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ABSTRACT
The DMA part of RDMA stands for Direct Memory Access.
It refers to the ability of a network card (among other de-
vices) to read and write data from a host’s memory without
CPU assistance. RDMA’s performance depends on efficient
DMAs in the initiating and target hosts. In turn, a DMA’s
cost is almost always proportional to the length of the data
transfer. The exception is small DMAs, which suffer from
high overheads.

In this paper, we show that database systems often gener-
ate small DMA operations when using RDMA canonically.
The reason is that the data they transmit is seldom con-
tiguous by the time transmissions occur. Modern databases
avoid this problem by copying data into large transmission
buffers and issuing RDMAs over these buffers instead. How-
ever, doing this requires a substantial amount of CPU cy-
cles and memory bandwidth, forfeiting RDMA’s benefits:
its zero-copy feature. To solve this issue, we introduce D-
RDMA, a declarative extension to RDMA. D-RDMA is
declarative in that it specifies what data to transmit but
not the DMA schedule to do so. The approach leverages a
smart NIC to group data fragments into larger DMAs and
produce the same packet stream as regular RDMA.

Our experiments show that the network throughput can
increase from 18 Gbps per CPU core to up to 98 Gbps (on a
100 Gbps card) with virtually zero CPU usage when replac-
ing RDMA with D-RDMA in a typical data shuffle scenario.
We believe that D-RDMA can enable a new generation of
high-performance systems to take full advantage of fast net-
working without incurring the usual CPU penalties.

1. INTRODUCTION
Databases can significantly benefit from fast networking [6],

and RDMA-based networks such as Infiniband/RoCE have
arguably been the most common way to deliver such perfor-
mance [12, 13]. The central premise of RDMA is that the
network card can autonomously move data in and out of an
application’s memory without involving the host’s CPU. For
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Figure 1: Left: standard RDMA forces the database to en-
queue work requests for every fragment to be transmitted
(1). Once enqueued, the card gets notified that new com-
mands are waiting through a mechanism called a doorbell
(2). The card proceeds by pulling the large commands from
the submission queue (3). It then transfers one fragment at a
time, regardless of optimization opportunities (4). Right: D-
RDMA compactly declares the regions to transmit (1) and no-
tifies the card the same way (2). The card pulls much shorter
commands from the queue (3). In turn, the card looks for
fragment coalescing opportunities and performs much larger
DMAs should the opportunity arises (4, 5). The packets pro-
duced by the two approaches are identical.

instance, to send query results back to a client, a database
points to the data that answers the query and asks the card
to fetch and transmit that data. This arrangement does not
involve copying the data into the kernel, as a traditional
TCP/IP stack would have done, which is why it is said to
be a zero-copy protocol.

The problem. In practice, however, RDMA can be very
CPU intensive if the data to transmit is scattered in many
non-adjacent, small chunks. In that case, the database has
to point to each chunk by filling some RDMA control data
structures as follows: for each message, it has to create a
Work Request (WR), and for each data chunk within that
message, a Scatter-Gather Element (SGE). If the chunks are
relatively small, filling these control structures, and trans-
ferring the small chunks which they refer to, can dominate



the cost of an RDMA. Figure 1 (left) depicts this scenario.
Unfortunately, fragmentation is a common phenomenon

occurring in both OLAP and OLTP database systems. Let
us consider OLAP databases first. A common operation in
those databases is the data shuffle operation [18]. It dis-
tributes a potentially large number of rows across a set of
servers. By definition, each row is destined to a different
server than the previous one and, therefore, every row re-
quires a unique WR/SGE set. The resulting WR/SGE list
size is likely the same as the number of rows to transmit,
which requires substantial CPU cycles to build for large shuf-
fles.

Fragmentation is just as common in OLTP databases.
These databases transmit data at the end of a query, when
usually a small number of resulting rows are selected. These
rows, however, may be composed of attributes that are not
adjacent. For instance, queries may project out some of a
base table’s attributes. This leaves gaps from a transmission
point of view in what could have been otherwise a contigu-
ous row. The individual OLTP responses are not heavy to
transmit, even if the gaps are present, but these kind of
systems deal in volume. If each response requires additional
control structures, the system ends up bleeding performance
in the aggregate.

We will explore those scenarios in detail shortly in Sec-
tion 2 but can already state that they are an inescapable
consequence of the current RDMA API. Ultimately, forc-
ing an application to describe chunks of data individually is
the reason why high-speed networking typically entails high
CPU costs for data-intensive applications.

Database systems deal with fragmented data by using
transmission buffers [16, 22]. These are contiguous areas into
which the database copies data fragments before transmit-
ting them as one WR/SGE. The rationale is that it may be
worth copying data to large contiguous regions rather than
building extensive WR/SGE lists. However, such copying
also causes CPU overhead—different than filling WR/SGEs
but overhead nonetheless—and consumes significant mem-
ory bandwidth, which is considered the main bottleneck of
high-performance databases [1, 7, 9].

The problem worsens with increasing network speeds, as
it takes more CPU cycles to fill transmission buffers at faster
rates. Networking speeds are only increasing, with 100 Gbps
links being standard in data centers at the time of writing,
and with 400 Gbps equipment being already available off-
the-shelf [4]. Furthermore, the 800 Gbps Ethernet standard
was ratified in 2020, and ongoing discussions over the 1.6
Tbps standard are expected to complete before 2025. At
this pace, increasingly more CPU cycles will be diverted
from database processing to keep up with networking. We
argue that we can address this problem by rethinking the
RDMA interface.

The D-RDMA Extension. The starting point of this work
is an investigation of RDMA’s performance on fragmented
data scenarios typical in database systems. We use a PCIe
logical analyzer to instrument how the network card and
the host interact1. The analyzer allows us to capture PCIe
traffic traces—the live DMA—between the card and the host
without affecting speed.

1We use a Teledyne-Lecroy PCI Protocol Analyzer with a
PCIe Interposer Card.

These traces give us information about the impact of frag-
mentation. For instance, they indicate that the card strictly
executes one DMA for each SGE, regardless of how small the
SGE area is and whether two or more SGEs areas could be
coalesced in a single DMA. This implies that the WR/SGE
list serves as a de facto DMA schedule. For another in-
stance, the traces reveal that some data fragments are often
adjacent or that the gaps between these fragments can be
small and occur in patterns.

Armed with these insights, we propose a method to de-
clare larger areas that contain both data to be transmit-
ted and gaps. We do so by using alternative structures to
WR/SGEs that represent these areas in a much more com-
pact way. The first benefit of our approach is that these
more compact control structures save the CPU time that
would otherwise go into building and sending large requests
to the card. Figure 1 (right) depicts this scenario.

However, our biggest gains come from another feature. In
contrast to WR/SGEs, our proposed control structures do
not mandate a given DMA schedule. The card is free to
devise an optimal DMA strategy to bring data (and gaps!)
from the host. For example, if the card finds two adjacent
fragments within the large declared area, it can pull their
data in a single DMA operation. We call our extended ver-
sion D-RDMA to reflect its declarative approach vis-a-vis
the DMA schedule.

Preliminary Results and Contributions. We experiment with
the key component of our solution, varying DMA sizes, and
observe the effects of our techniques under the analyzer. We
found, for instance, that a naive shuffle can take 100% of one
CPU core and generate a meager 18 Gbps worth of data on
a 100 Gbps network. Using our method, the CPU cost to
initiate the transmission drops to virtually zero, while the
throughput rises to 98 Gbps. We note that the packet se-
quence generated in both cases is the same, showing how
central the DMA schedule is in terms of performance. We
obtained similarly encouraging results with different scenar-
ios of data layouts and query operations.

This paper is an early report on the design and implemen-
tation of D-RDMA. In summary, our main contributions
and the rest of the paper are as follows. We characterize the
DMA schedule between a host and a network card and iden-
tify fragmented data transmissions as a key bottleneck (§ 2).
We propose an extension to RDMA that declares the data
to be transmitted in a compact, optimization-friendly way
(§ 3). We continue by presenting the architectural changes
a traditional NIC requires to support our extensions (§ 4).
We validate our proposal’s viability through several experi-
ments (§ 5). Next, we lay out the research agenda necessary
to fulfill our vision (§ 6) and position our work with respect
to other related efforts (§ 7). Finally, we close the paper by
presenting some conclusions (§ 8).

2. CHARACTERIZING FRAGMENTATION
Database Systems strive to represent data in memory in

ways that foster performance. They do so by using different
data layouts, each adapted to a different kind of queries [2,
7]. However, by the time databases transmit (intermediate)
results, the data may contain gaps. We posit that these
gaps occur frequently at transmission time. We verify this
assumption by instrumenting typical OLAP and OLTP op-
erations using special hardware.



2.1 Shuffle in an OLAP System
Consider an OLAP database in a columnar format that

uses a set of servers, each storing a horizontal partition of
the data. OLAP queries often reshuffle the data, redistribut-
ing tuples across a set of servers. From a sender’s point of
view, this means building one message (WR) per row. Each
message would point to as many values (SGEs) as there are
columns in the table to be shuffled. The top of Figure 2
depicts this scenario.

We run this scenario using a state-of-the-art 100 Gbps
network card and obtain traces with the PCI analyzer we
mentioned above. The relevant part of the trace appears as a
screen capture at the bottom of Figure 2. Some explanations
are necessary to interpret the trace information.
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Figure 2: A typical OLAP work request. Top: the tuples
{A1, B1, C1} and {A3, B3, C3} should go to the red server,
while {A2, B2, C2} and {A4, B4, C4}, to the blue one. The
red server’s WR chain is shown here. Bottom: a screenshot
of the analyzer showing that the card issued six MRds (first
column), as the WR specified. The data was transferred 4
bytes at a time (last column).

Applications use RDMA through an API called Infini-
band Verbs [13]. This API exposes the WR and SGE data
structures to applications, which use them to express what
they wish to transmit. When the application hands in a
WR to the verbs API, the WR and the referenced SGEs
are turned, in user space, into a device-specific work queue
element (WQE) [15]. This WQE is then placed into a work
queue, where the WQE will be fetched by the card via the
PCIe system [14]. Upon receiving a WQE, the card fetches,
again via the PCIe system, the data to which SGEs in the
WR pointed to. It is those back-and-forth messages that we
observe using the analyzer.

The PCIe system is itself a networking system. The ad-
dresses in this network depend on the position (the slot) in
which a card sits. The host has a privileged address called
Root Complex. Using such addresses, hosts and peripher-
als can exchange network packets, called Transaction Level
Packets (TLPs). There is one peculiarity of PCIe that is

relevant for our purposes. TLP packets have operations as-
sociated with them. The two operations that we are in-
terested in here are MemoryRead (MRd) and Completion-
WithData (CplD). The card issues the former against the
root complex when it wishes to read portions of the mem-
ory host. The host—or more precisely, the host’s memory
controller—responds with the latter message type, sending
the data requested to the card. To put it simply, a DMA
Read operation, at a high level, is this exchange of MRds
and CplDs. What we see at the bottom of Figure 2 are the
pairs of read requests (MRds) along with the data the server
sent. The analyzer pairs the CplD packets (the data) with
the originating MRd for presentation purposes.

As could be expected, the analyzer shows that the card
interpreted the WR literally and issued one DMA per SGE.
(The DMAs are issued in parallel and, as a result, the re-
sponses may be out of order.) Each SGE is pointing to a
4-byte value in the table (e.g., an Integer) and, therefore, an
entire MRd/CplD cycle is set up to transfer only 4-bytes at
a time. As we show in Section 5, such small DMAs incur
high overheads.

As previously mentioned, database systems typically avoid
this penalty by resorting to serializing the data before trans-
mitting it. They copy the data fragments into a contiguous
area—the transmission buffer—and issue an RDMA SEND
or WRITE off of that area instead. We instrument that
scenario as well. The analyzer shows, once again, that the
buffer contents are sent to the card in one DMA (spanning
several large TLP packets) in this case. This shows that
the technique is effective in increasing throughput. Unfor-
tunately, it presents drawbacks we discuss in Section 5.2.

2.2 Projection in an OLTP System
Fragmentation also occurs in OLTP scenarios. Consider a

database stored in a row-oriented format and a select/project
query that returns a subset of the columns for rows in which
a given predicate holds. Figure 3 depicts this scenario. From
a server’s point of view, sending that result over the net-
work means assembling one message per row, consisting of
the columns specified in the select list.
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Figure 3: A typical OLTP work request for a query that re-
turns two rows, {A1, B1, D1} and {A2, B2, D2}. A projection
eliminates the C column from the rows. The database assem-
bles a chain of two WRs with two SGEs each. The analyzer
shows that four DMAs were performed, following the WR’s
SGEs strictly, even when two consecutive SGEs are adjacent.

The instrumentation of this scenario was also telling. The
DMA schedule the card used followed exactly the SGE list:
a transfer of the first WR’ data and then the following WR’s.
We note that the card could have issued a single DMA oper-
ation that would join the {D1} and {A2, B2} chunks, since
they are contiguous. It did not. The reason could have been
that these SGEs belong to different WRs.



To verify that this optimization could be possible, we re-
placed the SGE that point to {A1, B1} by two SGEs pointing
to {A1} alone and {B1} alone, respectively. We did the same
to the next tuple. We assumed that the card would coalesce
these two SGEs into one DMA since they are adjacent and
belong to the same WR. Once again, it did not. Ultimately,
the card performs strictly what it is told, i.e., it issues one
DMA per entry in the SGE list irrespective of optimization
opportunities.

These observations indicate that data fragmentation is a
natural phenomenon in OLAP and OLTP database systems.
Note that each scenario presents a different kind of gap. The
gaps in the OLTP case appear regularly across the rows be-
cause of the projections. They can be considered as physical
gaps. The gaps in the shuffle case are due to the distribution
of rows. As such, they can be seen as logical gaps. Either
way, because of the apparently imperative DMA schedule
imposed by SGEs, traditional RDMA cards miss several op-
timization opportunities. To unlock them, we need more
flexible control structures than WR and SGEs and the free-
dom to tailor different DMA schedules.

3. THE D-RDMA EXTENSION
We extend RDMA with control structures that point to

larger regions than a single message at a time and that con-
tain both data and gaps. We call these structures Non-
Contiguous Regions (NCRs). The D-RDMA extension en-
compasses (a) these new structures, which we claim to be
compatible with the verbs API, (b) a new verb we think is
missing from standard RDMA, and (c) a runtime to support
them. We describe the new structures and interface in this
section and go over the runtime details in Section 4.

3.1 The Strided Regions
We introduce NCRs by presenting a use-call we call Strided

Region (SR). The rationale for this region is the following.
RDMA’s Work Request can be seen as a rudimentary lan-
guage that can only describe Contiguous Regions, the SGEs.
To make it more expressive, we propose an NCR type that
captures whole regions that present data and gaps in regular
patterns.

We call this region strided as it is useful when there are
gaps in the area to be transmitted that occur in strides.
Strides Regions in particular, and NCRs in general, are rep-
resented by data structures that replace the combination
of WR and SGEs with richer data descriptions. In other
words, they are intended to be used instead of WR on cer-
tain RDMA verbs, e.g., in ibv_post_send.

A Strided Region can be defined using a base pointer,
a period made of one or more elements, the width of the
elements, and a stride, as Figure 4 illustrates. The stride is
described by a frequency, e.g., 1 every 2 elements, and an
optional start position, if different than the base address.

Strided Regions are expressive enough to handle the OLTP
example from Section 2, as Figure 5 illustrates. One SR in-
stance suffices to locate the start of both rows in that exam-
ple, because the rows correspond to the SR’s periods, and
to identify the gaps generated by the projection of the C
column.

In general, SRs are more compact than WRs when de-
scribing the same regions. For instance, an OLTP result
with adjacent rows, similar to the one we refer to here, re-
quires (1 + P ) ∗ R SGEs, where P is the number of non-
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Figure 4: Contiguous Regions are insufficient to capture data
patterns. Non-Contiguous Regions, such as a Strided Region,
can describe data and gaps in a compact way.

adjacent projected columns and R is the number of rows
in the result. In contrast, we can describe the same result
topology with only one Strided Region. (If the rows were not
adjacent, we could still compactly describe them but using
a different NCR that we present in Section 3.3).

!"####$"####%"####&"## !'####$'####%'####&'##

()

(*+
,-./ ,-./

(*00123
41(5671*2

.7(1454
(531*2

!"####$"####%"####&"## !'####$'####%'####&'##

()

(*+
,-./

(a) (b)

Figure 5: Example of a Strided Region, r0, that captures
an OLTP query’s result. The latter is comprised of two ad-
jacent records that had the C column projected out. The
period of the Strided Region corresponds to a row in the re-
sult. (a) The first period’s row mask generates the payload
{A1, B1, D1}. (b) The second period’s row mask generates
the payload {A2, B2, D2}.

Figure 5 introduces a new concept, the Row Mask (RM),
which has the following purpose. In RDMA, each WR is
treated as a different message and, if the message is smaller
than the network’s MTU, it is transmitted as a single packet.
In the NCRs, however, the message boundaries are derived
implicitly with the help of RMs using simple rules. When us-
ing a single Strided Region to represent the data, D-RDMA
assumes that the period is the row mask. In other words,
to find the i− th row/message, one should look at the i− th
Strided Region’s period. The components of the i− th mes-
sage are the contiguous areas of that period, as illustrated
in Figure 5. Ultimately, NCRs/RM are for D-RDMA what
WR/SGEs are for RDMA.

3.2 An Additional Verb
As discussed in Section 2, another source of fragmentation

is data shuffles. In general, the data in any all-to-all com-
munication appears fragmented on the initiating side. The
reason is that, by definition, these operations send poten-
tially contiguous values to different servers. To exacerbate
the problem, RDMA does not offer any verb that would send
data to many servers at once, even though it has one that
can receive data from anyone, i.e., the ibv_post_srq_recv



verb. The srq in the verb’s name stems from Shared Receive
Queue. This verb acts as the gather side of an all-to-all
communication, allowing a server to receive data from any
number of queue pairs (connected servers).

D-RDMA introduces a new verb that would act as the
scatter side of the communication. In contrast to the ibv-

_post_send verb, which can only address one server at a
time, the new verb can generate messages destined to a set of
target servers at once. We call the verb ibv_post_ssq_send,
where the ssq stems from Shared Send Queue.

Figure 6 shows an example of how to overlay NCRs in
a shuffle. It extends the use of an NCR in Figure 5 (the
OLTP example) in at least two ways. First, the data in
this example is organized in columnar format. Therefore,
a set of NCRs—three in this case—overlays the data, each
NCR representing a single column. Second, each destination
server has a different set of NCRs. Since this is a shuffle, the
gaps on one server correspond to the data in another server.
Figure 6 represents this with the blue and red colored NCRs.

Most importantly, the use of Strided Regions here is, once
again, more compact than the WR/SGE alternative. The
shuffle example in Section 2 required R ∗ C SGEs, where R
is the number of rows and C is the number of columns in the
table. To describe the same data with Strided Regions, we
only need N ∗C regions, where N is the number of servers.
Note that R � N , since the number of rows will be much
larger than the number of servers that receive the shuffled
data.
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Figure 6: Example of a set of Strided Regions in a data shuffle
scenario. The regions [r0, r1, r2] and [r3, r4, r5] describe the
red and the blue server’s data, respectively. (a) The initial
row of a shuffle is determined by positioning the row mask
across its NCR set. Note that the regions have the same size,
and the pattern of each of them determines how to distribute
data. In a shuffle, the patterns of different servers are com-
plementary. (b) Advancing the row mask is done by moving
by one position down the regions instead of advancing to the
next period, as in Figure 5.

The new verb imposes one significant constraint about
the NCR sets: the number of elements in each NCR must
be the same irrespective of its target server. This allows the
verb to set a single row mask for all the servers. The row
mask assumes data is being transposed for transmission, i.e.,
advancing the mask moves to the next element of each NCR.
(This mechanism can optionally be switched to a columnar
one, in which case the row mask will advance in periods, as
in the OLTP case, traversing one NCR/column at a time.)

3.3 Additional Regions
We showed how expressive the Strided Regions can be

to capture both OLTP and OLAP communication patterns,
but they are by no means the only region types possible.
For instance, Figure 7 depicts another region type called
*-Mapped Regions. This type of region aims to capture sce-
narios where results are not regular or contiguous.
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Figure 7: A new family of region types can capture scenarios
where the data does not show regular patterns. Top: The
Pointer-Mapped Region uses an array of pointers to the re-
sulting rows. It assumes the data is in a row-oriented format.
The row mask of a Pointer-Mapped Region follows the record
pattern. Bottom: The Bitmapped Region uses a bitmap vec-
tor to represent the rows that should be transmitted. It as-
sumes the data is in a columnar format and uses an auxiliary
column descriptor array to locate the columns. The row mask
of a Bitmapped Region cuts across all the columns.

The *-Mapped Regions have two variations. A Bitmapped
Region assumes data is in a columnar format and uses a
bitmap instead of a pattern to determine which rows should
be sent to one server and a vector of column descriptors to
point to the columns. A Pointer-Mapped Region assumes
the data is in a row-oriented format and uses a pointer array
to refer to the records and a record pattern to determine the
portions of the records to be transmitted.

We assume that different systems may need a different
set of regions, and since the overhead of supporting each
region type is small, we plan on carrying several types in a
D-RDMA NIC. We discuss how we define such a set in Sec-
tion 6 but note that all the regions must have the following
characteristics:
• A region type representation must be significantly more

compact than the equivalent WR/SGE representation
of the messages that must be transmitted.
• A region type must come with a precise semantics of

row mask. The mechanics of obtaining the next packet
from a region must derive naturally and unambigu-
ously from the semantics.
• A region type must support Gap Analysis via algo-

rithms that allow the runtime to locate all gaps, de-
termine their contiguity to one another, and the ratio
of gaps per data unit within a portion of the region.
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Figure 8: The life of an operation in the D-RDMA runtime from the system’s perspective (a) and from the NIC’s (b). The
application sets up a connection as usual (1). It uses NCRs instead of SGEs to post work to the card (2). The card determines
a DMA schedule upon receiving the NCR list (3,3a,3b). For more details on 3a and 3b, please refer to Figures 9 and 10,
respectively. The card issues the DMAs (4). The card uses the row window for that request to find and packetize the data
(5,5a,5b). We note that the optimizer can be implemented in software (e.g., at the driver level) or in hardware.

4. NIC EXTENSIONS
A D-RDMA request containing NCRs is handled by a

runtime on the card. Figure 8(a) depicts the workflow from
a system’s point of view. First, the application sets up the
connections (queue pairs) to the remote hosts as it would in
an RDMA scenario. It can then use the Infiniband Verbs
API to send transmission instructions to the card. Certain
verbs would take Non-Contiguous Regions to describe the re-
quests. Upon receiving an NCR-based request, the runtime
in the card forwards it to an optimizer, which determines
the fastest DMA schedule to bring the data from the host.
The runtime then executes this DMA schedule, and, as data
arrives, it assembles the payloads contained in the NCRs be-
fore forming and sending out the packets. We will comment
on the optimization and packetization processes shortly.

Internally, the runtime comprises five components, shown
in Figure 8(b). Two of these components are similar to those
we would encounter in a regular NIC: the DMA Engine is re-
sponsible for transferring data from the host’s memory into
the card’s; and the Packetizer envelopes payload data with
headers and trailers for the network protocol the card is han-
dling. The third component, the Segmented Memory, is also
present in regular cards but it is implemented slightly dif-
ferently in D-RDMA supporting cards. The remaining two
components, the Optimizer and the (Payload) Assembler,
are extensions required to process D-RDMA. We describe
the modified and new components next.

4.1 The Optimizer
This component receives and analyzes the NCRs and de-

termines bounding boxes on which the DMA schedule will
be based. Figure 9 depicts this process by showing how al-
ternative bounding boxes can cover a given Non-Contiguous
Region. The Optimizer considers the relative speed of trans-
ferring each data chunk separately or together and decides
whether to merge chunks through their gaps. In other words,
a gap may create some overhead by adding bytes to the
transfer or it may alleviate it by reducing the number of
DMAs. We determine the cost of transferring different chunk
sizes experimentally and elaborate on the results in Sec-
tion 5.

The Optimizer needs to know where the gaps are before it
can calculate bounding boxes. In Strided Regions, the gaps

are explicitly declared; the optimizer can locate them and
know their relative sizes. However, future regions types may
deal with gaps differently. As we stated before, one of the
requirements for a region type to work in our scheme is to
allow what we call gap analysis algorithms. As the name im-
plies, the region must support methods that locate contigu-
ous areas in a set of non-contiguous regions and determine
the size and distance among their gaps. For example, the
bitmapped region we presented in Section 3.3 supports gap
analysis via bit counting operations.

Gap analysis also applies when the NIC is dealing with
a set of NCRs, as is the case for the shuffle scenario. The
algorithm, in this case, needs to consider two additional fea-
tures: NCR overlaps and inter-chunk space. Regarding over-
laps, an NCR must be amenable to such reasoning. In the
Strided Region case, it is easy to compare base addresses and
the number of periods across every pair of regions to deter-
mine whether they overlap. Regarding inter-NCR space, it
can be treated simply as intra-NCR gaps. This means that
the NIC is not limited by the boundaries of an NCR when
planning a DMA. If the NIC deems the space between one
or more NCR to be relatively small, it is free to bring data
from several NCRs at once2.

4.2 The Segmented Memory
The DMA engine moves data from the host into this spe-

cial area in the card. The salient feature of this area is that it
is comprised of smaller, independent memory buffers, hence
its name. The DMA engine writes to this area in a stripped
way: the 4 initial bytes are written to a destination base ad-
dress that the optimizer determined. The following 4 bytes
are written to the next memory buffer—and so on. If the
DMA engine writes to the last memory buffer, it can loop to
the first one and continue. In other words, each buffer takes
4 bytes at a time, but the combined area can take a much
larger write bandwidth.

The DMA engine writes the data of a single bounding box
to the segmented buffers in parallel. Moreover, the engine
can mediate the transfer of several bounding boxes simul-

2Some restrictions need to be considered here. The NCRs
must be under the same Protection Domain and Memory
Region for the NIC to perform these calculations.
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Figure 9: Different sets of bounding boxes to transfer the two-
period strided region from Figure 5. (a) The configuration
that regular RDMA would use following the WR/SGE in that
figure. (b) The areas [3] and [4,5] could be merged because
the card can transfer adjacent regions. (c) The card may
decide to transfer either the gaps at [2] or at [6], generating
larger bounding boxes. (d) The card may transfer both gaps
using a single bounding box spanning [0,7].

taneously3. This and the segmentation technique allow to
achieve very high ingress bandwidths. For example, when
running the segmented area at 322 MHz, which is common
in 100 Gbps interfaces, it suffices to write 8 segments of 4
bytes per cycle to reach line speed. We expect the NIC to
have a ×16 Gen 3 PCIe connection or an ×8 Gen 4 one.
Such PCIe bandwidth is typical among 100 Gbps NICs. In
practice, we have many more than 8 segments for reasons
we discuss next.

4.3 The (Payload) Assembler
This component connects to the read side of the seg-

mented area. Note, however, that not all data written to
that area will be transmitted to the network because D-
RDMA allows the non-contiguous regions to contain gaps.
Therefore, we need to allow more ingress data than egress:
the area allows at least 8 segments to be read in parallel, but
many more can be written. For this reason, the Assembler
is built internally with a rectangular cross-bar, e.g., 16×8,
where the ingress side connects to the segmented area, and
the egress one connects to a payload buffer.

The Assembler receives information about the incoming
packets and their destination addresses from the Optimizer.
Once the DMA engine completes one of these transfers, the
Assembler also gets notified. It then uses the row mask
information sent by the Optimizer to program the crossbar
at every cycle. Figure 10 depicts this interaction.

5. PRELIMINARY EXPERIMENTS
We quantify the potential benefits of D-RDMA by run-

ning three sets of experiments. The first set evaluates the
baseline DMA performance of the shuffle and the OLTP sce-
narios from Section 2 (§ 5.1 and § 5.2). The second set char-
acterizes the efficiency levels for DMAs depending on their
relative size (§ 5.3, § 5.4, and § 5.5). The third set eval-
uates how a D-RDMA cards internal memory needs to be
structured to produce RDMA packets at line speed (§ 5.6).
Lastly, we analyze the results of the experiments and draw
conclusions about the design constraints (§ 5.7).

Hardware and Platform. We performed all our experiments
on a server with a Intel Xeon Silver 4216 (2.10GHz) CPU.

3We experiment with 64 simultaneous transfers but can in-
crease it to up to 256.
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Figure 10: Top: the NCR from Figure 5 with color codes cor-
responding to the assigned locations on the segmented area is
written to the Segmented Area. Bottom: (a) The initial row
mask is used to program the crossbar, which produces the
payload without the gap in position 2, and (b) the following
row mask is used similarly to produce the second payload.
We assumed that the DMA schedule chosen was that of Fig-
ure 9(d), i.e., two periods at once. Note that the figure uses
dimensions for the Segmented Area and for the crossbar that
facilitate visualization. The actual dimensions are different.

The experiments involving RDMA were carried out with a
100 Gbps Mellanox ConnectX-5 card. The DMA and pack-
etization experiments used a Xilinx Alveo U50 FPGA with
a 100 Gbps port and a ×16 PCIe connection.

5.1 Zero-Copy Experiment
In this experiment, we evaluate the efficiency of a shuffle

operation when using traditional RDMA calls. We deploy a
table in a columnar format containing five Integer attributes
(4 bytes each) and 64K rows. We varied the table size but
obtained consistent results for tables from that size and up.
The shuffle targets two remote servers (cf. Section 2). For
simplicity, we confine the experiment to a single core, but
the results would extend to a multi-threaded scenario just
as well. To focus on the cost of the RDMA calls, we pre-
calculate all the WRs and group them in batches of 1024 in
a single RDMA WRITE request. We send batches as fast
as the card would take them. The resulting performance is
shown on Figure 11 under “Zero-Copy.”
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Figure 11: CPU utilization and bandwidth when using zero-
copy (left) or with a transmission buffer (right) for the OLAP
operation described in Section 2.



The shuffle operation spends 50% of a CPU’s time issuing
ibv_post_send calls and only achieves 1.5 Gbps of through-
put. As expected, small DMA transfers over the PCIe sys-
tem incur substantial overhead, resulting in a decrease in
throughput [20]. We also run the OLTP projection scenario
from Section 2, once again, using traditional RDMA calls.
From an RDMA perspective, the shuffle and OLTP cases
are very similar—chains of small data chunks—, and so are
the performance results, which we omit for brevity.

5.2 Copy-Out Experiment
In this experiment, we evaluate the benefits of copying

data into a 4 MB buffer before transmission. We use the
same table setup and RDMA configuration from the Zero-
Copy experiment (§ 5.1). The results appear on Figure 11
under “Copy-Out.”

The shuffle operation uses 100% of a CPU core this time,
twice as above, because the data copying exerts a toll. How-
ever, it achieves 18 Gbps of throughput. The results indi-
cate that this method requires at least 5 CPU cores to reach
100 Gbps (line speed). Once again, we run the equivalent
OLTP projection from Section 2 using the copy-out tech-
nique with the same results. The clear throughput improve-
ment notwithstanding, the problem with this approach is
scalability. As discussed above, network speeds are increas-
ing faster than CPU speeds. If five cores are needed for
100 Gbps traffic, twenty would be required for 400 Gbps,
and forty for 800 Gbps. D-RDMA avoids such overheads
by creating larger DMA transfers, as we discuss next.

5.3 Impact of Transfer Sizes
In this experiment, we programmed an FPGA-based NIC

to initiate DMA operations and evaluate the latter’s effi-
ciency under varying transfer sizes. We used a repurposed
version of Corundum [11], a high-performance network card
logic that supports several FPGA-based platforms. The
card uses 64 PCIe tags, i.e., there are 64 transfers in-flight at
any given time. The reads are sequential and target a large
1GB memory region. The rationale is to force the reads
to be served by main memory by not reading any address
twice. Figure 12 shows the results in terms of latency and
throughput obtained.
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Figure 12: Latency and bandwidth of DMA reading increas-
ingly large chunks of data from a network card.

Surprisingly, we can observe that the latency of very small
reads can be higher than that of bigger ones. We thought
initially the reason would lie in DRAM’s nature; it is not de-
signed to support low latency access to small ranges [25]. We
explore this phenomenon in more detail in the next section.

In turn, the throughput results were as expected. The

larger the transfer, the better the throughput. To reach the
peak throughput, a DMA operation needs to move at least
256 bytes, which is also the maximum payload size of the
PCIe link. The additional packets are the reason why the
latency starts growing back as the transfer sizes increase.

5.4 Impact of Alignment
We rerun the same experiment as in Section 5.3, but this

time we transfer regions increasingly farther apart from one
another. For instance, when transferring 1 byte at a time,
we experiment skipping 1 byte between transfers (contiguous
transfers), then 2 bytes, then 4, and so on. The experiment’s
goal is to assess the performance impact of repeated accesses
to the same DRAM regions. Note that we do not include
numbers for strides that are smaller than the read size, as
this would lead to overlapping reads. Figure 13 shows the
results of this experiment.
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Figure 13: Latency of DMA reading increasingly large chunks
of data with different strides.

The most telling result occurs on smaller transfers. We
observe that when we skip less than 16 bytes between trans-
fers, the latency times remain high. Once the stride size hits
64 bytes, the cache line size, the latency stays constant for
reads below 256 bytes.

5.5 Impact of Caching
In the previous experiments, we forced the card to fetch

data from main memory4. We did so by reading from a 1 GB
host memory area and never hitting the same address twice
within the same experiment run. In this experiment, we
evaluate how the introduction of caching can affect transfer
performance.

We reduce the host memory area to 16 KB, forcing dif-
ferent transfers to access the same addresses repeatedly and
therefore using caching. We investigate four types of access:
“Cached Sequential”uses sequential reads, i.e., a stride equal
to the read size, and the 16 KB area; “Cache Aligned” uses a
stride such that two sequential reads do not access the same
cache line and the 16 KB area; “Memory sequential” uses
sequential reads and the 1 GB area; and “Memory Aligned”
uses large strides and the 1 GB area. Figure 14 shows the
results of the experiment.

Much to our surprise, the effect of caching in the transfer
was very small. For aligned reads, the difference is always

4We used the PCIRdCur performance counter to confirm
that almost all reads from the device result in LLC misses.
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Figure 14: Throughput of the DMA engine reading increas-
ingly large chunks of data from either the LLC (red) or from
main memory(blue). We plot both sequential reads and cache
line aligned reads, omitting the latter once the size becomes
a multiple of the cache line (64B).

below 5%. The biggest differences in transfer times are, once
again, for very small reads. For instance, for 1-byte reads,
the throughput increases from 137 Mbps to 190 Mbps, or
39%. However, the caching benefit decreases rapidly as the
transfer size increases.

5.6 Packetization Microbenchmark
In this experiment, we determine the minimal number

of segments the Assembler has to read per cycle to reach
line speed. We implement segments of 4 bytes width in our
FPGA-based NIC and run the logic at 322MHz (a typical
rate for 100 Gbps cards). We assemble RoCE v2 packets
with a payload size of 128 bytes, resulting in 198-byte pack-
ets after the protocols’ overhead. Figure 15 shows the results
of the experiments.
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Figure 15: Total networking throughput with an increasing
number of segments in segmented memory when producing
RDMA packets.

As expected, the throughput obtained increases as we in-
crease the number of segments the card reads in parallel. In
this configuration, reading from 8 segments suffices to reach
line speed.

5.7 Discussion
The experiments in this section can help us determine the

conditions necessary for D-RDMA to achieve line speed.
These conditions are (a) it should be able to transfer close
to 100 Gbps of data into the card and (b) it should be able
to ship the same rate out the wire.

Regarding the transfer, we observed that, for latency pur-
poses, it might be worth transferring gaps as large as a cache
line if that would help connect two small regions. We ob-
served that small reads are very costly, even when properly
aligned. For throughput proposes, the considerations are
different. Transferring 256-byte chunks, or 64 Integer-wide
values at once, yields a throughput of 98 Gbps. However,
we are giving up part of the throughput when transferring
gaps, For instance, in the OLTP scenario, we can theoreti-
cally achieve 3/4 of 98 Gbps, or 74 Gbps, because only 1 in
4 columns is a gap. The benefit is that what we give up in
throughput comes back in terms of freeing CPU cycles that
would otherwise be used in the “copy out” approach. These
considerations should be transformed into constraints that
the Optimizer tries to satisfy.

Regarding shipping data at line rate, it boils down to
whether the machinery can push a certain number of bytes
per cycle through the runtime in a pipelined fashion. The
critical component is the Segmented Area. We determined
that 8 4-byte segments is the absolute minimum number.
The machinery around the Segmented Area and the Assem-
bler must be carefully designed not to introduce bubbles in
this pipeline.

In summary, our experiments, albeit preliminary, show
that a card can take advantage of such optimizations if it is
allowed to and that their benefits are sizable.

6. RESEARCH AGENDA
We believe that D-RDMA can become the cornerstone of

low-overhead, high-speed network communication for data-
base systems. To reach its full potential, several fundamen-
tal research directions should be explored, including:

Non-Contiguous Regions. We introduced the Strided Re-
gions and showed that they are particularly suited to the
regular data patterns present in our motivation examples.
We also briefly mentioned how *-Mapped Regions can cap-
ture more irregular data placement scenarios. These are
hardly the only NCRs that the D-RDMA language can of-
fer. We are looking into additional region types to support
features such as variable-length, compressed data, and even
data structures that require pointer chasing logic for tree-like
traversals. Ultimately, we seek an expressive set of NCRs
that can navigate the most common transmission scenarios
used in database systems.

We also mentioned that NCRs can replace WR/SGEs in
selected Infiniband verbs. The verbs API is implemented by
an open-source library, libibverbs, that applications link to
when using RDMA. We are considering the different alter-
natives to integrate NCRs into this context. One possibility
is to extend libibverbs itself and introduce the new data
structures.

Shared Send Queues. Our motivation with this new queue
is to allow the card to process several NCRs at once that
are destined to different servers. This creates a powerful op-
timization opportunity for larger bounding boxes to encom-
pass multiple—overlapping or not—NCRs. However, creat-
ing a new type of queue has profound implications. The
behavior of a new queue type should be considered in light
of the different transport types, i.e., RC, UC, UD, and even
the more esoteric XRC. In RDMA, queue types are hardware
objects, making them challenging to change once specified.

The alternative to creating a queue type is to create a



stand-alone verb that supports group communications. From
a syntax point of view, it would be an unusual verb because,
instead of taking a “compound” queue pair parameter as the
shared send queue, the verb would be given a list of “indi-
vidual” queue pairs. Ultimately, choosing between a hard-
ware queue + verb construct versus a verb alone depends on
what benefits the hardware implementation can bring. This
requires further investigation.

DMA Optimization Algorithm. A brute-force algorithm to
find the best bounding box for an NCR (or a set thereof)
could be as follows. One would find the power-set among all
the NCRs’ data chunks and establish the cost of each possi-
ble combination to find the best one. We are currently work-
ing on pruning techniques that would make this approach
feasible and are also considering a dynamic programming-
based solution.

Regardless of the exact approach considered, we can use
faster, more straightforward algorithms that can be easily
implemented in hardware or more sophisticated ones that
can be executed in software, e.g., at the driver level. The
software-implemented algorithms may incur more latency,
whereas the hardware ones may not be optimal. We are
investigating the different tradeoffs in this context.

The Segmented Area. This area is of utmost importance
for the performance of D-RDMA. It has to allow for fast
parallel writes to adjacent segments. It also has to allow
for parallel reads from random segments, which is why we
deploy a crossbar on the read side. The dimensions of this
area—numbers of segments, and depth and width of each
segment—are still an object of study. We determined their
minimal sizes here but are still considering what the optimal
dimensions should be.

We plan on implementing the segmented area on an FPGA.
Modern FPGA chips provide several types of SRAM config-
urations, such as Ultra-RAM, Block-RAM, and LUT-RAM.
These variations present different options in terms of size
and width of memory. The choice of depth and number of
segments should consider these options.

Payload Assembly. This component requires other elements
than just the crossbar and the payload buffer. It must also
store state information of every ongoing and planned DMA
operation and access it efficiently when the DMA engine no-
tifies it of a DMA completion. Furthermore, this component
should support the arithmetic operations that rolling a row
mask entails. These operations are simple, most likely addi-
tions to jump to the next period on an NCR, but may require
multiple arithmetic units to work in parallel, one for each
attribute on the row mask. The design of this component
should incorporate all these details.

7. RELATED WORK
The issue of high CPU consumption and data copying

associated with fast networking has been documented be-
fore [15, 16, 20, 28]. Our effort, however, uses a protocol
analyzer, equipment capable of precisely observing the be-
havior of the network card directly, to reach this conclusion.
To the best of our knowledge, this is the first work to provide
analysis at this level of detail.

There have been other attempts to improve RDMA effi-
ciency in database communications. We divide such work
into two categories. First, we consider efforts that rely

on software optimizations. Second, we consider approaches
that rely on hardware modifications.

Software-based approaches. We can further subdivide the
software approaches by the layer at which they deploy their
solution. Starting from the layer closer to the networking
API, some pieces of work noted that the de/serialization of
data before transmission prevents zero-copy transfers [21].
The authors suggest having the applications directly use
scatter-gather units that exist in RDMA cards. The re-
sulting performance is better but the card still operates at
a fraction of its full bandwidth. Moving further up on the
stack, some suggest shielding the applications from low-level
interfaces such as RDMA, offering higher level abstractions
instead [3, 10, 17, 26], or designing communicating subsys-
tems specifically for RDMA [18, 22], or even giving some
database query operators, such as distributed join and ag-
gregation, the ability to optimize for fast network transmis-
sions [5, 6, 23, 29]. We see our approach as orthogonal
to these, as they could be re-implemented to leverage our
RDMA extension and attenuate the demand for CPU and
memory bandwidth in fast communications.

Hardware-based approaches. There are several approaches
that, similarly to ours, propose shifting some tasks to smart
network cards. Some of them design very specific hard-
ware, for instance, to accelerate de/serialization [27]. These
cards have very limited functionality, which is contrary to
the generic approach we propose. Our work is more aligned
with generic smart NIC works in that D-RDMA can be
implemented on top of them. There are two broad classes
of smart NICs for our purpose: those running application
logic on local cores, called network processing units (NPUs),
e.g., iPipe [19], sPin [8] or cards that do so via extensible
hardware, e.g., Corundum [11] or StRoM [24]. We believe
the hardware-based approach is more suited to support D-
RDMA since NPU-based cards often present high latencies.

8. CONCLUSION
This paper introduced D-RDMA, an extension to RDMA

that allows a database to benefit from zero-copy data trans-
fers. The key conceptual differences between RDMA and
D-RDMA are that (a) D-RDMA allows the application to
describe data transmissions in a more compact way, and (b)
it shifts the responsibility of devising a DMA schedule from
the host to the network card.

As a result, a D-RDMA card can transfer data much
closer to line speed, even fragmented data in database sce-
narios. In the process, a D-RDMA card gives CPUs cores
back to the database that would otherwise be used to inter-
act with the network. While realizing our vision’s potential
will take more research work, we are excited by the prospects
that D-RDMA opens for the next generation of database
systems to communicate at increasing network speeds.
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