adds them to the context before
feeding it to the LLM. Although this has shown to tremendously
improve the quality of final output, it is non-trivial to do RAG with
multi-modal data, e.g., text and telemetry, which is a key modality
for performance troubleshooting. Furthermore, there are additional

concerns when it comes to applying the generated recommendation
on a real production database like, Trust: ‘where is this knowledge
coming from? ’; Impact: ‘what would happen to my database if I make
this recommended change?’; Feedback: ‘this recommendation was
useless, keep it in mind for future’; and Risk: ’how catastrophic is
this advice? (e.g., dropping tables?)’ Humans can respond to these
questions relatively easily either using domain knowledge or by
gathering experimental data. But they are fairly non-trivial for
a billion parameter black-box LLM, rendering it unsafe/untrust-
worthy to deploy in real-world. Thus the natural question to ask
here is— ’What are the essential building blocks that we need
in order to safely deploy a LLM for debugging in production
which can generate accurate, verifiable, actionable, and useful
recommendations?’

This is an open question, and a highly ambiguous one given the
definition of ‘accurate’, ‘verifiable’ and ‘actionable’ are contextual
and subjective. However, in this work we propose a system that
attempts to address these open concerns. More specifically, we
argue that a LLM-driven autonomous database debugging agent
should possess following 4 properties to be ready for ‘real-world’:

• Grounding: Given a NL user query, system should be able
to extract relevant information from appropriate sources to
build the necessary context before generating an answer.
This involves analyzing multi-modal data like logs, related
historical tickets, troubleshooting docs, and telemetry.

• Verification: The system should be able to verify the gener-
ated answer using relevant sources and produce the citation
along with its output so the end user can verify it.
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DBE Scorers Trust Understand Useful

GPT-4
Beginner 4 (8%) 18 (36%) 15 (30%)

Intermediate 3 (6%) 11 (22%) 4 (8%)
Advanced 3 (6%) 12 (24%) 3 (6%)

Panda
Beginner 46 (92%) 32 (64%) 35 (70%)

Intermediate 47 (94%) 39 (78%) 46 (92%)
Advanced 47 (94%) 38 (76%) 47 (94%)

Table 1: Human evaluation of the recommendation quality.

• Affordance: If the recommendation is actionable, system
should be able to estimate and inform the user about con-
sequences of that action along with explicitly highlighting
high-risk actions (e.g., DROP, DELETE, etc).

• Feedback: The system should be able to accept feedback
from the user and account for those when generating re-
sponses.

Given its ubiquity we use the example of cloud databases (for e.g.,
Aurora PostgreSQL [2], and MySQL [1]) to explain Panda. However,
the proposed system is general in that it can be easily extended to
any database system.

2 PANDA ARCHITECTURE
As illustrated in Figure 2, Panda consists of 5 key components: (1)
Question Verification Agent (QVA) to identify and filter out the irrel-
evant queries; (2) Grounding Mechanism comprising of Document
Retriever that extracts relevant documents; Telemetry-2-Text (T2T)
that extract features from telemetry and converts them to text, and
Context Aggregator combines all of this to augment the prompt;
(3) Verification Mechanism comprising of Answer Verification and
Source Attribution; (4) Feedback Mechanism; and (5) Affordance
Mechanism. All these mechanisms work in the background of a NL
interface which user interacts with. We now discuss each of these
components in detail.

2.1 Question Verification Agent (QVA)
Panda introduces QVA as a gatekeeper that rejects the queries that
are deemed ’out-of-context’ to the given use-case/domain, in this
case database performance debugging. Thus, given a user query 𝑖 ,
QVA produces a binary label {𝑌𝑒𝑠, 𝑁𝑜} on whether its a relevant
query or not, as shown by arrows numbered 2,3,6 in Fig 2. However,
just saying ’No’ doesn’t solve user problem, and hence QVA also
outputs the name of the service/tool which can answer that given
user query (e.g., if the question is related to reading an S3 bucket, or
spinning up an EC2 instance, etc). To achieve this goal, Panda adopts
the RAG approach [12] and uses an embedding model to first obtain
a vector representation of user query 𝑖 . It then creates a vector store
where it stores the embeddings of all available troubleshooting docs
and historical customer tickets using the same embedding model,
and then runs an embedding based similarity search to compute
a distance score (e.g., cosine) between the query embedding and
elements in vector store [8] and returns the document with highest
score. If the returned score is below a set threshold 𝜆, Panda deems
the query to be ’out-of-context’. We set 𝜆 = 0.85 but can be tuned
as per the use-case. For a given ’out-of-context’ query, Panda then

performs the same embedding based similarity search b/w the query
and embeddings of AWS service description documents 1 to identify
the name of service that most likely relates to the user query (See
arrows 3,4,5 in Fig 2). For query that doesn’t overlap with any of the
listed AWS service (e.g., How’s the weather today?), Panda requests
the user to revise the query or provide more context.

2.2 Grounding Mechanism
Panda builds two types of contexts to ground the LLM— Global and
Local. Former gathers information regarding ’How is this problem
usually solved?’, ’what metrics to look at’, ’best-practices’, etc; while
latter gathers information regarding user’s database, recent queries,
configurations, etc. Both these contexts are key to understanding
the problem, and producing a useful solution.

Document Retriever. Panda collects high-level information
in form of troubleshooting documents, and historically resolved
customer tickets to build the right global context. Panda utilizes
the same mechanism described in Sec 2.1 to retrieve the relevant
documents. These are typically 2-4 page long documents2 written
by domain experts with defined sections like ’Likely causes’, ’Corner
cases’, ’Actions’, etc, while tickets are short Q/A pairs with a concise
problem statement and a verified answer.

Feature Extractor. Panda also extracts relevant telemetry data
related to the user query. From a provided list of telemetry metric
names and their descriptions3, Panda first identifies the top-K (K=3)
relevant metric names from retrieved docs using the same embed-
ding based similarity search. It then queries the data lake to collect
the raw time series data for those metrics. The default setting is to
collect last 24 hours of data, but can be tuned based on the use-case.
Panda uses a change point detection algorithm [21] to divide the
time series into problematic and baseline regions and runs a set of
classic time series detectors, on this data to extract features relevant
for debugging performance issues. Inspired from what DBEs look
at when analyzing telemetry data, we extract interpretable features
like trend, seasonality, mean, p95, and correlation score for each
metric. Panda then uses these features to identify problematic met-
rics. Furthermore, it also identifies the problematic SQL queries that
had at-least one query statistics4 identified as anomalous. However,
the telemetry alone isn’t sufficient to make an informed recom-
mendation, for e.g., in order to recommend adding an index on
a particular column, Panda needs to know if there already exists
an index on that column or not? Thus, to provide this domain
specific knowledge, Panda accesses 2 key things– (a) For queries
identified as problematic, it collects their raw SQL statements; (b)
Database and Information Schema necessary to understand the
tables, columns, views, etc.
Context Aggregator. All these extracted features are stored as
text in form of a structured object (e.g., JSON), and combined along
with the retrieved docs and tickets. We found JSON formatting of
prompt to work really well as compared to unstructured large text
paragraphs, but other structures like bulleted, numbered, etc too
give similar results. As LLMs have a fixed size context window,

1An example of AWS Service List
2An example of Aurora troubleshooting document
3An example of telemetry list and their descriptions
4A list of SQL statistics for PostgreSQL

https://aws.amazon.com/products/
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/apg-waits.cpu.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_Monitoring-Available-OS-Metrics.html
https://www.postgresql.org/docs/current/pgstatstatements.html
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Engine Problem Type Dominating Wait Event Description

APG

Poor Application Lock:Tuple High number of concurrent sessions trying to acquire conflicting
Design lock for same tuple by running UPDATE and DELETE statements

Poor Transaction Lock:TransactionId Result of long running transactions that hold longer locks
Management blocking other transcations from running or high concurrency
Network Client:ClientRead Connection is in idle transaction state and is waiting for a client

Congestion to send more data or issue a command

AMS

Workload Spike io/table/sql/handler Greatly increase the rate of I/O transactions
Storage Latency io/redo_log_flush Database doing excessive commits and write operations

Poor Configuration or synch/mutex/innodb/ A thread has acquired a lock on the InnoDB buffer pool
Poor Application Design buf_pool_mutex to access a page in memory

Table 2: 6 common performance degradation scenarios used in our experiments (out of total 50).

we make a trade-off to restrict the prompt size by further break-
ing down large documents into smaller chunks and storing only
top-3 relevant chunks. Similarly, we only include the top-3 most
problematic SQL query texts.

2.3 Feedback Mechanism
Cache Store Manager (CSM). Any real-world system needs to
improve over time, and utilizing feedback is one way of doing it.
Panda achieves this by requesting the user to provide a binary
feedback in terms of ’Helpful’ or ’Not Helpful’ for each generated
response. This feedback along with the user query and its response
are stored in a vector store indexed by the vector embedding of the
user query (See arrows numbered 22, 15 in Fig 2). When generating
a new response, Panda first retrieves top-K similar user responses
from this vector store (if they exist) by using the similarity search
on query embedding, and adds them to the context. Panda retrieves
at-least 1 and at-most 3 responses of both positive and negative
feedback. This kind of few-shot in-context learning techniques are
shown to significantly improve the output quality [7].

2.4 Verification Mechanism
Answer Verification. Panda frames the answer verification prob-
lem as a Natural Language Inference (NLI) task [6] where it reuses
the pre-trained LLM to act as a verifier and produce a label as accept,
reject, or neutral given a ’hypothesis’ (i.e, the generated answer) and
a ’premise’ (i.e, the retrieved documents and tickets). If the model
answers reject or neutral, Panda reruns the generation process to
obtain a new answer and verifies it. After 𝐾 unsuccessful tries (we
set𝐾 = 3), Panda produces a failure message saying, "Apologies, I do
not possess enough information to answer this question. You can retry
by rephrasing the query. Also, here are some relevant documents that
you can use to get started". Note that customer tickets are removed
from the list of relevant docs shown to the user as they may contain
sensitive data.
Source Attribution. Backing the recommendations with authentic
external sources is a reasonable way to ensure user’s trust in these
generative models. Once the answer is verified, Panda along with
the final output, provides the retrieved sources in form of passages
from retrieved docs (excluding the customer tickets) as references
used by its LLM to generate the output. Furthermore, Panda splits
the output and the reference passages in individual sentences and

provides inline citation if the output sentences are taken verbatim
from the reference passages as shown in Table 3, 4.

2.5 Affordance Mechanism
Impact Estimation. Goal of this module is to provide user with
an estimate of change in the database performance (measured w.r.t
a target metric, e.g., number of active sessions, avg. query latency,
cpu util, etc) for a given fix that will help them quantify how likely it
is for their problem to get resolved if they choose to apply it. There
are two ways to answer this— (a) Generic (less precise): infer what’s
the usual impact seen on similar databases captured in retrieved
documents and tickets; (b) Specific: use external models to predict
the change in performance for a given action (e.g., adding an index,
tuning a knob, etc). Latter requires having an access to a backup
database or learned behavior models, something in which prior
works [22] have shown promise. Panda in its current form mainly
relies on the former, while using simple statistical behavior models
for some of the important actions (e.g., changes in instance class,
engine version, etc) to predict impact on performance metrics like
no. of active sessions [14], and query latency [16]. Furthermore,
Panda maintains a list of potentially high-risk actions apriori (e.g.,
dropping a table, changing isolation levels, etc) and highlights them
in the output if present. We are continuously working to increase
the scope of this module by incorporating existing behavior models
like Learned Cost and Materialized View Estimators [15].

3 CASE STUDY ON REALWORKLOADS
Setup. We conduct a small experimental study of real-world prob-
lematic database workloads to test the reliability and usefulness
of Panda. We use GPT-3.5 as the base pre-trained LLM in Panda
and compare its performance with a pre-trained GPT-4. For em-
beddings we use the text-embedding-ada-002 model by OpenAI
[3]. We use the wait event docs for both Aurora PostgreSQL (APG)
and MySQL (AMS) constituting a total of 2.5𝐾 documents, i.e, a
total of 6.25𝑀 tokens. The telemetry data consists of a total of 250
database metrics collected over a period of 7 days at 1-minute gran-
ularity combining a total of 2.5𝑀 data points. We manually design
debugging queries around the most common wait events that are
commonly asked by Performance Insights [4] customers. We use
50 queries, 25 each for AMS and APG. Due to space constraints, in
Table 2 we only show 6 most common problem types out of the
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Query: For my Aurora PostgreSQL database, I see a lot of sessions waiting for
lock:tuple and CPU.What’s the issue and how can I fix it?

Panda: Based on the information provided, it appears that the problem with your database
is related to high concurrency and lock contention. The increase in shared block writes and the
presence of waiting events for tuple locks suggests that multiple sessions are trying to modify
the same rows, causing resource contention and high waiting times.

To bring down the number of sessions, I recommend investigating your application logic
and identifying any blocker sessions that have been in the idle in transaction state
for a long time. Consider ending these blocker sessions using the pg_terminate_backend
function as a short-term solution[𝑠1 ] . For a long-term solution, adjust your application
logic to reduce concurrency when it is high.

Additionally, you can use the aurora_stat_backend_waits function to analyze past
Lock:tuple events and identify any patterns or common causes[𝑠2 ] .

Based on the database counters, it would be helpful to monitor and optimize queries that are
causing high shared block writes and increasing the usage of CPU and locks.
This can be achieved by identifying and tuning the problematic SQL queries that
are causing the contention.

Sources:
[𝑠1 ]: Amazon Aurora User Guide for Aurora Pg.1397, L.2.
[𝑠2 ]: Amazon Aurora User Guide for Aurora Pg.1397, L.20.

GPT-4: If you’re experiencing an increase in the number of sessions waiting for locks and
CPU resources it could indicate performance issues or contention problems within the.
database. Here are some steps you can take to diagnose and address the problem:

Identify the source of contention: Check the database logs and monitoring tools
to determine which queries or operations are causing the most contention. Look for
long-running or poorly optimized queries that might be causing excessive lock contention
or high CPU usage.

Optimize queries: Review the queries identified in the previous step and ensure
they are properly optimized. Consider adding or modifying indexes, rewriting queries, or
adjusting the database schema to improve query performance.

Consider scaling up: If your database is consistently reaching its resource
limits and the optimizations mentioned above do not provide sufficient relief, it may be
necessary to scale up your Aurora PostgreSQL instance by increasing its compute and storage
capacity.

DBE Feedback: Panda offered concrete advice tailored to the problem with sources that I
could look into and trust. However, GPT-4 offers a group of relevance but general practice advice
that are universally true. Between the two I’d prefer Panda especially if I am a non-expert and
don’t know where to start from.

Table 3: Comparison of recommendations produced by Panda
and GPT-4 rated by DBEs.

50 used in experiments. As human evaluation [14, 16] is key in
estimating the usefulness of performance recommendations, sim-
ilar to [23], we gather a group of 3 DBEs with 3 different level of
competency based on their experience: Preliminary DB Knowledge
(e.g.,SQL knowledge or undergraduate course on databases), DB
Usage Experience, and DB Research or DBE Experience. Each DBE is
shown two anonymized answers and asked to score them out of 3.
Similar to [11], the 3 dimensions used for scoring are– (1) given the
two answers, which one do they trust more; (2) which explanation
do they understand better; and (3) which explanation do they find
more useful. If all the criteria are met, the score is 3, if none is met,
score is 0, and so on. For each query we also asked them to justify
in few words what they liked in particular about an answer.
Preliminary Results. Table 1 summarizes the aggregated statis-
tics of the study. Intermediate and Advanced DBEs demonstrated
similar behavior where they found Panda answers to be both- more
trustworthy (94% of times) based on its source citations, and more
useful (94% of times) based on its correctness arising due to ground-
ing with telemetry and troubleshooting documents. On the other
hand, although GPT-4 answers sometimes where more understand-
able (∼25% of times), they were found to be often too generic and/or

Query: For my Aurora MySQL database, I see a lot of sessions waiting for cpu and
io/redo_log_flush.What’s the issue, and how can I fix it?

Panda: Based on the task information and reference documents, the likely cause of the
performance issue is an increase in wait events related to cpu, redo log flush. This is typically
caused by excessive commits and write I/O operations[𝑠1 ] .

To fix this issue, the recommended action is to group your write operations together to reduce
the number of commits[𝑠2 ] . Instead of inserting records row by row or in small batches, you
should consider larger batch sizes[𝑠3 ] or using bulk insert operations. By reducing the,
number of commits you can minimize the wait events related to write I/O operations and,
mutex lock contention thereby improving the performance of your Aurora MySQL database.

Sources:
[𝑠1 ]: Amazon Aurora User Guide for Aurora Pg.901, L.26.
[𝑠2 ]: Amazon Aurora User Guide for Aurora Pg.902, L.22.
[𝑠3 ]: Amazon Aurora User Guide for Aurora Pg.903, L.44.

GPT-4: If you are experiencing a high number of sessions waiting for ’redo log flush’, and
’CPU’ in your Aurora MySQL database, it could indicate potential performance issues:

Optimize your database design and queries to reduce the number and duration of transactions.
Ensure your transactions are committing or rolling back promptly. Consider breaking down
large transactions into smaller ones to reduce contention. Monitor and tune the
innodb_buffer_pool_size and innodb_buffer_pool_instances configuration
parameters to optimize memory usage.

Monitor your disk I/O performance to identify any bottlenecks. Consider optimizing your
queries and transaction management to minimize the amount of data written to the redo
log. Ensure that your database server has sufficient disk throughput and IOPS for your
workload. Adjust the innodb_log_file_size configuration parameter to an appropriate
value based on your workload.

DBE Feedback: GPT-4 is incorrect. Aurora doesn’t use innodb_log_file_size. Also,
"breaking down large transactions into smaller ones to reduce contention" is the opposite
of what should be done here. Panda clearly outperforms GPT-4 in this scenario.

Table 4: Comparison of recommendations produced by Panda
and GPT-4 rated by DBEs.

incorrect (See examples in Table 3 and 4). Interestingly, Panda was
rated relatively lower on its understandability which the DBEs at-
tributed to the fact that sometimes Panda produced correct but
incomplete answers that lacked enough context. This was further
validated in ratings provided by Beginner DBEs for usefulness. Al-
though they too found Panda to be superior across all 3 dimensions,
in some cases (30%) they found Panda’s answers to be too specific or
even verbatim from troubleshooting documents that lacked enough
context for a novice to utilize it as compared to GPT-4 answers, de-
spite the lack of trust in those answers (8%). However, on the other
hand both intermediate and expert DBEs found that specific quality
of Panda to be very useful. This contrast in usefulness of Panda
wasn’t immediately obvious when we started the experiment.

Furthermore, we use a two-sample T-Test to check for statistical
significance b/w the aggregate scores (i.e, total score out of 3) ob-
tained by the two systems for each scorer. We use a p-value of 0.05
to test the null hypothesis that mean score of two populations are
same. For each of the 3 scorers, we obtain a p-value > 10−20, thus
rejecting the null hypothesis and proving the statistical superiority
of Panda over vanilla GPT-4 in this initial study of 50 cases.

4 RESEARCH DIRECTIONS
Improving IR with custom embeddings. One of the building
blocks of Panda is RAG based prompt tuning technique which relies
heavily on the underlying embedding model and a retriever func-
tion (e.g., cosine distance). General purpose embedding models [19]
aren’t effective at embedding domain specific texts and concepts,
leading to both False Positives and Negatives in retrieval processes.

https://docs.aws.amazon.com/pdfs/AmazonRDS/latest/AuroraUserGuide/aurora-ug.pdf
https://docs.aws.amazon.com/pdfs/AmazonRDS/latest/AuroraUserGuide/aurora-ug.pdf
https://docs.aws.amazon.com/pdfs/AmazonRDS/latest/AuroraUserGuide/aurora-ug.pdf
https://docs.aws.amazon.com/pdfs/AmazonRDS/latest/AuroraUserGuide/aurora-ug.pdf
https://docs.aws.amazon.com/pdfs/AmazonRDS/latest/AuroraUserGuide/aurora-ug.pdf
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Moreover, learning custom embeddings is expensive in both, data-
quantity and cost. Cheaper heuristics exist5, for e.g., learning a
linear transformation on top of general purpose embedding via a
contrastive loss to bias the embeddings to a given domain. How-
ever, this is an open area that will impact usefulness of IR for niche
domains, e.g., database systems.
Handling long multi-modal documents. Troubleshooting docs
and tickets contain useful information in different modalities, e.g.,
screenshots, code snippets, and text which makes it difficult to
parse and embed them using standard text embedding models. Also,
usually problems require information that is spread across multiple
docs and tickets, and accommodating everything in context quickly
hits the limit. Some common ways to solve these problems are to ig-
nore all other modalities except text, and use overlapping windows
to breakdown a long document into chunks and retrieve relevant
chunks. This is effective but leads to incomplete information in
chunks that impact the answer quality.
Telemetry to text. Telemetry data is sequential and lengthy like
text, but LLMs aren’t trained on them. Successful emergent behav-
iors in LLMs are demonstrated on toy telemetry datasets [13] but
telemetry in real world is long, multi-dimensional, and noisy. There
exists some work on converting them to text [10], including what
we propose in Panda, but what is the most effective way to— (a)
segment out relevant parts of telemetry; (b) convert those into texts,
are open research problems that will impact many telemetry driven
domains that like finance, healthcare, etc.
Verification and Attribution. Panda uses textual overlap as a
safe-guarding mechanism to attribute sources which isn’t robust as
LLMs are known to paraphrase and as a result hallucinate. Recent
study [24] shows that only 51.5% of LLM generated answers truly
support their citations, thus undermining their trustworthiness in
real world. Human verification is reliable but unscalable and costly.
Both verification and attribution are open research problems.
LLMs as tool manager. Inability of LLMs to perform complicated
mathematical operations limits Panda from computing accurate af-
fordances, which is key for user to decide whether or not to follow
an advice. Recent works [20] show that using LLMs as reasoners
which can query right external tools can solve this problem. This
is a new and relevant research area where given the right context,
Panda acts as a controller and selects the right behavior model (e.g.,
OtterTune [22], MB2 [15]) to estimate affordances where all the
computational complexity resides within these external models.

5 CONCLUSION
In this paper we present Panda, a novel system designed for au-
tonomous debugging of database systems using NL agents. We
show Panda’s capability to infer and reject irrelevant queries, build
relevant multi-modal context, estimate affordances, provide cita-
tions with the answer, and also improve over time using feedback,
all of which are key for generating useful and trustworthy recom-
mendations. We also present various open research questions that
we encountered in the early stages of this journey and encourage
the database and systems communities to join us in answering
them and re-imagining the entire debugging process for databases
in general.
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