
Self-Organizing Data Containers
Samuel Madden

madden@csail.mit.edu
MIT CSAIL

Jialin Ding
jialind@mit.edu
MIT CSAIL

Tim Kraska
kraska@mit.edu

MIT CSAIL

Sivaprasad Sudhir
siva@csail.mit.edu

MIT CSAIL

David Cohen
david.e.cohen@intel.com

Intel

Timothy Mattson
timothy.g.mattson@intel.com

Intel Labs

Nesime Tatbul
tatbul@csail.mit.edu

MIT CSAIL and Intel Labs

ABSTRACT
We propose a new self-organizing, self-optimizing, meta-data rich
storage format for the cloud, called a self-organizing data container
(SDC), that enables order-of-magnitude performance improvements
in data-intensive applications through instance-optimization, i.e.,
the adaptation of data representation to exploit both the distribu-
tion of the data and the workload operating on it. Unlike existing
low-level cloud storage formats like Apache Arrow and Parquet,
SDCs capture both data and metadata, like access histories and
distributional statistics, and are designed to be flexible enough to
encompass a variety of modern high-performance representations
for data analytics, including partitioning, replication, indexing, and
materialization. We present a preliminary design for SDCs, some
motivating experiments, and discuss new challenges they present.

1 INTRODUCTION
Historically, DBMSes have adopted a monolithic architecture, with
the system under control of all aspects of data management, includ-
ing data placement, layout, scheduling, allocation of computation
and memory to queries, as well as query optimization and execu-
tion. In the cloud, data services are increasingly disaggregated, with
a reliable storage layer (e.g., Amazon S3) managed by the cloud
provider, file-based data structured data (e.g., Parquet files), often
produced by applications outside the data management layer, and
a variety of high-level interfaces to the data (e.g., SQL, machine
learning applications, data visualization engines). This enables a
separation of concerns, where each layer is managed and scaled
independently, unlike the “shared nothing” designs of conventional
DBMSes where physical nodes that store data are created for each
processing node that operates on this data. The rise in popularity of
data processing systems like Spark [22] is driven by their successful
adoption of this new style of cloud architecture.

While the success of these new systems demonstrates the ad-
vantages of this new way of architecting data-driven applications,
disaggregation leaves a great deal of performance on the table. For
example, when running TPC-H, the disaggregated version of Ama-
zon Redshift, called Redshift Spectrum is at least 8× slower than
Redshift itself [20]. This inefficiency is partly due to the layered
design of Spectrum, which requires it to load data from underlying
S3 files, preventing it from sharing information about data structure
and representation between the storage and query execution layers,
and partly due to the fact that S3 is lower bandwidth and higher la-
tency to local storage. Because important metadata is not preserved
by low-level cloud storage formats like Parquet, data processing
systems operating on such data often lack performance-related

metadata such as histograms, and other statistics that are key to
good performance, preventing them from optimizing layouts for
efficient storage, especially on lower-performance cloud storage
where optimizing access is even more critical.

What is needed is a way to build efficient data systems on the
cloud while maintaining the advantages of disaggregation. Our key
insight is that cloud data systems can be much more efficient if they
have a storage layer rich enough to support modern data storage op-
timizations that are at the heart of high performance data analytics
systems, including indexing, flexible multi-dimensional partition-
ing, compression, and an ability to adapt to the workloads that run
on them. To this end, we propose a cloud-optimized storage format,
called self-organizing data containers (SDCs). By self-organizing we
mean that the container has the flexibility to take on many possible
layouts, and that it adapts to the clients’ workload as they interact
with it. Unlike raw Arrow [1] or Parquet [4] files, SDCs are meta-
data rich and capture data distributions and access patterns, and
unlike systems that implement transactional operations on cloud
object stores like Delta Lake [5], Hudi [2], and Iceberg [3], SDCs
can represent complex storage layouts encompassing different par-
titioning and replication strategies.

Specifically, by tightly coupling meta-data, including distribu-
tional statistics, indexes, and access patterns, with the data itself,
SDCs naturally contain the information needed to support effi-
cient data access. Most cloud storage systems view data objects
as immutable; however, they confound immutability of the logi-
cal contents of blocks (i.e., the set of records stored in each file)
with the physical layout of data (i.e., whether records are column-
oriented, compressed, etc). In SDCs, different physical represen-
tations, including summaries, aggregates, different columnar and
row-oriented layouts, and data layout optimizations for modern
hardware (GPU/CPU) can be represented in a single data object,
and those layouts can be transformed and adapted over time as
the access patterns shift. Hence, SDCs physically mutate over time,
“self-organizing” into the optimal layout, even if the data itself re-
mains immutable. Our vision towards such self-organization is
influenced by our work on instance-optimized systems over the
past several years [8–10, 13, 15, 18], where we have shown that by
building data layouts that adapt to both the data and the queries
that run on them, dramatic performance gains are possible.

Once we have SDCs, many existing systems, including conven-
tional relational databases, parallel data processing frameworks,
and ML systems can be easily adapted to use our new data format.
By building on our prior work on cross-layer optimization [7, 16, 19]

1

and instance-optimized storage systems, we believe we can con-
struct next generation cloud-processing systems on SDCs that pre-
serve the flexibility of conventional systems while offering order of
magnitude performance gains that rival the performance of mono-
lithic systems running on bare-metal hardware.

In this paper, we describe a preliminary design for a cloud-based
SDC and its performance advantages. We also highlight a num-
ber of interesting research directions that SDCs present. Specific
contributions include:

• We describe how SDCs will enable cloud-based storage sys-
tems to take advantage of modern instance-optimization
techniques for data storage and layout.

• Wedescribe a preliminary implementation of SDCs, designed
to be stored on immutable cloud storage. This implementa-
tion is “serverless”, in that it requires only client-side libraries
to mediate access, while still allowing SDCs to adapt their
layout over time. The key idea is to engage clients in the
incremental transformation of data as they access it, in a
way that ensures clients see a consistent view of the data.

• We provide motivating experiments showing the advantage
of instance-optimization.

• We describe a number of research directions for SDCs.

2 SDC OVERVIEW
At its core, an SDC is a physical representation of a relational data
model. Clients access the SDC through a client-side library that
exposes typical operations that “data frame” APIs like Pandas and
Spark [22] implement: filters, projections, grouping and aggrega-
tion, and joins. SDCs are designed to be optimized for particular
access paths — for example, they may be partitioned or sorted on a
particular combination of attributes — which are exposed through
metadata, so clients are able to easily identify and take advantage
of those optimized access paths. In particular, clients do not need
to configure these optimized access paths themselves; SDCs are
designed to automatically create and modify these access paths
over time based on the client’s interactions with the SDC through
the client-side library.

One key goal of SDCs is that access to the SDC should not be
mediated by a cloud service: i.e., the client-side library contains all
of the logic to read the SDC. Beyond simple read access, we also
envision that each client library will publish both metadata about
the SDC, such as (a sample of) the history of operations it posted
over it, as well as make optimizations to the structure of the SDC
designed to improve its performance, such as creating materialized
views, replicating portions of the SDC that correspond to frequently
queried subsets of the data, creating a (multi-)dimensional index
and storage layout or replicating the data within the SDC file. This
is done incrementally as a part of the operations clients perform
on the data (similar to database cracking [12]).

An SDC comes in two flavors, one optimized for in-memory
storage and one optimized for disk/cloud storage (see Figure 1). This
is in contrast to Apache Arrow, which is focused on in-memory
analytics, or Parquet, which is primarily a format for serializing
tabular data to disk. Both in-memory and cloud-storage SDCs can
be used simultaneously by several clients. Most commonly, an in-
memory SDC is “backed” by a cloud storage SDC, but it doesn’t

Machine 3 Machine 4Machine
1

Machine
2

Memory

Client3

SDC lib

Client4

SDC lib

Client5

SDC lib

Cloud - SDC File1

Cloud Storage

Cloud - SDC File2 Cloud - SDC FileN

In-Memory -
SDC File1

Client1

SDC lib

Client2

SDC lib

Memory

Client6

SDC lib

Client7

SDC lib

Client8

SDC lib

In-Memory - SDC File2In-Memory -
SDC File2

Data File a
Data File b

MetaData File

Data File a
Data File b
Data File c

MetaData File

Data File a
MetaData File

Figure 1: SDC Architecture: Client 1 and 2 access the same
SDC file on cloud storage. Client 3 and 4 work on the same
in-memory SDC file 2, which is backed by a cloud SDC file.

have to be. In the case where multiple in-memory SDCs are backed
by the same cloud-storage SDC (such as File 2 in Figure 1), each
in-memory SDC can be organized differently in a way that most
suits their respective clients’ access patterns.

There are several possible physical representations for a given
SDC. For example, an SDC can be a single mutable file (to sup-
port metadata additions and transformations) or a collection of files
(some immutable, like the base data, some mutable for metadata and
reorganizations), or even a collection of immutable files for storage
on S3. However, in all cases the client/application will perceive it as
a single file (like in Arrow). We describe how an implementation of
SDCs on top of purely immutable storage would work in Section 3
below. Then, Section 4 provides some preliminary numbers show
that SDCs can offer significant performance gains. Finally, Section 5
describes several open problems in SDCs, including different possi-
ble re-organizations and how clients coordinate to perform dataset
optimization without a centralized coordinator.

3 STORING SDCS ON IMMUTABLE STORAGE
Figure 1 shows how several clients access a collection of SDCs. Note
that there are no centralized services nor communication between
them. Hence, all instance-optimizations have to be synchronized
through the file itself.

In this section we describe how this is achieved. Namely, we
describe how SDCs can be stored as a collection of objects on an
immutable cloud-storage system like S3 (which only supports file
upload, rename, and delete – i.e., no updates or appends). Our design
is focused on providing the ability to evolve the physical layout
of the SDC over time without requiring any intermediate service
to mediate client access (i.e., libraries running on clients directly
access the SDC files in cloud storage). This introduces challenges
related to ensuring that clients see a consistent view of the data,
and that they don’t perform concurrent conflicting operations.

This design assumes that all clients have write access to the
directory in which the SDC resides; clients that lack write access
can still read SDCs but cannot participate in the adaptation protocol.
While this certainly incurs additional overhead, previous work [6]
has shown that it is possible to do even on S3. In this design, an

2

Dataset Columnhash Rowhash

D 0xda7aba5e 0x12345678

D 0xda7aba5e 0x92345678

D 0xda7aba5e 0x82345678

D 0xda7aba5e 0x72345678

D 0xda7aba5e 0x62345678

D 0xda7aba5e 0x52345678

D 0xda7aba5e 0x42345678

Quadtree Index on Attributes a and b of Dataset D
Files representing dataset Da

b

Figure 2: SDC Index Example

SDC consists of a number of different block types, including data
blocks, index blocks, meta-data blocks, and lock files.

3.1 Data Blocks
Each SDC is represented as a collection of data blocks in storage,
each stored as a different file. Blocks are read-only, variable sized,
and can contain different subsets of columns. They may overlap
(i.e., contain some of the same rows and columns) with other blocks.

Internally a data block is column-oriented. Each row has a spe-
cific row-identifier (rowid), and each block contains a rowid column
and one or more data columns. Data columns can support standard
types, including numeric and variable length objects such as string.
Variable length objects are dictionary encoded, and dictionaries are
separately stored in each data block. Data blocks are identified by
the dataset id, a 128 bit hash of the concatenation of the column
names (the column hash), and a 128 bit hash of the concatenation
of the rows and rows in the block (the row hash), respectively.

Although not strictly required, most SDCs will contain a primary
replica, which is a set of data blocks horizontally partitioned on
rowid that contain all columns in the SDC.

3.2 Index blocks
Index blocks contain the structure of indexes that make it possible
to find blocks of an SDC. All live SDC data blocks are referenced by
an index block. An index block simply maps from logical ranges of
the dataset to data files on the storage system. For example, Figure 2
shows how a quad-tree index might be implemented. The index
block contains the extents of each cell in the quad tree (in terms of
the attributes a and b), along with a pointer (filename) to the data
block containing those records on storage.

We discuss several different types of indexes that SDCs can sup-
port below, including multi-dimensional space partitioning indexes
like qd-tree [21] and Tsunami [10], as well as partial replication.
One common index type is a sparse row index on the primary
replica, which maps from contiguous rowid sets to the blocks of
the replica. We call this the primary replica index.

3.3 Discovering the current state of an SDC
When a client wants to read a part of the SDC, it first finds all of
the index blocks for the SDC, and then chooses the index it prefers
to access the rows it wants to read.

Index blocks are stored in a well-known subdirectory of the
SDC, making it easy to discover all of the indexes. Since indexes
are expected to be mostly sparse (i.e., pointers to large contiguous

data blocks, rather than pointers to individual records), they will
be small, quick to read, and easy to keep in client memory.

Since most SDCs will have a primary replica index, a default
access method is to use this index to discover all of the primary
replica blocks and perform a sequential scan of the data through
those blocks.

3.4 Meta-data blocks
Clients add meta-data blocks summarizing access patterns and dis-
tributional statistics of the blocks as they read and write them.
Metadata blocks are essentially annotations that indicate the parts
of the SDC that clients read, or derived statistics they have calcu-
lated over the SDC. For example, a metadata block might specify
that a client C scanned a range 𝐴1 [0] → 𝐴1 [150], and might in-
clude a histogram for the attribute 𝐴1. Statistics metadata might
include histograms for a particular column or columns. We discuss
in Section 3.6 how several metadata blocks can be consolidated into
a single metadata block.

3.5 Evolving the contents of an SDC
The most common way to evolve an SDC is to create a new index
on it. To create a new index, a client simply uploads any data blocks
for the index, and then finally uploads the index blocks.

We expect that a common way to evolve an SDC will be to create
new indexes that slightly modify existing indexes. For example,
in the quadtree shown in Figure 2 at some point a client might
decide to split the lower-left quadrant into four blocks, because,
for example, it finds that it is often performing highly selective
reads of small portions of this region. To do this, it simply creates
four new data blocks for the four quadrants, and creates a new
index referencing all of the old blocks from the three unmodified
quadrants as well as the new four blocks for the lower-left quadrant.

The key challenge is that over time data blocks will accumulate
and storage use will grow, so we need a way to reclaim space by
removing unused indexes and the data blocks they reference.

3.6 Reclaiming Space
To reclaim storage, a client needs to first determine that it wants
to remove some data, e.g., by using the meta-data blocks from the
SDC to observe the recent accesses to the data set, and then make
changes to the structure itself. Specifically a common operation is
to delete an index and all of the data blocks that are accessed only
by that index. Because other clients may be using the index at the
time a client decides to delete it, a protocol is needed to prevent
this from happening. Another common operation is to consolidate
several meta-data blocks or histograms into a single block, so that
clients have to read fewer files to access metadata.

A key observation in this protocol is that for most data sets,
especially on cloud storage, space reclamation does not need to be
done particularly quickly, because storage is essentially unlimited
andwasted space is only paid for by the hour. Hence, an SDC defines
a parameter, the maximum index cache duration (MICD), which is
the maximum amount of time a client will retain a reference to an
index and its data blocks in memory before re-loading from storage.
Given the MICD, deletion work as follows.

3

First, a client𝐶𝐷 that intends to delete an index creates a deletion
intent file for the index, marked with a deletion timestamp when the
deletion will happen. The existence of such a file indicates that an
index is scheduled for deletion; the timestamp is set to the current
time plus the MICD.

Then, when other clients read from the SDC, they will ignore
any indexes for which a deletion intent exists. Clients which have
the index in memory or are currently reading from it can continue
to do so as for up to MICD time after they first read it. After the
MICD timeout elapses they will have to refresh the indexes from
that SDC. If an index they were using is scheduled for deletion they
will have to choose a different access method.

Finally, when a client (not necessarily 𝐶𝐷) discovers that a dele-
tion intent exists for an index with a timestamp greater than the
deletion timestamp on the intent it can safely remove the index and
the deletion intent.

4 PRELIMINARY EVALUATION OF SDCS
To demonstrate the potential of SDCs, we built a prototype imple-
mentation of a SDC1. Our prototype lacks many of the features
described in this paper, but provides the ability to encode a dataset
as a set of blocks laid out using either range partitioning or qd-
trees [21]. Blocks are stored as Apache Parquet files, either on local
disk or on cloud storage. We have built a simple API that allows
clients to read a subset of the SDC data by applying a projection over
the columns and a filter over the rows, and that records metadata
about the read operations as they happen. Clients can periodically
reorganize the SDC by calling an explicit layout optimize operation.

To evaluate SDCs, we used four public datasets and associated
real-world query logs from an analytics dashboard. The datasets are
a financial contributions dataset, a flights dataset, a geo-spatial
dataset of NYC taxi rides, and a dataset of geo-coded tweets. The
queries consist of single-table range queries that perform a filter
and projection over multiple attributes (for example, selecting a
date range and a latitude/longitude bounding box in the taxi or
tweets data.) We believe these datasets are representative of the
types of data and queries SDCs will be used for.

4.1 SDC on local disk
We first evaluate the performance of SDCs when all data is stored
on local disk. We ran on a c5.9xlarge EC2 machine with 72GB RAM.
For each dataset, we compare SDCs in three states: (1) with no
layout optimizations, so the entire data is stored in a single Parquet
file, (2) with range partitioning over the optimal column for each
workload, so that data is stored in multiple Parquet files, and (3)
with the layout optimized using qd-tree after observing a fraction of
the workload, so that each qd-tree block is stored in its own Parquet
file. We furthermore store partitioning metadata (e.g., the qd-tree
index) and a query log on disk. Query execution is single-threaded,
and for each query, we read the Parquet files (and possibly also the
partitioning metadata) from disk and materialize the desired data
as an Arrow table. Figure 3a shows the total time to run all queries
in each workload. The optimized version of SDCs achieves up to
10× faster query times than SDCs with range partitioning.

1The source code will be made available at http://dsg.csail.mit.edu/mlforsystems#open-
source.

4.2 Delta Lake
To compare the speedup achieved by SDC’s layout optimization
against optimized layouts in production systems, we also ran ex-
periments over the same data using Delta Lake [5], a popular stor-
age layout that adds support for updates and z-ordering on top
of Parquet. We used Databricks Delta Lake version 9.1 LTS on a
single-node cluster with a c5d.4xlarge EC2 machine. Delta Lake au-
tomatically stores a table as multiple Parquet files on S3. To evaluate
Delta Lake for data on disk, we used Delta cache to pin the tables to
local disk. Figure 3b shows the performance of Delta Lake with data
stored on disk in three states: (1) with no layout optimization, (2)
with data sorted over the optimal column for each workload, and (3)
using the Delta Lake OPTIMIZE ZORDER BY command, which sorts
the data according to a z-order over manually selected columns.

These results show that Delta Lake’s layout optimization only
outperforms a single-column sort layout by up to 1.24×, which
is much less than the performance benefit of SDC’s layout opti-
mization. The reason for this difference is that although SDC’s qd-
tree index and Delta Lake’s z-order use roughly the same columns
(qd-tree automatically determines the important columns, and we
manually selected the optimal columns for Delta Lake’s z-order),
the qd-tree’s layout is more precise, since it creates blocks with the
specific goal of minimizing data access for the observed workload.

4.3 SDC on cloud storage
We have also performed preliminary evaluations of SDCs stored as
objects on AWS S3, which are read into the memory of the EC2 ma-
chine during query processing. In this setting, SDCs with optimized
layout achieve up to 3× faster query times than SDCs with range
partitioning. The smaller performance benefit of layout optimiza-
tion on S3 when compared to disk is due to the higher overhead
of accessing data from cloud storage—as a result, SDC is forced to
use larger block sizes when storing data on S3, which means that
for the same dataset, SDC’s optimized layout is coarser-grained
on S3 than it is on disk. We believe that with further implemen-
tation optimizations and parallelism support, we can efficiently
support finer-grained layouts and therefore further improve SDC’s
performance on cloud storage.

5 RESEARCH DIRECTIONS FOR SDCS
So far, we described the high level idea of SDCs and showed the
advantages of optimized storage layouts. In this section, we focus
on some of the new problems and opportunities that SDCs present.

5.1 Variety of Physical Layouts
A principal motivation for SDCs is that they can encompass a vari-
ety of physical layouts, several of which we described above and
have explored in our previous work [8, 10]. However is a large
additional space of physical layouts to explore, including partial
materialization (e.g., of common queries or subqueries), or repli-
cation of certain data elements to support access to blocks of data
without needing to read unnecessary subsets of data.

We believe replication offers a potential for a significant gen-
eralization of previous work on efficient layouts [10]. Consider,
for example, Figure 4a. Here, different queries that predicate on
attributes X and Y are shown as rectangles over the domain of the

4

http://dsg.csail.mit.edu/mlforsystems#open-source
http://dsg.csail.mit.edu/mlforsystems#open-source

Figure 3: SDC’s layout optimization achieves up to 10× speedup over optimal range partitioning. On the other hand, layout
optimizations for production system such as Databricks Delta Lake, which uses z-ordering, are not as effective.

(a) Dataset and Workload (b) Layout w/ 0.5X replication budget

Figure 4: Figure 4a shows a multi-dimensional dataset and
workload with 2 columns X and Y. Gray dots represent tu-
ples; colored rectangles represent queries. Figure 4b shows
a layout with enough budget to replicate half the table. The
right half of the data space is replicated.

variables. From the figure, it’s clear that different queries select
different ranges of each attribute and cover different parts of the
data space. Without replication, the storage layout would need to
account for the average query; in the upper- and lower-right quad-
rants this means that the layout would not be optimal for the red,
green, or blue queries, since they have such different shapes. How-
ever, by replicating 50% of the data, each type of query could have
access to an optimal layout. Figure 4b show such an optimal design;
here the yellow dashed boxes correspond to physical partitions of
the SDC. The left (full) replica contains partitions optimized for the
red queries, while the upper-right replica contains optimal parti-
tions for the green queries, and the lower-right contains optimal
partitions for the blue queries. Designing algorithms that are able to
find such optimal partial partitioning layouts presents an intriguing
challenge, since the space of all possible replicas is exponential in
several dimensions of the problem.

5.2 Hybrid Layouts & Novel Hardware
As noted above, we envision that SDCs will have both a persistent
(on disk/cloud storage) and in memory component, and that many
clients will load data into memory and then further optimize their
layouts for efficient access. One interesting direction for SDCs is
to explore optimized layouts for novel hardware, such as GPUs
and NVRAM, such as Intel Optane®. These devices have different
random access latencies and are optimized for different sized blocks
than either RAM, S3, or Flash drives. Further, it may be helpful
to have SDCs encompass replicas that are optimized for different

types of hardware, if clients with such specialized hardware are
frequently accessing data.

5.3 Incremental changes
It’s possible that SDCs may be created with optimal layouts at the
outset. However, since the workload may not be known in advance,
it’s useful to be able to adapt the storage of the SDCs over time,
using algorithms like those described in Section 3. However, it’s
unlikely that one would re-write an entire dataset in one pass,
particularly if we rely on clients to make incremental changes
to the dataset. Hence, a key challenge to is identify algorithms
that incrementally re-organize data as clients access it, similar to
database cracking [12], but focused more on re-partitioning the
actual data storage rather than optimizing the structure of indexes
over time. Although this idea has been partially explored in prior
work [9, 18], developing incremental transformation schemes for
multi-dimensional indexing and partial replication settings, and in
a way that does not place undue burden on any one client, is an
important area for investigation.

In addition to developing algorithms that describe how to per-
form incremental re-organization, another key challenge is devel-
oping policies to determine when to reorganize. A straightforward
policy is to react to the recent history of access patterns (e.g., reor-
ganize if the past day’s access patterns are significantly different
from the average pattern over the preceding week), but this policy
may react too slowly to sudden access pattern changes or may
falsely react to random noise. A proactive policy could schedule
incremental changes in anticipation of future changes in the work-
load, but this requires accurate forecasting of the future workload,
which is an active area of research [14].

5.4 Auto-optimization
SDCs can encompass multiple optimized physical layouts and ac-
cess methods, including coarse indexes for partitioning schemes
and several different replicas. Client libraries need to embed logic
for choosing what scheme to use when answering a query, which
requires loading the metadata and index blocks and using tradi-
tional query optimization methods. A key challenge here is that
the metadata may be spread across many blocks, and it may not
be practical for a client to read all of them prior to processing any
requests. Hence, clients will need to asynchronously fetch metadata,
and will likely have a partial and possibly out of date view of it,
which they will need to use to answer queries as best as possible.

5

In addition, because clients are active participants in the reorga-
nization process, they need to select which transformations to make
to the data next. Since many transformations are possible, and will
be done incrementally by different clients, methods to coordinate
the behavior of several clients so they converge towards an optimal
design are needed. One possible way to achieve this is via additional
metadata blocks that express partial re-organizations that are in
flight, so other clients can continue them. A natural way to express
such optimization objects is through reinforcement learning, but
spreading this across multiple clients raises the interesting prospect
of a shared, distributed RL framework.

One critical part of any auto-optimization scheme is the opti-
mization objective. Prior work on self-organizing data layouts often
optimize to minimize average query time, but is also possible to
optimize for objectives such as space usage (when maintaining a
fixed SLA for query latency) and monetary cost (especially when
storing on the cloud). Each optimization objective likely requires a
different optimization algorithm.

5.5 Encryption and Access Control
Finally, we envision that SDCs can encompass a variety of other
cloud-storage use cases. We are particularly interested in using
SDCs to public as a well private data, where only particular au-
thorized clients can read or modify the SDC. The typical way to
achieve this would be to encrypt the SDC use a symmetric-key
encryption scheme, and then embed a list of authorized users (e.g.,
as a set of public keys) with the SDC. Users who want to read the
SDC would submit a signed request to some security service, which
would authenticate the user and then securely send the encryption
key to the client to allow it to read the data. Unfortunately, this
requires a server, which is something we would like to avoid.

In cryptography, allowing a single publisher to deliver encrypted
data to a large number of clients with whom it wants to share data is
known as broadcast encryption [11], and was originally developed,
e.g., to allow media companies to share encrypted data with only
authorized subscribers or devices over one-way channels like cable
TV. However, SDCs as we have described them are not a pure
one-way communication channel, as different clients will need to
modify the data over time. One possible way to resolve this is to use
broadcast-encryption to encode a symmetric key that can be used to
encrypt/decrypt the SDC, so that only authorized users can read the
dataset. However, this introduces the possibility that this single key
could leak and risk the forward secrecy of the dataset. Research is
needed to identify schemes that provide the best tradeoffs between
data protection, forward secrecy, and flexible access control.

We also plan to investigate whether it is possible to extend this
model to encryption schemes that support direct operations, like
the schemes used in CryptDB [17], for example, order-preserving
encryption which supports subsetting on encrypted data without
reading or decrypting the entire dataset.

6 CONCLUSION AND DISCUSSION
We presented our vision for self-organizing data containers (SDCs),
a storage format designed to allow disaggregated, cloud-based data
processing systems to take advantage a number of storage tech-
niques, such as materialization, replication, and multi-dimensional
partitioning and indexing. We presented an approach that allows

SDCs to evolve their physical layout via client-side interactions
with the data, even when data is stored on immutable storage like
Amazon S3. We also presented a number interesting challenges that
the SDC design presents, including new challenges around storage
layouts, incremental data optimization, and encryption and access
control without a centralized key management system.

Applicability of SDCs. Given SDCs, we believe a number of
data-intensive applications could benefit – any application that
currently uses storage formats like Parquet or Arrow could easily
be reconfigured to used SDCs, including database systems like
Spectrum, cloud data processing frameworks like Spark, or a variety
of data and ML platforms that are increasingly relying on these
data formats for data exchange and serialization.
Acknowledgements. This research is supported by the MIT Data Systems
and AI Lab (DSAIL) and by NSF IIS 1900933.

REFERENCES
[1] 2021. Apache Arrow. https://arrow.apache.org/docs/.
[2] 2021. Apache Hudi. https://hudi.apache.org/.
[3] 2021. Apache Iceberg. https://iceberg.apache.org/.
[4] 2021. Apache Parquet. https://parquet.apache.org/documentation/latest/.
[5] 2021. Delta Lake. https://delta.io/.
[6] Matthias Brantner, Daniela Florescu, David A. Graf, Donald Kossmann, and Tim

Kraska. 2008. Building a database on S3. In ACM SIGMOD. 251–264.
[7] Andrew Crotty, Alex Galakatos, Kayhan Dursun, Tim Kraska, Ugur Çetintemel,

and Stanley B. Zdonik. 2015. Tupleware: "Big" Data, Big Analytics, Small Clusters.
In Proc. CIDR.

[8] Philippe Cudré-Mauroux, Eugene Wu, and Samuel Madden. 2009. The Case for
RodentStore: An Adaptive, Declarative Storage System. In Proc. CIDR.

[9] Jialin Ding, Umar Farooq Minhas, Badrish Chandramouli, Chi Wang, Yinan Li,
Ying Li, Donald Kossmann, Johannes Gehrke, and Tim Kraska. 2021. Instance-
Optimized Data Layouts for Cloud Analytics Workloads. In Proc. SIGMOD.
418–431.

[10] Jialin Ding, Vikram Nathan, Mohammad Alizadeh, and Tim Kraska. 2020.
Tsunami: A Learned Multi-Dimensional Index for Correlated Data and Skewed
Workloads. Proc. VLDB Endow. 14, 2 (Oct. 2020), 74–86.

[11] Amos Fiat and Moni Naor. 1994. Broadcast Encryption. In Advances in Cryptology
— CRYPTO’ 93. Berlin, Heidelberg, 480–491.

[12] Stratos Idreos, Martin L. Kersten, and Stefan Manegold. 2007. Database Cracking.
In Proc. CIDR. 68–78.

[13] Tim Kraska, Mohammad Alizadeh, Alex Beutel, Ed H. Chi, Ani Kristo, Guillaume
Leclerc, Samuel Madden, Hongzi Mao, and Vikram Nathan. 2019. SageDB: A
Learned Database System. In Proc. CIDR.

[14] Lin Ma, Dana Van Aken, Ahmed Hefny, Gustavo Mezerhane, Andrew Pavlo, and
Geoffrey J. Gordon. 2018. Query-Based Workload Forecasting for Self-Driving
Database Management Systems. In Proc. ICDE. 631–645.

[15] Vikram Nathan, Jialin Ding, Mohammad Alizadeh, and Tim Kraska. 2020. Learn-
ing Multi-Dimensional Indexes. In Proc. SIGMOD. 985–1000.

[16] Shoumik Palkar, James J. Thomas, Deepak Narayanan, Anil Shanbhag, Rahul
Palamuttam, Holger Pirk, Malte Schwarzkopf, Saman P. Amarasinghe, Samuel
Madden, and Matei Zaharia. 2017. Weld: Rethinking the Interface Between
Data-Intensive Applications. CoRR abs/1709.06416 (2017). arXiv:1709.06416

[17] Raluca Ada Popa, Catherine M. S. Redfield, Nickolai Zeldovich, and Hari Bal-
akrishnan. 2011. CryptDB: Protecting Confidentiality with Encrypted Query
Processing. In Proc. SOSP. 85–100.

[18] Anil Shanbhag, Alekh Jindal, Samuel Madden, Jorge Quiane, and Aaron J. Elmore.
2017. A Robust Partitioning Scheme for Ad-Hoc Query Workloads. In Proc. SOCC.
229–241.

[19] Leonhard F. Spiegelberg, Rahul Yesantharao, Malte Schwarzkopf, and Tim Kraska.
2021. Tuplex: Data Science in Python at Native Code Speed. In ACM SIGMOD.
ACM, 1718–1731.

[20] Junjay Tan, Thanaa Ghanem, Matthew Perron, Xiangyao Yu, Michael Stone-
braker, David DeWitt, Marco Serafini, Ashraf Aboulnaga, and Tim Kraska. 2019.
Choosing a Cloud DBMS: Architectures and Tradeoffs. Proc. VLDB Endow. 12, 12
(Aug. 2019), 2170–2182.

[21] Zongheng Yang, Badrish Chandramouli, Chi Wang, Johannes Gehrke, Yinan Li,
Umar Farooq Minhas, Per-Åke Larson, Donald Kossmann, and Rajeev Acharya.
2020. Qd-Tree: Learning Data Layouts for Big Data Analytics. In Proc SIGMOD.
193–208.

[22] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion
Stoica. 2010. Spark: Cluster Computing with Working Sets. In Proc. SOCC. 10.

6

https://arrow.apache.org/docs/
https://hudi.apache.org/
https://iceberg.apache.org/
https://parquet.apache.org/documentation/latest/
https://delta.io/
https://arxiv.org/abs/1709.06416

	Abstract
	1 Introduction
	2 SDC Overview
	3 Storing SDCs on Immutable Storage
	3.1 Data Blocks
	3.2 Index blocks
	3.3 Discovering the current state of an SDC
	3.4 Meta-data blocks
	3.5 Evolving the contents of an SDC
	3.6 Reclaiming Space

	4 Preliminary Evaluation of SDCs
	4.1 SDC on local disk
	4.2 Delta Lake
	4.3 SDC on cloud storage

	5 Research Directions for SDCs
	5.1 Variety of Physical Layouts
	5.2 Hybrid Layouts & Novel Hardware
	5.3 Incremental changes
	5.4 Auto-optimization
	5.5 Encryption and Access Control

	6 Conclusion and Discussion
	References

