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ABSTRACT
Agreement protocols have been extensively used by distributed data

management systems to provide robustness and high availability.

The broad spectrum of design dimensions, applications, and fault

models have resulted in different flavors of agreement protocols.

This proliferation of agreement protocols has made it hard to argue

their correctness and has unintentionally created a disparity in

understanding their design. To address this disparity, we study the

chemistry behind agreement and present a unified framework that

simplifies expressing different agreement protocols. Specifically,

we extract essential elements of the agreement and define atoms

that connect these elements. We illustrate how these elements can

help to explain and design various agreement protocols.

1 INTRODUCTION
In the past five decades, the database and systems community has

introduced a large suite of agreement protocols [9, 18, 43, 83, 86].
The key aim behind all of these protocols remains the same–how to

make a set of nodes agree on a value. Despite this, several flavors of

these protocols exist in the wild: commit protocols [37, 69, 95, 96],

Crash Fault-Tolerant (CFT) protocols [4, 21, 25, 26, 33, 54, 54, 56, 64–

68, 70, 71, 78, 81, 82, 85, 87, 103] protocols, Byzantine Fault-Tolerant

(BFT) protocols [1, 6, 22, 24, 36, 38, 40, 42, 57, 58, 60, 75, 80, 104], and

hybrid fault-tolerant protocols [13, 28, 38, 59, 72, 76, 88, 92, 94, 100].

But that begs the question: why are there so many protocols?

A key reason for designing various protocols was the application

environment. For instance, the Two-Phase Commit (2PC) [37] and

Three-Phase Commit (3PC) [96] protocols were designed to ensure

that all the nodes agreed on a client transaction’s fate (commit or

abort). However, at the time of inception of these protocols, failures

were rare, and a majority of failures were simple node failures that

did not cause data loss. This led to the application of these protocols

in sharded settings where each node holds a unique set of data-

items. These protocols are still employed for agreement among

on-premise servers that are strictly administered.

With data-failures becoming prevalent, the research community

came up with the design of replicated systems where several copies

(replicas) of the data are maintained [83]. In such a setting, CFT

protocols help to achieve agreement among the replicas. Similarly,

the rise of multi-party computations led to the introduction of

malicious attacks on database replicas. To resolve these attacks, the

research community proposed the design of BFT protocols [43].

With the introduction of cloud computing, several variants of these
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protocols are under use as an organization could have its data

spread across clouds in a sharded-replicated architecture.

Alarmingly, although these protocols extend each other, the triv-

ial disparities in their design have created distinct communities

working around these protocols. This has led to the use of incom-

patible algorithmic designs, schematic representations, and proof

systems for each style of protocols. For example, state diagram

representation is often used to explain or design commit protocols,

while fault-tolerant protocols use line diagram representations.

Similarly, there have been attempts to create automatic proof sys-

tems for all but BFT protocols, which are still proven correct using

pen-and-paper proofs. We believe this disparity hinders innovation.
This disparity also impacts two recent design philosophies: (i) AI-

powered distributed databasemanagement and analysis, and (ii) Sky

Computing, which demands unified abstractions that can support

communication and collaboration across multiple clouds [27, 99].

To this end, we analyze the design of existing agreement pro-

tocols and present a unified model that can intuitively explain

different flavors of agreement. Specifically, in this work, we explore

the chemistry behind the agreement and extract elements at the core
of any agreement protocol. We visualize each agreement protocol

as a compound formed from bonding these elements together. As

a result, we also characterize atoms that help to bond different el-

ements. Through this exercise, we do not want to re-design the

existing agreement protocols but rather present an intuitive way

of thinking about agreement protocols. We believe that our chemi-

cal representation of agreement protocols can ease the analysis of

existing protocols and stimulate the growth of newer protocols.

Akin to chemistry, where the periodic table of elements has

helped scientists to come up with newer compounds, we believe

our elemental representation of agreement protocols can help reveal

newer designs. Further, over the past decades, new elements have

been added to the periodic table. We acknowledge this fact and

recognize that the list of elements we present in this paper is in no

way exhaustive, and newer elements may be added in the future.

This exercise of coming up with a chemical representation of

agreement protocols has also revealed several interesting insights.

Some of these we enlist next: (i) Only three elements are needed

to construct a CFT protocol like Paxos [63]. (ii) 2PC and Paxos

protocols share common elements, but differ in the way transac-

tions are ordered. (iii) Similarly, 3PC and PBFT [24] (the premier

BFT consensus) protocol have common elements. (iv) Majority of

protocols require a subset of four elements to recover from failures.

To illustrate the practical use case of our chemical representation,

we implement a modular architecture on top of the Bedrock [15]

framework. Specifically, we implement each element as a module

and permit their easy combination. This helps to experiment with

different elements and design newer protocols. We used this archi-

tecture to implement five popular agreement protocols and present

an initial experimental evaluation of the same.
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2 AGREEMENT BUILDING BLOCKS
The goal of an agreement protocol is to establish a consensus among

a set of nodes 𝑁 on a proposal 𝜌 . In this paper, we view agreement

protocols as compounds constructed from bonding several atoms

and elements together. As a result, next, we enlist the atoms and

elements of agreement.

2.1 Atoms
An atom is the smallest indivisible unit of an element. In our chem-

ical representation, we use this characteristic of the atoms to define

functional properties of agreement that impact every element of

the agreement protocol.

(1) Failure. Each agreement protocol states the behavior it ex-

pects from all the participating nodes. This behavior specifies how

each node follows the protocol. Generally, an agreement protocol

requires that a non-faulty node follows the protocol: it produces a

deterministic output on a deterministic input.

Often, some nodes in the network act faulty. This could be due

to simple crash failures or due to malicious (Byzantine) attacks. A

node is assumed to be crashed if it operates at arbitrary speeds,

fail-stops, or unexpectedly restarts. A Byzantine node, on the other

hand, can collude, lie, or otherwise attempt to subvert the protocol.

(2) Quorum. Each agreement protocol reaches a final decision

after consulting with all the nodes in the set 𝑁 . Depending on

the behavior expected from the nodes and the types of failure it

can sustain, each agreement protocol states the minimum number

of nodes required to make a decision. This minimum number of

nodes necessary for decision-making is termed as a quorum; in our

chemical representation, we represent quorum with notation 𝑄 .

We assume that there are n nodes in the set 𝑁 and at most, f of
them can fail. The protocol semantics defines the relation between n
and f . Traditional commit protocols like Two-Phase Commit (2PC)

and Three-Phase Commit (3PC) expect a quorum size of n−1 as the

leader needs to wait for the votes from all the participating nodes.

CFT protocols like Paxos [63] and Mencius [74] require a quorum

size of f + 1 nodes; as a result, these protocols have n = 2f + 1 nodes.
BFT protocols like PBFT [24], PoE [41], and HotStuff [34], on the

other hand, expect at least n = 3f + 1 nodes as they require a larger

quorum size of 2f + 1 nodes. Some protocols can tolerate a larger

set of failures; Bosco [98] increases the network size from 5f + 1 to

7f + 1 to tolerate 2f faulty nodes.

(3) Topology. Each communication protocol sticks to one or

more topology for communicating between the nodes. This topol-

ogy also helps to define the nature of each element. The most

prevalent topology includes the star, clique, or ring.

In a star topology, the communication occurs in two steps: from

a designated node (for example, the leader) to all other nodes and

from all the nodes back to the designated node [34, 41]. Often, the

star topology is also viewed as centralized communication as it is

initiated by the designated node. In the clique topology, all (or a

subset of) the nodes communicate with each other without any

intermediaries [24]. Such a communication pattern is also referred

to as decentralized communication. Some protocols also exhibit

the ring (chain) topology, where each node sends messages to its

successor in the ring and receives messages from its predecessor.

(4) Data Distribution. The design of any agreement protocol is

based on how it expects the data to be distributed among its nodes. If

each node in the network stores a unique set of data items, we term

such a data distribution scheme as data sharding. If each node in the

network stores all the data items, we term such a data distribution

scheme as data replication. Some protocols offer a hybrid scheme

of sharded-replication, where distinct groups of nodes manage

distinct data items; within each group, the data is replicated among

all the nodes. Depending on the data distribution scheme, we need

to define new elements that can capture the characteristics of the

underlying agreement protocol.

2.2 Elements
An element is composed of one or more atoms. In our chemical

representation, an element represents the phases of an agreement

protocol and it inherits the properties of this agreement protocol

through different atoms. We present a general list of elements that

are part of a majority of protocols. Note that this list is not meant to

provide a fully exhaustive set of elements, but rather to demonstrate

the overall methodology used to define elements. As new protocols

are created, new elements may be found and added to this list.

However, we envision each such new protocol employing some of

these general elements.

(1) Proposal (Pr). Each agreement protocol aims to establish a

consensus among the nodes in set 𝑁 on a proposal 𝜌 . As a result,

the first element of our periodic table of agreement protocols is Pr,
which signifies the start of an agreement. Each proposal typically

includes information that identifies a client transaction, such as

an identifier (id), a sequence number or a ballot number, and an

operation to be executed. As each 𝜌 initiates an instance of the

agreement protocol, without the loss of generality, we can refer

to the proposer of a proposal as the leader. The leader 𝑙 sends this

proposal to all nodes for acceptance.

(2) Vote (V).The next step in any agreement protocol is to decide

on the fate of the leader’s proposal. To do this, each agreement

protocol expects each node 𝑟 , 𝑟 ∈ 𝑁 to vote once it receives 𝜌 from

𝑙 . Often, 𝑟 sends its vote to 𝑙 (in star topology). In BFT protocols, up

to f nodes (including the leader) may act maliciously. As a result,

each honest 𝑟 only casts a vote in the support of a valid proposal.
However, malicious nodes are free to cast any vote. Considering

the key role played by this phase, we assign it element V.
(3) Prepare (Pp) and Commit (Co). Based on the votes re-

ceived from the nodes, the leader 𝑙 is expected to conclude the

common decision. As different agreement protocols set different

expectations from the network, 𝑙 may not receive support from

all the nodes. Hence, 𝑙 waits to only reach the quorum set by the

protocol. Once the quorum is reached, the leader has a guarantee

that a sufficient number of nodes have voted on this proposal.

If 𝑙 wants to first prepare the nodes about this global decision,
it broadcasts a Prepare message on the network. When the leader

believes that the transaction can be committed at all the nodes,

it broadcasts a Commit message on the network. Note that the

decision to prepare or commit a transaction is not the leader’s

choice rather a step in the protocol. For this reason, we dedicate

two distinct elements to represent the prepare (Pp) and commit

(Co) phases.
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This prepare (Pp) and commit (Co) stages follow the star topol-

ogy where the leader (or a collector) is responsible for collecting

votes and demonstrating that a quorum of nodes supports the pro-

posal in a centralized manner. A common concern with such a

design is that it relies on a specific node, which can suffer conges-

tion or undergo failures. As a result, several protocols advocate

the decentralized clique topology where each node broadcasts its

vote on the network. This allows each node to reach a common

decision without any intermediary. In this manner, two centralized

(all-to-one and one-to-all) communication phases, e.g., vote and

prepare, can be replaced with a decentralized (all-to-all) commu-

nication phase. To take into account this decentralized design, we

add an ⊕ to the corresponding elements and show decentralized

Prepare as Pp⊕ and decentralized Commit as Co⊕ .
(4) Execution (X). A key task associated with agreement is

the execution of client transactions. On the one hand, some pro-

tocols execute a transaction once its order is determined (order-
then-execute) [24, 63]. On the other hand, some protocols reach

agreement on the executed transaction (execute-then-order) [37, 96].
We consider execution as an element of the agreement protocol.

(5) Checkpoint (Ch). Periodically, nodes in 𝑁 exchange their

states to ensure they have a common state. This exchange phase

also helps them to recover any missing committed transactions.

(6) Leader Election (Le). Often one or more nodes may fail,

messages may get delayed or lost, or there could be adversarial at-

tacks. If the nodes in𝑁 detect that the current leader has failed, then

they may initiate a leader election phase. The newly elected leader

is expected to help commit the current proposal and ensure that

the nodes in 𝑁 have a common state. Nodes may also participate

in leader election phases if there is more than one proposer.

Some protocols have a deterministic leader election process

where the next candidate is predesignated. Several other proto-

cols, require each candidate to broadcast its proposal to all the

nodes and nodes vote on their choice of candidate.

3 BONDING ELEMENTS INTO PROTOCOL
We now illustrate how existing state-of-the-art agreement protocols

are compounds of our atoms (§2.1) and elements (§2.2). Specifically,

we study the design of four famous protocols, which accelerated

development of newer protocols.

Notations. We use angle brackets (⟨⟩) to represent a sharded

setting and double vertical lines (∥∥) to represent a replicated setting.
To represent any phase that has clique communication topology,

we add an ⊕ to the corresponding element. For transition to phases

that require no communication between the nodes, we use the nota-

tion ◦. In most protocols, the leader proposes the order of execution

for each transaction. However, in some protocols, each node indi-

vidually decides whether it can consistently order a transaction;

for such protocols, we add a ‡ at the state of decision making. In

Figure 1, we use these notations to illustrate different agreement

protocols; these flows represent the non-failure case.

3.1 Two-Phase Commit (2PC). The 2PC protocol is often re-

ferred to as the earliest agreement protocol, which helps a set of

nodes, holding distinct items (data-sharding), decide whether they

want to commit or abort a transaction [37, 97]. Even after 40 years

of its inception, 2PC is still employed by systems like Google’s

2PC

3PC

Paxos

Paxos
⊕

PBFT
⊕

L-PBFT

Zyzzyva

PoE

Mencius
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GeoBFT
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⟨ Pr V
‡

Co X
◦ ⟩
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‡ Pp

V
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◦ ∥
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Figure 1: Chemical representation of the non-failure flow of
different agreement protocols.

Spanner [29]. The protocol works as follows: when the leader is

ready to commit a transaction, it requests all the nodes to vote.

After receiving all the votes, the leader broadcasts the global deci-

sion (commit or abort); post which nodes execute and commit the

transaction.

The 2PC protocol can handle simple node failures: either the

leader or the nodes can fail. Concurrent failures of the leader and

one or more nodes can cause the protocol to block. If the leader
fails, variants of 2PC permit leader election to ensure recovery.

3.2 Three-Phase Commit (3PC). The blocking nature of 2PC

protocol led to the design of the 3PC protocol [96]. The key intuition

behind 3PC protocol is that the decision to commit a transaction

requires an additional phase of agreement. Specifically, first the

leader prepares the nodes about the common decision to commit (if
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all the nodes voted to commit). The nodes acknowledge receipt of

this common decision to the leader (can be visualized as re-sending

the vote). Once the leader has received acknowledgments from all

the nodes, it asks them to commit the transaction.

3.3 Paxos Consensus. Prior works have proved that under an

unreliable network (messages can get lost or delayed) even the 3PC

protocol can block [51, 63]. Further, failure of a single node in 2PC

or 3PC before the leader receives its vote causes the transaction to

abort. The reason for these problems is twofold: (i) only one node

holds a copy of each data item, and (ii) the leader needs to wait for

the votes of all the nodes. One way to eliminate these problems is

to view the network as replicated; each node holds a copy of every

data item. Paxos [63] is the most known protocol to guarantee

agreement among the nodes in a replicated network.

Paxos guarantees agreement in a network of n = 2f + 1 replicas.

We describe the Paxos protocol with a designated leader for simplic-

ity. The leader instates agreement by proposing a client transaction

to all other replicas. Unlike 2PC, in Paxos, the leader suggests an

order for each transaction by assigning a sequence number (i.e., bal-

lot number) to this proposal, which states the order to execute the

transaction. On receiving the proposal from the leader, the replicas

acknowledge the receipt of this proposal. Once the leader receives

acknowledgments from a majority of replicas (f + 1), it informs all

the replicas that a consensus has been reached; the replicas can

now execute the transaction in the proposed order.

Paxos can be implemented in a decentralized manner, shown by

Paxos
⊕
in Figure 1, by combining the vote and commit stages.

3.4 Practical Byzantine Fault-Tolerance Consensus (PBFT).
Although Paxos can handle node failures and guarantees safe con-

sensus under an unreliable network, it cannot sustain Byzantine or

malicious attacks. PBFT [24] is often referred to as the first protocol

to present a practical consensus in the presence of Byzantine nodes.

To do so, PBFT requires an additional phase of agreement than

Paxos and allows at most one-third of replicas fail or act maliciously

(n = 3f + 1). We present a centralized (linear) and a decentralized

(original) version of PBFT. In the decentralized version, PBFT
⊕
, the

leader first assigns a sequence number to the client request and

broadcasts the proposal to all replicas. In the prepare phase, replicas

communicate with each other to validate the leader’s proposal, and

upon receiving votes from two-thirds of the replicas, each replica

enters the commit phase. Similar to the prepare phase, in the com-

mit phase, replicas communicate with each other in a decentralized

manner to commit the client transaction.

In the centralized (linear) version of PBFT, L-PBFT, each of the

prepare and commit phases is divided into two linear phases: one

from the replicas to the leader and one from the leader to the

replicas. In each phase, the leader waits for votes from two-thirds of

the replicas before sending its message (either prepare or commit).

Remarks. Although these protocols target distinct settings, our

elemental structuring makes it obvious that these protocols can be

derived from each other. We observe that although 2PC and Paxos

have similar phases, in 2PC, each node locally decides whether it can

order the leader’s proposal with respect to other transactions it has

received and then votes to commit or abort that transaction. This

is in contrast to Paxos where the leader determines the ordering. A

similar observation holds in the case of 3PC and linear PBFT.

4 COMPLEX ELEMENTAL PROTOCOLS
A key advantage of our elemental abstraction is that it can be

used to design and explain a lot more protocols than the standard

agreement protocols. This is useful in designing efficient variations

that require fewer messages or phases, and yield higher throughput.

Next, we illustrate this with some examples.

4.1 Speculative Agreement. As agreement protocols require

multiple phases, prior works have introduced several optimizations

to these protocols [41, 49, 61, 89]. One famous optimization ex-

tracted from database theory is optimistic or speculative execution.

Several agreement protocols employ speculative execution to ea-

gerly execute a transaction without waiting for the transaction to

be committed at all the nodes. As a result, these protocols are able

to reduce one or more phases, which helps them to yield higher

throughputs and lower latencies.

SpecPaxos [89] and Zyzzyva [61] use speculative execution to

allow their replicas to execute the client transaction as soon as they

receive a valid proposal from the leader. This allows SpecPaxos and

Zyzzyva to process requests in one and two fewer phases respec-

tively, compared to their decentralized variants. Similarly, PoE [41]

(a BFT protocol) requires its replicas to only prepare a transaction

prior to its execution. This optimization though requires one more

phase than Zyzzyva; it reduces one phase from PBFT
⊕
. However,

these optimizations do not come for free; these protocols require

their clients to wait for a larger number of matching responses.

For example, SpecPaxos clients need responses from f + 1 replicas,

Zyzzyva clients need responses from all the n = 3f + 1 replicas, and

PoE clients need responses from 2f + 1 replicas.

4.2 Parallel Consensus. A common characteristic of all the

protocols that we have analyzed till now is that they rely on a

single leader node. Generally, this leader continues sending out

proposals until it fails. If the leader fails, these protocols present

mechanisms to replace the leader (refer to §5). However, the leader

replacement process is expensive and leads to a significant drop in

system throughput. As a result, several recent protocols, such as

Mencius [74], and Rcc [44], allow all the replicas to act as leaders at

the same time. This leads to several instances of consensus running

in parallel at each replica.

In Figure 1, we illustrate the compound structure of the Mencius

protocol. AsMencius runs 𝑖 , 1 ≤ 𝑖 ≤ n, instances of Paxos in parallel,
we add new notations in its compound structure to represent this

behavior. We add corner blocks (⌜⌟) to capture elements that are

run by each instance without any coordination.

Each instance of Mencius follows the elements of decentralized

Paxos (Pr, and Co⊕). After all the instances have committed their

respective transactions, a global order of all the transactions is gen-
erated on each replica. We represent this global ordering as a new
element O. Post global ordering, each node executes the transac-

tions. Notice that each instance works independently and does

not need to wait for global ordering and execution. Similarly, we

also illustrate the compound structure for a parallel BFT consensus

protocol, Rcc [44].

4.3 Wide Area Agreement. A key limitation of various agree-

ment protocols that we have described until now is that they are

oblivious to the physical location of the nodes. Specifically, these

protocols assume identical available bandwidth and round-trip costs
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for all the nodes. Prior works [7, 34, 45, 51, 84] have shown that

this is not the case and the nodes may be dispersed across the

globe. If this is the case, the communication between two nodes

that are globally distant will bottleneck the protocol performance.

To resolve this challenge, protocols like Steward [7], GeoBFT [45],

Ziziphus [14] and Gec [51] advocate a topology-aware architecture.

In Figure 1, we take GeoBFT as an example and present the

compound representation for the same. In this protocol, the replicas

are divided across shards, though all the replicas hold a copy of

the data. As a result, this is not the usual form of data-sharding,

rather a form of replica grouping. Specifically, all the neighboring

replicas are grouped together in a single shard. Each shard runs

the PBFT protocol on its own set of client transactions. Once a

transaction is committed, it is communicated to every other shard.

This communication across the shards is crucial, as shards are often

geographically distant. Hence, a common aim is to minimize this

communication cost. In our representation, we associate this inter-
shard communication with a new element Is and use the notation

of bidirectional line to represent this communication. Further, the

number of shards can vary, so our representation illustrates the

number of shards with a superscript 𝑠 and denotes the replicated-

sharded nature of this protocol by wrapping it with angle brackets

and vertical lines. The vertical lines on the exterior denote that the

protocol is essentially replicated.

4.4 Sharded-Replicated Agreement. Although geo-replicated

sharding avoids expensive communication among globally dis-

persed replicas, it expects each node to order and execute the same

set of transactions. Essentially, it is expensive to guarantee consis-

tent replication across all the replicas. A popular way to avoid this

cost is to have a sharded-replicated system [12, 29, 62].

CFT systems like Spanner [29] and MDCC [62], and BFT proto-

cols like SharPer [10], Saguaro [11], Cerberus [52], ByShard [53],

AHL [31], and RingBFT [91]. employ the sharded-replicated archi-

tecture, where each shard manages a distinct set of data-items, and

each shard replicates its data. This architecture allows each shard to

independently run agreement on the transactions that only require

access to its data-items, execute the ordered transactions and reply

to the clients. Such transactions are also termed as intra-shard trans-
actions. In Figure 1, we represent the intra-shard consensus in CFT

systems like Spanner; we give it a name S-Paxos. Although intra-

shard consensus requires no communication among the shards, we

add the element Is to represent forwarding transactions to the cor-

rect shard. Intra-shard consensus decreases replication and boosts

system throughput as each shard runs consensus in parallel.

5 ELEMENTAL FAILURE MECHANISMS
Until now, the focus of our elemental representations was to explain

the non-failure flow of different agreement protocols. However, fail-

ures are prevalent among databases, and each agreement protocol is

expected to handle a subset of possible failures. Specifically, nodes

or replicas can fail-stop, crash, or return arbitrary results. In ex-

treme cases, some of the nodes may be controlled by the adversary

due to which they may collude or not respond [24]. Similarly, the

messages communicated among nodes may get delayed, dropped

or lost. As a result, in this section, we introduce elements that help

agreement protocols recover from failures.

General

PBFT
⊕

T A
⊕

Le Sx

∥ Pr Pp
⊕

Co
⊕ X

◦ ∥

Sx Le A
⊕

T

Figure 2: Chemical representation of the general failure flow
and the complete flow of transaction in PBFT.

(1) Timeout (T). On receiving a proposal from the leader, each

node attempts to reach a common decision on that proposal. To do

so, each node waits to transit from one element to another as per

the protocol. However, due to unexpected failures, a node may get

stuck on a specific element for a prolonged period of time. To allow

nodes to progress, despite failures, protocols often require nodes

to wait at each element for only a fixed period of time. Post this

period, the node timeouts and switches to the failure recovery path.

Clearly, timeout plays a critical role, and we acknowledge this fact

by representing it with an element T.
(2) Announce (A). Once a node timeouts, it announces this fact

to all the other nodes in the network. Often, the announcer also

sends its current state. This state may include all the transactions

(and the global decisions) since the last checkpoint. The aim of this

announcement is to inform the other nodes and to plan the next

steps for recovery. We use element A to represent this phase.

(3) Leader Election (Le). Post announcement, the participating

nodes may conclude that the current leader has failed. In such a

case, they need to elect a new leader. As stated in Section 2.2, several

agreement protocols suggest running a leader election algorithm,

which democratically elects a leader based on the number of votes

received in support of each candidate. The leader election algorithm

requires nodes to exchange votes and count the ballots in the favor

of each candidate. Some protocols also suggest a deterministic

leader election where the next leader (if the current one fails) is

predefined at the start of the protocol [24, 41]. As the leader drives

consensus, we denote the leader election phase with element Le.
(4) State Exchange (Sx). Post leader election, the new leader

is expected to bring all the nodes to the common state. To do so,

often, the leader constructs the common state from all the received

announcements and sends this constructed state to all the nodes.

When a node receives the constructed state from the new leader, it

updates its state. We use element Sx to reflect state exchange.

5.1 Failure Flows
We now use the elements that we described earlier in this section

to present a generic compound representation for the failure flow.

To do so, we introduce some additional notations. We use doubly
bidirectional arrows to represent a connection to element Le. We

denote the entry and exit to failure-flow with unidirectional arrows.
In Figure 2, we first illustrate the general failure path adopted by

most protocols. Following this, we illustrate the full transactional

flow in PBFT
⊕
. The doubly bidirectional arrow connecting elements

A and Le states that depending on the protocol, a leader election
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may or may not take place. Further, we associate ⊕ with element A
as every node in the network may send an announcement message

to every other node. Such a communication pattern is representative

of the clique topology. In PBFT
⊕
protocol, as replicas may timeout

either during the prepare or commit phase, we provide entry to

the failure path through these elements. Post-completion of the

failure path, the new leader is expected to initiate consensus on the

new client transactions. As a result, we have an exit path from the

failure flow.

6 EXPERIMENTAL EVALUATION
To illustrate that our chemical representations ease analyzing and

designing agreement protocols, we create an experimental proto-

type on top of Bedrock [15] framework. Bedrock is an experimental

system that helps to design and evaluate different agreement pro-

tocols. Bedrock follows a modular architecture that associates a

plug-and-play module with each element. Any developer can select

modules of their choice and design a protocol.

We use these modules to create five existing agreement protocols:

2PC, 3PC, Paxos, PBFT, and PoE. We use these protocols to conduct

an initial study that benchmarks their performance against each

other. We ran experiments on the Amazon EC2 cluster; each node is

deployed on a VM, which is a c4.2xlarge instance with 8 vCPUs and

15GB RAM, Intel Xeon E5-2666 v3 processor clocked at 3.50 GHz.

When reporting throughput, we use an increasing number of client

requests until the end-to-end throughput is saturated and state the

throughput and latency just below saturation. The results reflect

end-to-end measurements from the clients. Clients execute in a

closed loop. We use micro-benchmarks commonly used to evaluate

BFT systems, e.g., BFT-SMaRt [19]. Each experiment is run for 120

seconds (including 30s warm-up and cool-down). The reported

results are the average of five runs.

We evaluate the throughput and latency of the protocols by

increasing the number of nodes n in a failure-free situation.We vary

the number of nodes in an experiment from 3 to 100, use batching

with a batch size of 400 and a workload with client request/reply

payload sizes of 128/128 byte. Figure 3 depicts the results. In large

networks, Paxos demonstrates 52% higher throughput and 51%

lower latency compared to 2PC. This is because Paxos tolerates

f failures (out of 2f + 1 nodes) while 2PC requires all nodes to

participate. Increasing the number of nodes shows a performance

trade-off between 3PC and PBFT. On the one hand, 3PC has a

linear message complexity while PBFT incurs quadratic message

complexity. On the other hand, in 3PC, all nodes are supposed

to participate while PBFT tolerates one-third failure. As shown,

increasing the number of nodes also has a large impact on PBFT

(65% reduction) due to its quadratic message complexity. increasing

the number of nodes has less impact on the throughput of PoE

(39% reduction) compared to PBFT (65% reduction) due to its linear

message complexity.

7 RELATEDWORK
The past five decades have brought forth several different flavors of

agreement: commit protocols [37, 96], CFT protocols [63, 74], and

BFT protocols [8, 24, 46–48, 50, 61, 79, 90, 91]. Different surveys and

empirical studies have analyzed subsets of agreement protocols, e.g.,
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Figure 3: Performance with different number of nodes

BFT protocols [2, 3, 5, 9, 16, 17, 20, 23, 30, 32, 35, 39, 86, 93, 105]. As

it is impossible to state all the protocols, following works provide

a good survey [9, 15, 32, 43, 83, 86, 102]. Recent protocols like

Tapir [106], Janus [77] and Calvin [101] try to combine commitment

and crash fault-tolerance into a single design. Sujaya et al. [73]

provide a framework that is able to describe a subset of existing

commitment and CFT protocols.

Our work is inspired by the Data Calculator [55], which provides

the first periodic table for expressing data structures. However, our

focus is on agreement protocols. We extract elements and atoms

that can express all the flavors of agreement and our elements are

not restricted to just commit and CFT protocols.

8 CONCLUSION AND FUTUREWORK
In this paper, we undertook the exercise of understanding various

flavors of agreement. This allowed us to present a framework for

explaining different types of agreement protocols. We envision this

framework as a periodic table of agreement, where multiple ele-

ments bond together to create different protocols. Our elemental

structure also revealed unexpected relationships between commit,

CFT and BFT protocols. To illustrate that our vision works in prac-

tice, we presented a modular design that allows the design and

analysis of different protocols.

We envision this paper as the first step in designing a unified

framework that can easily express different agreement protocols.

This exercise of designing a unified elemental framework has re-

vealed several unanswered questions. For example, how can we

express deterministic protocols that target implicit commitment of

transactions? How do asynchronous protocols that do not make any

timing assumptions fit in this framework? Similarly, several BFT

protocols advocate partial ordering of client transactions instead of

a unique total ordering. The unified framework also needs to pave

the path for expressing node recovery and reconfiguration under

different failure models. Additionally, a keen reader would have

observed an implicit ordering relation between different elements,

while some elements are mutually exclusive. Our initial unification

model skips these relationships, which need to be expressed in the

future. Furthermore, the framework should allow a reader to argue

about properties like totality, validity, consistency, and termination.
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