
Raising the Level of Abstraction for Time-State Analytics
With the Timeline Framework

Henry Milner
1
, Yihua Cheng

1,2
, Jibin Zhan

1
, Hui Zhang

1,3
, Vyas Sekar

1,3
, Junchen Jiang

1,2
, Ion Stoica

1,4

{hmilner,ycheng,jibin,hzhang,vsekar,jjiang,istoica}@conviva.com

1
Conviva, Inc,

2
University of Chicago,

3
Carnegie Mellon University,

4
UC Berkeley

ABSTRACT
Across many domains, we observe a growing need for more com-

plex time-state analytics, which entails context-sensitive stateful

computations over continuously-evolving systems and user/ma-

chine states. For instance, in video distribution, we want to analyze

the total time video sessions spend in a buffering state. We argue

that modern data processing systems entail (a) high development

time and complexity and (b) poor cost-performance tradeoffs, for

such workloads. We make a case for a Timeline abstraction for serv-

ing this class of workloads. By raising the level of abstraction using

Timelines, we can reduce development complexity and improve

cost-performance tradeoffs. We demonstrate the early promise in

a production-scale video analytics deployment. We posit that the

Timeline abstraction is more generally applicable across domains

and enables new opportunities for further research.

1 INTRODUCTION
Across many domains (e.g., content delivery, ad analytics, finance,

datacenters, telecom, security), we observe the emergence of a class

of data analysis requirements, which we refer to as time-state ana-
lytics, which requires modeling context-sensitive metrics computed
over continuously-evolving state of a system of interest. More con-

cretely, consider a video distribution scenario (Figure 1), where we

want to check whether video sessions using a particular content

delivery network (CDN) are having quality issues (e.g., long buffer-

ing stalls) [14]. Operators use such analysis to identify and mitigate

user experience issues. As seen in Figure 1, computing metrics such

as connection-induced rebuffering requires us to model the state

of the player and the user to ignore buffering during initialization

and after user seeks; i.e., model stateful behavior in context. Similar

needs arise in financial (e.g., [11]) or security monitoring (e.g., [29])

applications where analyzing a sequence of transactions made over

time can help identify fraud or compromised credentials.

Unfortunately, existing data processing systems, including stream-

ing systems (e.g., [1, 2]), timeseries databases (e.g., [6]), SQL exten-

sions (e.g., [5]), and batch systems (e.g., [12, 34]), are ill-equipped

to address time-state analytics. Such approaches do not provide

good abstractions for modeling processes evolving continuously

over time. Consequently, while in theory such systems can tackle

time-state analytics, in practice they entail poor cost-performance

tradeoffs and involve significant development complexity. This

leads to inefficient workarounds and complex code with semantic

bugs, creating a technical barrier for analysts, as we will see in §2.

This paper is published under the Creative Commons Attribution 4.0 International

(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their

personal and corporate Web sites with the appropriate attribution, provided that you

attribute the original work to the authors and CIDR 2023. 13th Annual Conference on

Innovative Data Systems Research (CIDR ’23). January 8-11, 2023, Amsterdam, The

Netherlands.

How much time did sessions
spend in a connection-induced

buffering state while using C1 in
the last three minutes?

Init

Play,
C1, R1

Buffer

Play,
C1,R1

Pause

Play,
C1, R1

Play
C1, R3

Buffer

Player state machine

Play
C2, R3

Play
C2, R1

Time

Init

C1

t1 t2 t3 t4 t5 t6 t7 t8

Buffer

PlayerState CDN

t9 t10

Seek

Play
Buffer

Pause Play

C2

Buffer
SeekR1

Play

R2

t11 t12 t13 t14

Bitrate

Raw Events

t6 t7 t8 t9

t11

CDN state

t2

C1
C2

Connection-induced rebuffer state

Connection-induced rebuffer state during C1

Total Time

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13t14 t15

t7-t6
t7-t6 + t9-t8

Paused

Init
Buffer

Play

Player state

t1 t2 t3 t4 t5 t12 t13 t14t6 t7 t8 t9 t10 t11

t7 t8 t9 t13t6 t14

Figure 1: An illustrative example of the challenges of Time-
State Analytics in video content distribution. The right-hand
side shows how a Timeline mental model can help express
this intent more naturally.

We argue the need to raise the level of abstraction to support

time-state analytics workloads. Indeed, powerful abstractions for

handling states and processes evolving continuously over time have

been developed in other communities, including functional reactive

programming (e.g., [27]), signal processing (e.g., [25]), and formal

methods (e.g, [3]). We make an analogous observation here and

propose a similar abstraction for data processing in the area of

time-state analytics, which we call Timelines. The right-hand side

of Figure 1 shows an example. At a high level, Timelines allow

analysts to more directly model dynamic processes and express the

requirements of time-state analytics, in contrast to conventional ap-

proaches such as streaming systems (e.g., [1]), timeseries databases

(e.g., [6, 26]), and temporal extensions to SQL (e.g., [21, 24]). By

raising the level of abstraction and offering a more intuitive mental

model, we can enable data analysts to write simple, succinct, and
efficient queries.

We define a Timeline Algebra defining operations over three

basic TimelineTypes: state transitions, discrete events, and numeri-

cal values. We show how existing workflows (e.g., SQL, Spark) can

be extended to support these operations [1, 5, 8, 35]. As a proof of

concept, we have implemented a Timeline workflow and run it in

production at a large video analytics company. In comparison with

the company’s earlier system, pilot deployments show a threefold

reduction in cost, an order-of-magnitude decrease in development

time, and near-zero semantic bugs. More importantly, it has enabled

evolvability to support new use cases.

Looking forward, Timeline-based processing opens new oppor-

tunities and research questions. First, while prototyping Timeline

as an overlay on existing platforms is already performant, pushing

1

CIDR’23, January 8-11, 2023, Amsterdam, The Netherlands H. Milner, Y. Cheng, J. Zhan, H. Zhang, V. Sekar, J. Jiang, I. Stoica

MeasurementUpdates
TimeStamp, MetaData={<Key,Value>},
Measurements={<MeasurementType,Va

Updates
TimeStamp, MetaData = <Key, Value>,
Measurements

Classical Analytics Time-State Analytics

SummaryStatistic({Measurements}Set),
Where MetaData == Foo

Over DiscreteTimeWindow

Metric=StateDynamicsModel([StateReports]Seq),
Where MetaData == Foo

Over ContinuousTimeWindow

Complex state dynamics of the world evolving
over continuous time over sequence of updates

Simple filtering and aggregation directly
over the set of measurement reports

MeasurementUpdates
TimeStamp, MetaData={<Key,Value>},
Measurements={<MeasurementType,Value>}

Updates
TimeStamp, MetaData = <Key, Value>,
StateReports

Figure 2: Contrasting classical analytics requirements and
emerging time-state analytics

Timeline support deeper into the infrastructure can unleash further

benefits. Second, the structure exposed by Timelines can enable

cross-query optimizations that would be difficult, if not impossible,

to realize using prior solutions. Third, the benefits of the Timeline

abstraction can be generalized to many domains (e.g., finance, e-

commerce, security). Finally, we can use Timelines to build user

interfaces that lower the barrier of entry for data analysis.

2 MOTIVATION
In this section, we start with examples of Time-State Analytics that

arise in diverse domains. Then, we delve deeper into a concrete

scenario to highlight pain points with existing solutions.

Time-State Analytics Setting: We consider a general data pro-

cessing setting, where we have a stream of raw updates associated

with a timestamp, some metadata of interest (e.g., the user’s geolo-

cation, device type), and some measurements. The analyst wants to

query the data over some time window, and requests some summary

of a stateful metric, computed over updates and measurements.

To make this concrete, we consider a few examples:

• Video distribution (e.g., [14]): What is the total rebuffering time

of a session when using CDN1, ignoring buffering occurring

within 5 seconds after a user seek?
1

What is the session play

time when using CDN1 and cellular networks?

• IoT monitoring (e.g., [22]): How long did a device spend in a

“risky” state; i.e., continuously high battery temperature (≥
60

◦
C) and high memory usage (≥ 4GB) for ≥ 5 minutes?

• Finance (e.g., [11]): Did a credit card user make purchases at

locations ≥ 20 miles apart within 10 mins of each other?

• Cybersecurity (e.g., [29]): Did an Android user send a lot of (≥
100) DNS requests after visiting xyz.com in the last hour?

• Mobile app monitoring (e.g., [9]): Did an iPhone user quit ad-

vancing in a game when the ad took ≥ 5 seconds to load?

Figure 2 contrasts these types of queries, which we refer to as

time-state analytics, from classical analytics over data streams. Tra-

ditional queries entail simple filtering and aggregation operations

over direct measurements; e.g., average salary or average tempera-

ture over a sequence of events filtered by some subgroup of inter-

est. In contrast, the above queries entail more complex analysis to

model the state dynamics of the physical world to compute complex

metrics as they evolve over continuous time, using the raw state

updates. For most classical queries, the sequence and continuous

time semantics are not critical; i.e., we can view the computations

1
Such buffering needs to be ignored when diagnosing connection problems.

as operations over a set of updates. In contrast, time-state analytics

needs to carefully model the continuous sequential evolution of the

world states to compute context-sensitive metrics of interest.

To see this more clearly, let us delve deeper into Figure 1. We

have a sequence of updates for a given video session: we see

connection issues causing buffering, users initiating player seeks,

and the player switching CDNs, among other updates. From these

raw updates, we need to compute business-relevant metrics [14]

such as the connection-induced rebuffering (CIR). These metrics

are not directly expressed in the updates but need to be carefully

computed by modeling the physical world state at each point in time.

This requires stateful computations tracking and combining multiple

states over points in time; e.g., track the state of the player (i.e.,

playing vs. buffering) and user actions over time, eliminate buffering

induced by user events (e.g., player seek, init), and measure the

duration when these conditions occur.

There is one additional aspect of time-state analytics workloads

worth noting. Given the nature of operations in which such queries

are used, they typically arise in an ad hoc manner during some

analysis; e.g., CDN1 has low performance or some observation

of anomalous user behaviors. These are not pre-written queries

because the nature of anomalies or incidents cannot be predicted.

Since queries are written on demand, the time to develop and debug

the queries is also a critical consideration.

Existing frameworks and limitations: Taken together, the above

characteristics of time-state analytics have fundamental implica-

tions for (a) development time and complexity and (b) cost vs. per-

formance tradeoffs. To understand why, consider the simpler case

(for ease of explanation) where the analyst is tasked with writing

queries in a batch mode in an existing SQL- or Spark-like system.

In reality, production systems for time-state analytics may need to

run in a streaming model over updates [2]. Streaming will entail

added complexity (e.g., semantics of event vs. processing time, win-

dowing, view materialization) [2]. For ease of explanation, we focus

on batch-like queries in this paper, noting that there are known

approaches to bridge batch and streaming modes.

A canonical workflow here would be to store raw updates in a

tabular format with the columns: ⟨T, P, A, C⟩ denoting respectively

the event time, the player state, the user action, and the new CDN

event corresponding to Figure 1. Figure 3 shows the typical mental

model we have observed data analysts using for this query. (Note

that the tabular mental model applies for both SQL and Spark.) Here,

one starts with a table of discrete events. Discretely-evolving state is

handled by window functions over this table, ordered by timestamp.

The analyst starts with the raw event table and then selects the

events of interest that occurred before the desired time. Then, the

analyst proceeds to add some temporary data structures for tracking

the state, and then has to express a duration computation, and finally

tracks this duration metric per CDN.

Figure 4 shows a snippet of how this mental model translates

into SQL and Spark (using the standard DataFrame API in Python).

Just visually, this is quite messy; dealing with the state evolving

continuously over time is hard. These complex code snippets are not

merely hypothetical or contrived examples; these are adapted from

actual code that data analysts used to write in production. Even

modern extensions such as timeseries databases cannot support

2

Raising the Level of Abstraction for Time-State Analytics
With the Timeline Framework CIDR’23, January 8-11, 2023, Amsterdam, The Netherlands

Input events
(one session): Insert two player state:

seek_start,seek_end
Compute temporary state:
has_started_playing

Compute temporary state:
during_buffering,
during_seeking

Adding back
CDN events

Convert event with time
to state with intervals

T P A C

T = Time A = user_Action P = new_Player_state,
C = CDN H = Has_started DB = During_Buffering
DS = During_Seeking St = Start_time Ed = End_time

Only keep column T and P

T P T P H

Remove “ buffer” event
before started playing T P T P DB DS T P

Remove “buffer” event during seeking, change
“seek_end” during buffering to “buffer”

T P CSt Ed State CAccumulate interval
where state == “buffer”
to get the query result

Figure 3: A typical contrived mental model that analysts need to use with traditional tabular data models (e.g., Spark, SQL)

1 WITH SeekAsPlayerState (T , P) as (

2 SELECT T , P FROM heartbeats WHERE P I S NOT NULL
3 UNION SELECT T , " Seek_st " FROM heartbeats WHERE A I S NOT NULL
4 UNION SELECT T + 5 , " Seek_ed " FROM heartbeats WHERE A I S NOT NULL) ,

5 IgnoreBufBeforePlay (T , P) as (

6 SELECT T , P FROM (

7 SELECT T , P , Max (I f (P == ’play’ , 1 , 0)) OVER (PARTITION BY 1 ORDER BY T)

↩→ as H

8 FROM SeekAsPlayerState) WHERE H == True) ,

9 DuringBufferTable (T , P , DB) as (

10 SELECT T , P , LAST (tmp1) IGNORE NULLS OVER (PARTITION BY 1 ORDER BY T)

11 FROM (

12 SELECT T , P ,

13 CASE P WHEN ’buffer’ THEN True WHEN 'Seek_st ' THEN NULL WHEN 'Seek_ed '

↩→ THEN NULL ELSE FALSE END as tmp1

14 From IgnoreBufBeforePlay)) ,

15 DuringSeekTable (T , P , DB , DS) as (

16 SELECT T , P , DB ,

17 (T − Max (I f (P == 'Seek_st ' , T , 0)) OVER (PARTITION BY 1 ORDER BY T)

↩→) < 5 as tmp2

18 FROM DuringBufferTable) ,

19 IgnoreBufInSeek (T , P) as (

20 SELECT T , P FROM (

21 SELECT T , DS , I F (P == 'Seek_ed ' and DB , ’buffer’ , P) as P

22 FROM DuringSeekTable) WHERE NOT (P == ’buffer’ AND DS)) ,

23 WithCDNAndQuery (T , P , C) as (

24 SELECT T , P , NULL FROM IgnoreBufInSeek

25 UNION SELECT T , NULL , C FROM heartbeats where C I S NOT NULL
26 UNION SELECT 2022 −07 −21 1 0 : 0 5 , NULL , NULL s) ,

27 Intervals (Ed , St , State , CDN) as (

28 SELECT T , LEAD (T , 1) OVER (PARTITION BY 1 ORDER BY T) , P , C

29 FROM (

30 SELECT T ,

31 LAST (P) IGNORE NULLS OVER (PARTITION BY 1 ORDER BY T) as P ,

32 LAST (C) IGNORE NULLS OVER (PARTITION BY 1 ORDER BY T) as C

33 FROM WithCDNAndQuery))

34 SELECT SUM(St − Ed) as result FROM Intervals

35 WHERE Ed < 2022 −07 −21 1 0 : 0 5 AND State == ’buffer’ AND CDN == 'CDN1 '

(a) SQL code

1 w = Window.partitionBy() .orderBy("T ")

2 seekAsPlayerState = heartbeats . filter (" P is not null ")

3 . union(heartbeats . filter (" A is not null ")

4 .withColumn("P", F . lit (" Seek_st ")))

5 . union(heartbeats . filter (" A is not null ")

6 .withColumn("T", col (" T ") + 5)

7 .withColumn("P", F . lit (" Seek_ed ")))

8 . select (" T ", "P ")

9 ignoreBufBeforePlay = seekAsPlayerState .withColumn("H",

10 F.max(when(col("P") == 'play ', 1) . otherwise (0)) .over(w))

11 . filter (" H == True")

12 duringBuffer = ignoreBufBeforePlay .withColumn("DB",

13 when(col("P ") == " buffer ", True)

14 .when((F.col (" newplayerState ") . contains (" seek ")) , None)

15 . otherwise(False))

16 .withColumn("DB", last (" DB ", ignorenulls =True).over(w))

17 duringSeek = duringBuffer .withColumn("DS",

18 (col (" T ") − F.max(when(col("P")== "Seek_st ", col (" T ")) .otherwise (0)) .over

↩→ (w)) < 5)

19 ignoreBufInSeek = duringSeek .withColumn("P",

20 when((col ("P ") == "Seek_ed ") & (col (" DB ") == True) , " buffer ")

21 . otherwise(col (" P ")))

22 . filter ((col (" P ") != " buffer ") | (~ col (" DS ")))

23 . select (" T ", "P ")

24 CDN = heartbeats . select (" T ", "C ") . filter (" C is not null ")

25 queryPoints = spark .createDataFrame(["2022−07−22 10:05"], DateType()) . toDF("

↩→ T ")

26 withCDNAndQuery = ignoreBufInSeek .unionByName(CDN, allowMissingColumns=

↩→ True)

27 . unionByName(queryPoints, allowMissingColumns=True)

28 intervals = withCDNAndQuery .withColumn("P", last (" P ", ignorenulls =True).

↩→ over(w))

29 .withColumn("C", last (" C ", ignorenulls =True).over(w))

30 .withColumn("next_change_T", lead (" T ", 1) .over(w))

31 .withColumn("duration", col (" next_change_T") − col (" T "))

32 result = intervals . filter (col (" C ") == "CDN1")

33 . filter (" T < 2022−07−21 10:05")

34 . filter (col (" P ") == " buffer ")

35 . agg(sum("duration") . alias (" cirDuration "))

(b) PySpark code

Figure 4: Traditional SQL and Spark code for computing per-CDN buffering time from video data, adapted by actual examples
data analysts wrote in production.

such stateful operations either; they primarily focus on efficient

storage and simple numerical aggregations over measurements

(e.g., [6, 26]). One might think the low-level stateful processing

APIs provided by data processing systems such as Flink [8] and

Dataflow [1] could help. Unfortunately, in our experience, these

tend to make things worse for expressing such more complex and

stateful query intents.
2

Why existing frameworks fall short: The issue here is not that

existing systems (e.g., SQL, Spark) are unable to express the logic

for time-state analytics. Rather, they offer a low level of abstraction
based on a tabular mental model which makes it hard, if not im-

possible, to write succinct, well-reasoned, and performant code for

time-state analytics. We illustrate a few examples below:

2
For brevity, we omit code samples for streaming queries.

• Tracking state evolution: Time-State Analytics require tracking

and modeling stateful dynamics of the physical world. For in-

stance, we need to check if a state “play” happened in the past.

However, there is no natural support in existing frameworks,

and this is expressed with cryptic clauses with max and when in

line 10 in Figure 4b. Similarly, expressing state transitions is te-

dious; e.g., from line 12 to line 16 in Figure 4 we have a complex

case clause to determine if the session is in a “buffering” state.

• Computing time spent in states: Another key requirement is

to compute the duration spent in some state. With no natural

operation, the Spark implementation uses overly complicated

code like lines 28-32 and 34-35 in Figure 4b.

• Evaluating a metric at a given point in time: The tabular repre-

sentation naturally tracks only those points in time that happen

3

CIDR’23, January 8-11, 2023, Amsterdam, The Netherlands H. Milner, Y. Cheng, J. Zhan, H. Zhang, V. Sekar, J. Jiang, I. Stoica

M1

M3

M2

An equivalent Timeline geometric view

Meta
data

Time M1 M2 M3 …

.. t1

.. t2

.. t3 .. … .

..

Type:
StateDynamics

Type:
Event

Type:
Numerical

Metric

Timeline Operator

Infinitesimal tabular view

Figure 5: Equivalence between a (hypothetical) table with
infinitesimal timestamps and the intuitive Timeline view.

to have updates, which usually do not coincide with the desired

query points. To find the duration in the connection-induced

rebuffering state up to a given time, the Spark code in lines 25,

27, and 33 in Figure 4b add an unnatural querying row at that

point in time.

This complexity also has performance implications. For instance,

executing a query requires multiple scans of the tabular data, adding

intermediate columns and rows. This can get aggravated if we need

finer time-resolution analysis as the number of rows increases

linearly with the resolution using a tabular representation. Fur-

thermore, supporting ad hoc queries is challenging as debugging

such logic for correctness and performance before deployment is

difficult. Finally, these problems are worsened (not shown) when

we move to streaming realizations; i.e., the analysis will often want

to calculate the modeled state at specific points in time, e.g. once

per minute or once per hour. Since the table only captures the event

time, not query time, it requires more hacks (e.g., adding dummy

events to track query time, or discretizing time).

3 THE TIMELINE FRAMEWORK
The above discussion highlights that existing data processing frame-

works lack the right abstractions for supporting the requirements

of time-state analytics. Thus, we argue the need for identifying a

better data model and data processing abstraction.

In this context, we draw inspiration from an observation in a

classic paper by Fred Brooks: “Geometric abstractions are powerful
tools [7].” Brooks argues that physical world systems work because

designers can visualize layouts and identify problems. In contrast,

the software is hard to visualize, and this hinders design [7]. While

Brooks’ pessimism may be true for software systems in general,

there are specific domains where such abstractions do exist and if

have the potential to dramatically reduce system complexity.

Our contribution in this work lies in identifying a geometric
abstraction specific to Time-State Analytics! Indeed, we already

saw this in Figure 1 — human mental models for state machines

and metrics over time have an intuitive temporal representation,

which allows us to more naturally reason about state dynamics

over continuous time. Figure 5 offers an alternative view, showing

the equivalence between a hypothetical tabular view with infinites-

imally small timestamps and an equivalent Timeline view. Each

measurement column (M1-M3) exhibits one of three types of pos-

sible temporal behaviors: events appearing at discrete points in

time, states changing over time in a step function like manner, or

continuously-varying numerical values.

Given the Timeline mental model, writing queries to compute

context-sensitive stateful metrics becomes intuitive geometric ma-

nipulations over Timeline types. Figure 6 shows a Timeline-based

mental model for expressing the same query intent from §2. Log-

ically, Timeline-based processing retains the DAG or pipeline ab-

straction from prior data processing systems (e.g., [1]) as seen in

Figure 6. The key difference is a set of high-level Operators and

TimelineTypes, where the data being transferred and modified be-

tween DAG nodes are Timelines rather than low-level data frames

or tables. For instance, instead of the complexity of translating

events into states and modeling the “duration-spent-in-state” se-

mantics, the Timeline mental model is cleaner, compact, and natu-

rally lends itself to more succinct code (see Figure 7b).

3.1 TimelineTypes and Operations

TimelineTypes: There are three natural ways for dynamic pro-

cesses to vary over time, which we call the basic TimelineTypes:
3

• StateDynamics: This captures a state having a value at each

point in continuous time but changing at discrete points; e.g.,

player state and CDN state in our example.

• Numerical: This captures values varying continuously over

time that often arise as intermediate representations; e.g., the

time spent in the connection-induced rebuffering state.

• Event: This captures a sequence of discrete events, e.g., user

seek events, player state updates, and CDN updates. Each point

in time has a collection of one or more event values.

Timeline Operators: Timeline operators enable analysts to declar-
atively specify computation over the Timeline objects. Table 1 de-

scribes a subset of these operators and their semantics. Logically,

we can divide these operators into two classes: (1) generalizations

of classical operators that operate pointwise on Timeline data but

have natural analogs in a tabular/relational model; and (2) Timeline-
unique operators that are challenging to express and/or implement

in a tabular model. Each Timeline Operator also has a natural

geometric visualization that is easy for a data analyst to under-

stand and explain. The rightmost column shows examples of the

geometric interpretation for each of these Operators. Using these

operators, we can more naturally express the processing logic re-

quired; e.g., in our example query using the TL_DurationWhere

and TL_HasExistedWithin operations can simplify the query

complexity of logical operations that were exceedingly complex to

express in SQL and Spark.

3.2 Implementation and Integration
To use the Timeline data model in existing data-processing sys-

tems, we need to: (1) translate the events stored in the system’s

original format to one or more Timelines; (2) apply user-specified

Timeline Operators (such as those in Table 1)
4
; and (3) translate

the resulting Timelines back into the original data format. In some

3
This set of three basic time-varying patterns is similar to prior work on functional

reactive programming [10].

4
The TL prefix is just for visual ease of differentiating classical APIs from ours.

4

Raising the Level of Abstraction for Time-State Analytics
With the Timeline Framework CIDR’23, January 8-11, 2023, Amsterdam, The Netherlands

t4 t5 t6 t9 t13 t14

True

Time

Is buffering

False

t5 t14

True

Time

Has started playing

False

True

Time

Is not during seek

t7 t8
False

True

Time

Is CDN1

t2 t11
False t7 t9

True

Time

Wanted buffering state

t6 t8
False

t7 t9

t7-t6

Time

Buffering duration

t6 t8

t7-t6+t9-t8

~ TL_HasExistedWithIn(”seek”, 5 secs)

TL_LatestEventToState
(“playerState”) == “buffer”

TL_LatestEventToState
(“CDN”) == “CDN1”

TL_HasExisted(“playing”)

&

TL_DurationWhere()

Time

Init

C1

t1 t2 t3 t4 t5 t6 t7 t8

Buffering

PlayerState CDN

t9 t10

Seek

Playing
Buffering

Paused Playing

C2

Buffering
SeekR1

Playing

R2

t11 t12 t13 t14

Bitrate

Raw Events

(logic and)

Figure 6: An intuitive geometric mental model using Timelines for the same query

1 SELECT TL_DurationWhere (

2 TL_LatestEventToState (p l a y e r S t a t e C h a n g e) = ' b u f f e r ' AND
3 TL_HasExisted (p l a y e r S t a t e C h a n g e = ' p l a y ') AND
4 NOT TL_HasExistedWithin (u s e r A c t i o n = ' seek ' , 5 s) AND
5 TL_LatestEventToState (cdnChange) = 'CDN1 '

6) AS r e s u l t

7 FROM h e a r t b e a t s

8 TIMELINE WITH EVENT TIME t

9 EVALUATE AT EVENT TIME 2022 −07 −21 1 0 : 0 5 : 0 0

(a) Refactored SQL

1 result = heartbeats . toTimeline (eventTime = col (" t "))

2 . select (TL_DurationWhere(

3 (TL_LatestEventToState(col ("playerStateChange")) == " buffer ") &

4 TL_HasExisted(col ("playerStateChange") == "play") &

5 (~ TL_HasExistedWithin(col ("userAction") == "seek" , 5s)) &

6 (TL_LatestEventToState(col ("cdnChange")) == "CDN1")

7). as ("cirDuration"))

8 .TL_EvaluateAt("2022−07−21␣10:05:00 ")

(b) Refactored PySpark

Figure 7: Reformulating queries using Timeline Operators

Timeline generalizations of classical Operators
==, <, > [constant] Compare each update or

state with a fixed value,

producing True or False

C1
C2 == C1 F

T

&, | [timeline] Combine 2 timelines by

applying a logical opera-

tion at each point in time

&F
T

F
T F

T

∼ Logically invert each up-

date or state ~F
T

F
T

Timeline-specific Operators
TL_HasExisted A StateDynamics time-

line of the cumulative OR F F
TF T

TL_HasExistedWithin As TL_HasExisted, but

resets to False after a

specified duration 𝐷

without True values

D = 4 seconds
F T

F
T

3 3 7

T
9 9 13

TL_LatestEventToState A StateDynamics Time-

line of the latest update
CDN1CDN2

CDN1
CDN2CDN1

TL_DurationWhere A Numerical Timeline of

the cumulative duration

where the state was True Du
ra

tio
n

(s
ec

)

5T
F

3 8 14 3 8 14
TL_DurationInCurState A Numerical Timeline of

the duration since the last

state change

Buffer
Play

Du
ra

tio
n

(s
ec

)

3 8 143 8 14

Pause

Table 1: Some examples of basic Timeline Operators.

sense, Timeline can be viewed as a domain-specific extension to sup-

port the complex requirements of handling Time-State Analytics

atop existing data processing frameworks, rather than a complete

replacement for such frameworks. For instance, in the context of

the what-where-when-how modeling of streaming systems [2], our

contribution is a high-level abstraction for the “What” component

to describe the nature of operations on the input stream.

Producer

Timeline OperatorTimeline Object

Preset but configurable
Timeline Producers
written by Domain Experts

Analysts write succinct
Timeline Operators and Digesters
to produce metrics

Digester

Figure 8: DAG of Producer, Operator, and Digester.

Figure 8 shows an abstract Timeline-based processing DAG. We

refer to steps (1) and (3) as Timeline Producers and Digesters re-

spectively. Abstractly, a Timeline Producer’s job is to understand

the encoding of the input and identify the timestamp or time range

associated with each piece of incoming data. A Timeline Digester

calculates the final outputs (e.g., stateful metrics like the buffer-

ing duration) by evaluating the final Timeline data at specified

timestamps or time ranges and encodes the result in a format for

downstream consumers (e.g., tables, summary statistics). Data ana-

lysts use the Timeline library of pre-defined operators. In the future,

we expect to support user-defined functions as well expressed using

more basic operations.

In our production system, we have implemented the Timeline

data model and operations directly as an in-memory Scala library

that operates only on Timelines. To expand the potential applicabil-

ity, we sketch potential integrations with other analytics toolkits:

Timeline + Spark: A DataFrame can be converted to a Event
Timeline, operated upon by Timeline Operators, and then converted

back to a DataFrame. Since a Timeline can be viewed as a table with

exactly one row per point in time (Figure 5), row-wise operations

on DataFrames extend naturally to Timelines, and the API methods

for Timelines look familiar to users of the DataFrame API. Figure 7b

shows how we can significantly simplify the Spark-like code with

new Timeline APIs for stateful and duration operators that were

the bane of the native Spark code.

Timeline + SQL: Since Spark’s DataFrame is logically a table, our

Timeline extension for SQL (syntactic details not presented due

to space considerations) is semantically similar to that for Spark.

Special keywords convert a table to a Timeline, SQL-like syntax

applies Timeline Operators, and then a special digest keyword

converts these points back to a table.
5

5
We do acknowledge that embedding Timeline operations in SQL violates a purist

relational view. That said, modern SQL has itself pragmatically moved beyond a pure

relational view and thus this departure is worth the practical benefits.

5

CIDR’23, January 8-11, 2023, Amsterdam, The Netherlands H. Milner, Y. Cheng, J. Zhan, H. Zhang, V. Sekar, J. Jiang, I. Stoica

3.3 Potential Benefits

Development time and complexity: In many cases, analysts

have some high-level intents, but the process of expressing them

in low-level data analysis toolkits often leads to semantic or logical

bugs. With Timeline, analysts have a much cleaner geometric/vi-

sual mental model for expressing intents. Thus, the time for them

to reason about the logic of query intents can be significantly re-

duced, and thus reduces the potential for semantic bugs. Visually

contrasting the code in Figure 7b with Figure 4 makes it plain that

the code is much simpler and cleaner to reason about, fitting the

geometric mental model of the query intent.

Performance:Using Timelines lends itself to structure- and semantic-
aware optimizations in two related ways: in the memory footprint
to store individual Timelines and the compute footprint required

for Timeline operations. In a tabular representation, representing

a time-varying phenomenon entails a row per timestamp or win-

dow [6]. Depending on the time resolution the size will vary. In

contrast, since we know the temporal and type structures of the

TimelineTypes we can use more natural encodings. Event objects

naturally entail sparse encodings; i.e., instead of tracking whether

events occurred at each timestamp/window, we only need to store

when it occurs. For StateDynamics and Numerical objects, we de-

fine a span as an event time interval associated with either the

value over that interval (for StateDynamics) or an encoding of its

evolving numerical values (for Numerical). Then, StateDynamics
and Numerical objects can be represented as a compact list of span
elements rather than enumerating each timestamp/window.

Given such compact structures, we can implement semantic-

aware operations efficiently over these encodings. We illustrate

two (non-exhaustive) examples below:

• Overlap-aware short-circuiting: Consider the expression 𝑥 & 𝑦.

Evaluating this naively involves merge-sorting the spans of 𝑥

and 𝑦, then evaluating And on each interval between changes in

𝑥 or 𝑦. Once we have evaluated a False span covering another

span, a cleverer implementation can skip the evaluation and

merge-sort of the latter span.

• State-aware short-circuiting:ConsiderTL_HasExisted (𝑥), which

checks if a True value has occurred in Timeline 𝑥 . This stateful

operation has a “sink” state: once we see a True in 𝑥 , the result

is a constant. Instead of naively evaluating the operation over

all the elements in 𝑥 , we can avoid computation after reaching

the sink, producing a single span covering all time after that

point.

4 EARLY PROMISE
We have implemented and run pilot Timeline systems in production:

a batch system using Apache Spark and a streaming system based

on Akka. The system receives raw event data from video players

and uses Timelines to compute per-session metrics. Downstream,

these metrics are stored in Apache Druid for efficient and flexible

aggregation.
6

Each day, the system processes ≈ 50 billion events

from 1 billion video sessions across 180 million devices.

We discuss early evidence of the benefits:

6
The design of this aggregation layer to support spatio-temporal and subpopulation

queries is outside the scope of this paper.

Dataset Description Size
Video Synthetic events of a video session,

including player state change, user

action, CDN, and network type.

2M state-change events. 30M state

measurements at a time granular-

ity of 100ms.

IoT A public device ops dataset [33], in-

cluding battery, CPU, and memory

states of IoT devices.

10M state measurements at a time

granularity of 30 seconds.

Table 2: Description of datasets used for benchmarking

1

5

Play time Rebuffer time IoT monitoring

N
or
m
al
iz
ed

ex
ec
ut
io
n
tim

e

Query

TimescaleDB PostgreSQL Spark Timeline

0
0.5
1

1.5
2

2.5
3

Play time (Video)
0
2
4
6
8
10

Rebuffer time (Video)
0

0.4
0.8
1.2
1.6
2

IoT monitoring (IoT)
0

0.5
1

1.5
2

2.5
3

Play time (Video)
0
2
4
6
8
10

Rebuffer time (Video)
0

0.4
0.8
1.2
1.6
2

IoT monitoring (IoT)
0

0.5
1

1.5
2

2.5
3

Play time (Video)
0
2
4
6
8
10

Rebuffer time (Video)
0

0.4
0.8
1.2
1.6
2

IoT monitoring (IoT)
0

0.2
0.4
0.6
0.8
1

Play time Buffer time IoT monitoring

N
or
m
al
iz
ed

th
ro
ug
hp
ut

Query

TimescaleDB PostgreSQL Spark Timeline (Ours)

0
0.2
0.4
0.6
0.8
1

Play time Buffer time IoT monitoring

N
or
m
al
iz
ed

th
ro
ug
hp
ut

Query

TimescaleDB PostgreSQL Spark Timeline (Ours)

Figure 9: Comparing the normalized execution time on three
queries of Timeline against legacy processing systems.

• Development time and complexity: Before using Timelines, we

computed the same video session metrics in Apache Spark using

procedural, event-driven code. Training developers to write new

queries would take 6 months, and it would take weeks for a

trained developer to write new intents reliably. Using Timelines,

the time to train new hires dropped from months to weeks, and

the time to support new queries dropped from weeks to days.

Semantic bugs and inconsistencies across time granularities

were common in the previous system, but dropped by >80%.

• Cloud cost:Our system needs to produce metrics at multiple time

granularities to support diverse use cases that trade off points

latency and efficiency. Supporting this with canonical systems

required running separate instances of the same Spark code for

each time granularity. Once created, Timelines make it simple

to run queries at multiple granularities. Thus, it eliminates

duplicated computation, reducing the cost by about 75%.

Performance benchmarks: For proprietary reasons, we are un-

able to show the performance of Timeline in a production workload.

As a preliminary benchmark, we run the Video distribution and IoT
monitoring queries defined in §2. The queries are written from

scratch and using the datasets in Table 2. We execute the query on

a linux machine with 16GB RAM and limit all the baselines to use

one CPU core. Figure 9 compares the normalized execution time of

Timeline against Timescale [32], PostgreSQL, and Spark [5].

For the play time query, Timeline is 2.8×, 2.4× and 2.0× faster

than Timescale, PostgreSQL and Spark respectively. Compared

to Timescale, all of PostgreSQL, Spark, and Timeline can operate

on event-based inputs instead of a huge amount of state measure-

ments per 100ms. Additionally, the efficient encodings and Timeline-

specific optimizations make our prototype better than PostgreSQL

and Spark. The performance gain becomes larger on the more com-

plicated rebuffering time query: Timeline is 9.4×, 4.3×, and 2.6×
faster than all the baselines respectively. For IoT monitoring query,

since all of the methods are having the same input, Timescale be-

comes better than PostgreSQL and Spark. However, Timeline is

still 33% faster than Timescale, because it has fewer operations by

skipping the inputs if the current device is not in the "risky" state.

6

Raising the Level of Abstraction for Time-State Analytics
With the Timeline Framework CIDR’23, January 8-11, 2023, Amsterdam, The Netherlands

5 RELATEDWORK
Our work is related to a number of prior efforts in the area of data-

base systems, Big-Data processing, functional reactive program-

ming, complex event processing, signal databases, and temporal

modeling in formal methods. We discuss these how Timelines can

build upon advances in these areas and how it complements these

existing efforts.

Batch processing systems: Many modern Big-Data batch process-

ing systems draw their lineage from Map-Reduce [12]. However,

these systems largely inherit from the tabular mental model and

do not offer good abstractions for time-state analytics. We envi-

sion Timeline based domain-specific extensions that sit atop these

existing frameworks.

Stream processing systems: To tackle low latency and streaming,

several proposals exist (e.g., [8, 16, 17, 35]). We refer readers to the

book by Akidau et al., for an excellent overview [2]. Others add

SQL-like support for streaming queries (e.g., [4]). While these offer

some primitive stateful processing, they are relatively low-level

abstractions that do not support the continuously evolving state

models necessary for handling time-state analytics.

Temporal extensions to SQL: There have been prior attempts to

add time semantics into SQL [30]. These proposals (e.g., TSQL2)

still present a tabular model. In contrast, a Timeline represents each

continuous time, simplifying stateful computations. Unlike TSQL2’s

operations, the Timeline operations are explicitly not intended to

be relational, but use Producers and Digesters as a translation layer.

We believe this tradeoff is worth making for the benefits of this

abstraction. In any case, given the growing importance of time-state

analytics across many domains of data processing, we hope our

work rekindles this discussion.

Time series databases: Timeseries Databases (e.g., [26, 32]) are

mostly concerned with statistical aggregates and trend analysis over

measurements rather than stateful computations. That said, many

of their storage and encoding optimizations (e.g., compression) may

be applicable to the design of Timelines-based backends.

Complex event processing: Our work falls within the broad class

of prior work on Complex Event Processing (e.g., [13, 15, 19]). These

efforts extended classical SQL to support flexible filters and patterns

over event streams and applications to specific domains (e.g., RFID

data). Our proposed SQL extensions can build on language design

lessons from this literature. However, we believe that recasting

event stream processing with a geometric Timeline abstraction

offers a more intuitive mental model for data analysis that can

enable us to express more complex context-sensitive tasks.

Signal-oriented databases: Our work is also related to prior work

on the integration of sensor signal processing and database systems

(e.g., [18, 25]). The primary focus of these efforts was in creating

unified frameworks for merging signal processing oriented func-

tions (e.g., Fourier Analysis) and classical relational queries. We

share the observation and motivation that in many domains of data

processing purely relational models are not ideal. However, the

kinds of context-sensitive stateful analytics we envision in our tar-

get workloads is different from signal processing functions specific

to sensor processing.

Functional reactive programming: In terms of high-level ab-

stractions, our work is also related to work in the programming

language community on Functional Reactive Programming (FRP)

(e.g., [10, 23, 27, 28]). These systems were largely driven by applica-

tions in the computer graphics, user interface design, and robotics

domains. The concept of Timeline is conceptually similar to the

notion of a “Signal” mapping time-to-values and our Operators are

analogous to Signal Functions in the FRP literature. There are some

recent efforts to apply these in the context of Big-Data processing as

well (e.g., [31]). Our work can both inform and build on abstractions

and API design lessons in this literature.

Temporal Logic and Formal Methods: Our work on stateful and

temporal processing is also related to efforts in the formal methods

literature (e.g., [3, 24]). An interesting direction of future work is

using some of these efforts for formal verification and analysis of

query intents expressed using Timeline Operators.

Optimizations: Prior efforts have identified optimizations for

stream processing (e.g., [20] and functional reactive programming

(e.g., [10, 28]). An exciting direction of future work is to explore

these opportunities on top of the Timeline framework.

6 FUTURE OUTLOOK

Generality: Our early wins have been in video analytics. We posit

that the Timeline abstraction has broader applications. An inter-

esting direction is exploring how the Timeline framework can be

extended to support future domains (§2); e.g., do we need more

TimelineTypes, Operators, and so on.

Performance optimizations: Our prototype is built atop existing

streaming and batch systems. Looking forward, we envision further

improvements by adopting a native support of Timeline spanning

the language and the compute/storage layer.

Streaming semantics: Seen in the streaming context, our primary

focus here is on the API for expressing “what” to compute [2]. That

said, we speculate that the cleaner abstraction can simplify other

correctness and semantic requirements in a distributed and stream-

ing setting; e.g., better support for windowing, watermarking, and

correctness in distributed settings. We leave this for future work.

User interfaces: We envision a natural visual or graphical query in-

terface to users as seen in Figure 6. This would enable “no-code” ap-

proaches that lower the barrier of entry to express complex analysis

and make the benefits of Timeline available to non-programmers.

ACKNOWLEDGMENTS
We thank Akara Sucharitakul, Haijie Wu, Oleg White, Florin Do-

brian, and other members of the Conviva infrastructure team for

their valuable inputs.

REFERENCES
[1] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. J. Fernández-Moctezuma,

R. Lax, S. McVeety, D. Mills, F. Perry, E. Schmidt, and S. Whittle. The dataflow

model: A practical approach to balancing correctness, latency, and cost in massive-

scale, unbounded, out-of-order data processing. Proc. VLDB Endow., 8:1792–1803,

2015.

[2] T. Akidau, S. Chernyak, and R. Lax. Streaming Systems: The What, Where, When,
and How of Large-Scale Data Processing. O’Reilly Media, Inc., 2018.

7

CIDR’23, January 8-11, 2023, Amsterdam, The Netherlands H. Milner, Y. Cheng, J. Zhan, H. Zhang, V. Sekar, J. Jiang, I. Stoica

[3] R. Alur and T. A. Henzinger. Logics and models of real time: A survey. In Work-
shop/School/Symposium of the REX Project (Research and Education in Concurrent
Systems), pages 74–106. Springer, 1991.

[4] A. Arasu, S. Babu, and J. Widom. Cql: A language for continuous queries over

streams and relations. In DBPL, volume 2921 of LNCS, pages 1–19. Springer, 2003.

[5] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley, X. Meng, T. Kaftan,

M. J. Franklin, A. Ghodsi, and M. Zaharia. Spark SQL: Relational Data Processing

in Spark. In Proc. ACM SIGMOD, 2015.

[6] A. Bader, O. Kopp, and M. Falkenthal. Survey and comparison of open source

time series databases. Datenbanksysteme für Business, Technologie und Web (BTW
2017)-Workshopband, 2017.

[7] F. P. Brooks. No Silver Bullet—Essence and Accident in Software Engineering. In

Proc. World Computing Conference, 1986.

[8] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and K. Tzoumas. Apache

flink: Stream and batch processing in a single engine. Bulletin of the IEEE Computer
Society TCDE, 36(4), 2015.

[9] Q. A. Chen, H. Luo, S. Rosen, Z. M. Mao, K. Iyer, J. Hui, K. Sontineni, and K. Lau.

Qoe doctor: Diagnosing mobile app qoe with automated ui control and cross-layer

analysis. In Proc. ACM SIGCOMM IMC, 2014.

[10] G. Chupin and H. Nilsson. Functional reactive programming, restated. In Proceed-
ings of the 21st International Symposium on Principles and Practice of Declarative
Programming, pages 1–14, 2019.

[11] A. Dal Pozzolo, G. Boracchi, O. Caelen, C. Alippi, and G. Bontempi. Credit card

fraud detection: a realistic modeling and a novel learning strategy. IEEE TNNLS,

2018.

[12] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters.

In OSDI’04, pages 137–150, San Francisco, CA, 2004.

[13] A. J. Demers, J. Gehrke, B. Panda, M. Riedewald, V. Sharma, and W. M. White.

Cayuga: A general purpose event monitoring system. In Conference on Innovative
Data Systems Research, 2007.

[14] F. Dobrian, V. Sekar, A. Awan, I. Stoica, D. Joseph, A. Ganjam, J. Zhan, and

H. Zhang. Understanding the impact of video quality on user engagement. In

Proc. ACM SIGCOMM 2011 Conf., 2011.

[15] O. Etzion, M. Chandy, R. v. Ammon, and R. Schulte. Event-driven architectures

and complex event processing. In IEEE SCC’06, 2006.

[16] R. Evans. Apache storm, a hands on tutorial. In IC2E. IEEE CS, 2015.

[17] C. Gencer, M. Topolnik, V. Ďurina, E. Demirci, E. B. Kahveci, A. Gürbüz, O. Lukáš,

J. Bartók, G. Gierlach, F. Hartman, U. Yılmaz, M. Doğan, M. Mandouh, M. Fragk-

oulis, and A. Katsifodimos. Hazelcast jet: Low-latency stream processing at the

99.99th percentile, 2021.

[18] L. Girod, Y. Mei, R. Newton, S. Rost, A. Thiagarajan, H. Balakrishnan, and S. Mad-

den. The Case for a Signal-Oriented Data Stream Management System . In Proc.
CIDR, 2007.

[19] D. Gyllstrom, E. Wu, H.-J. Chae, Y. Diao, P. Stahlberg, and G. Anderson. Sase:

Complex event processing over streams (demo). In Conference on Innovative Data
Systems Research, 2006.

[20] M. Hirzel, R. Soulé, S. Schneider, B. Gedik, and R. Grimm. A catalog of stream

processing optimizations. ACM Comput. Surv., 46(4), mar 2014.

[21] N. Jain, S. Mishra, A. Srinivasan, J. Gehrke, J. Widom, H. Balakrishnan, U. Çet-

intemel, M. Cherniack, R. Tibbetts, and S. Zdonik. Towards a streaming sql

standard. Proc. VLDB Endow., 1(2), 2008.

[22] D. Jamieson. The Growing Power of IoT in Preventative Mainte-

nance. https://www.particle.io/blog/the-growing-power-of-iot-in-preventative-

maintenance/, 2021.

[23] G. Mainland, G. Morrisett, and M. Welsh. Flask: Staged functional programming

for sensor networks. In Proceedings of the 13th ACM SIGPLAN International
Conference on Functional Programming, ICFP ’08, page 335–346, New York, NY,

USA, 2008. Association for Computing Machinery.

[24] O. Maler and D. Nickovic. Monitoring temporal properties of continuous signals.

In FORMATS’04, pages 152–166. Springer, 2004.

[25] M. Nikolic, B. Chandramouli, and J. Goldstein. Enabling signal processing over

data streams. In Proceedings of the 2017 ACM International Conference on Man-
agement of Data, pages 95–108, 2017.

[26] T. Pelkonen, S. Franklin, J. Teller, P. Cavallaro, Q. Huang, J. Meza, and K. Veer-

araghavan. Gorilla: A fast, scalable, in-memory time series database. Proc. VLDB
Endow., 8(12):1816–1827, 2015.

[27] I. Perez, M. Bärenz, and H. Nilsson. Functional reactive programming, refactored.

In Proceedings of the 9th International Symposium on Haskell, Haskell 2016, page

33–44, New York, NY, USA, 2016. Association for Computing Machinery.

[28] N. Sculthorpe and H. Nilsson. Optimisation of dynamic, hybrid signal function

networks. In Symposium on Trends in Functional Programming, 2009.

[29] S. Shin, Z. Xu, and G. Gu. EFFORT: Efficient and Effective Bot Malware Detection.

In Proc. INFOCOM, 2012.

[30] R. T. Snodgrass. The TSQL2 temporal query language. Springer, 1995.

[31] R. Terrell. Real-Time Stream Analysis in Functional Reactive Programming .

https://www.infoq.com/presentations/stream-analysis-fp/.

[32] Timescale. TimescaleDB API Reference. https://docs.timescale.com/api/latest/,

2022.

[33] Timescaledb sample datasets. https://docs.timescale.com/timescaledb/latest/

tutorials/sample-datasets/#sample-datasets, 2022.

[34] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark: Cluster

Computing with Working Sets. In NSDI, 2012.

[35] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica. Discretized Streams:

Fault-Tolerant Streaming Computation at Scale. In Proc. SOSP, 2013.

8

https://www.particle.io/blog/the-growing-power-of-iot-in-preventative-maintenance/
https://www.particle.io/blog/the-growing-power-of-iot-in-preventative-maintenance/
https://www.infoq.com/presentations/stream-analysis-fp/
https://docs.timescale.com/api/latest/
https://docs.timescale.com/timescaledb/latest/tutorials/sample-datasets/#sample-datasets
https://docs.timescale.com/timescaledb/latest/tutorials/sample-datasets/#sample-datasets

	Abstract
	1 Introduction
	2 Motivation
	3 The Timeline Framework
	3.1 TimelineTypes and Operations
	3.2 Implementation and Integration
	3.3 Potential Benefits

	4 Early Promise
	5 Related Work
	6 Future Outlook
	References

