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ABSTRACT
Many database applications execute transactions under a weaker
isolation level, such as READ COMMITTED. This often leads to
concurrency bugs that look like race conditions in multi-threaded
programs. While this problem is well known, philosophies of how
to address this problem vary a lot, ranging from making a SERI-
ALIZABLE database faster to living with weaker isolation and the
consequence of concurrency bugs.

This paper studies the consequences, root causes, and how devel-
opers fix 93 real-world concurrency bugs in database applications.
We observe that, on the one hand, developers still prefer preventing
these bugs from happening. On the other hand, database systems
are not providing sufficient support for this task, so developers often
fix these bugs using ad-hoc solutions, which are often complicated
and not fully correct. We further discuss research opportunities to
improve concurrency control in database implementations.

1 INTRODUCTION
In an ideal world, a database application developer should encapsu-
late a sequence of operations into a transaction, and execute multiple
transactions concurrently with a SERIALIZABLE database [23], so
that the application developer does not need to reason about how
concurrent transactions may interleave.

The real world, however, is far from ideal: multiple studies have
shown that, in practice, databases are often configured with a weaker
isolation level, such as READ COMMITTED, probably due to perfor-
mance reasons [14, 24]; to perform concurrency control, application
developers often use ad-hoc solutions (e.g., use external locks),
rather than relying on the database [27]. In both cases, the applica-
tion developers are responsible for reasoning about the interleaving
of concurrent transactions, which may introduce subtle correctness
issues [18, 27, 28].

The gap between theory and practice motivates us to rethink the
following question about concurrency control in databases: should
we insist that the database takes full control of concurrency? Or
should we assume that the developers must take part in this task
and, if so, what additional support should database systems offer to
developers to understand isolation violations?
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To answer this question, we have performed a study to a question
unanswered in prior studies: while multiple studies have shown
that using weakly isolated or ad-hoc transactions could introduce
anomalies, do these anomalies actually happen or matter in practice?
As some researchers have conjectured [5], perhaps the contention
level in real-world applications is not high enough to trigger these
anomalies frequently. Even if these anomalies are triggered, perhaps
they do not violate any application-level constraints. Even if they
do violate application-level constraints, perhaps it is okay for the
administrator to repair their effects manually. As one can imagine,
if these conjectures are correct, there is less motivation to pursue a
SERIALIZABLE database implementation.

We have carried out the study by collecting 93 concurrency re-
lated issues from different real-world open-source applications and
analyzing their root causes, consequences, and how developers fix
them. We find that 1) many of them do cause violation of application
constraints, like overselling, double spending, and orders with the
same ID, which cause users to complain; 2) in almost all cases, devel-
opers do want to prevent these anomalies from happening (only one
case discusses the possibility of letting the user fix the effect of the
anomaly manually); 3) many cases require a significant amount of ef-
fort to fix, often leading to lengthy online discussions and significant
redesign of the application. Developers rarely use stronger isolation
to fix a bug: in only 7 cases developers finally choose to upgrade
the isolation level, and in many others they turn to ad-hoc solutions
like external locking and application-level versioning. Based on the
developer discussion, a common concern of moving to a stronger
isolation level is performance, particularly long locking time and
deadlock that are more likely to happen under stronger isolation.

From the study, we conclude that issues caused by concurrency
control are of concern in many real-world applications: on the one
hand, developers are reluctant to use SERIALIZABLE transactions
due to performance concerns; on the other hand, weakly isolated or
ad-hoc transactions are hard to reason about and thus error prone.

The second half of the paper discusses possible solutions. In short,
we believe that to get the best performance, some effort from devel-
opers is necessary, since developers often have application-specific
knowledge that can help to improve performance. This means we
need new abstractions and support to incorporate developers’ ef-
fort. On the other hand, automatic analysis, in particular combined
analysis of SQL and web application code, may still be able to
improve over the state of the art. We identify both challenges and
opportunities in this direction.



CIDR’23, January 8-11, 2023, Amsterdam, The Netherlands Chaoyi Cheng, Mingzhe Han, Nuo Xu, Spyros Blanas, Michael D. Bond, and Yang Wang

2 BACKGROUND AND RELATED WORK
Imagine a purchase operation that reads the current item count with
a SELECT statement, checks that the item count is positive, and
then decrements the item count with an UPDATE statement. If two
statements are encapsulated in a SERIALIZABLE transaction, then
concurrent execution of multiple purchase operations will encounter
no problems. If the database uses a weaker isolation level, such as
READ COMMITTED, or if these two statements are not encapsulated
in a database transaction, then it is possible that two purchase op-
erations execute SELECT concurrently, both find the item count
is positive, and then both decrement the item count, resulting in a
negative item count. Since this problem resembles a concurrency
bug (more specifically, an atomicity violation) in a multi-threaded
application written in an imperative shared-memory programming
language [21], we call it a “concurrency bug” in the rest of the paper.

To address this problem under weaker isolation levels, the devel-
oper may add an additional check at the end of the transaction to
ensure the item count is not negative. Alternatively, instead of using
database transactions, the developers may rely on external locking
services, such as Redis, to prevent the same item count from being
read and updated concurrently. This approach is dubbed ad-hoc
transactions in prior work [27], and we inherit the term in this paper.

Multiple works have shown that using weakly isolated or ad-hoc
transactions can lead to concurrency bugs [18, 27, 28]. A number of
works try to identify concurrency bugs in database applications by
modeling transaction execution as a serialization graph and searching
for cycles in the graph [12, 16, 18–20, 28]. However, these works
leave a long-standing question unaddressed: do these correctness
issues actually matter in practice [5]? As one can imagine, the answer
affects how the community should approach this problem.

3 A STUDY OF REAL-WORLD
CONCURRENCY BUGS

This section presents our study about how concurrency bugs manifest
and get fixed in practice. Many real-world applications today choose
to open-source their code and openly discuss their bugs online, which
gives us the chance to perform this study.

Methodology. We have investigated bugs from two sources. The
first source is the code and bug reports of open-source database
applications, which primarily include eCommerce applications but
include a few others like online gaming and chatting applications.
The second source is the discussions on the websites of Object-
Relational Mapping (ORM) tools and database vendors. In these
discussions, application developers describe the anomalies they meet
and ask for possible ways to fix them.

We searched both the commit history of the source code and
the online bug reports and discussions to find bugs that are caused
by executing transactions in parallel. The key challenge we met is
choosing the keywords to search: while we initially started with key-
words like SERIALIZABLE or READ COMMITTED, we found that in
practice, developers often don’t use such specific keywords. Instead,
they often use more general terms like “race conditions,” which
makes it hard to distinguish our targets from classic concurrency
bugs in multi-threaded applications. We have no perfect solution for
this problem. We searched for bugs or commit messages that contain
keywords from each of the following two groups: the first group is

related to concurrency bugs, such as “race” and “concurrent”; the
second group is related to transactions, such as “SQL” and “transac-
tion.” To determine whether a found bug is relevant to our study, we
manually read each bug report, as well as its corresponding source
code when needed.

In addition, since the “SELECT FOR UPDATE” command was
introduced precisely to address the concurrency issues caused by
weaker isolation, it is an accurate indicator of our target. Therefore,
we searched for “FOR UPDATE” in both the source code of com-
mits and online discussions. Of course, this makes our study biased
toward bugs fixed using “SELECT FOR UPDATE.”

Since deadlocks are a well-studied problem, we haven’t included
them in our study, unless a deadlock is related to the isolation level
the database is using.

Using the above methodology, we have found 93 bugs from 46
different applications, ORM tools, and databases. Readers can refer
to our online document [1] for the detailed information of each bug.
Among the databases they use, all except MongoDB claim to support
SERIALIZABLE, though it is known that Oracle does not actually
provide SERIALIZABLE isolation [3].

Despite our best efforts to understand these issues, we failed to
fully understand a small number of them: because some issues are
still under investigation, we know their consequences but not their
root causes and how to fix them; because some issues are found
by looking at how code changed between commits without clear
documentation, we sometimes know how to fix them but not their
consequences or root causes.

Limitations. First, due to this work’s focus on open-source applica-
tions, we don’t know whether its conclusions hold for commercial
applications. Researchers or practitioners from industry could carry
out a similar study on closed-source commercial applications to
evaluate this question. Second, since our study is naturally biased
toward applications with concurrency issues, this study cannot an-
swer what percentage of applications experience concurrency issues.
However, the study at least shows that many applications experience
concurrency issues.

3.1 Consequences of Concurrency Bugs
The studied issues lead to both correctness and availability issues.
For two issues, we were not able to identify the exact consequences.

Data inconsistency (78 issues). Thirty of the issues cause the mis-
counting problem, which means the application gets the wrong count
of certain items. Among these 30 issues, 14 of them cause the over-
selling problem, which means the seller sells more items than she
has; three of them cause the double-spending problem, which means
a buyer is able to use a coupon, voucher, etc., more than once. The
others include miscounting the number of people or items internally.

Sixteen of the issues cause the non-unique ID problem, which
means the application expects each row in a table to have a unique
ID, but this constraint is violated due to concurrency bugs. This can
cause various problems at the application level, such as orders not
being processed properly, when they have the same ID.

Apart from the above two types, we have observed other data
inconsistency issues that are hard to classify, like a table containing
mixed data from two transactions.
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Unavailability (13 issues). Nine of the issues cause certain pro-
cesses in the applications to crash or freeze. Four of the issues cause
a deadlock. Note that although we do not target deadlocks, we study
deadlocks related to the isolation level.

Severity. A few of the bug reports report the severity of the problems
in practice:

—“I would say there is about 2–5% chance this might happen. (I have
about 100 orders per day)” [7]

—“It is pretty rare, but has happened about 5 times over the past few
months in a set of about 10,000 orders” [9]

—“a customer called about having thousands of duplicated and even
quadruplicated products ...” [11]

These comments imply that even for applications that are usually
idle, they still experience enough contention to manifest isolation
level–related anomalies periodically.

3.2 Root Cause of Concurrency Bugs
We initially tried to classify the root causes of these issues using
classic database terminology, like lost updates and non-repeatable
reads, but we found it difficult to classify some of the bugs using
this terminology. Therefore, we introduce our own terminology and
discuss why some issues are hard to classify.

Read followed by relevant Write (52 issues). They are caused by
concurrent transactions each performing a read operation first and
then performing a write operation (update/insert/delete) relevant to
the read. Read after relevant write can be further categorized into
two types: the first type is read followed by update on the same
data item, which we call RW1 in this paper. For example, if two
transactions read the item count in parallel, and then update the
item count, the final item count may be inconsistent. In our study,
42 issues are caused by RW1, and it is the leading cause of the
miscounting problem.

While we initially classified RW1 issues as lost updates, we find
that some of them do not fit with the intuitive definition of lost
updates. To be concrete, in the following transaction logic,

Read(a); Check a>=1; b=a-1; Update(a)=b; (Classic lost update)

concurrent execution of the transaction may cause a lost update, since
one transaction’s update may be overwritten by the other. However,
in the following transaction logic,

Read(a); Check a>=1; Update(a)=a-1; (No update is lost)

concurrent execution of the transaction does not lead to any update
being “lost.” Instead, the final value of “a” may become negative,
which is of course still problematic.

In general, we observe that the second case above is less problem-
atic: if an anomaly happens, the application can at least detect it by
checking whether the value of “a” is negative. The first case, on the
other hand, loses an update silently. In our paper, RW1 encapsulates
both cases.

The second type, which we call RW2, is more subtle: it is caused
by reading a set of records followed by a Write that will affect the

result of a concurrent read on the same set of records. Examples
of such reads include “select MAX”, “select count” and “read the
current position.” Unlike transactions with RW1 issues, transactions
with RW2 issues may not insert/update/delete the same row in the
end. For example, consider the common pattern to use “select MAX”
to get the maximal value from a table, and then to insert a new row
with MAX+1 as the ID, expecting this ID to be unique. Concurrent
execution may lead to two transactions getting the same MAX and
then inserting two orders with the same ID. In this execution, their
insert operations do not operate on the same row, which makes it
different from RW1. In our study, 10 issues are caused by RW2, and
it is the leading cause of the non-unique ID problem. Again, we find
RW2 does not fit well with the intuitive definition of any classic
database anomaly: it may look similar to write skew, but in RW2,
concurrent transactions may read the same rows.

Inappropriate error handling (10 issues). They cause the user pro-
cess to either crash or freeze. Most of them are caused by insufficient
handling of exceptions. For example, if the database executes two
deletes on the same row, it will throw an exception for one of them,
which kills the process if the exception is not caught. Interestingly,
one issue is caused by over-handling of an exception. In this issue,
an update transaction and a delete transaction execute concurrently.
When the update transaction finds the data is deleted, it reinserts
the data back into the database. As a result, the user who issued
the delete transaction will find the delete transaction succeeds but
the deleted row is still in the database. In one issue, the error is
actually generated by the application: when a user clicks “purchase”
twice, perhaps because of network lag, if the database does not have
constraints to detect duplicate orders, then this problem generates
two orders.

Lock timeout (4 issues). These issues are caused either by deadlock
or by executing too many concurrent transactions. Again, while we
don’t target this problem specifically, we find lock timeout is one of
the major concerns of using strong isolation.

Unnecessary concurrent execution (3 issues). Interestingly, we
find 3 issues are caused by transactions executing concurrently that
should be executed serially. For example, if a transaction writes
order information and the second transaction operates on the or-
der, then it does not make sense to execute these two transactions
concurrently. In practice, this problem can be caused by developer
misunderstanding (e.g., a developer believes transaction A started
after B means A will be serialized after B, while even a strict SERI-
ALIZABLE database does not provide such guarantee), or caused by
misusing asynchronous execution in the programming language.

Interleaved consecutive updates (2 issues). These issues are caused
by consecutive updates to different rows: when interleaved with other
update/delete transactions, this may leave the table in an inconsistent
state, in which it contains partial data from one transaction.

Others (22 issues). For the remaining issues, we either cannot find
the exact root causes from the online discussions, or find it hard
to categorize them. For example, some reported bugs are still un-
der investigation so there is no conclusion. Some can be fixed by
“disabling a plugin,” from which we don’t know the exact root cause.
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3.3 How Developers Fix Concurrency Bugs
In general, we find the fixes to concurrency bugs to be unexpectedly
diverse and ad-hoc, and in some cases they even follow contradictory
philosophies, indicating that developers are still struggling with the
challenge of fixing concurrency bugs.

Select FOR UPDATE (22 issues). This semantic, which allows the
developer to control which rows to lock, was introduced exactly to
address anomalies caused by weak isolation. In our study, it is the
most popular solution. However, keep in mind that this number may
be biased by our dedicated search for “FOR UPDATE” (Section 3).
While this approach should be able to address most of the data
inconsistency issues, we observe that many developers still fix bugs
in other ways, probably due to performance concerns, which we
discuss later.

Use the uniqueness constraint (8 issues). This category addresses
the problem by adding a uniqueness constraint to a certain column,
declaring this column should have unique values. If this constraint is
violated, the database will report an error. This approach is effective
at addressing the “non-unique ID” problem.

Additional locking (11 issues). This category applies additional
locking to prevent anomalies. They include using programming
language semantics like “synchronized,” using distributed locking
services like Redis [4], or implementing a lock table inside the data-
base. However, as some developers correctly point out, programming
language–level locks are not sufficient in a distributed setting where
multiple web servers access the database concurrently.

Additional versioning (8 issues). This category addresses the prob-
lem by implementing optimistic concurrency control (OCC) in the
application: the fixed application adds a “version” column in the
table, updates the version column when a transaction touches a row,
and before committing checks that versions of the touched rows have
not been modified.

Additional “if” check (4 issues). This category addresses the prob-
lem by rechecking the condition (e.g., item count is larger than 0)
before committing the transaction. This approach is useful for ad-
dressing the RW1 problem under READ COMMITTED, since the
update will lock the row until the end of the transaction. However,
it cannot address the RW2 problem since the update/insert/delete
could happen on different rows.

Queuing/serial execution (6 issues). This category addresses the
problem by executing transactions serially. Since executing all trans-
actions serially is unacceptable, some of these cases rely on an
external queuing system (e.g., Redis): they put conflicting transac-
tions in the same queue and non-conflicting transactions in different
queues, so that non-conflicting transactions can execute in parallel.

Stronger isolation (7 issues). One of the cases upgrades the iso-
lation level to SERIALIZABLE, and one upgrades isolation level
from READ COMMITTED to REPEATABLE READ. The other five
encapsulate a sequence of operations into an atomic transaction.

Weaker isolation (3 issues). Surprisingly, developers ultimately
decide to either downgrade isolation levels or not encapsulate op-
erations inside a transaction. In these cases, developers mainly try
to address the long lock time or deadlocks, so using weaker isola-
tion is reasonable. However, this approach may lead to new data
inconsistency issues.

“Swallow” the error (3 issues). This category addresses the prob-
lem by using application-level exception handling to catch and ig-
nore the error. It is useful to handle errors caused by concurrently
deleting/inserting the same row.

Clear the effect manually (1 issue). There exists a long-standing
argument that we may not need a technical solution to prevent con-
currency bugs from happening [5]. Instead we can use business
procedures to clear the effects of a concurrency bug after it happens.
For example, if a shop oversells an item, it can cancel the order and
send an apology email to the affected buyers, perhaps with some
compensation. However, in our study, we find only one issue dis-
cussed this approach. We believe part of the reason is due to the
characteristics of the open-source community. In this community,
the developer and the user belong to different organizations, and
if the user sees a problem like overselling, it is natural for her to
think, “this is a bug that I need to report to the developer,” rather
than, “this is a problem I need to handle.” On the developer side,
pushing such problems to the user is probably not good for business.
In big IT companies where the user and the developer are under the
same organization, the situation might be different.

Others (20 issues). For the remaining issues, we either cannot find
how developers fix the issue since the issue is still open, or cannot
find a good category for the fix. For example, one solution alleviates
the problem by removing the rate limit on transaction execution. Its
key observation is that making transactions run faster can reduce the
chance of contention.

3.4 Questions and Answers
Based on the results from this study, we try to answer the questions
raised at the beginning of the paper.

Do weakly isolated or ad-hoc transactions actually cause anom-
alies in real-world applications? Quick answer: Yes. Considering
the popularity of these solutions, whether they cause any real prob-
lems in terms of correctness has been a long-standing question [5]:
perhaps they rarely cause any real issues, because real-world applica-
tions do not have a high contention level? Perhaps they do cause race
condition–like phenomena, but they don’t cause any real violations
of application semantics?

From our study, we believe it’s safe to conclude that many real-
world applications are experiencing anomalies caused by weakly
isolated or ad-hoc transactions. As a consequence, the users of these
applications complain to application developers. The fact that pop-
ular open-source applications today often have a diversified set of
users may exacerbate this problem, since the application must sup-
port various workloads.
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How much effort does it require to handle anomalies in real-
world applications? Quick answer: A lot. We separate this ques-
tion into how much effort it requires to reproduce, diagnose, and fix
a concurrency bug caused by weaker isolation.

We find that all issues that have a description about how to re-
produce them can be reproduced by running one or two application
functions (e.g., create an order, make a payment, etc), including the
transactions they invoke. Developers usually need to run multiple
instances of each function to increase concurrency. It’s unclear to us
whether this is because there are no complicated bugs or this is sim-
ply due to the fact more complicated ones are less likely to happen.
Of course, such concurrent tests are nondeterministic, and require
some “luck” to trigger the anomaly, but in general, we believe that
developers are not struggling to reproduce anomalies.

By looking at the issues’ discussions, diagnosing a concurrency
bug usually does not take a lot of discussion. We believe this is
because most of the bugs involve transactions from only one or two
application functions and are caused by straightforward patterns
(e.g., RW1 and RW2).

Fixing concurrency bugs, however, seems to be the most challeng-
ing and time-consuming part. First, as mentioned above, in contrast
to the popular philosophy that we don’t need a technical solution to
prevent anomalies but can instead rely on business solutions [5], our
study shows that, in the open-source community, users do expect
a technical solution from developers. Second, we find that many
of these issues lead to lengthy discussions, which involve multiple
rounds of discussions since proposed solutions in the early rounds
are found to be flawed. They often lead to significant redesign of the
applications and complicated solutions.

Why not SERIALIZABLE or “Select FOR UPDATE”? Quick an-
swer: Long locking. While a general answer to this question is
that they are bad for performance, “performance” can refer to many
different things, such as throughput, latency, and scalability. This
question is particularly troublesome since some of the fixes, like
serial execution, are usually considered bad for performance as well.

While many discussions do not explicitly discuss this question,
among those that do, we find there is a general concern about dead-
lock or long locking time:

——“In my experience dealing with money for 4 years is that what-
ever locking mechanic you try to use, it goes wrong anyway. ... In
any case, I had dealt with too many deadlock situations in MySQL
due - probably when PHP scripts died due to fatal error or some
other problem and your database left with the lock active.” [7]

——“A common workaround here is to adjust the transaction-isolation
= READ COMMITTED rather than using the default repeatable read
isolation. This relaxes the locking required by InnoDB.” [6]

——“You can use Locking statement as [another discussant] men-
tioned, for me it has caused more issues like ... longer transaction
time and the dreaded ‘Concurrent Limit Exceeded”’ [10]

The discussion in the WooCommerce application [8] further demon-
strates the problem of locking: some developers suggested trying
different lock timeouts from a minute to an hour, while one de-
veloper argued, “it is a poor approach to architect software based

on guessing deadlock timeouts.” Finally the developers turned to a
queuing-based approach.

From these discussions, our best answer to “why not SERIAL-
IZABLE or Select FOR UPDATE?” is that, since these approaches
increase locking time and the chance of deadlocks, the developers
struggle to set up an appropriate lock timeout value: using a short
timeout may cancel normal transactions; using a long timeout may
delay the detection of deadlock or dead processes. As a result, devel-
opers are willing to turn to other approaches to avoid this problem.

4 WHAT CAN WE DO?
From our study, we conclude that, for many applications, the current
database concurrency control mechanisms are unsatisfactory: on the
one hand, SERIALIZABLE transactions often generate performance
concerns; on the other hand, weakly-isolated or ad-hoc transactions
require a significant amount of effort and are error-prone.

In this section, we discuss potential solutions. Overall we argue
that, although databases and automated analyses can ameliorate con-
currency bugs to some extent, concurrency control is likely to be
largely developers’ responsibility for the foreseeable future. In the
short term, developers can use certain existing database features
to address many concurrency issues. In the long term, some com-
bination of new database features that expose concurrency control
to developers and better education of developers can help address
long-standing challenges in using concurrency control.

Q1. Is there anything users can do in the short term?
Given that significant redesigns of the database engine will not

happen in the short term, we provide suggestions that users may
incorporate in the meantime.
(1) All RW1 issues can be addressed by using the SNAPSHOT ISO-

LATION isolation level, since transactions of RW1 issues will
update the same data item.

(2) Many RW2 issues can be addressed by using a unique con-
straint or the auto increment feature, since the corresponding
transactions usually try to ensure certain IDs are unique. How-
ever, we observe two engineering challenges for this approach.
First, many applications today use an object–relational mapping
(ORM) layer to manage their data, instead of issuing SQL state-
ments directly. In this case, using a unique constraint or the auto
increment feature requires changes to the ORM layer, which is
beyond the application developers’ control. Second, different
database vendors may have different keywords for these features,
so relying on such features may create problems for portability.
Furthermore, there exist RW2 issues that cannot be addressed
by unique constraints or the auto increment feature, though they
do not appear frequently in our study. A typical example is the
write skew problem.

(3) For timeout issues caused by long locking or deadlock, we argue
it is better to have a fundamental solution, rather than tuning
timeout intervals or degrading isolation levels. For example,
an OCC-based database may be preferable to a locking-based
database. The fact that several applications in our study manu-
ally implement OCC is evidence for this point. This suggestion
aligns well with suggestion (1) above (i.e., use SNAPSHOT ISO-
LATION for RW1 issues) since a common implementation of
SNAPSHOT ISOLATION uses multi-versioning and OCC. For
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locking-based solutions, using a database that implements more
robust deadlock detection mechanisms than a simple timeout
may be worthwhile.

(4) Even the SERIALIZABLE isolation level has its limitations. There
are problems that have to be handled correctly at the applica-
tion level. For example, exceptions caused by duplicate inserts
or deletes must be handled properly (Section 3.2). Developers
should not assume that a strong isolation level is a panacea that
addresses all concurrency related issues.

Q2. How much can automatic analysis help?
Multiple works have shown that, by analyzing the patterns of

transaction statements either at run time or offline, it is possible
to make a SERIALIZABLE database more efficient [29, 30]. We
envision such analyses can be performed both within the database
and on database applications.

For example, suppose an application only contains two types
of transactions: transaction T1 executes “Write(A); Read(B)” and
transaction T2 executes “Write(A); Read(C)”. A smart developer
can determine that no matter how these transactions interleave, the
result is SERIALIZABLE (assuming the writes to A are indivisible).
However, today’s lock-based databases will prevent them from exe-
cuting concurrently, since Write(A) needs to hold a write lock on A
until the end of the transaction; today’s OCC-based databases will
abort one transaction since both update A. This situation could be
improved with automatic analysis.

First, databases can perform more accurate analysis during trans-
action execution, to determine whether a concurrent execution is
SERIALIZABLE. However, more accurate online analysis usually
incurs a higher overhead. Furthermore, without access to the source
code of the application, the database cannot make any assumptions
about the patterns of transactions, which means it may miss opti-
mization opportunities for specific applications. Consider again the
above example: existing database implementations will prevent con-
current execution of T1 and T2 as discussed above. To improve the
situation, recent work has explored using predicate locking and sat-
isfiability testing for transaction scheduling [17]. Other recent works
build a dependency graph at run time; they determine on the fly that
executing T1 and T2 concurrently does not violate SERIALIZABLE,
since the dependency graph contains no cycles [15, 30]—which is
more accurate than the existing concurrency control mechanisms but
will incur higher run-time overhead.

Second, automated analysis of application code can potentially
determine that concurrency control is completely unnecessary for
executing T1 and T2. While prior work has applied static program
analysis to database applications to understand their behavior under
various isolation levels [13, 22, 25], to our knowledge prior work has
not used static analysis to automatically infer concurrency control
requirements. For example, could we design an algorithm to analyze
the application code to know that T1 and T2 can execute concur-
rently with each other and cannot produce a non-SERIALIZABLE

execution? In practice, however, we observe several challenges with
existing and future static analyses for database applications: 1) Sound
static program analysis struggles to be precise; it will overapprox-
imate the behavior of transactions and the transactions they are
likely to be concurrent with. 2) Web applications are often written

in dynamically-typed languages such as JavaScript and PHP. Com-
pared with Java and C/C++, these languages are harder to analyze
with precision, and the analysis tools are not as advanced. 3) In
our experience, parsing SQL statements is already a challenging
task, since different databases often have vendor-specific grammar
or keywords that deviate from the SQL standard, and many of the
vendor-specific keywords are related to concurrency control and
thus cannot be ignored. 4) Most existing analysis tools rely on an
abstract model to determine allowed behaviors of a certain isolation
level, while a database implementation often puts more constraints
on such allowed behaviors. It is debatable whether it is better to
analyze these problems based on a generic model or based on an
implementation-specific model.

On the other hand, we also observe some opportunities: 1) Web
applications are often smaller in terms of code size than other soft-
ware on the stack such as the database and the OS kernel, and thus
stress analysis scalability less. 2) By their distributed nature, con-
current web requests usually do not share data in memory (shared
data is stored in the database). This should simplify static program
analysis, which struggles to represent heap objects precisely.

In summary, we envision that combined analysis of SQL and web
application code presents open research challenges and opportunities
for achieving better concurrency control.

Q3. Is it possible to completely automate concurrency control?
If not, how can concurrency bugs be presented to developers
of application to be understandable? How can one incorporate
insights from developers?

Even if automatic analysis can improve concurrency control sig-
nificantly, developer effort is still likely to be valuable, since de-
velopers have knowledge about application-specific constraints and
invariants. For example, certain types of transactions may not need
SERIALIZABLE results; an application may limit each customer to
a single shopping cart so that there will never be concurrent orders
from the same customer; some applications may allow the customer
to see an inconsistent result temporarily (e.g., payment is made but
order status is not updated to show the payment), as long as the
customer can refresh to see the correct result later. Such additional
invariants or relaxed requirements often allow developers to craft
transactions in a more efficient manner.

In addition, there is potential for improved performance in situ-
ations like updating hot records: Whereas a database system today
needs to infer contention, a more harmonious interaction would
allow users to convey which records are likely to be hot. Such a
declaration from the user could trigger more aggressive operation
batching (to minimize lock ping-pong effects among concurrent writ-
ers) and operation reordering if supported by program analysis (to
shorten the write lock holding time). It is very hard, if not impossible,
for any algorithm to figure out such application-level constraints or
knowledge automatically.

Therefore, we believe that, to get the best performance, some
effort from developers will always be necessary. The research oppor-
tunity is to create new user introspection and control mechanisms
for concurrency control. The major barriers towards this goal are 1)
how to present concurrency bugs in a manner that is understandable
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by users, and 2) how to incorporate user feedback and automati-
cally suggest modifications to SQL or application code to fix the
concurrency bugs.

Recent research works have taken promising first steps to identify
[18, 20] and visualize [2, 26] concurrency bugs. These works present
isolation violations in a manner that assumes a deep understanding
of serializability theory, such as by presenting a dependency graph
and the associated operation sequence that minimally reproduces an
observed concurrency bug. The research challenge is presenting pos-
sible isolation violations in an application-aware manner, possibly
using natural language. Consider the distance between “below is a
minimal dependency graph 𝐺 that reproduces the concurrency bug“
and “the ORDER transaction allows the same customer to create
two orders with the same order ID, but the PAYMENT transaction
will only find the first order with this ID and ignore the other“. The
former presentation assumes combined expertise in serializability
theory and application-specific logic, while the latter does not.

Database systems today provide multiple ways users can control
concurrency control behavior, including additional SQL keywords
(e.g., FOR UPDATE), table- and row-level locking, and save points.
Prior studies have shown that applications already use these mecha-
nisms extensively [27]. The research gap is automating the use of
these mechanisms to resolve a specific concurrency bug. A naive
approach is to take a trial-and-error approach where a list of modifi-
cations is progressively applied, while a concurrency bug checker
from prior work will test if the concurrency bug still manifests. A
promising research direction is developing algorithms to automate
this process and point out which modifications will not work and
why. Ideally, this procedure can take into account vendor-dependent
nuances of the implementation of concurrency control.

We acknowledge that any degree of application control of the
concurrency control protocol will inadvertently lead to undesirable
side effects. For example, an application using a new mechanism to
control concurrency may break the isolation of a traditional database
transaction that has not taken this new mechanism into consideration;
an application may also attempt to weaken isolation in a manner
that breaks the database’s rollback support for all transactions. As
a result, introducing new mechanisms that control the behavior of
concurrency will naturally raise new research questions. As exam-
ples, how can transactions written with the assumption of explicit
control of locks coexist with traditional transactions? When can a
database system guarantee automatic rollback support if applications
can control the locking protocol? We thus argue that creating the
appropriate mechanisms is a major research challenge, and we fore-
see that adding such mechanisms into existing database systems will
encounter formidable technical and practical challenges.

Q4. How can developer education help?
During the study, we find a majority of developers are more

accustomed to controling concurrency at the programming language
level than at the database level. For example, many developers use
the term “race condition” for isolation errors, and their first reaction
to such issues often is, “we need to add a lock.” This is perhaps not
surprising because 1) locks are widely taught at the undergraduate
level, while weaker isolation levels are not, and 2) though locks are
perhaps just as hard to get right, they are easier to understand.

We observe two major challenges to improve education on these
topics. First, early definitions of isolation levels are operational (e.g.,
under READ COMMITTED, a write lock is held until the transaction
ends, while a read lock is held only until the read ends), which makes
them easy to grasp especially for people who are already familiar
with locks, but dictates a particular implementation mechanism. Un-
fortunately, more formal dependency graph–based definitions of
isolation, though declarative and general, are harder to explain and
even harder for developers to implement to analyze real transactions.
Second, despite the best efforts by the research community to devise
accurate definitions, database implementations continually evolve
their isolation semantics and may deviate from the established defi-
nitions, further confusing users. We don’t see an easy path to address
this problem, which requires a collaborative effort between research
and industry practice.

5 CONCLUSION
To understand the challenges of concurrency control in databases,
this paper first studies real-world concurrency bugs in database ap-
plications to understand their root causes, consequences, and how
developers fix them. Based on this study, we believe that to get the
best performance, developers’ effort is necessary, and thus databases
need new abstractions and mechanisms to incorporate developers’ ef-
fort. In addition, automated code analysis shows promising potential
to improve the state of the art.
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