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ABSTRACT
Dataset management is one of the greatest challenges to the ap-
plication of machine learning (ML) in industry. Although scaling
and performance have often been highlighted as the significant ML
challenges, development teams are bogged down by the contradic-
tory requirements of supporting fast and flexible data iteration while
maintaining stability, provenance, and reproducibility. For example,
blobstores are used to store datasets for maximum flexibility, but
their unmanaged access patterns limit reproducibility. Many ML
pipeline solutions to ensure reproducibility have been devised, but
all introduce a degree of friction and reduce flexibility.

In this paper, we propose that the solution to the dataset manage-
ment challenges is simple and apparent: Git. As a source control
system, as well as an ecosystem of collaboration and developer tool-
ing, Git has enabled the field of DevOps to provide both speed of
iteration and reproducibility to source code. Git is not only already
familiar to developers, but is also integrated in existing pipelines,
facilitating adoption. However, as we (and others) demonstrate, Git,
as designed today, does not scale to the needs of ML dataset man-
agement. In this paper, we propose XetHub; a system that retains the
Git user experience and ecosystem, but can scale to support large
datasets. In particular, we demonstrate that XetHub can support Git
repositories at the TB scale and beyond. By extending Git to support
large-scale data, and building upon a DevOps ecosystem that already
exists for source code, we create a new user experience that is both
familiar to existing practitioners and truly addresses their needs.

1 INTRODUCTION
Machine Learning (ML) is a data-driven field where data quality can
have a greater impact on results than modeling innovations [1]. In
academic settings, high quality golden datasets are held constant to
isolate and compare model improvements. Conversely, in industry
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settings, iterative steps such as data collection, analysis, labeling,
modeling, and deployment occur concurrently. For example, an
update to the data processing pipeline will create new data, which
will trigger modeling algorithmic updates and require a new model
to be built and deployed. In this world, code and data co-evolve.

Despite their codependency, code and data are historically man-
aged by separate systems. Solutions that track both code and data
often require heavy integration with MLOps ecosystems, so many
teams opt for lightweight solutions (e.g., Slack or Google Docs) to
synchronize communication as needed. These unreliable channels
become a liability when tracing the provenance of a specific change.

With code and data changing simultaneously, identifying the
root cause of model performance improvements or degradations
becomes difficult. Even simple tasks—like evaluating whether a
new model developed by another team has improved performance—
are challenging, requiring all teams to align on data, labels, and
input/output processing methods.

In this paper, we focus on the problem of dataset management as
the core challenge in industry MLOps [2]. We contend that data engi-
neering is a software engineering discipline and should be addressed
with the same set of tools. By treating MLOps as an extension of
DevOps with the problem of scale, we demonstrate that Git, with
appropriate enhancements, can provide a complete solution that will
satisfy most dataset management requirements.

In Sec. 2, we first provide an overview of industry ML dataset
properties and explain their usage in Sec. 3. Next, Sec. 4 poses a
thought experiment on how to use Git to manage a tiny dataset.
Sec. 5 covers the benefits of Git and leads into Sec. 6, where we
show how we scaled Git to handle TB-scale real-world ML datasets
with our system called XetHub.

2 DATASET
A dataset is an organized collection of data comprised of anything
from tables and free-text to images and videos, usually composed
to achieve a particular objective. ML datasets are frequently created
with the goal of meeting an ML objective (e.g., training a speech-
to-text model) and often require data labeling by human annotators.
Industry ML datasets can be further distinguished by these com-
mon characteristics and requirements:
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Infrequent Updates While raw data is always changing, indus-
try ML datasets often require human labeling and quality
control to ensure accuracy: a costly and inherently slow batch
process that can take weeks. As such, datasets suitable for
ML training tasks are generally infrequently updated.
This is convenient, as tracing back changes in model per-
formance requires holding either the data or code constant;
frequently changing datasets are disruptive to model evalua-
tion. These datasets thus do not benefit from being updated
more frequently than the latency of label acquisition, model
development, and model evaluation. From the authors’ expe-
riences with ML teams, monthly updates are typical, aligning
with sprint schedules which allow new model architectures to
be evaluated on a regular cadence.
While streaming data and online learning regimes for MLOps
exist, they demand significantly more sophistication in both
modeling and deployment to monitor real-time model per-
formance and avoid model drift [3]. These settings are com-
paratively rare; the majority of industry ML are in the batch
regime.

Small Changes, Many Copies Dataset updates are often incre-
mental: appending new data, evicting expired data, or updat-
ing labels. From each version, engineers and scientists create
data subsets for rapid model iteration, data exploration, and
other experimental uses. The subsets may then be reused or
pooled by other teams for “off-label” usage, resulting in many
copies of similar data within a company.

Arbitrary File Types In industry, datasets are comprised of ar-
bitrary file types as dictated by the tools used by the team
and broader organization. For instance, log or sensor data
could be simple text files or proprietary serialized formats,
depending on the recording equipment. Similarly, every ML
library (e.g., TensorFlow or PyTorch) consumes and produces
different file formats.
File formats are also defined by performance requirements.
Large tensor files may be sharded for more efficient dis-
tributed training, and datasets with a large number of small
files are often compressed to reduce the number of files and
increase I/O performance.
While there are many possible data formats, the number of
file types used within a single domain is quite homogeneous.
Every genomics lab will have FASTQ files, and every team
using TensorFlow will use tfrecord files.

Flexible Data Organization Industry ML teams prefer to or-
ganize their datasets in whatever file layout is simplest for
them, without the need to restructure or reorganize data to fit
a specified schema. Imposing rigid structures on organization
adds friction to existing workflows and distracts from ML
innovation.

Contains Code Since file types and schemas are closely tied
to models and tools, which can both change as requirements
evolve, code that reads or generates data must evolve along-
side the data itself. Preprocessing rules and augmentation
methods are also closely bound with the data and cannot be
versioned independently. Therefore, code is a fundamental
part of datasets and cannot be managed separately.

3 ML PIPELINES
A typical dataset goes through a ML pipeline with steps like data pre-
processing (e.g., clean outliers and add structure), feature extraction
(e.g., dimensional reduction), modeling (e.g., training and evaluation)
and model deployment. Intermediate results may be computed on
the fly or stored for performance reasons. For instance, an ML based
feature extraction model may be too slow to compute on the fly, while
the fast image augmentation methods (e.g., random rotations) can be
computed as needed. Intermediate pipeline outputs are sometimes
useful for multiple teams; a BERT-embedded [4] text dataset may
be useful for both spam classification and sentiment analysis.

The final result of a successful pipeline run is a deployed ML
model. While this paper does not address model artifact management
and deployment challenges, we note that the model may itself be
consumed by a different pipeline. For instance, the model delivered
by one team may be used as a feature extractor for another team.

3.1 PROVENANCE AND REPRODUCIBILITY
As the dataset is transformed through a pipeline, it is frequently
necessary to track the provenance of the data: how it was produced,
and where it came from.

Record-level provenance is useful for identifying bad records. In
the process of training an ML model, users may catch problematic
records and want to diagnose the issue by back-tracking to identify
the original input. Record-level provenance is frequently addressed
by referring to unique IDs associated with each row of data. Sophis-
ticated solutions here are likely not worthwhile due to the breadth of
tooling and data manipulation methods involved.

Alternatively, dataset-level provenance is useful for the under-
standing and debugging of ML pipelines. To identify the cause of a
regression in model performance, scientists need to know the stages
involved in model production. To accurately attribute model perfor-
mance improvements over time, scientists need to track the changes
in both code and data over time.

Dataset-level provenance provides reproducibility: the ability for
other people in the organization to inspect the code and data which
goes into producing a model, and to reliably repeat a pipeline to
obtain the same outcome. The ability to trace the evolution of a
model—including the code and data that went into it—is necessary
for an ML team to understand how to deliver improved performance.
Certain regulated industries may also require reproducibility for
compliance reasons.

Industry applications of ML commonly stitch together complex
pipelines [5], reusing data and ML libraries from other teams. The
loss of data provenance through these cross-team, cross-system
workflows result in reproducibility challenges [6] that negatively
impact model performance in production.
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To support the co-evolution of data and code, we believe that
provenance systems should be light-weight, integrating seamlessly
into existing source code management systems. Data Dependency
and Code Dependency are fundamentally the same problem and
solutions must address both identically.

3.2 FLEXIBILITY
Just as there is no single source code management pattern that works
for everyone, we believe that there is no single ML pipeline pattern
that is universally optimal. We have repeatedly observed a pattern
where every team architects their own pipeline system, finding exist-
ing solutions too prescriptive or insufficient for their requirements.

While strict pipeline systems provide reproducibility and the
ability to conduct science, business decisions take priority and some-
times it is necessary to "fix it in production". For instance: to rapidly
revoke an output label to eliminate model bias [7].

As such, we believe that data management systems should be
unopinionated, integrate with existing tools quickly and flexibly, and
enable any and all workflows.

4 THOUGHT EXPERIMENT: 1MB DATA
We believe that the challenges of dataset managment is “merely”
that of scale and size. That is, many MLOps challenges reduce to
DevOps if sufficient scalability is provided. To motivate this belief,
consider a thought experiment in this limiting case: What if the size
of all collected data fits in less than 1MB?

Using the workflow of a team working on ML models for a Per-
sonal Assistant (PA) such as Google Assistant as a running example,
we make the unrealistic assumption that all the data fits in 1MB and
is thus stored and accessed through Git [8].

To build the PA, the team collects 2 datasets: a speech database
comprising of audio samples and annotated text, and a database
mapping text queries to intent. The data is held in a transactional
database with additional fields for managing acquisition and labeling
efforts (e.g., speaker profiles to ensure data diversity, contradictory
labels for manual merging).

Once a month, snapshots of both audio and intent databases are
collected. Since the snapshots are < 1MB, they are checked into a
Git repository and tagged. If export bugs are encountered, a new
version is committed with updated tags. The raw dataset has many
file types comprising of WAV files for audio samples, text files with
transcriptions, and JSON records for intent structures. This data
is partitioned into train/validation/test folders to ensure common
dataset splits, and stored alongside Python code for reading WAV
files and a library to parse the intent schema. When data layout
changes occur (e.g., to add new intents), the raw files and parsing
code are updated together. All historical versions are preserved
during this co-evolution of code and data.

Throughout the month, ML engineers iterate to optimize model
performance. Each engineer checks out the model repository, which
tracks the dataset repository as a dependency, not unlike any other
source code dependency. Integrated build tools or libraries may be
used to manage this dependency. The engineers primarily work on
the modeling code, and use small data subsets to validate correctness.
As they experiment, they check in additional code for running filters
and producing tfrecord files, using branches to easily collaborate

with teammates on both modeling and data processing code. Pull
requests are used for review, updating the main branch with their
code and data changes on approval. Continuous integration is used
to generate the final model artifact, which is then deployed. Post-
deployment, Git is used as an artifact repository for inference code
to be stored together with the model.

The use of a Git repository benefits not just the team working on
the PA. An adjacent team working on a new end-to-end speech-to-
intent model can fork the entire repository for their own experiments.
Other teams experimenting on text-to-speech may clone the model
artifact repository, easily accessing the embedded inference code.

Finally, the provenance provided by the Git repository enables
effective regression testing. Scientists can use the repository commit
history to compare differences between the previous deployed model
and the current deployed model to identify if the regression is due
to a change in code or data. Fixes to either code or data can be
submitted via a pull request to update the deployed model.

5 IF GIT WERE SCALABLE
As datasets today are typically larger than 1MB, scalable storage
solutions to 1TB and beyond are needed. Git performs poorly with
large files and Git’s single server endpoint is a bottleneck. Users
typically offload datasets to blobstores, where proper versioning and
history tracking require some maintenance.

However, if Git were scalable to the repository sizes required,
it could provide the flexibility and capability to serve the needs of
industry ML. Solutions such as Git LFS [9] and DVC [10] provide a
light-weight facade for adding large files to Git repositories but do
not provide sufficient integration to support the needs of industry
ML datasets as described in Sec. 2.

To scale Git, we approach Git differently—as more than a system
or a service for source code version control. At a low level, Git
serves as a protocol and a metadata store for a filesystem with coarse
grained atomic writes; at a high level, Git is an entire ecosystem of
tools and services.

Git is a Database Git internal storage is a well-optimized content-
addressed object database for small objects. Significant opti-
mizations have been made so that clients can download the
minimum information necessary to construct commits and
subdirectories [11, 12]. We have benchmarked Git with rudi-
mentary tuning to over 550𝑀 128 byte objects and we believe
that, with more tuning [13], Git can scale to billions of ob-
jects. The Git object database also has many opportunities for
further optimizations [14].

Git is a Filesystem Metadata Store Git provides a directory
tree layout over blob contents. The sparse-checkout, shallow
clone, and sparse-index features in every Git client provide an
efficient way to obtain the metadata required to fully describe
a partial or complete directory structure of a repository for
any given version.

Git is a Protocol Git is merely a backend choice for represent-
ing versioned filesystem metadata. Frontends can be archi-
tected to speak the Git protocol without any requirement to
use Git itself.
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Git is for Collaboration Git/GitHub have defined common pat-
terns around developer collaboration: issues, branching, fork-
ing, and pull requests. These patterns have helped establish
modern DevOps practices and cultures around testing, au-
tomation, and deployment. With the development of Infras-
tructure as Code [15, 16], version control has become the
de-facto way to collaborate on all aspects of DevOps from
development through deployment.

We aim to extend the benefits of Git to both code and data, with a
user experience that seamlessly supports ML datasets and arbitrarily
large files.

6 SCALING GIT TO DATASET MANAGEMENT
To solve the industry ML dataset problem, we realized that providing
users with a Git-like dataset management does not provide a good
user experience. With the broad familiarity of Git among users, as
well as the extensive collection of developer tools surrounding Git,
it is insufficient to merely look like Git; we must embrace Git in its
entirety. To that end, we propose a system design called XetHub to
enable Git at scale.

The XetHub design factors the dataset representation problem
into two parts: filesystem metadata and data.

6.1 METADATA
Git is an efficient store of versioned filesystem metadata, scaling
comfortably to hundreds of millions and potentially billions of small
objects. We make use of Git to store pointer representations to the
actual data. While here the design appears similar to Git LFS or DVC,
the key difference is that we take over data storage responsibility
for all data, which allows us to transparently manage and scale data
storage.

We built this system entirely on the the Git Clean/Smudge Filter
protocol mechanism, using a broad wildcard to capture every file.
Since every file passes through our filter, we are able to optimize the
data storage locations for each file.

6.2 DATA
Our data stack makes use of a data deduplication method backed by
a Content-Addressed Store (CAS). The data deduplication method
is designed to leverage large objects (which are more efficient to
store, communicate and manage), while maintaining small block
sizes which improve dedupe performance.

6.2.1 Content Defined Chunking. The Content Defined Chunk-
ing procedure is a data chunking procedure that generates variable-
sized chunks which are data-dependent. By determining chunk
boundaries based on the the contents of the data, the chunking
procedure can be robust to both data insertions and deletions. The
typical procedure involves scanning the data stream with a rolling
hash algorithm [17, 18], and generating a chunk boundary when the
hash meets a particular criterion. For instance, the simple criterion
𝑐 (ℎ𝑎𝑠ℎ) = ℎ𝑎𝑠ℎ mod 212 == 0 will, assuming random file contents,
generate chunks averaging 212 = 4096 bytes.

We implemented several of the optimizations described by the
FastCDC algorithm [19] to accelerate the chunking process but used
a different method to provide normalized (more Gaussian distributed)

chunk sizes: assuming uniformly random hash values, the chunk size
is described by the geometric distribution 𝑋 𝐺𝑒𝑜 (𝑝) where 𝑝 is the
probability the rolling hash value meets the criterion. (For instance,
𝑝 = 2−12 in the example above). This means that using the rolling
hash procedure naively will result in a large number of tiny chunks
which increase the overhead required to represent deduped data. See
Fig. 2 for an example.

One of the optimizations in the FastCDC paper is a normalized
chunking procedure where an adaptive criterion is used to approxi-
mately normalize the chunk sizes, producing a chunk size distribu-
tion which is a mixture of two geometric distributions.

We propose an alternative we call Low Variance Chunking
where we simply sequentially perform 𝑘 runs of rolling hashes with
different hash seeds, scaling the criterion appropriately to achieve
the same target chunk size. For instance in our system, we use 𝑘 = 4
different rolling hashes with each hash targeting a chunk size of
4096 bytes. The resultant chunks have an average of 16𝐾𝐵 with sizes
distributed according to 𝑁𝐵(𝑘, 2−12) which for sufficiently large 𝑘
is approximately Gaussian.

In Fig. 2 we plot the chunk distributions provided by low variance
chunking compared with standard chunking. We observe that the low
variance chunking procedure provides more Gaussian distributed
chunk sizes, and avoids both tiny chunks and massive chunks. We
believe this low variance procedure provides a simpler parameteriza-
tion for balancing dedupe quality and overhead.

6.2.2 Data Deduplication. The core datastructure underlying
the data deduplication method is a Content-Defined Merkle Tree
(CDMT) [20]. Unlike a typical Merkle Tree with a fixed branching
factor, each node in a CDMT has a variable number of children
(Fig. 1a). The tree is built with a method similar to Content Defined
Chunking, and allow modifications without large changes to the tree
structure.

Firstly, files are chunked with the chunking procedure described
in Sec. 6.2.1. A Merkle Tree is built up by grouping chunk hashes
together, also using Content-Defined Chunking procedure: a hash is
on a chunk boundary if the hash meets criterion ℎ𝑎𝑠ℎ mod 4 == 0.
We also enforce that chunks must comprise of between 2 and 8
hashes. Each chunk of hashes are then merged into a single parent
node. The procedure is repeated until there is only a single root node.
The hash value at the root node is called the MerkleHash of the file.

Due to the use of the Content-Defined Chunking procedure during
tree construction, the CDMT datastructure allows for insertions,
deletions, and modifications to be performed without substantial
changes to the tree, allowing most of the tree to be preserved across
chunks (Fig. 1b) thus minimizing overhead for data changes.

Finally, since the MerkleDAG (collection of Trees) is simply rep-
resented as a set of hashes, it is trivially a Grow-Only Set CRDT
[21], allowing for simultaneuous conflict-free modifications. We
maintain the MerkleDAG on a per-repository basis, storing incre-
mental changes in Git notes [22]. The MerkleDAG hence covers all
branches, allowing data dedupe capability to automatically span all
branches. Similarly, forks or clones of the repository automatically
inherit the same MerkleDAG and all dedupe capabilities.

6.2.3 Data Storage. The final piece of the system is the actual
data storage for the deduplicated chunks. We rely on a Content
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(a) Merkle Tree (b) Merkle Tree Insertion

Figure 1: (a) Content Defined Merkle Tree. Each leaf chunk is derived from a Content Defined Chunking procedure. Nodes are merged using a simple
hashing rule: a partition is inserted whenever the hash modulo a target child count equals 0 with constraints on a minimum / maximum child count. (b)
Insertion of a new chunk (Data 0) can maintain tree stability. New nodes are in red.

Figure 2: Example chunk size distribution using a standard rolling
hash chunking procedure, vs the low variance chunking procedure on
4.3GB of compressed CentOS disk images. We observe the low variance
chunking procedure is more Gaussian distributed and avoids both exces-
sively small and large chunks.

Addressed Store (CAS) where the key used to retrieve a piece of
data, is a hash function of the data.

A typical way to use a CAS to store deduplicated chunks is to
simply store each chunk as its own key. While small chunk sizes
have better deduplication performance, this creates small objects
which lead to large key storage overheads in the CAS, as well as
large network overheads for uploading and downloading objects. We
will ideally like to have small dedupe chunk sizes, but large CAS
entries.

A key observation is that we can use the CDMT to convert be-
tween files, chunks and CAS entries.

When new files are added to the system, they are first chunked
with the method described in Sec. 6.2.1, with a CDMT constructed
as described in Sec. 6.2.2. Any new chunks which do not exist in
any other versions of the repository are directly concatenated to a
maximum of 16MB, and stored stored as a single object in the CAS.
A CDMT for this new object is also derived and stored.

The system hence comprises of two groups of CDMTs. The first
group of CDMTs have roots which are files, and the second group of
CDMTs have roots which are CAS entries. Both groups of CDMTs
share chunks: by construction, every leaf chunk must be both a leaf
of some file root and a leaf of some CAS entry root. The use of
the Content Defined Chunking procedure also mean both groups of

CDMTs share many interior nodes, reducing representation over-
head.

To reconstruct any file root, we simply intersect the file CDMT
with the CAS CDMTs to resolve the set of CAS object ranges needed
to reconstruct the file (Fig. 3).

This deduplication strategy provides the best of both worlds:

• Effective data dedupe: Data dedupe with small chunks and
support for both insertions and deletions.

• Low CAS overhead: Large CAS object sizes result in low
storage and communication overhead.

• High data locality: If a range in a CAS object is required, it is
likely that the rest of the CAS object is also required.

6.2.4 Data Dependent Chunking. While the default chunking
strategy provides an excellent baseline for many datasets, specialized
chunkers can be provided for special file types. For instance: CSV
files can be preferentially chunked on line breaks and Numpy arrays
can be preferentially chunked by the first index stride length. This
can improve dedupe performance significantly for those file types
enabling free subsampling and reordering: both common dataset
operations. We explore this further with the benchmarks in Sec. 6.4.

6.3 GIT INTEGRATION
As the entire metadata stack is exactly Git, we are able to support all
Git interactions transparently without requiring the user to learn any
additional commands, retaining compatibility with existing tools in
the Git ecosystem. See Table 1 for a comparison of how command
line interfaces differ between Git LFS, DVC, and Git Xet.

While the merge concept in Git does not extend well to large
binary files, a merge conflict informs the user when an unexpected
simultaneous modification by another user has occurred. Git also
provides the user the opportunity to resolve it manually, or by force
(overwrite). This is unlike typical object store workflows where
conflicting changes can be overwritten without notification.

While the Git Filter protocol is quite efficient, deeper integration
with Git will bring improved performance. Alternatively, in Sec. 7
we consider the use of user-mode filesystems as the more scalable
solution for user interaction.

6.4 CORD19 BENCHMARK
We benchmark our dedupe performance using the CORD-19 dataset
[23], a text corpus of academic papers about COVID-19 containing
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Figure 3: To reconstruct a given file, the Merkle Tree is traversed to find data sources to concatenate. The solid red nodes indicate the set of nodes
which are sub-ranges in other storage sources (dashed blue nodes). H12345 can be read from an existing S3 object, H6 can be directly queried from the
CAS, and H78 is a sub-range in another CAS entry (Blob B).

full text paper contents, authors, and abstracts. Document embed-
dings are also provided. This dataset is an example of a real-world
growing dataset, with regular new releases of papers and a complete
history of prior versions. We evaluate the cost of using Git with
either LFS or Xet integration for dataset version control, using the
last 50 versions of the CORD-19 dataset spanning from 2021-02-01
to 2022-06-02. We do not test other Git large file solutions such as
DVC and Git Annex [24] as they all only perform file-level dedu-
plication and so will have identical storage characteristics as Git
LFS.

Each version of the dataset comprises of small JSON files (up
to 700k in the final dataset) with paper information, as well as 2
large CSV files of metadata and document embeddings respectively.
We evaluate Xet with 2 different chunkers: the generic all-purposes
chunker (Labelled Xet) and Xet with a CSV aware chunker (Labelled
Xet+CSV).

The combined uncompressed size of storing all 50 versions is
2.45TB. Each version was extracted, added, and checked into Git.
For Git LFS, LFS is configured to track the large CSV files (metadata
and embeddings). Xet is used in its default configuration. We show
in Fig. 4 that 2.45TB of raw data can be stored with 545GB (4.6x
reduction) with rudimentary separation of data and metadata using
Git LFS. Xet can reduce this further to 287GB (8.7x reduction), and
Xet+CSV can reduce the storage requirements to merely 87GB, or
a 28.8x reduction. These measured sizes include all Git repository
information and LFS/Xet metadata. Notably, for Xet+CSV, the size
of the final version of the dataset is 81.5GB; only 5.5GB is needed
to maintain all previous versions.

Note that data compression, which would further reduce both disk
space and network utilization, is not used in this benchmark.

Next, in Fig. 5 we test the incremental cost of adding a branch
storing a dataset split. Both the metadata file and the embedding file
were split into 75%−25% parts. In the random split strategy, the rows
are randomly shuffled into two files. In the aligned split strategy,
the file is simply partitioned. LFS required complete storage of all
split files requiring 16GB of storage. Xet dedupes the random split
to 11GB, while Xet+CSV requires only 1.6GB, or a 10x improve-
ment over the baseline. The aligned split is easy for both chunking
strategies, requiring 185KB for Xet and 173KB for Xet+CSV. The
Xet+CSV failed to dedupe every row in the random split as short
CSV rows may get merged to maintain reasonable chunk sizes.

Figure 4: Cumulative storage cost for committing 50 CORD-19 dataset
versions from 2021-02-01 to 2022-06-02. The Y axis is truncated for
readability. LFS required 545GB, Xet required 287GB including a 2.4GB
MerkleTree. Xet+CSV required 87GB including a 1.7GB MerkleTree.
See Sec. 6.4 for details.

7 BEYOND GIT CLONE
As we scale Git to large repositories comprising of TBs of history
and millions of files, the typical Git user experience of cloning an
entire repository becomes a performance bottleneck. It should not
be required to clone the entire repository to explore a dataset, or to
access a few files.

7.1 USER-MODE FILESYSTEMS
To alleviate this issue we provide a mount command (Table 1)
which exposes a Xet repository as a file system folder. The filesystem
view of a dataset provides transparent delayed materialization of
the repository, allowing all users to get a single common view of a
repository efficiently.

Users can gain access to large datasets immediately and freely
use local tools to explore datasets on their own machines. Images
and audio can be directly loaded with native applications. Random
access file formats such as Zip files allow partial contents to be
extracted without a complete download. Parquet files and Sqlite
databases can be directly queried with familiar native tools. This
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Figure 5: Incremental storage cost of adding a branch with a dataset
split. In the random split, the rows are randomly shuffled into two files.
In the aligned split, the file is simply partitioned. LFS required complete
storage of 16GB. Xet dedupes the random split to 11GB, and 185KB
for the aligned split. Xet+CSV requires 1.6GB for the random split and
173KB for the aligned split. Aligned split bars are too small to display
See Sec. 6.4 for details.

is especially beneficial for data exploration, allowing developers to
experiment on small data subsets easily.

The filesystem mount is also a natural way to support dataset
dependencies in data engineering or ML training tasks as it allows
tasks to simply read what they need without handcrafting a download
manifest. Distributed training tasks are simplified as users do not
have to address sharding and data distribution challenges. Training
jobs are also accelerated as data can be streamed on demand avoiding
large initial download costs which are hard to optimize.

Our user-mode filesystem implementation is built as a custom
built local machine NFSv3 [25] server daemon, followed by an
NFS mount from localhost. The key benefit of NFS vs FUSE
(Linux Userspace Filesystem) is that NFS is widely supported and
the protocol provides built-in semantics for the kernel to perform
both metadata and data caching efficiently.

In Fig. 6 we demonstrate how with a local filesystem mount,
useful queries for Parquet / SQLite databases can be performed
using standard local tooling, but automatically fetching only a small
fraction of the total size of the dataset.

Next, in Fig. 7, we evaluate the performance of the filesystem
mount. and show that our uncached performance is comparable
with the native DuckDB S3 connector for Parquet databases, though
significantly slower for SQLite databases. However, once cached,
we are comparable with local disk. Caching optimizations which are
adaptive to file format is planned.

The file system view allow non cloud-aware tools to access large
files and datasets with ease without requiring each tool to implement
their own connector. A single common filesystem-based caching
model further enables efficient repeated access for every tool without
requiring each application to implement their own caching solution.

8 FRONTEND
The ability to store large datasets in Git raises the UX question
of what an appropriate frontend for sharing and collaborating on

Git LFS
Clone git clone [repo]
Add git lfs track [file]

git add [file]
Push git push

DVC
Clone git clone [repo]

dvc pull
Add dvc add [file]

git add [file].dvc
Push dvc push

git push

Git Xet

Clone git clone [repo]
Add git add [file]
Push git push
Mount git xet mount [repo]
Mount Branch git xet mount [repo] -r

[branch]

Table 1: Basic usage comparison. Git LFS [9] requires explicit decisions
on what files/file patterns to store in LFS. Mistakes are complicated to
resolve. DVC [10] exposes implementation and storage detail to the user
and requires new commands for common operations. Git Xet integrates
deeply and works transparently with all files and provides user-mode
filesystem mount capabilities (Sec. 7.1)

.

datasets should look like. While GitHub and GitLab have demon-
strated set of patterns for communicating source code history, diffs,
and pull requests; appropriate patterns for datasets have no set prece-
dence.

For instance, dataset cards [26] provide a way to document and
communicate the current schema and metadata of a dataset, but not
how the dataset has changed over time. Alternatively, while row-
level diffs of structured files (CSVs, Parquet) can be displayed, this
is unlikely to be useful when the diffs are large. Instead, appropriate
use of sketch statistics and summarization could be used to visualize
distribution changes to help quickly identify outliers, as well as data
drift over time. This is a broad topic for future study.

Continuous integration as a pattern for source code quality ex-
tends naturally to datasets, providing a system for complex data
quality analysis operations such as outlier detection, schema viola-
tions, etc.

9 RELATED WORK
Datahub [27] describes a Git-like repository model for structured
data as well as a query language for versioned datasets. In this paper,
we instead define a repository system for general unstructured data
with system primitives (Sec. 7.1) that permit efficient querying of
tabular data file formats such as Parquet/SQLite.

In [28], the authors similarly argue that "ML presents charac-
teristics that are typical of software (e.g., it requires rich and new
CI/CD pipelines), and of data (e.g., the need to track lineage)" and
discuss the need for "queryable data abstractions, lineage-tracking
and storage technology that can cover heterogenous, versioned, and
durable data." We believe that the system described in this paper
fulfills this need.

10 FUTURE WORK
The Git repository model is not suitable for capturing streaming data
as each commit is a moderately costly operation. Pushing events
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to a Git repository at high frequency is challenging. However, data
can be directly streamed to Sec. 6.2.3 allowing only metadata to
be batched and published to the Git repository at a coarser grained
interval.

While the MerkleDAG is typically about 0.5% of the size of the
repository, the MerkleDAG gets too large to download when the
repository approaches the 10-100TB range. Improved ways to layout
the MerkleDAG on disk, or to serve subgraphs of the MerkleDAG
on demand are needed. Also, the MerkleDAG is append only and
grows monotonically over time, which makes common industry use
cases of data deletion and eviction (e.g., garbage collection, removed
branches, legal deletion requirements) a challenge. Improving the
MerkleDAG to support these capabilities is ongoing work.

The filesystem mount capability for Xet repositories enable “Time
series” views of a dataset where multiple historical revisions or
branches are simultaneously made available, allowing users to ex-
plore dataset changes over time. The dedupe capabilities improve
the efficiency of such time-series views by automatically taking
advantage of data commonalities across versions.

Next, the mount can also be used to capture fine-grained block
level access, allowing record-level provenance to be inferred auto-
matically without any additional tooling.

Finally, while the current mount implementation provides only
read-only access to the repository, read-writeable mounts which
maintain Git semantics will enable easy mutation of arbitrarily large
data repositories.

11 CONCLUSIONS
At first glance, we integrate with Git in a comparable method as Git
LFS. However, the core differentiation is the holistic set of tooling
XetHub provides to fully support the needs of ML datasets by fully
embracing the use of software engineering practices for data.

We believe that with the right architecture design, pre-existing sys-
tems for source control can be extended to fully support the dataset
use case, addressing a significant fraction of dataset management
needs while minimizing cognitive friction.

The significance is the observation that the needs around dataset
management are not unique, and have been addressed by source
code management tools. What is unique is only the scale at which it
happens. By extending Git to support large-scale data, and building
upon a DevOps ecosystem that already exists for source control,
we create a new user experience that is both familar to existing
practitioners and truly addresses their needs.
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(a) Laion400M Parquet Queries with DuckDB

(b) LaionAesthetic SQLite Queries

Laion400M Parquet Queries with DuckDB
select COUNT(*) from 'data/*.parquet'
select LICENSE, count() from 'data/*.parquet'

group by LICENSE

LaionAesthetic SQLite Indexes
create index idx_width on images(width)
create index idx_height on images(height)
create index idx_width_height on images(width,height)
create index idx_url on images(url)
CREATE VIRTUAL TABLE images_text using fts5(url, text)

LaionAesthetic SQLite Query
select * from images_text

inner join images
on images_text.url==images.url
where images_text.text MATCH 'cat' LIMIT 10

select * from images where
height == (select MAX(height) from images)

(c) Queries and Indices

Figure 6: Total MB downloaded per query for each dataset. xet mount was configured with prefetch disabled and 1MB cache block size to optimize
for random access. (a) SQL queries using DuckDB [29, 30] performed on a 54GB Xet dataset of Parquet files obtained from [31]. The LAION-400M
dataset comprises of Image URLs, text descriptions and other image metadata including a license. As Parquet is columnar, columnar queries are
efficient and only a small fraction (2.3%) of the dataset needs to be downloaded to obtain a license distribution. (b) SQL queries on a 9GB SQLite [32]
database built from a 12M image subset of the Laion-Aesthetic dataset [33]. Appropriate column indexes are created to avoid a complete table scan for
the queries tested. (c) Queries and indices used for for the Parquet and SQLite queries in (a) and (b).

(a) Laion400M Parquet License Count Benchmark (b) LaionAesthetic SQLite Cat Images Benchmark

Figure 7: All benchmarks performed on a t2.xlarge AWS instance with 4 vCPUs and 16GB RAM. (a) Performance of the Parquet license count
query (Fig. 6) comparing query runtime: (i) immediately after mount (uncached), (ii) subsequent runs (cached), (iii) from local disk, (iv) directly from
S3 bucket using DuckDB’s native connector. Linux page caches were flushed prior to every query. Since the parquet page size is large and DuckDB
parallelizes data access, we were able to obtain very good performance for Parquet queries even outperforming DuckDB’s native connector by 21%.
Once accessed, our cached performance is comparable to direct local disk performance.
(b) Performance of the SQLite 10 Cat Images query (Fig. 6) comparing query runtime: (i) immediately after mount (uncached), (ii) subsequent runs
(cached), (iii) from local disk, (iv) directly from S3 bucket using a SQLite VFS HTTP Connector [34]. As the SQLite default page size is small (4K), our
1MB cache block size is far too large resulting in a nearly 4x slowdown for the uncached query compared with the SQLite VFS connector. However,
once cached, performance is on-par with local disk (<0.1s).
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