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ABSTRACT
Effective query optimization is the backbone of relational database
systems; query optimizers use all manners of tricks, from special-
ized auxiliary data structures over caching and batch processing
to the use of secondary metadata. Nevertheless, these systems do
not fully exploit the potential of data dependencies, such as func-
tional dependencies, although dozens of dependency-based query
optimization techniques exist. This disregard occurs because the
required data dependencies are, in practice, hard to find and hard
to maintain.

This paper presents our vision of a workload-driven, lazy de-
pendency discovery system for query optimization. We propose
a lightweight approach that identifies relevant data dependency
candidates based on actually executed query plans, validates the
candidates dynamically against the database, and maintains the
results using different strategies that also exploit concepts of colum-
nar DBMSs. Our evaluation demonstrates the feasibility of this ap-
proach and the potential of dependency-based optimizations, using
a prototypical implementation in Hyrise that implements three ex-
emplary dependency-based optimization techniques. For example,
after automatic dependency discovery, these optimizations reduce
the Join Order Benchmark’s execution time by 27%.

KEYWORDS
query optimization, data dependencies, unique column combina-
tions, functional dependencies, order dependencies, data profiling

1 DATA DEPENDENCIES FOR OPTIMIZATION
The utilization of metadata is an important pillar of relational query
optimization. We propose an efficient application for the largely
untapped query optimization potential of data dependencies, such as
functional dependencies or order dependencies. Commonly, for any
given dataset, many data dependencies [24] of different types are
valid, due to natural correlations in the data, but also due to schema
denormalization, and certain data generation patterns. Furthermore,
dozens of data dependency-based query optimization techniques

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution, provided that you
attribute the original work to the authors and CIDR 2022. 12th Annual Conference on
Innovative Data Systems Research (CIDR ’22). January 9-12, 2022, Chaminade, USA.

exist [11], most of which have been known for years. For example,
data dependencies can be used to obtain improved selectivity esti-
mates, to simplify GROUP BY statements, or to convert expensive
joins into local predicates [11]. Yet, data dependencies and their
query optimization strategies remain largely underutilized, because
the database systems are not aware of these dependencies. The
reason for this are three challenges, namely dependency discovery,
selection, and mutation, that are still practically unsolved in the
context of database management systems.

Considering the discovery challenge, dependencies derived from
manually or schema-defined constraints, such as primary or for-
eign keys, make up only a fraction of all existing dependencies.
Some dependencies, such as order dependencies, cannot be defined
as constraints and, in some use cases, no manually defined con-
straints and keys exist. Many scientific datasets, for example, are
provided as CSV files that may include column headers but no fur-
ther metadata. Automatically determining data dependencies via
data profiling algorithms is feasible, but expensive and can take
hours of processing [1].

Systematically profiled dependencies, then, however, lead to the
second challenge, which is dependency selection. Because data pro-
filing algorithms discover all technically valid dependencies on a
given relation instance, the result sets can become large enough
that even storing and efficiently accessing them might exhaust a
database. The 1m rows NCVoter dataset, for instance, contains a
remarkable amount of 5m minimal FDs (and many further depen-
dencies of other types) [19]. If the database can actually store all
discovered dependencies, then it may still not be possible to find
a certain dependency during query optimization fast enough, be-
cause their retrieval involves not only dependency lookup but also
inference: discovered dependencies are usually minimal, but the de-
pendencies required for query optimization may not be. A strategy
to select only dependencies relevant for query optimization from
discovered dependency sets does not exist yet.

Assuming that such a strategy would exist, mutation is still an
open issue, because every INSERT, UPDATE, or DELETE statement
can invalidate expensively mined dependencies, which makes them
unsafe for query optimization; also, new and helpful dependencies
might appear. Thus, dependency discovery, selection, and mutation,
i.e., the entire metadata maintenance needs to be part of any such
query optimization efforts.
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We present an integrated and autonomous query optimization
system that uses lazily discovered data dependencies for query
rewriting and plan optimization. Based on observed workloads,
the system discovers on-demand only such data dependencies that
enable certain optimizations and are, therefore, relevant to the
database system. It also incrementally maintains the discovered
dependencies by dynamically adding new dependencies and re-
evaluating existing dependencies over time. In this way, our system
solves all three challenges: The discovery is integrated into the
optimization process and, in this way, validates fewer and more
suitable (i.e., also non-minimal) dependencies; the selection of de-
pendencies is workload-driven and, hence, both effective and well
tuned to actual needs; and an efficient mutation is possible due to
the tight integration into and exploitation of database operations.
In summary, this paper makes the following contributions:

(1) A workload-driven, lazy discovery system that serves rele-
vant data dependencies to a query optimizer.

(2) A collection of incremental dependency maintenance tech-
niques that keeps the query optimizer’s metadata valid.

(3) A practical integration of the proposed discovery system
with three data dependency-based query optimization tech-
niques into the open-source DBMS Hyrise [6].

(4) An evaluation that demonstrates the performance of our sys-
tem (and dependency-based query optimization): 27% overall
execution time improvement in the join order benchmark
and more than 60× speed-up for certain TPC-DS queries.

2 BACKGROUND
In this section, we provide necessary background information on
data dependencies, dependency-based query optimization tech-
niques, and the database system Hyrise.

2.1 Data dependencies
Data dependencies are well-defined relational properties. They ex-
press relationships between attributes usually within a table, but
some dependency types can also span multiple tables. We now
briefly introduce the three data dependencies that we use for query
optimization in this paper. For further details, we refer the inter-
ested reader to [1]. The following definitions are largely adopted
from [11]:

Unique column combinations (UCCs). The attribute set X forms
a unique column combination, if a projection on X does not contain
any duplicate tuples. More formally, given a relational instance 𝑟
over a relation 𝑅, 𝑋 ⊆ 𝑅 is unique, i.e., a column combination (UCC)
for 𝑅, iff ∀𝑟𝑖 , 𝑟 𝑗 ∈ 𝑅, 𝑖 ≠ 𝑗 : 𝑟𝑖 [𝑋 ] ≠ 𝑟 𝑗 [𝑋 ]. A popular example
for UCCs are all relational database keys, such as a synthetic id
column or a combination of a customer_id and a timestamp in an
orders table.

Functional dependencies (FDs). According to a functional de-
pendency 𝑋 → 𝑌 , all tuples that agree on their 𝑋 values also agree
on their 𝑌 values. Again, more formally, a functional dependency
(FD)𝑋 → 𝑌 of a relation 𝑅 holds in a relational instance 𝑟 over 𝑅, iff
∀𝑠, 𝑡 ∈ 𝑟 : 𝑠 [𝑋 ] = 𝑡 [𝑋 ] ⇒ 𝑠 [𝑌 ] = 𝑡 [𝑌 ]. For example, the attributes
zip, street_name, latitude usually functionally determine
city in an address table.

Order dependencies (ODs). An order dependency 𝑿 ↦→ 𝒀 de-
notes that sorting the tuples of a table by 𝑿 also orders the records
by 𝒀 . In formal terms, for two lists of attributes𝑿 and 𝒀 of a relation
𝑅, the order dependency (OD) 𝑿 ↦→ 𝒀 holds in relation instance 𝑟
over 𝑅, iff ∀𝑠, 𝑡 ∈ 𝑟 : 𝑠 [𝑿 ] ⪯ 𝑡 [𝑿 ] ⇒ 𝑠 [𝒀 ] ⪯ 𝑡 [𝒀 ]. Note that the
comparison operator ⪯ compares the𝑿 and 𝒀 values attribute-wise,
i.e., lexicographically via ≤ with the first attribute in each list being
the most significant one. An example OD from an employees table
might be salary ↦→ taxrate.

2.2 Dependency-based query optimizations
Since the creation of relational theory, the database community has
developed a plethora of query optimization techniques based on
various data dependencies. A recent scientific study [11] described
and categorized 59 optimizations, which are widely underutilized
in practice. Hence, in this study, we exemplarily selected and imple-
mented three of these techniques; Section 4 shows their potential
for query optimization:
O-1 Join to semijoin [16]. A UCC on a joined column allows
simplified join executions. Consider the following query:

SELECT r.A, r.B FROM r, s WHERE r.ID = s.ID

If ID is a UCC on s, above’s query can be executed by more efficient
semijoin strategies. This optimization works because the UCC guar-
antees that for any tuple of r, there will only be a single matching
tuple from s.
O-2 Reduce GROUP BY attributes [3, 5]. Functional dependencies
can be used to execute grouping operations more efficiently by
reducing the number of grouping attributes. Consider the statement
GROUP BY X, A and the FD𝑋 → 𝐴. By the definition of FDs, tuples
that agree on X will also agree on A. Hence, during grouping, such
tuples will fall into the same groups so that calculating GROUP BY
X is equivalent.
O-3 Join avoidance [26]. In some cases, joins can be avoided with
the knowledge of order dependencies or UCCs. Consider the fol-
lowing simplified query excerpt and an OD datesk

⪯↦−→ date:
SELECT ... FROM fact, dim WHERE

fact.date_sk = dim.date_sk AND
dim.date BETWEEN '20210816' AND '20210820'

The join between fact and dimension tables can be replaced with
a local predicate if no columns of the dimension table are needed
for the final result: fact.date_sk BETWEEN min_date_sk AND
max_date_sk where min_date_sk (and max_date_sk accordingly)
are computed as:

MIN(date_sk) min_date_sk FROM dim WHERE
date >= '20210816'.

Dimension tables are often small compared to fact tables [9]. Thus,
min_date_sk and max_date_sk can be determined quickly. The re-
sulting BETWEEN predicate is usually more efficient than the original
join. Without the aforementioned OD, it would not be guaranteed
that, e.g., MIN(date_sk), determines the correct value.

Similarly to the OD-based optimization, joins can be converted
to cheap local predicates if the dimension table is filtered on a UCC.
Instead of a BETWEEN predicate comparing for MIN and MAX of the
join columns, a simple equals predicate is sufficient. The applica-
tion of these OD- and UCC-based join avoidance optimizations,
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and in particular their knowledge during the query optimization
phase, permits another downstream optimization: Introducing a
local predicate on the fact table enables pruning opportunities that
often show significant performance impacts in practice. These im-
pacts are included in the reported performance numbers for O-3.

2.3 Hyrise
To demonstrate our dependency-based query optimization system,
we implemented [10] it into the research DBMS Hyrise1. In the
following, we briefly introduce the architecture and relevant com-
ponents of Hyrise [6] since some of its concepts are beneficial to
our approach.

Hyrise is a main memory, column-oriented database system with
an implicitly horizontally partitioned storage layout. The partitions
are called chunks and have a fixed maximum size (default: 65 535
tuples). By default, dictionary encoding is applied to all chunks.
Furthermore, Hyrise follows an insert-only approach utilizing mul-
tiversion concurrency control (MVCC) where deletes and updates
do not physically delete rows. Instead, rows are marked invisible
and new versions are appended to the table’s last chunk. In ad-
dition, Hyrise offers a so-called plugin interface that enables the
implementation of autonomous components with access to internal
resources. Such components can read and write internal data struc-
tures without being tightly coupled to the database’s core (cf. [6,
p. 321]), which simplifies the implementation of our approach.

3 AUTONOMOUS DISCOVERY, SELECTION,
AND MUTATION OF DATA DEPENDENCIES

In this section, we first explain our workload-driven, lazy data
dependency discovery system that determines and validates data
dependency candidates for specific query optimization objectives,
considering only such dependencies that are actually relevant for
the observed workload (Section 3.1). We then explain how changes
to the data, which potentially invalidate dependencies, can be han-
dled (Section 3.2). While we implemented our data dependency-
based query optimization system for Hyrise, the presented concepts
are based on generic database concepts and not technically coupled
to this particular database system; hence, they should be applicable
to other database systems as well.

3.1 Workload-driven, lazy data dependency
discovery and selection

Data dependencies are usually not known, and determining all
dependencies on a table or dataset without limiting the search
space is extremely expensive. The overall goal of our approach is
to efficiently provide data dependencies that can be used for query
optimization. For this reason, and in contrast to state-of-the-art data
profiling algorithms, we approach this problem by not considering
all possible attribute combinations as potential data dependency
candidates but only specifically promising ones.

For this purpose, our approach consists of two phases: First,
we determine which data dependency candidates are relevant, i.e.,
which dependencies could be beneficial for processing the system’s

1Hyrise source code and documentation: https://github.com/hyrise/hyrise

workload when applied during query optimization. Second, the
previously determined candidates are validated.

The concrete procedure that determines and validates relevant
dependency candidates is depicted in Figure 1. The figure contains
two main components: (i) A database system (Hyrise in our case)
that is capable of applying dependency-based optimizations and
(ii) the dependency discovery plugin.

Database System. 1 All queries are passed as SQL strings to the
database system for processing. 2 The SQL strings are then trans-
lated to logical query plans, optimized, and finally translated to
physical query plans. If a query was already processed in the past,
its plan might be retrievable from the plan cache 2A to avoid unnec-
essary retranslation and -optimization. Also, during optimization,
dependencies might be retrieved from the data dependency store
2B to create more efficient query plans – this extension enables
the application of data dependency-based optimizations, such as
the three optimizations discussed in Section 2.2. 3 Afterward, the
query plan gets executed and is stored with runtime and cardinality
information in the query plan cache.

Dependency Discovery. The actual dependency discovery exten-
sion, which is implemented as a Hyrise plugin [10] (cf. Section 2.3),
is executed periodically with a configurable frequency. 4 The basis
for this procedure is a set of user-defined rules that provide the logic
to derive specific dependency candidates from queries in the plan
cache, from executed physical and their corresponding logical oper-
ators. These rules subscribe to certain operator types, e.g., scans or
joins, and define under what circumstances which dependency can-
didates are created. For instance, for O-3: if two relations are joined,
one relation does not contribute attributes to the final result, and this
relation is filtered, then create an OD candidate join_column ↦→
filter_column. In other words, the rules determine which depen-
dencies need to exist to enable certain optimizations (O-1, O-2, O-n
in Figure 1). Note, it depends on the user-defined rules whether or
not the dependency selection promotes useful dependencies.

5 The dependency discovery procedure accesses the database
system’s plan cache that serves as a representation of the processed
workload. The PlanParser handles the cache’s entries, i.e., the phys-
ical and logical query plans, in an operator by operator fashion.
6 The operators are passed to all rules that subscribed to the par-
ticular operator type (O-2 and O-n in Figure 1). 7 Afterward, the
rules, which are active components in this architecture, check the
user-defined requirements and return applicable, operator-specific
dependency candidates (e.g., OD and UCC candidates in Figure 1).

8 Next, the dependency candidates are validated against the
underlying data by the dependency validator. In our case, where
the procedure is implemented into Hyrise, the validation process
profits from memory-resident data, its column-oriented storage
layout and dictionary encoding, see Section 3.2 for more details. For
some dependency types, the dependency validator partly resorts to
Hyrise’s efficient operator implementations, for instance, the Sort
operator for validating order dependencies. We also use techniques
of existing validation algorithms, such as sampling [19], to quickly
eliminate candidates. In a more generic setting, traditional SQL- or
PLI-based validation algorithms could be used [1].

8A After validation, the available data dependencies are stored
in the database system’s data dependency store to be used during

https://github.com/hyrise/hyrise
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Figure 1: Schematic overview of the dependency discovery and selection procedure and its DBMS interaction.

query optimization. 8B In addition, the system also keeps a list of
unsuccessfully validated dependency candidates for efficiency rea-
sons. Both stores are accessed during validation to avoid repeated
unnecessary validations on unchanged underlying data. 8C Fur-
thermore, the corresponding query plans are removed from the
plan cache to enable re-optimization, and, thereby, the use of the
validated dependencies for optimization.

3.2 Efficient data dependency mutation
Data changes can invalidate dependencies, for instance, by introduc-
ing duplicates in certain columns. Then, the use of invalid depen-
dencies for query optimization can lead to poor cost and cardinality
estimations, inefficient query plans and, in the worst case, faulty
results. While such mistakes might be acceptable in certain cases,
such as approximate query processing [14, 18], they are, in general,
not tolerable.

In this section, we go over three techniques that keep the depen-
dencies up-to-date: (i) workload-driven discovery, (ii) incremental
validation and maintenance, and (iii) the utilization of column store
DBMS concepts. We now discuss each technique in more detail.
Workload-driven discovery. A general observation about data
dependencies is that spurious dependencies may change very often,
while genuine dependencies, i.e., semantically meaningful depen-
dencies that model a real-world constraint, do not or only rarely
change over the lifetime of a dataset. Because our system draws
the dependencies from real-world, executed, and possibly human-
crafted, SQL queries and datasets, a large portion of the discovered
dependencies is expected to be genuine. The workload-driven dis-
covery, hence, works as a semantic pre-filter, which significantly
reduces the amount of change in the dependency store when com-
pared to other mined dependency collections. Adding to this obser-
vation, our evaluations (cf. Section 4) have also revealed that many
beneficial dependencies exist on dimension tables, e.g., date or type
tables, that are very rarely updated [9, p. 141]; and if updates are
actually required, the cost of validating dependencies is low due to
the comparably small size of dimension tables [9], as we observe in
Section 4.3.
Incremental validation and maintenance. If our dependency-
based query optimization system is applied in some data warehouse
scenarios, where the data is updated in specific, low-frequent cy-
cles [25], keeping the dependencies up-to-date in batch jobs is easy.

For the more general setup, though, we need to focus on more
fine-grained updates: Given a concrete data change, it is not neces-
sary to re-evaluate all dependencies, and it is also not necessary to
re-evaluate dependencies entirely. Instead, we propose the use of
efficient incremental validation and maintenance approaches that
exist for FDs [4, 23] and ODs [27]. For UCC maintenance, we can
adopt techniques that were originally designed for enforcing key
constraints [15]. These approaches use clever techniques and index
structures to selectively re-evaluate only affected cases. Because
our system maintains only a very small subset of dependencies and
does not progressively replace invalidated dependencies by new
minimal dependencies (as the referenced incremental discovery
systems do), the maintenance is much more efficient.

Utilization of column-store DBMS concepts. Apart from the
previously discussed incremental validation techniques, certain
column-store concepts are particularly beneficial for handling data
change in terms of efficient dependency validation and the treat-
ment of potentially invalid ones. Modern column-store systems,
such as DuckDB [22], HyPer [8], or Hyrise [6], often store values
in chunks, which are implicit horizontal partitions of a fixed size
that are compressed and made immutable when their capacity is
reached [12]. UPDATE statements are implemented as append-only
operations, where the invalidation of an original tuple is succeeded
by the insertion of a new tuple containing the updated values.
This layout can be exploited in at least two ways: First, similar to
some database operations, some dependency validation algorithms
benefit directly from the columnar storage layout. Because the rela-
tional data dependencies express relationships between attributes,
i.e., columns, typically, only very few columns need to be read for
their validation. Since in columnar storage layouts relevant data
can be accessed precisely, column stores, such as Hyrise, serve to
(re-)validate the dependencies more efficiently. A second advan-
tage of column stores is the fact that such systems often rely on
compression techniques, such as dictionary encoding, which can
further improve the validation, especially for incremental tests. For
example, our implementation uses Hyrise’s chunk-wise dictionaries
to quickly determine non-unique column combinations during the
validation of UCC candidates.

In summary, the challenges caused by data changes can largely be
solved with our workload-driven architecture, recent incremental
maintenance techniques, and concepts of modern column stores.
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4 EVALUATION
To evaluate our workload-driven dependency discovery system
for query optimization as well as the dependency-based query
optimization techniques themselves, we implemented the system as
a Hyrise plugin [10] that analyzes Hyrise’s plan cache to determine
and validate useful dependency candidates. We also integrated the
optimization O-3 into Hyrise, while O-1 and O-2 had already been
integrated in former releases.

4.1 Experimental setup
All the following experiments were conducted on an Intel Xeon 8180
Platinum CPU with 384 GB of main memory. For our evaluation,
we use the TPC-H [21], TPC-DS2 [17], and Join Order Benchmarks
(JOB) [13]. While the first two use synthetic datasets and were
specifically designed for benchmarking analytical systems, the latter
operates on real-world data from the IMDB. Such real-world data
is particularly interesting to evaluate the effects of dependency-
driven optimizations in practice. For the TPC-H and TPC-DS, we
use a scale factor of 10 and, for the JOB, we use the original paper’s
dataset3.

To simulate a scenario as depicted in Section 1, where the system
has to identify all dependency candidates by itself, no (foreign) keys
or constraints are defined for the benchmarks. For the evaluation
of a single benchmark, we first measure the baseline execution
time as the average (mean) execution time of its entire workload
over 100 executions. Then, we invoke the dependency discovery
plugin, which in practice would run in the background during
query processing. Afterwards, the sameworkloads are executed and
measured again. In this way, the experiment measures the execution
times of the plugin and the fully optimized workloads separately.
All experiments are executed in a single threaded fashion.

4.2 Optimization performance
Table 1 shows the performance impact (execution time) of three
data dependency-driven query optimization techniques and infor-
mation of the entire dependency selection and discovery process
(candidates). Apart from the impact on the execution time, Table 1
also shows how many queries showed improved or degraded per-
formance. For the selection and discovery process, the number of
identified and valid candidates as well as the total runtime of the
dependency discovery plugin is depicted.

As a first observation, the realized benefits are substantial, which
is particularly true for JOB and TPC-DS, where a combination of
all three optimizations reduces the execution times by 27% and
10% respectively. While the observed performance benefits do not
represent a formal verification of our approach, they indicate that
the proposed selection process promotes useful dependencies. Also,
for these two benchmarks the performance of the vast majority of
all queries is affected positively; more than half of JOB’s 113 queries
are improved. In all cases, the number of improved queries clearly
outweighs the degraded ones.

In addition to the summary statistics contained in the table, we
want to point out that each of the optimizations causes significant
improvements in some queries. For example, for O-1, we observed
2Currently, Hyrise supports only 47 of the 99 TPC-DS queries.
3Dataset for Join Order Benchmark: http://homepages.cwi.nl/~boncz/job/imdb.tgz

a 2.6× speed-up for JOB’s Q22d; for O-2, we observed a 1.6× speed-
up4 for TPC-H’s Q10; for O-3, we observed a 65× speed-up of TPC-
DS’ Q32. Furthermore, the table demonstrates that the optimizations
compete with each other in some cases. For instance, considering
the individual impacts of O-1 and O-3, one could expect to see a
larger combined improvement for the JOB, which is not the case
because both optimizations target joins.

Discussion. The magnitude of the impact that dependency-based
query optimization techniques have on the performance depends
on the data model, the queries, the evaluated optimizations, and
the underlying data. For example, O-1 and O-3 explicitly target
joins, which occur frequently in the JOB and have a larger overall
impact in the JOB and TPC-DS than aggregates, which are targeted
by O-2. Also, the star schema-like data model of the TPC-DS and
JOB is more suitable for such optimizations. Finally, the data itself
determines whether dependencies exist: The ratio of valid and
candidate dependencies is high for the real-world data based JOB
(85%), compared to the TPC-H (35%) and -DS (19%).

4.3 Discovery and selection overhead
Using dependencies for query optimization introduces a tradeoff
between the realized performance improvements and the overhead
for determining dependencies. Therefore, while the overhead in-
troduced by the initial dependency discovery and selection process
is visible in some cases, it must be judged under consideration of
the achieved performance gains. Table 1’s Time columns indicate
the time necessary to determine dependency candidates and their
validation.

For the scenario where all three optimizations are applied, the
system searches for UCCs, FDs, and ODs. Note, the times of O-
1 to O-3 do not necessarily result in the Combined time as some
dependency candidatesmight be relevant formultiple optimizations.
The necessary time and break-even rate are different for the three
investigated benchmarks: For the JOB and TPC-DS not even an
entire run of all queries is necessary to break even. For the TPC-H,
all queries must be executed more than once.

There are multiple reasons for the differences in validation run-
time. First, some types of dependency candidates are harder to
validate or rule out than others. For example, determining or rul-
ing out uniqueness is generally simpler than sorting large tables
with dozens of millions of rows. The overhead of the candidate
generation, i.e., query plan analysis and candidate extraction, is
significantly lower compared to the candidate validation. For the
presented experiments, the candidate generation consumed never
more than 10% of the total dependency discovery time. Lastly, the
table’s size and the nature of the data impact validation costs. In
fact, validating a single UCC on c_address of TPC-H’s customer
table with ≈ 1.5m rows takes one second and is responsible for 36%
of the discovery and selection runtime. In contrast, the TPC-DS
profits from an OD on a small dimension table that can be validated
in only 41ms. The last observation conforms with the argumenta-
tion presented in Section 3.2: There are valuable data dependencies
leading to performance improvements that can be (re-)validated
quickly.

4For the JCC-H [2] dataset the observed speedup was ≈2.5×.

http://homepages.cwi.nl/~boncz/job/imdb.tgz
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Table 1: Performance (execution time) impact of optimizations (O-1 to O-3, see Section 2.2).
∑

combined execution time of all
queries.∅ indicates themean execution time change across all of the workload’s queries. #↓ indicates the number of improved
queries (with lower execution time), #↑ degraded ones; only changes larger/smaller than or equal to +/-5% were considered for
this metric. In addition, the number of dependency candidates, successfully validated dependencies and the combined time
for candidate generation and validation is displayed.

JOB (113 Queries) TPC-DS (47 Queries) TPC-H (22 Queries)

Execution time Candidates Execution time Candidates Execution time Candidates∑ ∅ Change #↓ # ↑ # Valid Time
∑ ∅ Change #↓ # ↑ # Valid Time

∑ ∅ Change #↓ # ↑ # Valid Time

Baseline 40.7 s – – – – – – 29.8 s – – – – – – 39.5 s – – – – – –
O-1 -8.9 s -22% 44 24 10 10 474ms -1.5 s -5% 25 1 13 11 196ms -0.7 s -2% 3 2 5 5 1.4 s
O-2 0 s 0% 0 0 0 0 8ms -0.7 s -2% 5 0 53 2 54ms -1.5 s -4% 1 0 19 5 2.7 s
O-3 -7.3 s -18% 70 7 18 15 97ms -1.1 s -4% 6 0 23 7 208ms -0.6 s -2% 1 0 12 7 1.4 s
Combined -10.8 s -27% 73 15 20 17 498ms -3.0 s -10% 28 1 72 14 227ms -2.2 s -6% 4 2 26 9 2.8 s

Discussion. Above’s experiments have shown that the effort for
dependency discovery is usually amortized quickly in most scenar-
ios. More importantly, the discovery process is not tied to query
execution and optimization. Hence, it can be executed as asynchro-
nous background task whose runtime is significantly less relevant.
In addition, preliminary evaluations on larger TPC-H and TPC-DS
datasets show that the performance benefits increase at least as
quickly as the validation efforts.

5 RELATEDWORK
In the following, we briefly discuss existing approaches that inves-
tigate how data dependencies can be used for query optimization.
Some dependency-based query optimization techniques are used
in commercial database systems. However, such systems do not
autonomously determine the necessary dependencies. Thus, these
optimizations are based on user-defined dependencies. Examples
include UCCs and INDs (referential integrity constraints) to reduce
the number of statistical views [7], ODs for join avoidance [26], or
FDs (which are only validated if instructed by the user) for improved
selectivity estimates [28].

Pena et al. [20] propose a system that automatically incorporates
FDs for query rewriting. First, their approach needs to discover all
functional dependencies. Then, their applicability is determined by
comparing (i) attribute matrices representing the FDs and (ii) matri-
ces of attribute occurrences in the workload’s queries. The FDs used
to optimize the queries by rewriting, are selected according to rank-
ings by quality metrics or clustering. In contrast to our approach,
their dependency discovery process is not limited to relevant can-
didates, leading to possibly high computational costs. Additionally,
only query rewriting is performed. While that approach works
without adjusting the database system (rewriting can solely work
on SQL strings), not all optimizations can be achieved by rewriting
and the full potential of plan level optimizations cannot be real-
ized. Furthermore, our evaluation has shown that other dependency
types than FDs show larger performance impacts.

6 CONCLUSION
We presented an approach that efficiently determines data depen-
dencies based on concrete, given workloads and applies them dur-
ing query optimization to generate more efficient query plans to

improve performance. The three challenges when applying data de-
pendencies for the purpose of query optimization are the discovery,
selection, and mutation of relevant dependencies. We proposed an
integrated solution that tackles these challenges with our workload-
driven, lazy dependency discovery approach, incremental validation
and maintenance techniques, and concepts of column store DBMSs.

An evaluation performed with the open-source DBMS Hyrise
showed promising results for the analytical benchmarks TPC-H,
TPC-DS, and JOB: The observed runtime improvements are sub-
stantial (up to 27% of reduction in workload execution time and
more than 60× query speed up) and the overhead for determin-
ing and validating dependency candidates is reasonable: between
0.05× and 1.3× of the observed execution time reduction. Note,
though, that the discovery efforts run as asynchronous background
tasks and are, therefore, not a factor that needs to be considered
to immediately impact query optimization costs. Furthermore, in
the conducted experiments, we observed that those dependencies
that turned out to be beneficial for query optimization could also
be re-validated quickly, which mitigates the impact of dependency
mutation.
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