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ABSTRACT
Data-processing systems increasingly face data that is eclectic—it
spans many heterogeneous schemas and its schemas evolve over
time. Unfortunately, existing approaches for processing and query-
ing data are not ideal for eclectic data since they impose a trade-
off between efficient querying and simplicity. We argue that this
limitation stems from the very foundations of data processing:
data models and their corresponding query languages. No existing
approach—whether relational, document, or hybrid—is designed
to enable ingesting, querying, and reasoning about heterogeneous
types of data. In this paper we propose Zed, a new approach to
data processing that centers around data types. Zed elevates data
types to be first-class members of both the data model and query
language, and by doing so offers a promising path towards easing
the processing of eclectic data.

1 INTRODUCTION
The nature of data is changing, driven by growing applications
such as IoT and monitoring as well as an increasing desire to re-
late data that spans multiple administrative domains. As a result,
data today is heterogeneous—it spans many different schemas—and
evolving—its schemas change frequently and sometimes unexpect-
edly. This data with diverse and dynamic schemas—that is, eclectic
data—raises new challenges with ingesting, storing, and querying
data. In particular, with eclectic data, the process of data discovery
becomes a crucial part of the processing pipeline. When data does
not conform to a small and well-known set of schemas, then the
first step to processing the data is to understand the “structure” of
a given data set: discovering what schemas are present, how often
each occurs, how similar or dissimilar particular schemas are, and
so forth. We use the term data introspection to refer to this process
of exploring the structure of a dataset. Only once users understand
the structure of their data can they take steps to transform, clean, or
otherwise “prepare” the data for additional processing. In total these
steps — spanning introspection and preparation — can be extremely
time consuming, taking 80% or more of analysts’ time [41].

The database community has long recognized this shift toward
eclectic data and, over the last two decades, has vigorously de-
bated different approaches to representing and processing diverse
data [63, 68]. Today, the community has largely converged on
two data models, which are known to have different strengths
and weaknesses. The relational model’s rigid structuring of data
according to explicit schemas [38, 39] enables efficient querying
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and formats such as columnar [26, 56, 65] as well as data intro-
spection [44]. It is the model of choice for analytics in relational
databases [18, 20, 23, 24] and nested variants of it form the foun-
dation of big data systems [1, 6, 31, 56, 73]. With the relational
model, a schema is first defined for some entity (e.g., a relational
table or Parquet file) and then values that conform to that schema
are added to the entity. Consequently, ingesting eclectic data is
challenging because the predefined schema must anticipate all pos-
sible variations of input data. On the other hand, the document
model’s self-describing data values make it trivial to mix hetero-
geneous data and to ingest data with never-before-seen schemas.
Thus data sources commonly generate data in the document model
(e.g., JSON), and document databases leverage this model to enable
easy ingestion and querying of eclectic data [7, 15]. However, this
approach sacrifices efficiency and clarity about what kind of data
is present.

It is well-recognized that neither the relational nor document
model is always best. As a result, several recent research efforts and
industrial deployments attempt to combine these two and achieve
the best of both. For example, some approaches such as AsterixDB
can be configured to behave like either the relational model or
the document model [30, 57], while others such as Snowflake or
Lakehouses can store some data in each model [20, 31, 32, 40, 45, 52].

Unfortunately, as we will discuss (§2), even these combined ap-
proaches are far from ideal. First, users must contend with two data
models: they must decide how to split or replicate their data across
both models and a single query can typically leverage the bene-
fits of only one model. Second, to achieve the benefits of explicit
schemas, users still have to clean their data from the document into
the relational model. This cleaning process is known to be complex
and brittle [8, 41], especially without effective introspection tools
to discover what kinds of data are present in the first place. And yet,
thirdly, these systems do not make introspection over document
data any easier. Thus users are stuck in a catch-22: in order to clean
data they must be able to introspect over it, yet in today’s systems,
rich introspection is only possible after the data has been cleaned.

We believe that these approaches fall short because they are
hybrid rather than truly unified. They co-implement both models,
but a given piece of data can only benefit from one model at a time.
Taking a step back, we wondered if this sacrifice is truly necessary,
or if a solution could be found by addressing the problem at a lower
layer. Perhaps it is time, yet again, to rethink the foundations of data
processing: the data model and its corresponding query language.
We argue that eclectic data would benefit from a new approach to
unification in which a single data model can simultaneously provide
the benefits of both explicit schemas (efficient analytics, ease of
introspection) and mixed heterogeneous data (seamless ingestion,
query results that span heterogeneous data).

We start with the observation that what fundamentally enables
both efficient analytics and data introspection is knowing the fully
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Figure 1: Three example hybrid approaches to data processing: (a) AsterixDB splits incoming data into open and closed datasets
in separate files, (b) Snowflake adds columns of JSON data to each relational table, and (c) Lakehouses use ETL to clean a subset
of JSON data into Parquet. (d) In Zed, all data (raw or transformed) is represented in the super-structured data model.

specified type of each piece of data. For example, this allows us to
store data in formats that are organized by type (as in columnar
formats) and to query for information about what types of data are
present. The relational model has this explicit type information,
but is overly rigid in how it uses it; it explicitly requires the set
of allowable types (i.e., schemas) to be defined up front and only
accepts data from these schemas. Unfortunately, attempts to relax
this rigidity by integrating the flexibility of the document model
have often introduced new problems. For example, some add new
external components (e.g., schema registries [22]) that must be inte-
grated with the data processing pipeline, while others incorporate
partially typed data (e.g., Snowflake’s OBJECT type [40]) and thus
lose some of the benefits of type information.1 This leads us to the
goal of defining a data model in which every data value has an
explicit, complete type and yet there are no constraints on which
types are permitted to coexist (e.g., in the same file, table, or set of
query results). In other words, our goal is comprehensive yet flexible
typing. In addition, this data and its type information should be
self-contained so that parsing data never requires coordination with
an external registry; instead users can query both data and types
in a single unified manner.

The key to achieving comprehensive yet flexible typing is to
change the way that we associate type information with data val-
ues. Instead of associating a single schema with each file or table,
which makes it difficult to store or process heterogeneous data
together, we propose a new data type abstraction that is associated
directly with individual data values. This enables each value to have
an explicit data type (as in the relational model) but also allows
different values that are processed together to have different types
(as in the document model). We call the resulting data model the
super-structured data model, because it subsumes the structures
of the relational and document data models. Data is organized as a
sequence of typed values; when all values have the same type, this
model is equivalent to the relational model.

Realizing this approach requires care in designing the type ab-
straction. We propose an abstraction with the following properties:
• Types are associated with individual values, rather than with a
collection such as a table or file.

• Types are complete - we observe that partial types such as OBJECT
or JSON, or allowing a value to include extra fields beyond those
specified by its type, prevent the full benefits of types.

1We refer to types that are not fully specified as partial types, and their fully-specified
counterparts as complete types.

• Types are first class - users can query for data types and the
query results—which contain types—are returned in the same
data model. Users can refer to types by name and data formats
can assign numeric type IDs for efficient storage and querying.

• Type definitions are inlined - this enables data sources to de-
fine new types on the fly without out-of-band coordination or
additional burden relative to writing JSON data.
However, a new data model alone cannot provide the introspec-

tion and unification that we seek; we also require a corresponding
query language that can exploit the full power of this data model.
While the data model encodes per-value type information, the role
of the query language is to expose this type information to users.
Users should be able to query by type (e.g., returning all data of a
specified type), or for type (e.g., returning the type of a data value).
In short, types must be first-class members of the query language
as well. This enables rich introspection and is crucial for truly sub-
suming both the document and relational models. Querying by
type allows a user to extract all values with a given schema; the
returned data corresponds to a table in the relational model and
can be processed as such.

In this paper we propose Zed, a new approach to data processing
that is centered around these data types. Zed includes a new super-
structured data model (§3.1) and query language (§3.2). In addition,
Zed’s type abstraction allows data to be represented in the format
most suitable for the task at hand: columnar for analytics, human-
readable for debugging, etc. Because all data is typed, converting it
between formats within the family is lossless and fully automated.
Thus Zed includes a “family of data formats” (§3.3). We will show
how Zed overcomes the challenges of existing hybrid approaches
and unifies the document and relational models in a new way,
embodying both at the same time (§4), and describe directions for
future research (§5).

2 THE LIMITATIONS OF HYBRID
As pointed out by prior work, the relational model’s rigid schemas
and the document model’s lack of schemas each create signifi-
cant challenges for users [27, 30, 40, 68]. Hybrid approaches have
emerged in response, attempting to combine the two models to
achieve the best of both.2 There are many such hybrid systems,
including research approaches [30, 45, 52, 57] and industry exam-
ples [19, 20, 31, 32, 40]. These approaches can simplify multi-model
2Note that when we refer to “hybrid systems,” we refer to the subset of “multi-model
systems” [55] that relates to the relational and document data models.
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deployments, but no consensus has emerged regarding which is
best, and each still faces significant challenges.

In this section, we illustrate the limitations of hybrid systems dur-
ing ingestion (§2.1), querying (§2.2), and data introspection (§2.3).
For the sake of concreteness, we focus on three specific systems;
other hybrid systems often face similar limitations. Figure 1 shows
the three example systems and configurations.
AsterixDB [30]. AsterixDB’s data model is a superset of JSON that
also includes a schema language. It supports both “open Datasets”
of heterogeneous document-model data and relational-like “closed
Datasets” of homogeneous data. All data can be queried with As-
terixDB’s AQL or with SQL++ [57]. In our example configuration,
data with known schema is validated and stored in “closed Datasets”
while the rest is stored in “open Datasets”.
Snowflake [40]. Snowflake extends traditional relational data
warehouses with support for semi-structured data. This is done pri-
marily via columns of type OBJECT that can store JSON documents,
as well as corresponding extensions to SQL.3 In our configura-
tion, all data is stored in Snowflake tables, with the heterogeneous,
nested, and dynamic portions stored in such columns of JSON.
Lakehouse [31, 32]. Lakehouses store all data (whether raw or
processed) in a data lake and query it using SQL or dedicated li-
braries. A lakehouse deployment might store all incoming data
directly in the lake and use ETL to clean a subset of the data into
Parquet files [6] for efficient analytics.4

2.1 Data Ingestion
Data sources today often generate data in a schemaless format such
as JSON [11]. When sources have eclectic data they often prefer
JSON over alternatives such as Avro [1] or Protocol Buffers [21]
because it enables heterogeneous data to coexist in a file and it
avoids the upfront complexity of defining and agreeing on schemas.
When JSON data arrives at a storage layer for ingestion, hybrid
approaches face two main challenges.
Cleaning data into the relational model. In order for data to
fully benefit from schemas (for data introspection and efficient
queries and storage), it must be converted from JSON into the
relational model. The challenges of this are well-known: data must
be matched to and validated against the relevant schema and any
non-conforming data must be cleaned or dropped [8]. Automated
approaches to this such as Fivetran [9] or Informatica [10] can be
error-prone and brittle in the face of changing schemas. While this
problem first arose with purely relational systems, hybrid systems
also suffer from it since they store some data in the relational model.
Which model for which data? Users of hybrid systems face the
challenge of deciding which data model to use for which parts
of their data. Users of AsterixDB must decide which Datatypes
are stable enough to be able to leverage closed Datasets; users of
Snowflake must decide which fields of their data are eclectic enough
to warrant JSON columns and when data is different enough to
warrant a separate table altogether; and users of Lakehouses must
decide which data to ETL into Parquet. These decisions impact
how users will be able to query their data (§2.2), and if users want

3MySQL [12] and PostgreSQL [14] offer similar functionality with a JSON type.
4Parquet’s data model is the relational model, extended to support nested data.

to convert data between models later, they may encounter the
challenges and delays of cleaning their data, as described above.
2.2 Querying Data
Different data models provide different benefits during querying.
However, in hybrid approaches, most data is only stored in one
model or the other; this is the case for all data in our AsterixDB
and Snowflake configurations, and the JSON data that isn’t ETLed
into Parquet in the Lakehouse. This data can typically only benefit
from the properties of the data model that it is stored in.

For example, the relational model’s schemas enable introspection
queries that explore what kinds of data are present [44] and high-
performance querying over efficient formats [6, 40, 56, 65]. For
data stored only in the document model, these benefits are not
available. A rich body of literature attempts to infer schemas over
this kind of data [2, 29, 34–37, 40, 42, 53, 54, 59, 62, 70] but these
heuristics can be inaccurate.5 For example, human intervention
may be necessary to determine whether two values have the same
schemas in document-model data in AsterixDB or the Lakehouse.

On the other hand, the document model enables queries that can
flexibly mix heterogeneous data [27, 30]. For example, consider a
hypothetical query to sort all data in a large data system by time
and return the five earliest records, effectively: SELECT * FROM
* ORDER BY time LIMIT 5.6 This query is straightforward to
issue over JSON data, even if the data and results span multiple
schemas. However, to issue this query over relational data, the
rows from heterogeneous tables must somehow be combined. For
example, the SQL UNION operator can be used to create a wide table
that contains all the columns of all the heterogeneous tables and
many null values; this is sometimes called an “uber table” whose
“uber schema” is the union of all columns spanned by the data.
A user can then issue the query above over this uber table and
obtain the results in an uber table that is bloated with many nulls.
Notably, AsterixDB does not suffer from this problem. Even though
data in a closed Dataset is by definition homogeneous, AsterixDB’s
data model is a superset of JSON, and AsterixDB query results can
mix heterogeneous data, similar to JSON. In contrast, issuing this
query across Snowflake tables with differing relational columns
will trigger the same problem as in purely relational systems.

2.3 Data Introspection
With the proliferation of eclectic data, users are increasingly inter-
ested in data introspection. Users want to query data for its schema,
for example to enumerate the schemas spanned by a dataset and
how many records have each. Users also want to query data by its
schema to select a subset of data with particular schemas for further
exploration. Users may want to perform these tasks at any stage of
processing: during ingestion, on stored data, or over query results.

The relational model does enable some forms of data introspec-
tion. For example, users can query INFORMATION_SCHEMA to list
tables and their column names and types, or query external sys-
tems like Aurum [44]. However, the relational model and query
languages for it lack support for referring to schemas holistically.
Some query languages such as N1QL enable users to query by or for

5Schema inference over data in property graphs or RDF faces similar challenges [17, 59].
6The syntax FROM * is not valid SQL but is used here to illustrate the challenges of
processing heterogeneous data with the relational model.
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field types (e.g., with ISSTRING() or TYPE() functions), but these
only work for primitive types and return “object” or “json” for more
complex data [15, 16, 24]. As a result, the relational model does not
support queries by schema, because it can neither mix heteroge-
neous data together nor refer to schemas in queries. Introspection
in the document model is even more challenging, because it lacks
explicit schemas. In addition, inferring the schema of data or which
data has the same schema can be inaccurate and brittle (§2.2).

Unfortunately, this puts users in a catch-22. In order to clean their
data into the relational model, users need to first understand what
kinds of data are present, but the limited tools for introspection that
are available today are only available for data in the relational model.
In short, it is difficult for users to introspect or clean their data until
after it has already been cleaned into a pre-defined set of schemas.
Furthermore, query languages for hybrid systems [19, 30, 40, 57]
do not avoid this catch-22 because they do not provide a holistic
way to refer to schemas in queries or in query results.

3 THE DESIGN OF ZED
Zed’s key goal is to provide comprehensive yet flexible typing through-
out data processing. Achieving this goal allows Zed to unify the doc-
ument and relational models and enable new functionality for data
introspection. Zed’s key technique is a new data type abstraction
that represents the structure of an individual data value; achieving
comprehensive yet flexible typing requires careful design of this
abstraction. We now describe Zed types and how they impact Zed’s
data model (§3.1), query language (§3.2), and formats (§3.3), as well
as how Zed manages sets of types (§3.4).

3.1 Zed Data Model
We first describe the Zed data model and then highlight some of
the unconventional design decisions behind it.

3.1.1 Data Model. The Zed data model consists of an ordered
sequence of typed data values. Each value’s type is either a primitive
type (int32, string, bool, type, etc.), a complex type (record, array,
set, map, union, etc.), a named type, or the null type. Many of
these types have analogs in other data models, and we describe
the significance of some of them below. For example, consider Zed
records. A record consists of an ordered set of named values called
“fields”. Field names are simply strings and field values can be any
Zed value, with the types described above. This enables nested data,
as a record can contain arrays, sets, other records, etc. A row in a
relational table, a record in Avro, or a JSON document could each
be represented using a single Zed record.

For example, consider the following two records of IoT sensor
data, represented in Zed’s text-based format, ZSON:7
{ts:09:01:00(time),temp:68(int32)}
{ts:10:12:00(time),percent_humidity:43.7(float32)}
The first record has type {ts:time,temp:int32} while the sec-
ond record has type {ts:time, percent_humidity:float32}.
Despite having different types, these two records can be stored

7In practice, the time type in Zed represents native epoch 64-bit nanosecond times
and ZSON represents them in ISO format (e.g., 2023-01-01T09:01:00Z). For simplicity,
we abbreviate these time values in the example ZSON data shown in this paper.

{ts:09:01:00(time),temp:68(int32)}(=temperature)
{ts:10:12:00(time),percent_humidity:43.7(float32)}(=humidity)
{ts:17:29:00(time),temp:71(int32)}(=temperature)
{ts:17:45:00(time),temp:80(int32),unit:"F"(string)}(=temperature)
{ts:18:02:00(time),temp:28(int32),unit:"C"(string)}(=temperature)

Figure 2: Example IoT data from temperature and humidity
sensors, represented in text-based ZSON.

in the same file8 because data types in Zed are associated with
individual data values.

Types are first-class members of the Zed data model. This
means that a type—even the type of a record—is a single entity,
which can be represented as a Zed value whose type is type. As a
result, a query for the type of a record returns the record’s type
in the same Zed data model, rather than a separate data model as
in existing systems [44]. Zed also enables users to define named
types, which bind a name to a type. For example, ZSON includes
decorator syntax for defining named types, e.g., (=temperature)
can be used to define a named temperature type:
{ts:09:01:00(time),temp:68(int32)}(=temperature)
The Zed query language enables users to refer to these named
type values using angle brackets (§3.2). For example, a query can
extract all records with type {ts:time,temp:int32} using the
<temperature> syntax; this is the equivalent of a single relational
temperature table.

Type definitions in Zed are stored inline with the data. When a
new type first appears in a Zed file, the type definition is stored in-
line at that point in the file. The temperature record above shows
how Zed does this in its text-based format; we describe how Zed
efficiently encodes type definitions in its binary formats in Sec-
tion 3.3. A consequence of inlined types is that type definitions are
locally scoped. Thus Zed must provide a way to reliably interpret
and merge types that are defined in different scopes; we describe
Zed’s approach in Section 3.4.

Finally, each type in Zed specifies the complete and potentially
nested structure of data values with that type. The Zed data model
deliberately omits types that provide only partial type information
such as OBJECT, JSON, or any, as they conflict with the goals of
the data model. In Zed, types are “closed,” meaning that a record
of type T never contains extra fields beyond those defined by T.
Any Zed value is nullable, e.g., a record of type T can omit fields
of T by explicitly setting them to null; this avoids an exponential
explosion in the number of defined types when different records
omit different combinations of fields. While in many cases it is
useful to enforce constraints on which fields may be null, our view
is that such policies should be specified and enforced at a higher
layer (e.g., in an ingestion pipeline or specified in a query) rather
than by the data model.

Complete types may appear to be at odds with Zed’s goal of
flexibility. For example, suppose a temperature sensor outputs
temperature records with two fields at first, but then adds a third
unit field to temperature so that it can output data as either
Fahrenheit or Celsius, as shown in Figure 2; this is the classic
“schema evolution” problem. Is this valid data, or will Zed throw
an error? This is in fact valid Zed data; the data itself defines the
8In this paper we use the term “file” as a simplification; a sequence of Zed values may
exist in a file but also in a cloud object, a stream sent over HTTP, etc., and in general,
the sequence need not be seekable.
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named types and the Zed runtime must understand that a named
type’s binding may evolve within a data stream. In this example,
line 4 changes the definition of the named <temperature> type to
{ts:time,temp:int32,unit:string} from this point in the file
onward.9 This ability to change the binding between a name such
as temperature and the type it refers to ensures that named types
are always valid, and that arbitrary Zed data can be appended to a
file regardless of what other named types already exist in it. This is
crucial for providing complete flexibility.

3.1.2 Design Decisions. Zed differs from existing data models in
how it relates types to data values. In relational databases or Parquet
files, a type is defined for an entire table or file and all records it
contains share the same type. This achieves comprehensive types
but not flexibility. In contrast, in the document model, each record
is self describing and has its own implied type, and there is no way
to specify that multiple records have the same type. This achieves
flexibility but not comprehensive typing. By decoupling the type
assignment from the data’s organization into files, Zed can achieve
comprehensive types and flexibility simultaneously.

Some existing approaches define types in schema registries, re-
sulting in globally scoped types; a type defined in a registry may be
used by any program in that administrative domain [22]. However,
globally scoped types are at odds with flexibility, because ensuring
compliance with a schema registry may restrict what kinds of data
users can write. Scoping named types locally to a file and inlining
their type definitions gives data sources the flexibility to define
arbitrary new types on the fly and ensures that data consumers
always have the required type information to decode data.

Zed also takes an unconventional approach regarding what a
type definition specifies. Some existing data models flexibly ac-
commodate eclectic data by supporting partial types such as JSON
or OBJECT [12, 14, 40], or by allowing “open” data types, where a
record may contain extra fields beyond those specified by its type’s
type definition [13, 25, 30]. However, incomplete type information
makes it challenging to leverage efficient formats such as colum-
nar [40] and makes the results of queries about types less useful.
We also observe that union types can handle cases where a single
field might reasonably assume one of a few different types (e.g.,
an ID field that can be an int or string), and heterogeneity of type
structure can be accommodated by making it easy to define new
types. As a result, Zed takes a different approach based on complete
types, as in Parquet and Avro, but differs from Parquet and Avro
by allowing heterogeneously typed sequences of values.

Finally, while prior work has studied ways of representing re-
lation names within data [50, 61, 71, 72], we are not aware of any
existing data model that can express an entire schema or type as a
single value within serialized data.

3.2 Zed Query Language
The Zed query language aims to support the same core functionali-
ties as existing query languages for relational and document data,
and to also provide new functionality by exposing type information
to users so that they can query by and for types. Zed supports both

9Alternatively, the runtime could automatically convert the conflicting types into a
named sum type, represented in Zed by a named union of the underlying unique types.
We leave exploring this approach to future work.

Dataflow Operators cut, drop, head, join, put, rename, search,
sort, tail, uniq, where

Functions abs, cast, ceil, floor, is, log, lower, nameof,
sqrt, typeof, typeunder, upper

Aggregate Functions and, any, avg, count, max, min, or, sum

Table 1: Some of the operators and functions in the Zed query
language. Bolded functions use types or type names as an
input or output.

of these—querying data and querying types—within the same lan-
guage. We will briefly sketch Zed’s query language here; a complete
description is beyond the scope of this paper.

The Zed language borrows heavily from existing query lan-
guages such as SQL, jq, and Lorel [27, 46], as well as traditional
UNIX shells. Similar to jq and Lorel, the Zed language can issue
queries across heterogeneous data values and tolerate missing fields.
For example, a query for avg(temp) over the data in Figure 2 will
quietly skip the non-matching humidity record and return the av-
erage of the temp fields in the other four records. The Zed language
also supports many standard SQL operators such as join and where
and common UNIX commands such as head and sort.

A key novelty of the Zed language is that it takes well-known fea-
tures of existing programming languages—type introspection and
first-class types—and applies them to a query language. Type intro-
spection is the ability to obtain the type of an individual data value.
Python supports type introspection with a type function, and Zed
enables it with a typeof() operator. This is a necessary building
block to enable rich queries about types, and is feasible to implement
because the Zed data model associates a type with every individ-
ual data value, even records. For example, a query for the type
of the first record in Figure 2 returns <temperature={ts:time,
temp:int32}>. In contrast, existing query languages do not enable
full type introspection. The type operator in jq, TYPE in N1QL [16],
and typeof in JavaScript return strings such as “number” or “boolean”
instead of a dedicated type type, and they do not capture the com-
plete structure of complex types, simply returning “object” when
issued over a JSON-version of each of the records in Figure 2.

Programming languages have leveraged first-class types since the
1960s [60, 69], and there is some debate over exactly what properties
are required in order for an element to be considered “first class”
in a programming language. Here we highlight four key first-class
properties that types have in the Zed language:
• Types can be returned from functions: typeof() returns a type
• Types can be arguments to functions: is(<temperature>)
• Types can be tested for equality: typeof(this)==<temperature>10
• Support for type literals: type temperature=
{ts:time,temp:int32}

These first-class types enable Zed to support rich data introspection,
as we will show in Section 4.4.

The Zed query language is inspired by the dataflow pipeline
pattern of traditional UNIX shells. It operates over a sequence of
Zed values that can be piped from one operator to the next, though
Zed flowgraphs can also split and merge the processing pipeline
in the form of a directed-acyclic graph. Table 1 shows examples

10The identifier this refers to input data values one-by-one, so a query for values
with typeof(this)==<temperature> returns all <temperature> records.
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of the different components of the Zed query language. Dataflow
operators take in and output a sequence of Zed values. Functions
appear in expressions (e.g., 3 + sqrt(x)) and take in zero or
more Zed values and output a single Zed value. Finally, aggregate
functions take in a sequence of input values, are evaluated by the
summarize operator, and produce an aggregated value.

Many Zed operators and functions leverage type information.
For instance, the function is tests if a value is of a specified type
(e.g., is(<temperature>)). The nameof function returns the string
name of a value’s type. The typeunder function returns the un-
derlying type of a value, capturing its structure but omitting name
information for named types (e.g., typeunder of the first record in
Figure 2 is <ts:time, temp:int32>). Note that Zed allows queries
to refer to types either with their name (using the nameof and
typeof functions), or by their structure (using the typeunder func-
tion). This is useful for disambiguating between values that have
the same type name but different structures (or vice versa), as with
the different <temperature> types shown in Figure 2.

3.3 Zed Format Family
Prior work has shown that no single format is best for all use
cases [66, 67]. Thus, Zed provides a family of three data formats:
a text-based format and two binary formats. Zed also supports in-
dexes over its binary formats, where the indexes themselves are
represented in one of the binary Zed formats. Data can be con-
verted between these formats with no loss of information or human
involvement because all three implement the Zed data model, in-
cluding its comprehensive typing and ordering of values and fields.
This is similar to converting between row-based and columnar re-
lational data [28, 33] and contrasts with converting data between
the document and relational models.

A key challenge in designing Zed’s data formats is encoding
type definitions in a space-efficient way. In Zed’s text-based format
ZSON, each value has a type that is implied by its textual struc-
ture as in JSON, but additional type information can be specified
inline with each individual value. For example, in Figure 2, temp
values are decorated with (int32) to indicate that they are 32-bit
integers rather than the implied integer type of 64-bit integers. As
a result of these decorations, a ZSON file will typically be larger
than a JSON file containing the same data. In contrast, Zed’s binary
formats encode type definitions efficiently, once per unique type,
as each type is encountered. When a new data type first appears in
a sequence, it is assigned a numeric ID and both the ID and type
definition are encoded in the stream. All subsequent values with
the same type are encoded with the numeric type ID, rather than
repeating the complete type definition. As a result, the amount of
space required for type definitions in a binary Zed file scales lin-
early with the number of distinct types rather than the number of
records. In practice, these type definitions comprise a tiny overhead
compared to the data. Briefly, Zed’s formats are:
ZSON: ZSON is a text-based format, similar to JSON but with sup-
port for types, as shown in Figure 2. Moreover, ZSON is a superset
of JSON, which makes compatibility with JSON-based legacy sys-
tems simple and easy. In our implementation, we have not tried to
optimize ZSON to make it particularly performant as performance-
critical computations are always carried out in the efficient (and
information-equivalent) binary formats described below.

ZNG: ZNG is a binary row-based format, somewhat like Avro [1]
but with support for heterogeneous values within the same file.
ZNG interleaves encoded values and encoded type definitions. Each
type definition binds the next available numeric type ID to a specific
user-defined type. Values are encoded by first encoding the type
ID. Then the value itself is encoded using a tag-encoding approach
which consists of a tag specifying the value’s length and then the
value itself, similar to Protocol Buffers [21]. While formats like
JSON are challenging to parse efficiently [51, 58], ZNG can be
parsed quickly because each value’s type and length are completely
specified by its encoding. This enables a parser to skip records or
parts of records whose fields are not relevant to a query.
VNG: Vector ZNG (VNG) is a binary format which generalizes ex-
isting columnar formats [5, 6, 56] to support heterogeneous values.
VNG arranges values into “vectors”, which are a generalization
of columns in existing approaches.11 Each VNG file includes the
vectors data section, a metadata section of reassembly maps, and
a trailer defining the section boundaries. The data section encodes
the vectors of data, where each is a vector of primitive-type values
corresponding to leaf elements of a hierarchical data type (e.g., all
the unit values in Figure 2). The metadata section enumerates all
the types in the file and for each type it describes where to locate
the vectors of data within the data section. The trailer includes
the size of each section and additional metadata. All three sections
are encoded (re)using ZNG, contrasting with Parquet which relies
on an additional format (Thrift) for encoding type definitions and
other metadata.

3.4 Zed Type Contexts
Each sequence of Zed values defines a set of types. Thus Zed re-
quires a way to efficiently manage the set of types that are present
within a single sequence and also to relate these sets of types across
different sequences. For example, within a single sequence, Zed
needs to track the relationship between types and type IDs, and
across sequences, the Zed runtime needs to identify which values
have the same type.

Thus Zed introduces the Zed type context, an abstraction that
represents the set of types that are present in a file, stream, etc. A
type context maps each defined type to a reference to each such
type (e.g., a numeric type ID). A type context is explicitly embedded
in ZNG and VNG files, and the Zed runtime builds up its own
internal representation of the type context as it reads in Zed data.
Within a single sequence of Zed values, the type context enables
the Zed runtime to efficiently serialize a value by prefixing its type
ID and deserialize subsequent values by their type IDs.

The Zed type context also provides a way to relate types across
different sequences. When multiple sequences of values have differ-
ent type contexts, the type references may conflict. For example, in
one data stream, the type {x:int64,y:int64} might have type ID
33 and in another stream it might have type ID 42; this is because
types are defined inline rather than in a global schema registry.
These conflicts must be resolved in order to correctly query data
by type across multiple files. While relational systems are designed
to compare two schemas at once, e.g., to determine if two tables
11We use the term “vector” instead of “column” since the values are not columns of a
table but rather vectors of primitive values where each vector corresponds to a leaf
value in a hierarchical type.
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can be UNIONed, they do not address the challenge of efficiently
determining the relationships between two sets of independently
defined types.

Zed resolves this conflict by mapping input type contexts into a
shared output type context and relabeling each value with its type
ID in the shared type context. This mapping process is efficient
and involves a simple table lookup per typed value. In the example
above, the shared type context might assign type ID 35 to type
{x:int64,y:int64} so the first stream merely needs a map from
33 to 35 and the second stream a map from 42 to 35. Once these
type-context maps have been constructed, Zed can adjust each
value’s type ID to its new type ID in the shared context. These
adjustments do not require re-encoding values themselves, because
the Zed formats do not embed type IDs within value encodings
(e.g., in ZNG they are prefixed). In this way, the output stream has
a single consistent type context for all the values in it.

The Zed runtime constructs these type-context maps on the fly.
When the runtime encounters a new type in an input stream, it first
determines the type’s canonical type representation. The canonical
type representation is an efficient and unique binary representation
of the type, which is not dependent on type IDs. Then, the runtime
uses the canonical type representation to index into a hash table
that maps each type to its type ID in the shared type context (35
in the example above). Finally, the runtime adds an entry to the
type-context map mapping the type ID in the input context to the
type ID in the shared context.

Since a type context is built up by sequentially scanning a se-
quence of values, it would seem that the Zed runtime must process
a stream from the beginning in order to properly decode the types
in use. This creates a challenge for use cases that might want to
seek into a specific location in a large file or for stream processing
where data is continuous (e.g., event data arriving over Kafka [4]).
To address this, the ZNG format supports type-context reset mark-
ers. These are analogous to resynchronization markers in video
codecs and simply zero out the type context and restart the process
for emitting type definitions inline. A ZNG encoder is free to reset
the type context at any point in a stream, and a ZNG decoder can
thus seek to any reset marker and initiate decoding. Adding reset
markers adds some overhead but we have found that in practice
the overhead is a tiny fraction of the encoded data; moreover, the
overhead can be controlled by adjusting the frequency of resets.

4 DATA PROCESSINGWITH ZED
Here we describe Zed’s implementation and how data generation,
querying, and introspection work in a Zed-based data-processing
ecosystem.

4.1 Zed Implementation
We are in the midst of building out the Zed architecture. It currently
consists of 120K lines of code (LOC) including the Zed system and
extensive tests. The majority of the code is written in Go. Our
codebase includes the query language definition, compiler, and
command line tool zq (73K LOC), the formats ZNG, VNG, ZSON,
and indexes (12K LOC), and code for reading and writing data in
Zed’s formats and in other formats such as Parquet, NDJSON, and
CSV (12K LOC). Zed is available open source at https://github.com/
brimdata/zed.

Zed users can store data in files directly on the file system or in
a Zed data lake. When users store their data in files, they can parse,
search, and analyze it using Zed’s command-line tools (e.g., zq). In
addition, Zed supports a Zed lake in which data is organized into
data “pools”. Zed enables transactional reads and writes over data
in the Zed lake using an immutable transaction log, as in Iceberg [3]
or Delta Lake [31], though Zed stores its transactions in a Git-like
commit history supporting branching, merging, time travel, and
data lineage. Users can query Zed lake data using command-line
tools, the Zui application, or APIs in Go and Python.

Thousands of active users employ Zed at desktop scale, e.g., to
analyze heterogeneous network logs or to ingest data from legacy
servers that use heterogeneous data formats. The Zed lake portion
of Zed is under ongoing development and is currently used in pro-
duction by a number of early-adopter data teams, e.g., for database
ETL and security workflows.

4.2 Data Generation and Ingestion with Zed
In a Zed-based data-processing ecosystem, data sources may gener-
ate data in a number of common formats (e.g., JSON, CSV, Parquet,
or Avro). Alternatively, if a source is Zed aware, it can generate data
in any of the native Zed formats and can exploit the full richness of
the Zed data model. For example, a source can define named types
to facilitate the relationship between specific data structures in a
native programming language and the named type in Zed. Named
type definitions require specifying a name for the type as well as
the underlying type (often a record type comprising field names
and field types). Leveraging named types is typically not burden-
some for data sources because these types are already defined by
in-memory data structures in the source system and a client library
can directly marshal these data structures into serialized Zed. When
a source wants to define a new type or redefine a named type, it
simply starts writing data with that new type, as shown in Figure 2.
Data sources may forgo named types altogether and this is very
common; in this case writing Zed data is very similar to writing
JSON data.

When data arrives at the storage layer, users can store it in files
or in a Zed data lake. In either case, data can be stored as both ZNG
or VNG, and Zed can also build indexes over it. How the data is
split across different formats may impact query performance but
has no impact on the types of queries that can be issued, the way
queries are expressed in the query language, or what query results
look like.

Compared to generating and ingesting data in the document
model, using Zed is no more difficult. Compared to ingesting data
into relational or hybrid systems, using Zed is much easier. Zed
users might choose to transform data on ingest, but they are never
required to predefine schemas or to clean data to conform to any
particular structure before it can be stored.

Users who are unable to modify their data sources to output
data in one of Zed’s native formats can still benefit from Zed. As
mentioned above, Zed can consume data in a number of popular
formats and automatically convert the input to native Zed formats
on the fly. Zed can also convert outputs of queries to any desired
format. As such, users can query data in any supported format using
Zed’s query language and convert the output as desired, incurring a
performance cost to perform format conversion. In addition, if users
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{
ts: 18:47:00 (time),
triggered: true (bool),
loc: {floor: 3 (int32), room: "robotics lab" (string)} (=location)

} (=motion)
{

ts: 19:03:00 (time),
triggered: true (bool),
loc: {floor: 2 (int32), room: "kitchen" (string)} (=location)

} (=motion)
{

ts: 19:04:00 (time),
volume: 9.5 (float32),
loc: {floor: 4 (int32), room: "media lab" (string)} (=location)

} (=sound)

Figure 3: Nested IoT data output bymotion and sound sensors
in different rooms, represented in ZSON.

would like to shape their data into a specific set of data types, Zed’s
type abstraction and extensive support for type conversions and
data transformations all provide an excellent foundation compared
to existing systems; we leave an in-depth exploration of this shaping
functionality to future work.

4.3 Querying Data in Zed
All Zed data, regardless of the format that it is stored in, can ben-
efit from both the document model’s flexibility and the relational
model’s types. Zed supports queries that are typically issued over
data in the document model today, because they involve mixing
heterogeneous data. For example, Zed supports the query from
Section 2.2, which sorts heterogeneously typed values by time and
returns the first five. We can issue this query using the command-
line tool zq:

zq “sort ts | head 5” sensor_data.zng
Figure 2 shows example results for this query. Zed can also search
data, for example performing a full-text search over the nested data
shown in Figure 3:

zq “search ‘lab’” nested_sensor_data.zng
This query searches all string fields in the heterogeneous data,
including the nested room field, and returns the first and third
records. To make search easy, keyword searches are part of the Zed
language and the search operator can be omitted when the search
terms are unambiguous. For example, the query string above can
be shortened to just "lab". In addition, search keywords can be
mixed with Boolean predicates, e.g., "lab and ts > 19:00".

Zed can also leverage types for efficient analytics, as is com-
monly done with relational data today. For example, we can issue
an analytics query over the data shown in Figure 3, formatted in
columnar VNG:

zq “count() by loc.floor” nested_sensor_data.vng
This query counts the number of occurrences of each floor in the
nested location records.

Though Zed’s formats can mix heterogeneous data, it’s still pos-
sible to organize data separately by type, either within a file or by
using multiple files. This enables all of the performance optimiza-
tions of existing relational systems, while providing the flexibility
during ingestion and querying of document-based systems. Thus
Zed subsumes both approaches at the same time.

$ zq -f table "count() by typeof(this)" sensor_data.zng
typeof count
<temperature={ts:time,temp:int32}> 452
<humidity={ts:time,percent_humidity:float32}> 82
<temperature={ts:time,temp:int32,unit:string}> 239

Figure 4: A data introspection query to count the number of
records of each type in a ZNG file of IoT sensor data.

4.4 Data Introspection in Zed
Zed enables two main forms of introspection. First, users can query
for types to view what types are present in a dataset. Figure 4
shows an example of counting the number of values with each type
in an IoT dataset and outputting the results in a tabular format
(with -f table). Second, Zed supports querying by type. For exam-
ple, querying for records with typeof(this)==<humidity> selects
all records with type humidity, effectively extracting a relational
humidity table out of a collection of heterogeneous records. This
enables Zed to provide the same functionality as relational sys-
tems, and to select groups of records with related types for further
transformations or querying.

These data introspection operations seem quite simple, but are
actually quite powerful, especially when applied to large datasets
with hundreds of complex nested data types. Because all Zed data is
typed, these operations work at any stage of processing—when data
is generated, during ingestion, while stored, or during querying—
thereby avoiding the catch-22 of existing relational and hybrid
approaches. Because type information is encoded by data sources,
the number of distinct types is much smaller than if you treated each
combination of JSON fields as a distinct type, and more accurate
than if you relied on schema inference. And finally, because types
are first-class members of both the query language and data model,
all of these introspection queries reuse the same query language
and data model that are used by regular queries over data (§4.3).

Note that Zed does not eliminate the problem of data cleaning.
As prior work has pointed out, a key part of data cleaning is re-
solving semantic heterogeneity, for example to determine if a wages
field means the same thing in one dataset as another [64, 68]. Zed
still requires that users resolve such questions. However, Zed’s
introspection capabilities can significantly ease data cleaning by
providing visibility into the set of types present in a dataset. This
enables users to focus on resolving the semantic heterogeneity be-
tween different types, rather than trying to infer which records
correspond to the same type in the first place.

5 RESEARCH QUESTIONS
Several research questions must be answered in order to realize the
full benefits of Zed:
How can Zed optimize query performance? Unlike existing
databases and data-processing systems that leverage the relational
model, Zed has not yet benefited from extensive engineering effort
to optimize query performance. Nonetheless, when querying ho-
mogeneous data, Zed should be able to leverage many of the same
techniques that enable high performance when querying existing
relational databases and data-processing systems such as Spark [73],
because Zed has comprehensive type information for all data val-
ues. In contrast, Zed raises new questions about how to optimize
query performance over heterogeneous but typed data. What are the
fundamental overheads of querying heterogeneous data compared
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to homogeneous data? What techniques can Zed employ—either in
its data formats or query engine—to leverage type information to
reduce the overheads of querying heterogeneous data?
What type-based operators and functions should Zed support
to ease data introspection, shaping, and cleaning? Exposing
type information in a query language opens up new opportunities
for easing the processing of eclectic data. Because existing systems
lack a holistic data type abstraction, introspection, shaping, and
cleaning rules are typically specified on a column-by-column basis
today [47, 48]. For example, to UNION relational tables A and B, a
user must first ensure that their schemas match by identifying each
column that differs between A and B and individually dropping or
adding columns or casting their types. Instead, Zed’s data types
enable a shape operator that abstracts away all this column-by-
column logic, automatically identifying any differences in the two
types and adding, removing, and casting columns as necessary so
that the two types match:

zq “shape(this, <B>)” data_A.zng
This is one example of how a function can leverage type information
to ease data shaping, but more exploration is necessary to develop
a complete language for introspection, shaping, and cleaning.
How should type information be leveraged in a complete
Zed data-processing system? In the simplest Zed deployment, all
ingested data is written as either ZNG or VNG and users directly
query this data. However, there are opportunities to improve upon
this model. For example, Zed could cache type information such
as the set of types and their frequencies so that data introspection
queries could avoid scanning all the data. In addition, Zed could
extend existing work that decides which data format to leverage
for each individual query [28, 33, 43, 49, 66] with policies that
incorporate type information.
6 CONCLUSION
Dozens of different data models and query languages have been pro-
posed over the last 50 years, ranging from hierarchical and graphical
approaches to semantic and object-oriented approaches [68]. De-
spite this, handling eclectic data is still challenging today, with
popular solutions cobbling together a mixture of the relational and
document models (§2). With Zed we explore a different approach,
embodying both the document and relational approaches at the
same time for the same data. Zed is under active development and
many interesting research questions remain, but we believe that
Zed offers a promising path towards simplifying and easing the
processing of eclectic data.
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