
GRainDB: A Relational-core Graph-Relational DBMS
Guodong Jin

jinguodong@ruc.edu.cn

Renmin University of China

China

Nafisa Anzum

nanzum@uwaterloo.ca

University of Waterloo

Canada

Semih Salihoglu

semih.salihoglu@uwaterloo.ca

University of Waterloo

Canada

ABSTRACT
Ever since the birth of our field, RDBMSs and several classes of

graph database management systems (GDBMSs) have existed side

by side, providing a set of complementary features in data models,

query languages, and visualization capabilities these data models

provide. As a result, RDBMSs and GDBMSs appeal to different

users for developing different sets of applications and there is im-

mense value in extending RDBMSs to provide some capabilities of

GDBMSs. We demonstrate GRainDB, a new system that extends

the DuckDB RDBMS to provide graph modeling, querying, and

visualization capabilities. In addition, GRainDB modifies the inter-

nals of DuckDB to provide a set of fast join capabilities, such as

predefined pointer-based joins that use system-level record IDs

(RID) and adjacency list-like RID indices, to make DuckDB more

efficient on graph workloads.

1 INTRODUCTION
Ever since the birth of database management systems, relations

and graphs have been the core data structures to model application

data in two broad classes of DBMSs: RDBMSs and those referred to

as graph database management systems (GDBMSs). Historically, the

term GDBMS has been used to refer to several classes of DBMSs

that all adopt a graph-based model, such as the CODASYL model,

RDF, and most recently the property graph model, which is adopted

by contemporary systems such as Neo4j [5], TigerGraph [7], Graph-

flowDB [20], or AvantGraph [1].

RDBMSs and GDBMSs have complementary capabilities that

may appeal to users. For example, unlike graphs, the relational

model is not restricted to binary relationships and easily models

n-ary relationships between entities. At the same time, the rela-

tional model requires strict schematization of the data, while graph

models are often semi-structured and provide more flexibility when

storing sparse data. Similarly, while SQL is very suitable to express

standard data analytics tasks, it is arguably not as suitable when

expressing queries with recursive joins, for which the languages

of GDBMSs contain specialized syntaxes. In terms of performance,

RDBMSs integrate numerous techniques, such as columnar storage

and vectorized processing, yet, still have shortcomings on graph
workloads that contain many recursive and many-to-many joins,

for which GDBMSs employ specialized techniques.

RDBMSs have seen wider adoption than GDBMSs in practice

and emerged as the de-facto systems to store, manage, and query

application data. However, given the complementary capabilities

of GDBMSs over RDBMSs, there are economical and technical

This paper is published under the Creative Commons Attribution 4.0 International

(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their

personal and corporate Web sites with the appropriate attribution, provided that you

attribute the original work to the authors and CIDR 2022. 12th Annual Conference on

Innovative Data Systems Research (CIDR ’22). January 9-12, 2022, Chaminade, USA.

advantages for extending RDBMSs to natively provide some of

the capabilities of GDBMSs and support efficient graph querying.

Over the past two years, we have started to develop a relational-
core hybrid graph-relational system that we call GRainDB at the

University of Waterloo. We use the term relational-core to indicate

that GRainDB extends an RDBMS at its core. Specifically, GRainDB

integrates a set of storage and query processing techniques, such

as predefined pointer-based joins (reviewed in Section 4.1), into

the columnar DuckDB RDBMS [2, 24] to make it more efficient on

graph workloads. In addition, GRainDB extends DuckDB to natively

support a set of new features:

• Hybrid graph-relational data modeling: Users can model parts

of their database also as a graph. Specifically, users can model

relations as nodes and joins between these relations as edges.

• Hybrid graph-relational querying: Users can query tables and

graphs seamlessly using an extended SQL that we call GRQL.
GRQL has drawn from TigerGraph’s GSQL [13] and Oracle’s

PGQL languages [28]. The FROM clause of GRQL can contain

path patterns in addition to tables to express joins. Path patterns

are described with a node and arrow syntax and can contain

special syntax for recursive joins, e.g., the Kleene star.

• Graph visualization:We have built a browser frontend, similar

to the frontends of GDBMSs, such as Neo4j’s Bloom [6], that

support node-link visualization and interactive exploration of

the part of the database that is modeled as a graph.

Our work is similar in spirit to graph systems built on top of some

commercial RDBMSs, such as IBM Db2 [27] and SAP Hana [25].

For example, the Db2 Graph project [27] implements the Gremlin

graph query language [4] on top of IBM Db2. Unlike GRainDB,

these layered systems support only querying graphs and do not

modify the core query processors of the underlying RDBMS.

In this paper, we describe our vision, progress, and ongoing

work on GRainDB, and a demonstration of developing a COVID-19

contact tracing application on GRainDB. Our application aims to

demonstrate: (i) the advantages of modeling and querying data

seamlessly both as tables and graphs and the ability to visualize

parts of the database as a graph; and (ii) the storage and process-

ing techniques we have integrated into DuckDB to make it more

efficient on graph workloads. The source code of GrainDB can be

found here [3].

2 DEMONSTRATION DATABASE
We begin by describing a relational database that we use as our

running example. We consider a COVID-19 contact tracing applica-

tion in the city of Waterloo, Ontario in Canada. Figure 1 shows the

schema of the database used by the application:

• Person contains data about people who took COVID-19 tests.

• Contact contains the close contact relationship between two

people in the Person table, one of which has tested positive.



Figure 1: Example relational database schema. Top row is the
graph schema modeling part of the database also as a graph.

• Place contains information about places, such as universities

and restaurants, that record their visitors for contact tracing.

• Visit stores the records, collected by the places in the Place
table, of who visited each place and when.

• Zipcode contains the set of possible zipcodes in Waterloo and is

used to normalize addresses in the Person and Place tables.

Throughout the paper, we discuss modeling a part of this data-

base also as a graph as shown in the top row of Figure 1. We

model the Person and Place tables as nodes with labels vPerson
and vPlace, respectively. We then model the join between a person

record 𝑝𝑒 and a place record 𝑝𝑙 that 𝑝𝑒 visited (over the Visit table)
as eVisit edges and the join between two people who contacted

each other (over the Contact table) as eContact edges.

3 THE CASE FOR GRAINDB
We next motivate GRainDB by discussing the complementary fea-

tures of RDBMSs and GDBMSs in terms of their data models, query

languages, and visualization capabilities that their data models

provide. We then discuss several performance features we plan to

integrate into DuckDB tomake it more efficient on graphworkloads,

which completes the description of our vision for GRainDB.

Data Model: Although both relations and graphs can model many

application data, we identify two advantages of relations:

• N-ary relationships: Graphs are restricted to represent binary

relations between two nodes, while relations can represent n-ary

relationships for arbitrary values of 𝑛.

• Normalized data: Relations are often arguably the natural struc-

tures to model normalized data. For example, the Zipcode table

in our example normalizes the zipcodes in Person and Place
tables and may not be naturally thought of as nodes or edges.

Similarly, we identify two advantages of graph-based models:

• Closeness to entity-relationship model: As discussed in a user sur-

vey conducted in our group [26], some users of GDBMSs find

nodes and edges closer to their mental model of entities and

relationships in their data than tables.

• Semi-structured data: Graph-based models are often semi-structu-

red, allowing arbitrary properties to be stored on nodes and edges

without a strict schema definition, which may have advantages

in applications that frequently integrate data from new sources.

Query Languages: SQL has emerged as the de facto language to

query and manipulate data in practice. While SQL is very suitable

to express many standard data preparation and analytics tasks,

languages of GDBMSs contain syntax that can more easily express

recursive joins. Consider asking a variable-length join query asking

for people that Mahinda may have contacted through 1 to 4 degrees

of contacts. Consider the the alternative graphmodel of our example

database. For example, the Cypher language of Neo4j contains a

special syntax for such recursive queries, which can be simpler

than writing those queries in SQL:

MATCH (a:vPerson)-[:eContacted*1..4]->(b:vPerson)
WHERE a.name = Mahinda

Similarly, languages of GDBMSs also contain specialized syntax for

expressing some queries that are unions of multiple join queries,

such as queries with unlabeled nodes and edges.

Visualization: The output tables of queries in RDBMSs can be

used to produce many useful visualizations, such as bar charts or

line charts. However, these visualizations are not suitable when

one wants to analyze the sequences of connections and paths that

connect the entities in a database. Default frontends of GDBMSs

support node-link views that are more suitable for this purpose.

Our first goal in GRainDB is to extend an RDBMS to complement

it with the above features of GDBMSs. One can in principle provide

these features only by building layers on top of the underlying

RDBMS without modifying the internals of the system. This ap-

proach however would be sub-optimal in performance. Our second

goal in GRainDB is to modify the underlying RDBMS to make it

more efficient on graph workloads. This is a colloquial term to refer

to workloads that contain many equality joins over many-to-many

relationships that can frequently be cyclic and recursive.

Techniques for Fast Join Capabilities:We aim to integrate three

techniques into the underlying RDBMS, the first of which is mo-

tivated by how existing GDBMSs often perform joins. The latter

two are relatively recent techniques developed in the context of

RDBMSs for many-to-many joins but not yet seen wide adoption.

• Predefined pointer-based joins: Joins in GDBMSs are pointer-based

in nature and predefined to the system as edges
1
. Node records

are joined with their neighbors using system-level integer IDs,

which serve as pointers to look up matching neighbor IDs in an

adjacency list index. This contrasts with value-based nature of

joins in RDBMSs, where tables are often joined with each other

using the values inside columns. Value-based joins are naturally

more general as users can join arbitrary tables. Yet they can

be less efficient because they typically do not use an adjacency

list-like join index and may be on non-integer types, e.g., strings.

• Factorization: Factorization [22, 23] is a technique to avoid data

replication in results of queries that contain joins over many-

to-many relationships. As a simple example, consider joining a

person 𝑝1 with its 𝑘 contacts 𝑝1,1, ..., 𝑝1,𝑘 , which would result in

𝑘 tuples (𝑝1, 𝑝1,1), ..., (𝑝1, 𝑝1,𝑘 ) that replicate the value 𝑝1 𝑘 times.

Such replication becomes severe when queries contain further

many-to-many joins. Factorization avoids such replication by

1
The term predefined was used by Ted Codd in his Turing Lecture to describe the joins

in GDBMSs of 1960s and 1970s that were based on the CODASYL model [12]

2



Figure 2: GRainDB Overview. Features marked as ∗ are our
ongoing and future works.

representing results as unions of Cartesian products, e.g., as

(𝑝1 × {𝑝1,1, ..., 𝑝1,𝑘 }).
• Worst-case Optimal (wco) Join Algorithms: While factorization is

geared toward queries with acyclic joins, the recent worst-case

optimal join algorithms are geared for cyclic join queries over

many-to-many joins. The seminal work of Atserias et al. [10]

observed that traditional binary join plans are suboptimal on

cyclic join queries, which was corrected by the recent wco join

algorithms [21, 29]. Unlike binary join plans that perform joins

pairs of tables-at-a-time, wco join algorithms join multiple tables

one column-at-a-time.

4 GRAINDB OVERVIEW
Figure 2 shows the overview of GRainDB.We are developingGRainDB

as an extension of DuckDB, which is a new open-source colum-

nar read-optimized RDBMS that implements several modern query

processing techniques, such as columnar storage [8], vectorized-

oriented query processing [8], and morsel-driven parallelism [18].

We opted for an analytical read-optimized RDBMS as one of our

goals is to efficiently support graph workloads, which are read

heavy. GRainDB extends DuckDB both internally and through sev-

eral new components, which we next review, highlighting our prior

as well as ongoing work.

4.1 Prior Work: Predefined Pointer-based Joins
Using Sideways Information Passing (SIP)

Our first work on GRainDB [16] focused on extending the internals

of DuckDB to support predefined pointer-based joins to improve

the systems’ performance on many-to-many joins. We briefly re-

view our technique here and refer readers to reference [16] for the

details. We integrated predefined joins into DuckDB by extending

two components of the system: (i) the physical storage and query

processor; and (ii) the indexing sub-system.

• Physical Storage and Query Processor: Users first predefine a
primary-foreign key join from table 𝐹 to table 𝑃 , where a column

of 𝐹 has a foreign key to a column of 𝑃 , using a PREDEFINE JOIN
clause we added to DuckDB’s SQL dialect. This performs an ALTER

TABLE command that inserts an additional 𝑅𝐼𝐷𝑝 column to 𝐹 that

contains for each row 𝑟 𝑓 in 𝐹 the row ID (RID) of row 𝑟𝑝 in 𝑃

that 𝑟 𝑓 points to. RIDs are dense integer-based system-level IDs in

columnar RDBMS that are used to identify the physical locations

of the column values of each row. They are therefore system-level

pointers, similar to node IDs in GDBMSs.

RID columns are used during query processing as follows. If

a query contains a predefined join, say between Person.id =

Contact.p1id, we replace some of the hash join and scan opera-

tors in DuckDB’s default plan as follows. We replace the hash join

operator evaluating Person.id = Contact.p1id predicate with a

modified hash join operator that we call SIPJoin, for sideways
information passing join. We also replace the scan operators for

Person and Contact tables withmodified scan operators (explained

momentarily), that scan RID values into tuples. Given the scanned

RID values, SIPJoin performs the join on integer RIDs instead of

the original id and p1id columns. In addition, SIPJoin can pass

matching RIDs from its build side in a bitmask that can be used by

the scan operator (called ScanSJ, for scan semijoin) on its probe

side to perform a semijoin when scanning tuples. This ensures that

only the tuples that are guaranteed to successfully join are scanned,

which can decrease the scans and probes significantly.

• Indexing Sub-system: A common way to represent many-to-

many relationships between two sets of entities in relational databa-

ses is to have a table𝐶 that contains two foreign keys on two other

(not necessarily different) tables 𝑃1 and 𝑃2, as in the Contact table

in our running example. If the join of 𝐶 with both 𝑃1 and 𝑃2 have

been predefined to the system, users can additionally build a RID
index on 𝐶 on the two extended RID columns 𝑅𝐼𝐷𝑝1 and 𝑅𝐼𝐷𝑝2

(using a BUILD RID INDEX command). This index is analogous to

adjacency list indexes in GDBMSs and is stored in an adjacency list

format. RID indexes can be used by SIPJoin to generate further

information to pass when a query joins 𝑃1 or 𝑃2 with 𝐶 .

Example 1. Figure 3 shows example instances of the Person
and Contact tables when two joins are predefined: Person.id =
Contact.p1id and Person.id = Contact.p2id. This results in an
extended Contact table that contains two RID columns, R1 and R2,
that contain the RIDs of the person tuples that match p1id and p2id
columns, respectively. For example the second tuple 𝑡2 in Contact
has R1 value 2 because 𝑡2.p1id references 303 (Mahinda’s ID), which
has an (implicit) RID value 2 in the Person table. Now consider the
following SQL query:

SELECT P2.name FROM Person P1, Contact C, Person P2
WHERE P1.id = C.p1id AND P2.id = C.p2id

AND P1.name = 'Mahinda'

This query asks for the name of the first-degree contacts of Mahinda.
Figure 3c is an example plan in GRainDB for this query using SIPJoin
and ScanSJ operators. For example, the bottom SIPJoin receives the
RID of the tuple 𝑡2 from Person where 𝑡2.𝑅1 is 2 (corresponding to
Mahinda’s RID). Using the RID index, the RID of the only matching
tuple from Contact is generated (with RID 1) and passed to the probe
side ScanSJ as a bitmask. ScanSJ then performs a semijoin and scans
only the tuples whose RIDs are in the bitmask.

Our prior work [16] presents extensive experiments demonstrat-

ing the performance benefits of enhancing DuckDBwith predefined

joins on both graph and relational workloads with many-to-many

joins, e.g., the LDBC social network benchmark [9]. Predefined

3



(a) Example tables. (b) Example RID index. (c) Example join plan.

Figure 3: (a) Example instances of Person and Contact tables. The Contact table contains the two RID columns, R1 and R2 which
are materialized after two joins to the Person table predefined on p1id and p2id columns, respectively. (b) The RID index on

Contact. (c) An example join plan for the query in Example 1 that uses SIPJoin and ScanSJ operators.

joins is purely a relational query processing optimization that is

independent of GRainDB’s graph modeling and querying capa-

bilities. That said, as we next discuss, when users model parts of

their database as a graph, we automatically predefine the joins

implied by the modeled edges and build the necessary RID indexes

in DuckDB. For example, in our running example, of which tables

are shown in Figure 3a, users map the table Person to a node la-

bel vPerson, and define an edge label eContact from vPerson to
vPerson. The edge label is mapped from the table Contact through
two equality joins between Person.ID and Contact.p1id, and be-

tween Person.ID and Contact.p2id, respectively. Automatically,

GRainDB predefines these two joins, which adds two RID columns

R1 and R2 to Contact table for p1id and p2id, respectively. Addi-
tionally, GRainDB creates RID indexes on these two extended RID

columns (R1 and R2).
After the modeling, given a query, we perform a rule-based

query optimization based on DuckDB’s query plan. Specifically, we

recursively traverse DuckDB’s default logical plan and find each

join operator that evaluates a predefined join. Upon finding these

joins, we replace them with our SIPJoin operator, and also replace

corresponding probe-side Scan operators, to which bitmasks are

passed, with ScanSJ.

4.2 Graph Modeling, Querying, and
Visualization

As part of this demonstration paper, we have extended GRainDB

with two components to provide graph modeling, querying, and

visualization capabilities: (i) GRQL; and (ii) a browser frontend.

4.2.1 GRQL. We added further extensions to SQL to define: (i)

nodes and edges; and (ii) path patterns that can seamlessly exist

in the FROM clause with tables to describe joins over the defined

nodes and edges. We refer to this extended SQL as GRQL.

Node and edge label definitions:Weadded two commands: DEFI-
NE NODE LABEL and DEFINE EDGE LABEL, that form our relation-

to-graph transformation language. The former simply maps any

relation in the database to a node label, e.g., the Person table to a

vPerson node label. The latter defines an edge between any two

(not necessarily distinct) node labels V and W, say mapping relations

R𝑉 and R𝑊 , respectively, in two possible ways: (i) as a direct primary

key-foreign key join between R𝑉 and R𝑊 ; or (ii) as two primary key

foreign key joins, one from R𝑉 to a “relationship” table E and the

other from R𝑊 to E. For example, the following command defines

an eContact edge label from vPerson to vPerson nodes through
two joins to the Contact table:

DEFINE EDGE LABEL eContact FROM vPerson V TO vPerson W
ON V.id = Contact.p1id AND W.id = Contact.p2id

Edge definition commands predefine the joins in the edge definition

to DuckDB and build the necessary RID indexes. We store the

defined vertices and edges in DuckDB’s catalog and use it when

compiling path patterns to query plans, as we next explain.

Path patterns: Path patterns visually describe joins between the

tables that were defined in node and edge definitions using node

and arrow syntax. Our syntax draws directly from existing lan-

guages of GDBMSs, such as Cypher, GSQL, or PGQL. Path pat-

terns can include syntax to describe fixed-length joins, such as

(a:vPerson)-[:eContact]->(b:vPerson), or two types of recur-
sive joins: (i) variable-length joins that provide a minimum and

maximum lengths on the joins/paths; or (ii) transitive closure of

a join using the Kleene star syntax. For example, in the pattern

(a:vPerson)-[:eContact*2..5]->(b:vPerson), variable 𝑏 de-

notes 2 to 5 degree contacts of nodes matching variable 𝑎.

Path patterns can appear in the FROM clause to form queries

that seamlessly query graphs and relations.

Example 2. Consider a query that asks for the top 50 highest risk
people 𝑏 who have the most pathways to someone 𝑎 infected with
the virus, where 𝑎 lives in one of the zipcodes in high risk regions of
Waterloo. We define a pathway as a 1 to 3-length contact path from 𝑎

to 𝑏. This query can be expressed in GRQL as follows:

SELECT b.name, count(*) as numPathways
FROM (a:vPerson)-[:eContact*1..3]->(b:vPerson), zipcode
WHERE a.test_result='+' AND a.zipcode=zipcode.code AND

zipcode.region IN HighRiskZipcodes
ORDER BY numPathways DESC LIMIT 50

The omitted HighRiskZipcodes is an inner (pure) SQL query that
computes the highest risk zipcodes based on the number of infections

4



in that zipcode. The query seamlessly joins a path pattern with the
Zipcode table.

To compile queries with path patterns, we modified DuckDB’s

parser to generate an ast that recognizes path patterns. In addition,

we modified DuckDB’s planner, which takes the output ast of the

parser and generates an initial logical plan, to rewrite fixed-length

paths as default join trees and variable-length paths as recursive

common table expressions (CTEs). We did not modify the rest of

the pipeline: as before DuckDB generates a default optimized plan

from the initial plan and if any part of the plan can benefit from

predefined joins, we replace necessary hash join and scans (possibly

inside the subplans evaluating recursive CTEs) with SIPJoin and
ScanSJ operators.

4.2.2 GRainDB Browser Frontend. We extended GRainDB with a

browser frontend, which contains two visual components: (1) an

interactive Graph Schema Designer (GSD); and (2) an interactive

Graph Visualization Panel (GVP), shown in Figure 4. GSD allows

users to model their graphs visually and interactively instead of

typing our node and edge definition commands. On the left panel

of GSD users have access to the schema of their relational database.

Users drag and drop any table’s schema to define a node label. Users

then draw edges between the defined node labels to define edges.

The joins defining the edges are described by selecting join columns

and the edge table (if any) in drop down menus.

GVP is a frontend to ask queries in GRQL to GRainDB and

visualize the results both as tables and as graphs when possible.

Specifically, if projections in the SELECT clause contain variables

that were used to describe nodes and edges in path patterns, GVP

can visualize these outputs in an interactive node link diagram, as

shown in Figure 4b. Users can click on nodes to expand the nodes to

their neighborhoods, which are obtained by further GRQL queries

to GRainDB.

4.3 Ongoing and Future Work
Our implementation of predefined joins inside DuckDB and GRQL

and our browser frontend partially fulfills our goal of developing

an extended RDBMS that is highly performant on graph workloads

and one that provides a set of graph modeling, querying, and visu-

alization capabilities to users. We next describe our ongoing and

future work.

Factorization: In ongoing work we are modifying DuckDB’s query

processor to process queries in a factorized format instead of blocks

of flat tuples. Several works have proposed approaches to integrate

factorization into query processors both in the context of RDBMSs

and GDBMSs. The FDB system [11] describes a relational query

processor that consists of operators that take as input tries and

output tries. This architecture materializes full outputs and is in

conflict with DuckDB’s vectorized and pipelined architecture. In a

recent work done in our group, we described an implementation of

factorized query processor, called list-based processor in the context

of the GraphflowDB GDBMS [15], that is also developed in our

group. Although this is a pipelined processor that uses operators

similar to DuckDB’s, it is designed assuming an in-memory system

and implements a limited form of factorization where only the

last edges of paths can be factorized. We are investigating ways

to develop a query processor that is as general as FDB but uses

DuckDB’s vectorized and pipelined processor.

WCO Joins: Several works have implemented wco join algorithms

in the context of both RDBMSs and GDBMSs. In the context of

GraphflowDB, we have proposed techniques that assume the ex-

istence of presorted indices and and use fast merge-sort like join

operators [17, 19, 20]. This has a performance advantage during

query evaluation but slows down updates. Reference [14] instead

integrates wco joins in the Umbra system using hash-indexes that

are built on the fly. As future work, we plan to integrate WCO joins

into DuckDB’s predefined joins using an approach that sorts RID

indices on the fly and uses merge-sort like operators and study the

tradeoffs of this design compared to prior approaches.

Semi-structured Sparse Data Another challenge is how to inte-

grate support for semi-structured attributes in DuckDB. A simple

but not performant approach would be to add a default column to

each table that stores a blob that encodes unstructured properties

and parse this blob during query processing. Whether this capabil-

ity can be provided more efficiently and without making the system

very complex is an interesting future direction.

5 DEMONSTRATION SCENARIOS
Our demonstration illustrates three aspects of GRainDB: (i) the ease

of development of an application using GRainDB’s hybrid graph

relational modeling capability and GRQL language; (ii) the benefits

of enhancing an RDBMS with graph visualization capabilities; and

(iii) GRainDB’s query plans that perform our SIP- and semijoin-

based evaluation of predefined joins.

GRainDB Application Development: Our first scenario walks

attendees through the steps of developing a reporting application

for Waterloo Public Health Services (WPHS) using GRainDB. The

application runs routine queries at the end of each day to generate

daily reports for managing the pandemic at WPHS. The queries

generating the reports will include those that are easily written in

SQL, as well as those that can benefit from GRQL’s path patterns.

Using the Graph Schema Designer, the attendees will first vi-

sually model the Person and Place relations as nodes and then

define the eContact and eVisit edges between them (without go-

ing into the details of the predefined joins and created RID indices

in the underlying DuckDB). We will then go to the query panel in

GRainDB’s browser frontend to show attendees the queries written

both in pure SQL and GRQL to highlight the differences and ease

of using specialized syntax for graph patterns. For example, one

report will generate the list of high risk individuals based the num-

ber of pathways they may have to infected people. We will show

that this can easily be done with the GRQL query in Example 2

that seamlessly joins recursive path patterns with tables and uses

selections on inner SQL queries.

GRainDB Graph Visualization: Our next scenario demonstrates

the benefits of visualizing parts of a relational database in the form

of a graph. Our setup will be a contact tracing agent at WPHS

who has been given a report on an individual Mahinda who has

tested positive but reported no one else during their interview

who was positive and has not visited a place recently. The agent

was asked to analyze how the virus may have spread to Mahinda.

The agent uses the graph visualization capability of GRainDB’s

GVP. On the frontend we will ask a simple GRQL query to select

5



(a) GRainDB Schema Designer (GSD). (b) GRainDB Visualization Panel (GVP).

Figure 4: GRainDB Browser Frontend.

Mahinda’s record as a node as in Figure 4b. This displays Mahinda’s

record as a node and immediately gives the attendees a graph view

on the database. The attendees will click on Mahinda’s node to

see their direct contacts, Carmen and Tamer, neither of whom are

infected (and no place nodes, since Mahinda has not visited places

recently). Attendees will expand Carmen and Tamer to see their

neighborhoods. When expanding Tamer’s neighborhood, they will

notice that Tamer has recently visited a night club, which upon

further expansion will reveal many infected visitors. Through this

exploratory graph analysis (but performed on top of an RDBMS),

the attendees will formulate the hypothesis that Tamer may be an

asymptomatic person who has spread the virus to Mahinda.

GRainDB’s Predefined Joins: The goal of our last scenario is

to demonstrate GRainDB’s query plans that implement sip-based

predefined joins. We first describe attendees how GRainDB prede-

fines the implicit joins defined for eContact and eVisit edges and
builds the RID indices in the underlying DuckDB. The attendees will

then issue and profile queries that contain these predefined joins

by turning our predefined join optimization on and off through

a flag we have in GRainDB. Turning the optimization off returns

DuckDB’s default plan, i.e., without replacing hash joins and scans

with SIPJoin and ScanSJ operators. Our queries will include fixed-
length path queries as well as recursive ones. We will compare the

vanilla DuckDB plans and GRainDB plans and show the bitmasks

that are passed from SIPJoin operators to ScanSJ operators.

6 ACKNOWLEDGMENTS
Guodong Jin’s work is supported by NSFC grant No. U1711261.

REFERENCES
[1] 2021. AvantGraph. http://avantgraph.io

[2] 2021. DuckDB. https://duckdb.org

[3] 2021. GRainDB. https://github.com/graindb/graindb

[4] 2021. Gremlin Query Langage. https://tinkerpop.apache.org/

[5] 2021. Neo4j. http://neo4j.com

[6] 2021. Neo4j Bloom. https://neo4j.com/product/bloom/

[7] 2021. TigerGraph. http://tigergraph.com

[8] Daniel Abadi, Peter Boncz, Stavros Harizopoulos Amiato, Stratos Idreos, and

Samuel Madden. 2013. The design and implementation of modern column-oriented
database systems. Now Hanover, Mass.

[9] Renzo Angles, János Benjamin Antal, Alex Averbuch, Peter Boncz, Orri Erling,

Andrey Gubichev, Vlad Haprian, Moritz Kaufmann, Josep Lluís Larriba Pey,

Norbert Martínez, et al. 2020. The LDBC social network benchmark. CoRR
(2020).

[10] Albert Atserias, Martin Grohe, and Dániel Marx. 2013. Size bounds and query

plans for relational joins. SIAM J. Comput. 42 (2013).
[11] Nurzhan Bakibayev, Dan Olteanu, and Jakub Závodný. 2012. FDB: A Query

Engine for Factorised Relational Databases. PVLDB 5, 11 (2012).

[12] Edgar F Codd. 1982. Relational database: a practical foundation for productivity.

Commun. ACM 25, 2 (1982).

[13] Alin Deutsch, Yu Xu, Mingxi Wu, and Victor Lee. 2018. GSQL 2.0: Seamless

Querying of Relational and Graph Databases. (2018).

[14] Michael Freitag, Maximilian Bandle, Tobias Schmidt, Alfons Kemper, and Thomas

Neumann. 2020. Adopting Worst-Case Optimal Joins in Relational Database

Systems. PVLDB 13, 12 (2020).

[15] Pranjal Gupta, Amine Mhedhbi, , and Semih Salihoglu. 2021. Columnar Storage

and List-based Processing for Graph Database Management Systems. PVLDB 14,

11 (2021).

[16] Guodong Jin and Semih Salihoglu. 2022. Making RDBMSs Efficient on Graph

Workloads Through Predefined Joins. PVLDB 15 (2022).

[17] Chathura Kankanamge, Siddhartha Sahu, Amine Mhedbhi, Jeremy Chen, and

Semih Salihoglu. 2017. Graphflow: An active graph database. In SIGMOD.
[18] Viktor Leis, Peter Boncz, Alfons Kemper, and Thomas Neumann. 2014. Morsel-

driven parallelism: a NUMA-aware query evaluation framework for the many-

core age. In SIGMOD.
[19] Amine Mhedhbi, Pranjal Gupta, Shahid Khaliq, and Semih Salihoglu. 2021. A+

Indexes: Lightweight and Highly Flexible Adjacency Lists for Graph Database

Management Systems. In ICDE.
[20] Amine Mhedhbi, Chathura Kankanamge, and Semih Salihoglu. 2021. Optimizing

One-time and Continuous Subgraph Queries using Worst-Case Optimal Joins.

TODS (2021).
[21] Hung Q Ngo, Ely Porat, Christopher Ré, and Atri Rudra. 2018. Worst-case optimal

join algorithms. JACM 65, 3 (2018).

[22] Dan Olteanu and Maximilian Schleich. 2016. Factorized databases. ACM SIGMOD
Record 45 (2016).

[23] Dan Olteanu and Jakub Závodnỳ. 2015. Size bounds for factorised representations

of query results. TODS 40, 1 (2015).
[24] Mark Raasveldt and Hannes Mühleisen. 2019. DuckDB: an embeddable analytical

database. In SIGMOD.
[25] Michael Rudolf, Marcus Paradies, Christof Bornhövd, and Wolfgang Lehner. 2013.

The graph story of the SAP HANA database. BTW.

[26] Siddhartha Sahu, Amine Mhedhbi, Semih Salihoglu, Jimmy Lin, and M Tamer

Özsu. 2020. The ubiquity of large graphs and surprising challenges of graph

processing: extended survey. VLDBJ 29, 2 (2020).
[27] Yuanyuan Tian, En Liang Xu, Wei Zhao, Mir Hamid Pirahesh, Sui Jun Tong, Wen

Sun, Thomas Kolanko, Md Shahidul Haque Apu, and Huijuan Peng. 2020. IBM

Db2 Graph: Supporting Synergistic and Retrofittable Graph Queries Inside IBM

Db2. In SIGMOD.
[28] Oskar van Rest, Sungpack Hong, Jinha Kim, Xuming Meng, and Hassan Chafi.

2016. PGQL: a property graph query language. In GRADES.
[29] Todd L Veldhuizen. 2012. Leapfrog triejoin: a worst-case optimal join algorithm.

CoRR (2012).

6

http://avantgraph.io
https://duckdb.org
https://github.com/graindb/graindb
https://tinkerpop.apache.org/
http://neo4j.com
https://neo4j.com/product/bloom/
http://tigergraph.com

	Abstract
	1 Introduction
	2 Demonstration Database
	3 The Case for GRainDB
	4 GRainDB Overview
	4.1 Prior Work: Predefined Pointer-based Joins Using Sideways Information Passing (SIP)
	4.2 Graph Modeling, Querying, and Visualization
	4.3 Ongoing and Future Work

	5 Demonstration Scenarios
	6 Acknowledgments
	References

