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Abstract
MySQL is the most popular transactional datastore deployed
at Meta with a storage footprint in the order of petabytes.
Over the years, several components have undergone signif-
icant changes to meet the demands posed by production
workloads. One such effort was to redesign the replication
protocol to use a modified version of Raft instead of tradi-
tional semisynchronous replication.

Even though Raft was a good fit for our requirements, the
original algorithm did not offer much flexibility in choosing
quorums which is important for latency sensitive applica-
tions. In this paper, we describe our changes to the original
Raft algorithm required for supporting flexible data commit
quorums. We discuss the impact of these changes on work-
load performance, fault tolerance and ease of integration
into the existing production setup.

CCSConcepts: •Computingmethodologies→Distributed
algorithms; • Information systems→ Remote replica-
tion.

Keywords: flexible quorums, consensus, raft, data replica-
tion

1 Introduction
MySQL is the transactional datastore of choice for relational
workloads at Meta. The scale of MySQL deployment spans
petabytes of data [19]. Over the years, lots of major improve-
ments have been made to the MySQL stack [1] in order to
support requirements stemming from serving production
workloads. Some notable examples include development of
middleware such as Binlog Server to efficiently provide in-
region fault tolerance, a new storage engine [19] to reduce
write amplification and several features to support multi-
tenancy. One such effort was to redesign the replication
protocol used by a multi-replica MySQL deployment to use
Raft [22]. This paper describes the changes we made to Raft
for supporting quorum flexibility and the lessons learned
from the production deployment of these changes.
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Every MySQL database in production has replicas in order
to provide low latency reads across geographies. This redun-
dancy also helps with fault tolerance. In the steady state, each
database has a strong leader responsible for coordinating
write operations to the database. Before the adoption of Raft,
the consensus mechanism was split between the MySQL
server and supporting automation tools. Modifying the code
was error prone because the logic to support leader elections
and data commit was spread across multiple bespoke au-
tomation tools. Crash recovery, leader election and disaster
readiness exercises were all coordinated externally making
it hard to reason about consistency and correctness of the
protocol. During region outages (simulated or otherwise),
the problem was even more exacerbated and significant man-
ual effort was required to restore availability. In addition to
that, clients used to be completely reliant on an external sys-
tem to discover the primary replica serving write operations
leading to scalability challenges in the past.

A redesign of the replication stack was undertaken to con-
solidate the logic into the MySQL server using a well defined
consensus algorithm called Raft. Raft is an easy to under-
stand consensus algorithm which is equivalent to Paxos [14]
in fault-tolerance and performance [22]. It has strong leader
semantics with clearly defined phases. There are lots of pro-
duction grade open source implementations of the algorithm
[2]. All of these properties made Raft a suitable candidate
for implementing the next generation replication stack for
our MySQL deployment. We had to modify the original Raft
algorithm to eliminate performance bottlenecks and support
configuration parameters which enabled developers to make
the necessary tradeoffs for their applications. FlexiRaft is a
direct result of these changes and some of its most important
contributions are as follows.
• Data commit quorumsweremade configurable. The ad-
dition of flexible quorums enabled developers to make
the necessary tradeoffs between latency, throughput
and fault tolerance [7]. Leader election quorums get au-
tomatically computed from the specified data commit
quorum to ensure correctness.
• Support for dynamic quorumswas addedwherein both
the data commit and leader election quorums get re-
configured after every successful election. This option
provides low latency commits with enhanced fault tol-
erance while restricting quorums to a small group of
regionally local servers. Knowledge of the previous
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data commit quorums is inferred from voting history.
More details in subsection 4.2.
• Tail commit latencies became independent of the num-
ber of replicas in the cluster.
• Automation tools were significantly simplified since
the consensus logic was completely incorporated into
the MySQL server.

Section 2 provides some definitions to establish common
terminology across different replication protocols. The pre-
exisiting semisynchronous setup and potential solutions for
its replacement are discussed in section 3. Section 4 of the
paper describes the feature gaps in Raft and stresses on the
need for flexibile quorums. It also lists the choices we pro-
vide to our end users when selecting configurable quorums
followed by the amendments to the algorithm to support this
flexibility in section 5. Section 6 discusses the fault tolerance
guarantees of FlexiRaft with experimental validation of its
performance presented in section 7 and lessons learned from
its deployment in section 8. FlexiRaft is compared to other
variants of consensus algorithms in section 9 along with a
discussion on avenues for further improvement.

2 Common Concepts & Definitions
Some of the terms used in the paper are unique to the deploy-
ment of MySQL at Meta. This section provides definitions
for these commonly used terms.

2.1 MySQL binlog server
The MySQL binlog server is a special server which only
stores the recent binlogs (write ahead log for MySQL) rather
than a full copy of the database. These special servers were
developed at Meta to provide regional commits without in-
curring the overhead of extra replicas.

2.2 Replica set
A MySQL replica set is a collection of all the replicas (includ-
ing the primary) and their corresponding binlog servers.

2.3 Group
Members of a replica set are grouped together into multiple
disjoint sets based on physical proximity. Each disjoint set
forms a group and physical proximity can be defined as
belonging to the same region, same datacenter or sharing
the same main switchboard (MSB) within a datacenter, etc.
These groups are useful in defining quorums.

2.4 Data commit quorum
The data commit quorum is a minimal set of servers in the
replica set (including both MySQL and binlog servers) that
must acknowledge a transaction before it can be committed.

2.5 Leader election quorum
The leader election quorum is a minimal set of servers in
the replica set (including both MySQL and binlog servers)
that must accept a candidate server as a leader for it to safely
assert leadership over the entire replica set.

2.6 Pessimistic quorum
A pessimistic leader election quorum consists of a majority
of servers from every constituent group of a replica set. A
majority in all constituent groups guarantees intersection
with every valid leader election or data commit quorum.
This is because every valid quorum is defined in terms of
majorities in a subset of constituent groups.

3 Consensus Algorithms
A brief discussion on various consensus algorithms is pre-
sented in this section. The setup prior to Raft is also described
in detail so that the rationale behind altering Raft to support
quorum flexibility can be easily portrayed.

3.1 MySQL Semisynchronous Replication
Prior to Raft, our MySQL deployment utilized the semisyn-
chronous replication protocol [6] in the data commit path
to achieve durability. Figure 1 is a visual representation of
a replica set which spans three regions. There is a MySQL
database server in each of these regions. These servers are
labeled 𝑅0, 𝑅1 and 𝑅2. Each MySQL server is accompanied by
two binlog servers in the same region to provide local redun-
dancy (fault tolerance) for the most recent write operations
on the database. Binlog servers labeled BLS 𝑅0.1 and 𝑅0.2
acknowledge transactions from MySQL server 𝑅0, binlog
servers BLS 𝑅1.1 and 𝑅1.2 acknowledge transactions from
MySQL server 𝑅1 and so on. As pointed out in subsection 2.1,
MySQL servers have the state machine as well as the write
ahead log whereas the binlog servers only have the write
ahead log. Only the primary replica accepts writes to the data-
base (strong leader semantics). The semisynchronous unit
consists of the primary1 replica and its two binlog servers.
For a transaction to get committed, one of the binlog servers
out of BLS 𝑅0.1 and 𝑅0.2would need to acknowledge it to 𝑅0.
The rest of the replicas (𝑅1 and 𝑅2) would asynchronously
apply updates to the database. It is to be noted that binlog
servers BLS 𝑅1.1 and 𝑅1.2 get updates from 𝑅1 and not from
𝑅0 directly. Similarly, binlog servers BLS 𝑅2.1 and 𝑅2.2 only
get updates from 𝑅2 (not 𝑅0).

If the primary (𝑅0) failed, a different replica would take its
place and use the failed primary’s binlog servers (BLS 𝑅0.1
& 𝑅0.2) to apply any committed operations that it couldn’t
replicate before the failure. The leader election process was
externally orchestrated by monitoring processes running
on database hosts. The separation of logic for committing
data and electing a new leader was error prone and difficult
1The terms 𝑝𝑟𝑖𝑚𝑎𝑟𝑦 and 𝑙𝑒𝑎𝑑𝑒𝑟 are used interchangeably in this paper.
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Figure 1. Sample replica set with members in three geo-
graphical regions

to maintain. This led to a redesign of the replication stack
and the Raft consensus algorithm was employed to commit
entries to MySQL’s write ahead log [4]. The implementation
of the algorithm was extracted [3] from the Apache Kudu
[18] open source project.

3.2 MySQL Group Replication (Paxos variant)
Another significant and deliberate choice was to not use
group replication offered by MySQL version 5.7 onwards.
While there are significant advancements offered by the pro-
tocol (such as the multi-primary mode), using group repli-
cation in our deployment presented significant challenges.
It is based on a variant of Paxos [14] which does not use a
persistent log. Entries are written to the log only after they
are considered committed via in-memory consensus rounds.
The leader election algorithm [5] is local and deterministic.
It also doesn’t consider lag when choosing a new leader and
brief network blips trigger a computationally expensive re-
covery algorithm. This option could have worked but not
without excessive engineering effort to fix the drawbacks.

3.3 Raft
Raft is a consensus algorithm which is equivalent to (multi-)
Paxos in fault-tolerance and performance [22]. It was de-
signed with the primary goal of improving understandability
and is described completely enough to meet the needs of a
practical system. Compared to Paxos, it offers state space re-
duction and decomposes consensus into well defined phases
for leader election, log replication and safety.
The Raft algorithm achieves consensus via an elected

leader and is not a Byzantine fault tolerant algorithm. It
imposes the restriction that only the servers with the most
up-to-date data can become leaders and includes a newmech-
anism for changing cluster membership by utilizing over-
lapping majorities to guarantee safety. A formal proof of

correctness for its consensus mechanism has been provided
using the TLA+ framework [21].

Besides its advantageous simplicity, Raft has several com-
monalities with the previous semisynchronous deployment
because of its single strong leader semantics and fault toler-
ance guarantees. In addition to that, availability of several
well-tested open source implementations of the algorithm
made it a suitable candidate for adoption in our revised repli-
cation framework despite some feature gaps explained in the
following sections.

4 Flexible Quorums
Two shortcomings of replacing the semisynchronous setup
with the original Raft algorithm are immediately obvious.
First, it would increase the cross region network utilization
as the leader (primary replica) would directly send updates
to all other members of the replica set. Please note that bin-
log servers of every region received updates from their local
MySQL replica in the semisynchronous protocol ( subsec-
tion 3.1). In case of Raft, the primary replica 𝑅0 would be
directly sending updates to binlog servers BLS 𝑅1.1, 𝑅1.2,
𝑅2.1 and 𝑅2.2, increasing the traffic between region pairs
(region 0, region 1) and (region 0, region 2) shown in Figure 1.
Second, a majority of the replica set participants would need
to agree before committing any write operations to the data-
base. This would significantly increase data commit latency
and reduce overall throughput because the agreement would
cross regional boundaries. In the example shown in Figure 1,
there are 9 members in the replica set and at least 5 votes are
required by the primary server 𝑅0 to commit any transac-
tion. Since region 0 only has 3 members, 2 votes (out of the 5
required) would be needed from servers outside of region 0.
These regressions would present challenges for most work-
loads we run in production. In this paper, we only discuss
mitigation for increased data commit latencies by adding
flexible quorums to Raft. The idea is similar to Flexible Paxos
[12]. The mitigation strategy used to reduce cross-region
network utilization is beyond the scope of this paper.

We offer flexibility to end users when selecting data com-
mit quorums since it determines the latency, throughput and
fault tolerance observed by their application. Valid leader
election quorums are automatically computed from the cho-
sen data commit quorums. For state machine safety [22],
every data commit quorum needs to intersect with every
leader election quorum. If this constraint is violated, two
disjoint sets of servers would exist where one set would be
able to commit transactions without the knowledge of any
member in the other set which is capable of independently
electing a new leader (data loss). Similarly, since our setup
only allows for at most one leader at any given point in
time, every pair of valid leader election quorums should in-
tersect as well. If this were not the case, there would exist
two disjoint sets of servers wherein each set is capable of
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independently electing a new leader without the knowledge
of any member in the other set (split brain).
The most common design choice for applications is to

choose a regionally local quorum and compromise on avail-
ability if the entire region were to go down. This was the
only available option with the semisynchronous protocol. In
the example replica set shown in Figure 1, write availabil-
ity would be lost if region 0 becomes unavailable. In fact,
only two servers out of MySQL server 𝑅0, binlog servers
BLS 𝑅0.1 and 𝑅0.2 need to become unresponsive for the
replica set to lose write availability. With FlexiRaft, the exact
same configuration is offered by the dynamic quorum mode.
FlexiRaft supports two different modes when choosing data
commit quorums; static mode and dynamic mode. Data com-
mit quorums that span over multiple geographical regions
are configured with the static mode.

4.1 Static Quorums
As the name suggests, static quorums can be enumerated
deterministically and are not a function of which group the
leader belongs to. Enumeration involves listing all possible
subsets of servers that need to agree for committing write
operations. The helper function 𝑖𝑠_𝑠𝑡𝑎𝑡𝑖𝑐 used in algorithm 1
checks the configuration of a replica set to return a boolean
value denoting whether the data commit quorum is static.

Two examples of specifying static quorums are as follows.

4.1.1 Disjunction. This option is useful for replica sets
that span over multiple geographies. One such example is
where the leader could reside on either side of the Atlantic
Ocean depending on the time of the day. Assuming an ap-
plication needs to commit data only after it has been agreed
upon either by two datacenters in the United States or two
datacenters in Europe, the data commit quorum could be
configured as follows.
Majority in 2 out of 5 groups: {G1, G2, ..., G5}

OR
Majority in 2 out of 3 groups: {G6, G7, G8}

G1, G2, G3, G4 and G5 are disjoint groups of servers in
the United States and G6, G7 and G8 are disjoint groups of
servers in Europe. These groups are based on datacenter
membership, i.e., all servers in a group belong to the same
datacenter. The corresponding leader election quorumwould
be the following:
Majority in 4 out of 5 groups: {G1, G2, ..., G5}

AND
Majority in 2 out of 3 groups: {G6, G7, G8}

4.1.2 Conjunction. The following example specification
can provide stronger consistency guarantees across geogra-
phies where we require members in two datacenters on each
coast of the United States to agree before committing data.
It would be specified like the following:
Majority in 2 out of 5 groups: {G1, G2, ..., G5}

AND
Majority in 2 out of 3 groups: {G6, G7, G8}

G1, G2, G3, G4 and G5 are disjoint groups of servers on the
east coast of the United States and G6, G7 and G8 are disjoint
groups of servers on the west coast. Similar to the disjunction
example, these groups are based on datacenter membership.
The corresponding leader election quorum which gets auto-
matically computed is as follows.

Majority in 4 out of 5 groups: {G1, G2, ..., G5}
AND

Majority in 2 out of 3 groups: {G6, G7, G8}

It is trivial to see that in each of these cases any leader
election quorum would intersect with any data commit quo-
rum and any pair of potential leader election quorums would
also intersect.

4.2 Dynamic Quorums
In this mode, the data commit quorum is limited to only one
group. Groups are usually defined by a geographical region
(eg. Prineville, OR). Both the data commit and leader election
quorums are expressed as majority in the group containing
the current leader. Therefore, the quorums are dependent on
which member of the replica set is currently serving as the
leader. This is a popular choice in our setup today.
If we were to implement single region data commit quo-

rum using the static mode defined above, leader election
would require a majority to be available in all groups (pes-
simistic quorum) as any of the constituent groups of the
replica set could have the previous leader. This can be a prob-
lem if the leader dies and one of the groups (not necessarily
that of the leader) is unavailable due to any reason - actual
network connectivity issue, disaster readiness exercise etc.
We modified the Raft algorithm to make it possible for candi-
dates to learn about the previous leader without necessarily
having to consult majorities in all groups.

5 Algorithm
Changing the original Raft algorithm to support the static
quorum modes was relatively less intrusive. Instead of wait-
ing on a simple majority of voters, the algorithm would now
evaluate a configurable static quorum instead. The helper
function 𝑖𝑠_𝑞𝑢𝑜𝑟𝑢𝑚_𝑠𝑎𝑡𝑖𝑠 𝑓 𝑖𝑒𝑑 mentioned in algorithm 1 re-
turns a couple of boolean values after analyzing all the votes
received by the candidate. The first boolean denotes if the
quorum has already been satisfied from the votes received
thus far and the second one denotes if the satisfaction of
the quorum is still possible. However, for supporting the
dynamic quorum mode, the leader election algorithm had
to undergo significant changes described in the subsections
which follow.
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Algorithm 1: FlexiRaft Leader Election
Input: 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑠 : 𝑠𝑒𝑡 < 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑉𝑜𝑡𝑒𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 >, 𝑞𝑢𝑜𝑟𝑢𝑚_𝑠𝑝𝑒𝑐𝑖 𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛, 𝑙𝑎𝑠𝑡_𝑘𝑛𝑜𝑤𝑛_𝑙𝑒𝑎𝑑𝑒𝑟
Output: ElectionResult<𝑞𝑢𝑜𝑟𝑢𝑚_𝑠𝑎𝑡𝑖𝑠 𝑓 𝑖𝑒𝑑 , 𝑞𝑢𝑜𝑟𝑢𝑚_𝑠𝑎𝑡𝑖𝑠 𝑓 𝑎𝑐𝑡𝑖𝑜𝑛_𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒>

1 if 𝑖𝑠_𝑠𝑡𝑎𝑡𝑖𝑐 (𝑞𝑢𝑜𝑟𝑢𝑚_𝑠𝑝𝑒𝑐𝑖 𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛) then
2 <𝑞𝑢𝑜𝑟𝑢𝑚_𝑠𝑎𝑡𝑖𝑠 𝑓 𝑖𝑒𝑑 , 𝑞𝑢𝑜𝑟𝑢𝑚_𝑠𝑎𝑡𝑖𝑠 𝑓 𝑎𝑐𝑡𝑖𝑜𝑛_𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒>← 𝑖𝑠_𝑞𝑢𝑜𝑟𝑢𝑚_𝑠𝑎𝑡𝑖𝑠 𝑓 𝑖𝑒𝑑 (𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑠 , 𝑞𝑢𝑜𝑟𝑢𝑚_𝑠𝑝𝑒𝑐𝑖 𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛)
3 return ElectionResult<𝑞𝑢𝑜𝑟𝑢𝑚_𝑠𝑎𝑡𝑖𝑠 𝑓 𝑖𝑒𝑑 , 𝑞𝑢𝑜𝑟𝑢𝑚_𝑠𝑎𝑡𝑖𝑠 𝑓 𝑎𝑐𝑡𝑖𝑜𝑛_𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒>
4 end
/* Otherwise, executing in dynamic mode */

5 <𝑞𝑢𝑜𝑟𝑢𝑚_𝑠𝑎𝑡𝑖𝑠 𝑓 𝑖𝑒𝑑 , 𝑞𝑢𝑜𝑟𝑢𝑚_𝑠𝑎𝑡𝑖𝑠 𝑓 𝑎𝑐𝑡𝑖𝑜𝑛_𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒>← 𝑖𝑠_𝑞𝑢𝑜𝑟𝑢𝑚_𝑠𝑎𝑡𝑖𝑠 𝑓 𝑖𝑒𝑑 (𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑠 , 𝑝𝑒𝑠𝑠𝑖𝑚𝑖𝑠𝑡𝑖𝑐_𝑞𝑢𝑜𝑟𝑢𝑚)
6 if 𝑞𝑢𝑜𝑟𝑢𝑚_𝑠𝑎𝑡𝑖𝑠 𝑓 𝑖𝑒𝑑 or 𝑙𝑒𝑎𝑠𝑡_𝑘𝑛𝑜𝑤𝑛_𝑙𝑒𝑎𝑑𝑒𝑟 = 𝑁𝑈𝐿𝐿 then

/* last_known_leader could be NULL before the first successful election */

7 return ElectionResult<𝑞𝑢𝑜𝑟𝑢𝑚_𝑠𝑎𝑡𝑖𝑠 𝑓 𝑖𝑒𝑑 , 𝑞𝑢𝑜𝑟𝑢𝑚_𝑠𝑎𝑡𝑖𝑠 𝑓 𝑎𝑐𝑡𝑖𝑜𝑛_𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒>
8 end
9 if 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑡𝑒𝑟𝑚 = 𝑙𝑎𝑠𝑡_𝑘𝑛𝑜𝑤𝑛_𝑙𝑒𝑎𝑑𝑒𝑟 .𝑡𝑒𝑟𝑚 + 1 then
10 𝑞𝑢𝑜𝑟𝑢𝑚 ←𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 (𝑙𝑎𝑠𝑡_𝑘𝑛𝑜𝑤𝑛_𝑙𝑒𝑎𝑑𝑒𝑟 .𝑔𝑟𝑜𝑢𝑝)
11 <𝑞𝑢𝑜𝑟𝑢𝑚_𝑠𝑎𝑡𝑖𝑠 𝑓 𝑖𝑒𝑑 , 𝑞𝑢𝑜𝑟𝑢𝑚_𝑠𝑎𝑡𝑖𝑠 𝑓 𝑎𝑐𝑡𝑖𝑜𝑛_𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒>← 𝑖𝑠_𝑞𝑢𝑜𝑟𝑢𝑚_𝑠𝑎𝑡𝑖𝑠 𝑓 𝑖𝑒𝑑 (𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑠 , 𝑞𝑢𝑜𝑟𝑢𝑚)
12 return ElectionResult<𝑞𝑢𝑜𝑟𝑢𝑚_𝑠𝑎𝑡𝑖𝑠 𝑓 𝑖𝑒𝑑 , 𝑞𝑢𝑜𝑟𝑢𝑚_𝑠𝑎𝑡𝑖𝑠 𝑓 𝑎𝑐𝑡𝑖𝑜𝑛_𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒>
13 end
14 𝑡𝑒𝑟𝑚_𝑖𝑡 ← 𝑙𝑎𝑠𝑡_𝑘𝑛𝑜𝑤𝑛_𝑙𝑒𝑎𝑑𝑒𝑟 .𝑡𝑒𝑟𝑚
15 𝑛𝑒𝑥𝑡_𝑙𝑒𝑎𝑑𝑒𝑟_𝑔𝑟𝑜𝑢𝑝𝑠 ← {𝑙𝑎𝑠𝑡_𝑘𝑛𝑜𝑤𝑛_𝑙𝑒𝑎𝑑𝑒𝑟 .𝑔𝑟𝑜𝑢𝑝}
16 𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑_𝑙𝑒𝑎𝑑𝑒𝑟_𝑔𝑟𝑜𝑢𝑝𝑠 ← {𝑙𝑎𝑠𝑡_𝑘𝑛𝑜𝑤𝑛_𝑙𝑒𝑎𝑑𝑒𝑟 .𝑔𝑟𝑜𝑢𝑝}
17 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙_𝑔𝑟𝑜𝑢𝑝𝑠 ← 𝜙

/* Iterate until the pessimistic quorum is absolutely required. */

18 while 𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑_𝑙𝑒𝑎𝑑𝑒𝑟_𝑔𝑟𝑜𝑢𝑝𝑠 ⊂ G do
19 𝑠𝑡𝑎𝑡𝑢𝑠 , 𝑛𝑒𝑥𝑡_𝑡𝑒𝑟𝑚, 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙_𝑛𝑒𝑥𝑡_𝑙𝑒𝑎𝑑𝑒𝑟𝑠 ← 𝐺𝑒𝑡𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑁𝑒𝑥𝑡𝐿𝑒𝑎𝑑𝑒𝑟𝑠(𝑡𝑒𝑟𝑚_𝑖𝑡 , 𝑛𝑒𝑥𝑡_𝑙𝑒𝑎𝑑𝑒𝑟_𝑔𝑟𝑜𝑢𝑝𝑠)
20 switch 𝑠𝑡𝑎𝑡𝑢𝑠 do
21 case 𝐴𝐿𝐿_𝐼𝑁𝑇𝐸𝑅𝑀𝐸𝐷𝐼𝐴𝑇𝐸_𝑇𝐸𝑅𝑀𝑆_𝐷𝐸𝐹𝑈𝑁𝐶𝑇 do
22 𝑞𝑢𝑜𝑟𝑢𝑚_𝑟𝑒𝑠𝑢𝑙𝑡𝑠 ← {𝑖𝑠_𝑞𝑢𝑜𝑟𝑢𝑚_𝑠𝑎𝑡𝑖𝑠 𝑓 𝑖𝑒𝑑 (𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑠,𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 (𝑔𝑟𝑜𝑢𝑝)) : 𝑔𝑟𝑜𝑢𝑝 ∈ 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙_𝑔𝑟𝑜𝑢𝑝𝑠}
23 return <

∧
𝑞𝑟 ∈𝑞𝑢𝑜𝑟𝑢𝑚_𝑟𝑒𝑠𝑢𝑙𝑡𝑠

𝑞𝑟 .𝑞𝑢𝑜𝑟𝑢𝑚_𝑠𝑎𝑡𝑖𝑠 𝑓 𝑖𝑒𝑑 ,
∨

𝑞𝑟 ∈𝑞𝑢𝑜𝑟𝑢𝑚_𝑟𝑒𝑠𝑢𝑙𝑡𝑠
𝑞𝑟 .𝑞𝑢𝑜𝑟𝑢𝑚_𝑠𝑎𝑡𝑖𝑠 𝑓 𝑎𝑐𝑡𝑖𝑜𝑛_𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒>

24 end
25 case𝑊𝐴𝐼𝑇 𝐼𝑁𝐺_𝐹𝑂𝑅_𝑀𝑂𝑅𝐸_𝑉𝑂𝑇𝐸𝑆 do
26 return 𝐸𝐿𝐸𝐶𝑇𝐼𝑂𝑁_𝑈𝑁𝐷𝐸𝐶𝐼𝐷𝐸𝐷 < 𝑓 𝑎𝑙𝑠𝑒, 𝑡𝑟𝑢𝑒 >

27 end
28 case 𝑃𝑂𝑇𝐸𝑁𝑇𝐼𝐴𝐿_𝑁𝐸𝑋𝑇_𝐿𝐸𝐴𝐷𝐸𝑅𝑆_𝐷𝐸𝑇𝐸𝐶𝑇𝐸𝐷 do
29 𝑡𝑒𝑟𝑚_𝑖𝑡 ← 𝑛𝑒𝑥𝑡_𝑡𝑒𝑟𝑚
30 𝑛𝑒𝑥𝑡_𝑙𝑒𝑎𝑑𝑒𝑟_𝑔𝑟𝑜𝑢𝑝𝑠 ← ⋃

𝑛𝑒𝑥𝑡_𝑙𝑒𝑎𝑑𝑒𝑟 ∈𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙_𝑛𝑒𝑥𝑡_𝑙𝑒𝑎𝑑𝑒𝑟𝑠
{𝑛𝑒𝑥𝑡_𝑙𝑒𝑎𝑑𝑒𝑟 .𝑔𝑟𝑜𝑢𝑝}

31 𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑_𝑙𝑒𝑎𝑑𝑒𝑟_𝑔𝑟𝑜𝑢𝑝𝑠 ← 𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑_𝑙𝑒𝑎𝑑𝑒𝑟_𝑔𝑟𝑜𝑢𝑝𝑠 ∪ 𝑛𝑒𝑥𝑡_𝑙𝑒𝑎𝑑𝑒𝑟_𝑔𝑟𝑜𝑢𝑝𝑠
32 end
33 end
34 end
35 return 𝐸𝐿𝐸𝐶𝑇𝐼𝑂𝑁_𝑈𝑁𝐷𝐸𝐶𝐼𝐷𝐸𝐷 < 𝑓 𝑎𝑙𝑠𝑒, 𝑡𝑟𝑢𝑒 >

5.1 Extra State
There are two extra pieces of information that each server
would need to store for supporting dynamic quorums.
• Last known leader and its term
• Previous voting history

5.2 Leader Election
Algorithm 1 describes the modifications to the original Raft
leader election algorithm [22] to support the quorum modes
described in section 4.

At a high level, the algorithm first checks if the the config-
ured data commit (and hence, the leader election) quorum is
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static and returns if the quorum has been satisfied based on
the votes received thus far. In dynamic mode, the algorithm
checks for the satisfaction of the 𝑝𝑒𝑠𝑠𝑖𝑚𝑖𝑠𝑡𝑖𝑐_𝑞𝑢𝑜𝑟𝑢𝑚. The
𝑝𝑒𝑠𝑠𝑖𝑚𝑖𝑠𝑡𝑖𝑐_𝑞𝑢𝑜𝑟𝑢𝑚 for a replica set is defined as a major-
ity within all groups of servers individually. By definition,
satisfaction of the 𝑝𝑒𝑠𝑠𝑖𝑚𝑖𝑠𝑡𝑖𝑐_𝑞𝑢𝑜𝑟𝑢𝑚 guarantees the sat-
isfaction of the leader election quorum (since it is defined
as majority in a subset of the groups). If the candidate does
not have any knowledge of the last known leader, the only
way to win an election is to satisfy the 𝑝𝑒𝑠𝑠𝑖𝑚𝑖𝑠𝑡𝑖𝑐_𝑞𝑢𝑜𝑟𝑢𝑚.
If the term in which the candidate is conducting an election
immediately succeeds that of the last known leader, getting a
majority from the group of the last known leader is sufficient
to win the election. Otherwise, the candidate now needs to
learn about the leader (if it exists) with the highest term and
solicit majority votes from that leader’s group.
The leader with the highest term must have won an

election after the last leader known to the candidate. The
algorithm tries to figure out the identity of this leader
with the highest term from the voting history of the
replicas. The voting history of the replicas is included in
the 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑉𝑜𝑡𝑒𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 RPC sent to the candidate. The
𝐺𝑒𝑡𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑁𝑒𝑥𝑡𝐿𝑒𝑎𝑑𝑒𝑟𝑠 subroutine ( algorithm 2) helps
in determining the leader with the highest term.
𝐺𝑒𝑡𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑁𝑒𝑥𝑡𝐿𝑒𝑎𝑑𝑒𝑟𝑠 returns a 3-tuple as it’s out-

put. The first element is a status indicator which could
take one of three values. If a majority of the replicas in
a group which could potentially have the latest leader
have not responeded, a decision cannot be made and sta-
tus code𝑊𝐴𝐼𝑇 𝐼𝑁𝐺_𝐹𝑂𝑅_𝑀𝑂𝑅𝐸_𝑉𝑂𝑇𝐸𝑆 is returned. All
the terms between the term of the last known leader and
the candidate’s current term are iterated upon (in an in-
creasing order) to determine if some replica could have
potentially won an election in those intermediary terms.
Status code 𝐴𝐿𝐿_𝐼𝑁𝑇𝐸𝑅𝑀𝐸𝐷𝐼𝐴𝑇𝐸_𝑇𝐸𝑅𝑀𝑆_𝐷𝐸𝐹𝑈𝑁𝐶𝑇 is
returned when the set of all servers which could have po-
tentially won an election without the candidate’s knowledge
has been determined. At this stage, the candidate can win
an election if it has a majority vote from each of these poten-
tial leaders’ groups (termed as 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙_𝑔𝑟𝑜𝑢𝑝𝑠). If potential
election winners in the intermediary terms are found, then
status code 𝑃𝑂𝑇𝐸𝑁𝑇𝐼𝐴𝐿_𝑁𝐸𝑋𝑇_𝐿𝐸𝐴𝐷𝐸𝑅𝑆_𝐷𝐸𝑇𝐸𝐶𝑇𝐸𝐷
is returned and the iteration continues until majority is
achieved in all terminal groups, the quorum converges to
the 𝑝𝑒𝑠𝑠𝑖𝑚𝑖𝑠𝑡𝑖𝑐_𝑞𝑢𝑜𝑟𝑢𝑚 (terminal groups include all groups,
denoted by G) or the election times out.

The 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙_𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛_𝑤𝑖𝑛𝑛𝑒𝑟𝑠 is a subroutine that takes
a historical term 𝑡 as input and looks at the voting his-
tories of the replicas to determine the set of all potential
leaders in term 𝑡 . The implementation of this subroutine
and a few others mentioned in the paper such as𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦,
𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦_𝑐𝑜𝑢𝑛𝑡 and 𝑣𝑜𝑡𝑒_𝑐𝑜𝑢𝑛𝑡 is trivial and not included
in the paper. Full implementation and all of the source code
is publicly available [3] . The FlexiRaft algorithm is validated

Algorithm 2: GetPotentialNextLeaders
Input: 𝑡𝑒𝑟𝑚_𝑖𝑡, 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒_𝑙𝑒𝑎𝑑𝑒𝑟_𝑔𝑟𝑜𝑢𝑝𝑠
Output: 𝑠𝑡𝑎𝑡𝑢𝑠, 𝑛𝑒𝑥𝑡_𝑡𝑒𝑟𝑚, 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙_𝑛𝑒𝑥𝑡_𝑙𝑒𝑎𝑑𝑒𝑟𝑠
Data: 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑠 : 𝑠𝑒𝑡 < 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑉𝑜𝑡𝑒𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 >

1 if ∃ 𝑔𝑟𝑜𝑢𝑝 ∈ 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒_𝑙𝑒𝑎𝑑𝑒𝑟_𝑔𝑟𝑜𝑢𝑝𝑠 :
𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦_𝑐𝑜𝑢𝑛𝑡 (𝑔𝑟𝑜𝑢𝑝) > 𝑣𝑜𝑡𝑒_𝑐𝑜𝑢𝑛𝑡 (𝑔𝑟𝑜𝑢𝑝) then

/* Majority of the votes haven’t arrived
in a group which could potentially
have the leader. */

2 return
<𝑊𝐴𝐼𝑇 𝐼𝑁𝐺_𝐹𝑂𝑅_𝑀𝑂𝑅𝐸_𝑉𝑂𝑇𝐸𝑆,−1, 𝜙 >

3 end
4 do

/* Compute the set of all historical

votes across all voters. */

5 ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙_𝑣𝑜𝑡𝑒𝑠 ← {𝑟 .𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑣𝑜𝑡𝑒_ℎ𝑖𝑠𝑡𝑜𝑟𝑦 :
𝑟 ∈ 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑠}

6 𝑚𝑖𝑛_𝑡𝑒𝑟𝑚 ←𝑚𝑖𝑛({𝑣𝑜𝑡𝑒.𝑡𝑒𝑟𝑚 if
𝑣𝑜𝑡𝑒.𝑡𝑒𝑟𝑚 > 𝑡𝑒𝑟𝑚_𝑖𝑡 : 𝑣𝑜𝑡𝑒 ∈ ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙_𝑣𝑜𝑡𝑒𝑠})

7 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒_𝑙𝑒𝑎𝑑𝑒𝑟𝑠 ←
𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙_𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛_𝑤𝑖𝑛𝑛𝑒𝑟𝑠 (𝑚𝑖𝑛_𝑡𝑒𝑟𝑚,
𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒_𝑙𝑒𝑎𝑑𝑒𝑟_𝑔𝑟𝑜𝑢𝑝𝑠 , 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑠)

/* Updating 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙_𝑔𝑟𝑜𝑢𝑝𝑠 is a side

effect of this subroutine. */

8 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙_𝑔𝑟𝑜𝑢𝑝𝑠 ←
𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙_𝑔𝑟𝑜𝑢𝑝𝑠 ∪ 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒_𝑙𝑒𝑎𝑑𝑒𝑟_𝑔𝑟𝑜𝑢𝑝𝑠

9 if 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒_𝑙𝑒𝑎𝑑𝑒𝑟𝑠 ≠ 𝜙 and
𝑚𝑖𝑛_𝑡𝑒𝑟𝑚 < 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑡𝑒𝑟𝑚 then

10 return
<𝑃𝑂𝑇𝐸𝑁𝑇𝐼𝐴𝐿_𝑁𝐸𝑋𝑇_𝐿𝐸𝐴𝐷𝐸𝑅𝑆_𝐷𝐸𝑇𝐸𝐶𝑇𝐸𝐷 ,
𝑚𝑖𝑛_𝑡𝑒𝑟𝑚, 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒_𝑙𝑒𝑎𝑑𝑒𝑟𝑠>

11 end
12 while𝑚𝑖𝑛_𝑡𝑒𝑟𝑚 < 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑡𝑒𝑟𝑚
13 return <

𝐴𝐿𝐿_𝐼𝑁𝑇𝐸𝑅𝑀𝐸𝐷𝐼𝐴𝑇𝐸_𝑇𝐸𝑅𝑀𝑆_𝐷𝐸𝐹𝑈𝑁𝐶𝑇,−1, 𝜙 >

by a TLA+ specification2 which is also included in our open
source project.

6 Fault tolerance
The general idea is to shrink the data commit quorum at the
expense of expanding the leader election quorum. It proves
to be a good compromise since committing data is a more
frequent operation [12]. As described in subsection 4.1, it
is easy to choose quorums in static mode that are resilient
to the failure of an entire group. This group could be an
entire datacenter. Further discussing the example of a static
quorum presented in subsubsection 4.1.1, it is evident that
failure of any group will not result in availability loss even

2https://github.com/facebook/kuduraft/blob/1.8.raft/tla/flexiraft.tla
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Figure 2. Leader election failure in dynamic mode of Flexi-
Raft

if that group contains the leader. Without loss of generality,
we can assume that group𝐺6 contains the leader and it gets
partitioned off from the rest of the members in the replica set.
Group𝐺6 cannot commit any transactions anymore without
a majority acknowledgement from either group 𝐺7 or 𝐺8 as
per the configured data commit quorum. Once the servers
outside of𝐺6 timeout after failing to receive a hearbeat from
the leader in 𝐺6, one of the servers would be able to win
leadership without getting votes from any member of 𝐺6.
This is because for leader election, the requirement is to get a
majority vote from 2 out of the 3 groups;𝐺6,𝐺7 and𝐺8. Once
a new leader is elected, it can start commiting transactions
without getting a single vote from any member in group 𝐺6
as per the configured data commit quorum. Therefore, the
availability of the replica set remains unaffected despite the
failure of an entire group. The same logic applies for the
example in subsubsection 4.1.2.
A FlexiRaft replica set configured to use dynamic quo-

rums may not be resilient to failure of a majority of servers
in one group. One obvious example is when a majority of
the servers in the group containing the leader fail, disrupting
both the data commit and leader election quorums simultane-
ously. However, there exist other failure scenarios with the
dynamic quorum configuration where a coordinated failure
of the leader and a majority of the servers in a group not
containing the leader can also lead to availability loss. This
is demonstrated in Figure 2 where a replica set with three
groups of servers is configured to use dynamic mode. Both
the data commit and leader election quorums would be a
majority of servers in group 1 since the leader is server S1 (in
term 𝑛). Consider the following plausible sequence of events
which lead to availability loss.

• Servers 𝑆4 and 𝑆7 both initiate an election in term
𝑛+1 because of a temporary network disruption which
prevented them from receiving a hearbeat from server
𝑆1 before the timeout. Both servers 𝑆4 and 𝑆7 are fully
caught up with server 𝑆1.
• Server 𝑆4 gets server 𝑆2’s vote and server 𝑆7 gets server
𝑆3’s vote in term𝑛+1. Servers 𝑆2 and 𝑆3 give their votes
because the election is being conducted in a higher
term and both candidates are sufficiently caught up.
• Server 𝑆1 fails but a majority of the servers in group 1
are still functioning properly.
• Group 2 gets cut-off from the rest of the servers in the
cluster due to network partitioning.
• Neither server 𝑆4 nor server 𝑆7 wins the election in
term 𝑛 + 1.

Now, if server 𝑆8 times out and starts an election in term
𝑛 + 2, it cannot safely win the election until 𝑆1 or group 2
come online. This is because 𝑆1 could have given its vote
to 𝑆4 making it the leader in term 𝑛 + 1 and there is no
way for 𝑆8 to verify that. Therefore, availability of a replica
set configured to use dynamic mode of FlexiRaft might get
affected because of coordinated failures of the leader and a
group not containing the leader. Situations such as this are
prevented by the pre-vote algorithm [21].

7 Experimental Results
Two main aspects of FlexiRaft’s performance are demon-
strated by our experiments. Firstly, the throughput and client-
observed latencies are comparable for FlexiRaft and semisyn-
chronous algorithms. In all of our experiments, FlexiRaft was
deployed in the dynamic mode with data commit quorum
restricted to a single group. Grouping of servers was done
based on the datacenters they belonged to. The same replica
set with the same machines were used for all three consensus
algorithms. Each test machine was configured with a dual
socket Intel Xeon Gold 6138 CPU and 256 GB DDR4 RAM.
Each socket offered 20 physical cores.

Figure 3 shows the throughput as we increase the number
of clients writing to the database. Throughput is computed
by measuring the amount of time taken to commit 2 million
transactions generated by our microbenchmark. The amount
of data written by the transactions in this microbenchmark
range anywhere from 32 bytes to 256 bytes and roughly half
of them have primary key based updates alongside newly
inserted rows.
Latency measurements are specified in Table 1 and were

computed across a million uniform commit samples for each
algorithm. It can be seen that the average numbers for Flexi-
Raft3 and semisynchronous algorithms are similar.

Secondly, unlike Raft, the performance of FlexiRaft3 does
not deteriorate with an increasing number of servers in the
replica set. Figure 4 shows a graph between average latency
3dynamic mode
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Figure 3. Comparison of throughput observed. Throughput
is expressed as transactions per second.

Table 1. Latency comparison between different algorithms

Algorithm Minimum
Latency

Maximum
Latency

Average
Latency

Semisync 8ms 102ms 12ms
FlexiRaft 9ms 98ms 12ms
Raft 19ms 156ms 29ms

Figure 4. Effect on latency with increasing replica set size

observed by clients for each of these algorithms. The number
of voters was increased from 3 to 12 and the effect on average
commit latency was measured. As can be seen from the
graph, Raft’s latency goes up with an increase in the replica
set size because of the corresponding growth in data commit
quorum size. However, for semisynchronous and FlexiRaft3,
it remains stable since the quorum is confined to a single
group of servers belonging to the same datacenter.

8 Lessons Learned
Numerous variants [8, 9, 11–13, 15–17, 20] of Paxos have
been developed over time to customize different aspects of
performance and application requirements. While the idea
behind flexible quorums has been applied to Paxos before
[12] and the underlying compromises are straightforward
to understand, the details around implementation play an

equally significant role in determining performance and en-
hancing understandability. Flexible quorums allow a smaller
data commit quorum which can be arbitrarily chosen but
there need to be guardrails / workflows for end users that
simplify the selection of their data commit quorums based
on their application’s need. This was the reason why we
chose to offer dynamic mode to cater to the users that got
accustomed to the semisynchronous protocol over time and
built the static mode with varying degrees of fault tolerance
for users who wanted better fault tolerance and / or con-
sistency guarantees. All quorums are defined in terms of
majorities within groups of servers in the replica set to keep
the logic simple. Initially, groups were pre-determined based
on the datacenter each server belonged to. Later, group defi-
nitions were made generic enough to support varying levels
of physical proximity as described in subsection 2.3.

A number of optimizations were landed in kuduraft [3] to
remove unnecessary contention and achieve performance
at par with the semisynchronous replication protocol. Most
of these optimizations prevented severe degradations to the
observed tail latencies and are generic enough to be applied
to any consensus algorithm. Some examples include making
local vote counting logic asynchronous so that it wouldn’t
block threads writing to the log, quorum aware optimiza-
tions to advance watermarks, etc. Quorum awareness can
be used to optimize multiple bottlenecks in the data com-
mit path. For example, the procedure to advance commit
watermark can be skipped upon receiving a vote from a fol-
lower which is not a member of the data commit quorum.
This removes unnecessary contention by reducing the time
for which locks are held. Another important issue that was
hurting tail commit latencies was the repeated initiation of
pre-elections from old members of the replica set. There are
multiple ways to solve this problem originating from former
members disrupting the operations of an otherwise healthy
replica set. Specialized response codes can be sent back to
former members or necessary cleanups can be done exter-
nally by automation tools upon eviction of any member from
the replica set.

There are some important features described in the formal
specification of Raft [21] which are not mandatory from a
correctness standpoint but make life easier when managing
any deployment of a Raft variant at scale. Pre-voting (or
pre-election) is one such feature which became more impor-
tant with the addition of flexible quorums. In the pre-vote
algorithm, a candidate only increments its term if it first
learns from the memebers of a leader election quorum that
they would be willing to grant the candidate their votes.
This helps reduce the likelihood of disruptions, especially
in the dynamic quorum mode where coordinated failures of
the leader and a group not containing the leader can cause
availability loss for the replica set as described in section 6.
Another crucial improvement facilitating multiple cluster
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membership changes simultaneously is the joint consen-
sus algorithm. It defines a transitional configuration where
agreement requires quorum satisfaction from both the new
configuration and the old configuration. This approach ex-
tends the single server membership change algorithm which
was deemed sufficient for production deployments since any
arbitrary change can be implemented as a series of single
server membership changes [21]. However, in practice, joint
consensus simplifies operational tooling to a significant ex-
tent and makes routine tasks (such as maintenance drains,
disaster recovery exercises, etc.) efficient and easier to man-
age at scale.

9 Related and Future Work
Over the last two decades, numerous variants [8–13, 15–
17, 20, 23, 25] of consensus algorithms have been developed
to solve for scalability bottlenecks. Threemain avenues of im-
provements are usually targeted by these variants. The first
improvement comes from the realization that the data com-
mit quorum is exercized more often than the leader election
quorum. Therefore, reducing the size of the data commit quo-
rum at the expense of expanding the leader election quorum
is a viable tradeoff [12] which leads to improved throughput
and lower latencies. To the best of our knowledge, FlexiRaft
is one of the first large scale deployments of flexible quorums
to Raft.

A large number of variants target the skew in the amount
of work that is performed by the primary as compared to
the read-only replicas. Varying solutions have been studied
over time which make different compromises. The thrifty
protocols [17, 20] only contact a minimal quorum of nodes
rather than sending updates to all replicas (followers) but
risk the performance getting affected by a single sluggish
replica. Variants such as WPaxos [8] distribute the work
across multiple leaders to achieve scalability and employ
an adaptive object stealing protocol to match the workload
access locality. Compartmentalized protocols [25] are simi-
lar to Raft in the sense that they breakdown the consensus
problem into multiple distinct roles and allocate these roles
to different servers. Leadership is delegated to proxy-leaders
for each command. FlexiRaft doesn’t attempt to solve the
leader bottleneck but its dynamic quorum mode is similar
to Mencius [9] since the leader can rotate between differ-
ent members of the replica set and quorums get adjusted
automatically upon every successful leader election.

Another significant avenue for improvement is when strict
serializability and consistency can be relaxed in favor of low
latency and high throughput. The ParallelRaft algorithm im-
plemented by PolarFS [10] makes this tradeoff. It relaxes
Raft’s strict serialization by allowing out-of-order acknowl-
edgement, commit and application of logs. Since MySQL
doesn’t care about the I/O sequence of underlying storage,
exploring this strategy for FlexiRaft to further provide a

throughput boost for applications could be a fruitful en-
deavor in the future.
All three classes of improvements discussed above can

be applied together depending on the needs of the applica-
tion. In fact there have been studies [24] to facilitate porting
improvements from different variants of Paxos to Raft.
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