
Accelerating Python UDFs in VectorizedQuery Execution
Steffen Kläbe∗

Actian
Ilmenau, Germany

steffen.klaebe@actian.com

Bobby DeSantis
Actian

Palo Alto, USA
robert.desantis@actian.com

Stefan Hagedorn
TU Ilmenau

Ilmenau, Germany
stefan.hagedorn@tu-ilmenau.de

Kai-Uwe Sattler
TU Ilmenau

Ilmenau, Germany
kus@tu-ilmenau.de

ABSTRACT
Modern analytical database systems offer support for user-defined
funtions as a flexible extension to SQL. Python is one of the most
popular UDF languages being easy to use and offering a rich feature
set for data-intensive tasks, but also suffering from bad performance
and scalability. In this work, we describe approaches to accelerate
embedded Python UDF execution using vectorization, parallelisa-
tion and compilation. We compare different compilation frame-
works and show how Python code can be compiled, dynamically
loaded and queried during database runtime in a transparent way.
Our evaluation showed that using compilation and parallelisation
together leads to significant speedups for various use cases.

KEYWORDS
Python user-defined functions, Python compilation, Python paral-
lelisation, Vectorized query execution

1 INTRODUCTION
User-defined functions (UDFs) play an important role in modern
data analytics, as they offer a flexible, modular and reusable way to
get business insights tailored for the user’s needs. Many popular
data warehouse systems integrate UDFs in different flavors to ex-
tend the functionality of the SQL frontend. Depending on the actual
system, users can define UDFs using C/C++, Java, Python, Scala
or Javascript code and use them in their SQL queries. Additionally,
there are two types of UDFs, namely scalar UDFs, that produce a
single result per input tuple, and table UDFs, that produce a new
(potentially empty) table with an arbitrary number of results for a
given input table. Python evolved to one of the most popular and
important languages for data analytics over the recent years, which
has several reasons. First, Python is easy to write and enables rapid
prototyping, as a lot of challenges like typing are solved by the in-
terpreter and are not a user’s responsibility. Second, a large amount
of frameworks were developed for data intensive tasks like data
cleaning, data analytics and especially machine learning. This way,
setting up and maintaining a database system, creating tables and
loading data is not necessary to get fast insights in small datasets.
∗Work done while at TU Ilmenau.

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution, provided that you
attribute the original work to the authors and CIDR 2022. 12th Annual Conference on
Innovative Data Systems Research (CIDR ’22). January 9-12, 2022, Chaminade, USA.

Figure 1: UDF vs. native performance for basic modulo oper-
ation on 8 million tuples

Consequently, Python has a wide range of users and makes it less
important to be a SQL expert to analyse data.

Offering Python UDFs increases a database system’s usability
for a wide range of users. However, the major bottleneck of UDFs
is scalability, as shown in the analysis of [5], where UDFs take the
major part of the query runtime. This especially holds for Python
UDFs due to several reasons. First, data needs to be converted from
the internal database representation to a Python format and vice
versa for the UDF results. Second, data needs to be transferred to
the Python interpreter outside the database engine and results are
sent back to the engine. Third, the interpreted code execution in
the Python interpreter is typically slower than the execution of
compiled and optimized code in the database engine. For operations
that can be expressed both as a UDF and as a native database
operator there is a large gap between the performance of a UDF
and the respective native implementation of the operation, as shown
in Figure 1.

Due to the broad functionality, Python UDFs are used by frontend
frameworks like Grizzly [6] to offer support for advanced analytics.
In this context, typical UDFs may be complex and might include
external modules. In order to accelerate these kind of analytics,
the main goal of this paper is to investigate the performance gap
shown in Figure 1, aiming to reach native performance as much as
possible. Figure 2 shows different levels of executing Python code
from a database engine. While using the Python interpreter (1) is
the most general approach, it also offers the worst performance and
is therefore our upper baseline. On the other side, using plain C
code (4) provides the best performance while restricting the support
for Python modules and is therefore the lower baseline. Using the
Python C-API (2) enables pre-compiling Python code in order to
limit interpretation overhead while still providing full support of
Python functionality. Using Numpy (3) is a special case here. While
being fomulated as Python code, [13] shows that Numpy code can
reach nearly native code speed as a consequence of amemory layout
similar to C. However, UDFs are then limited to Numpy operations
and fall back to (2) on the occurence of non-Numpy constructs.

CIDR’22, January 9-12, 2022, Chaminade, USA Steffen Kläbe, Bobby DeSantis, Stefan Hagedorn, and Kai-Uwe Sattler

Figure 2: Levels of executing Python code

In this work, we elaborate possibilities to move down the ex-
ecution stack shown in Figure 2 for scalar Python UDFs, while
also evaluating the following orthogonal features for performance
improvement:

• Compilation: We evaluate different compilation frame-
works to transparently convert Python code into lower-level
code. Additionally, we show how to dynamically use com-
piled code during database runtime, which is a challeng-
ing task in interpreted query engines, and provide an open-
source prototype engine for evaluation.

• Vectorization:We elaborate on the impact of Python code
vectorization to reduce call overhead.

• Parallelisation:We investigate how to parallelise Python
code in a parallel query engine, which requires mitigating
the global interpreter lock (GIL) issue.

2 RELATEDWORK
Python transpilers like Cython [1] and Nuitka1 work with arbi-
trary Python language constructs and especially also with external
modules, but show slower performance compared to native code as
they still rely on Python’s C-API. Python compilers like Numba [7]
translate Python code to native C code, which leads to efficient code
execution but limits the usage to the supported language constructs.
Numba supports a set of basic Python language constructs as well
as Numpy code and offers an “object mode” as a fallback for work-
ing with, e.g., Strings, which also invokes the Python environment.
However, importing external libraries is not allowed in Numba. Tu-
plex [15] focuses on compiling data analytics pipelines written in
Python to a native binary. The framework is not publicly available
at the time of writing. All these frameworks focus on compiling
Python code to a binary and running it as a standalone process. In
our work, we investigate how these frameworks can be integrated
into an interpreted query engine during runtime, enabling the ad-
hoc creation and usage of compiled Python UDFs. Besides these
frameworks, GraalVM2 supports compiling code into native images.
However, it mainly focuses on Java code and only supports Python
as a “guest language” embedded into Java code for compilation.
The feature is in an experimental state and only supports a few
Python modules. Several approaches also compile UDFs that are
not written in Python. [3] focuses on compiling interpreted PL/SQL
UDFs into recursive SQL functions to avoid PL/SQL - SQL context

1http://nuitka.net/
2https://www.graalvm.org/

switches, while [14] aims at just-in-time compiling SQL lambda
functions.

The vectorized, column-oriented database system MonetDB also
supports Python UDFs [13]. It uses the interpretation of Python
code as the standard case, but optimizes for Numpy UDFs as Numpy
and column-stores share a similar storage layout. As a result, the
execution of Numpy UDFs reaches nearly native code speed. [13]
also highlights the issue that compiling Python UDFs would require
to compile and link the database engine against the compiled UDF,
which is not possible during database runtime. In our approach we
focus on arbitrary Python constructs and exploit dynamic loading to
make compiled UDFs available to the query engine during runtime.

In Python there is the global interpreter lock3 (GIL), which was
chosen in the design of Python in order to simplify low-level de-
tails like synchronisation or memory management of concurrent
threads. While this leads to high single threaded performance, it
limits the parallel or multithreaded execution of Python code [10].
Several solutions on the GIL issue in dynamic languages have been
proposed like hardware transactional memory [12], software trans-
actional memory [10] or the use of virtual machines [11]. In our
approach, we achieve parallelism similary to virtual machines by
spawning separate UDF engine processes in a parallel query en-
gine. Working on independent data partitions, we do not need any
type of synchronisation, which simplifies the GIL issue and makes
separate Python processes a reasonable solution.

3 COMPILATION
As shown in Section 2, several frameworks target at increasing
Python code performance by compiling Python code just-in-time
or ahead-of-time. Similar to this approach of interpreted vs. com-
piled Python code, the dominant database design approaches of
the last decades are also interpreted (vectorized) query engines vs.
compiled query engines. While interpreted query engines built a
query execution plan from a set of pre-defined operators and follow
an iterator model like the Volcano iterator model [4], compiled
query engines produce code for each specific query and compile it
to an executable. In comparison to interpreted engines, there is a
trade-off between the additional effort to produce and compile code
for each query and the faster execution of optimized and compiled
code. While using just-in-time compiled UDF code in queries of a
compiled query engine involves linking of the query binary and is
therefore straight forward, using compiled code in an interpreted
3https://wiki.python.org/moin/GlobalInterpreterLock

http://nuitka.net/
https://www.graalvm.org/
https://wiki.python.org/moin/GlobalInterpreterLock

Accelerating Python UDFs in VectorizedQuery Execution CIDR’22, January 9-12, 2022, Chaminade, USA

query engine during runtime is more challenging. In this section,
we investigate Python code compilation and integration by pre-
senting a prototype engine that offers compiled UDF operators,
which realize compilation, dynamic loading and UDF execution.
The design of these operators considers the following challenges:

C1 Transparency: From a user perspective, there is no addi-
tional effort necessary to exploit compiled UDFs.

C2 External code: Importing external libraries in the UDFs
must be possible to benefit from the wide range of Python
frameworks.

C3 Typing: The operator needs to fill the gap between the
strictly-typed database system and the weakly-typed Python
code.

C4 Safety: The system must be secured from unauthorized ac-
cess over Python UDFs.

3.1 Engine design
Our prototype engine4 follows the common properties of modern
analytical database systems and is written in C. It is designed as
an in-memory engine that organizes data in a columnar layout.
Column values are tightly packed as arrays in memory resulting in
efficient access when iterating over this data. Variable-sized types
like strings are stored as pointers to the memory region contain-
ing the data. Additionally, the engine follows the Volcano iterator
model [4], so an operator implements a common interface of an
open(), next() and close() function. The next() functions are
implemented using vector-at-a-time processing. As the intention
of the prototype is to explore the design space of UDFs, it only
contains a basic file scan operator, multiple different UDF operators,
logic to “consume” the query result at the end of a query and a
fine-grained profiling mechanism.

We integrated the most popular compilation/transpilation frame-
works Numba, Nuitka and Cython into our prototype engine and
created a separate operator encapsulating each of the frameworks.
During the open() call, the UDF code is compiled using the respec-
tive framework, dynamically loaded into the running engine and
initialised. As a baseline, we also designed a native Python UDF
operator, which is based on the Python C-API5. In order to achieve
the transparency goal C1, the native Python operator can be used
as a fallback in case of compilation or loading errors.

3.2 UDF compilation
The UDF compilation step is similar for each of the used compilation
frameworks and only differs in minor, framework-specific details.
However, all frameworks also share the same challenge related to
the way Python handles imported modules. All frameworks are
originally designed to produce a compiled module that is used in the
Python interpreter again. When facing an import statement, the
Python interpreter calls the module’s initialisation method which
initialises the module and provides an entry point to the module’s
functions. A subsequent function call is then resolved using this
entry point. Consequently, a module’s functions are not visible to
code outside the module, especially not for our query engine which
does not run in a Python context.

4https://github.com/dbis-ilm/Compiled_UDF_engine
5https://docs.python.org/3.6/c-api/

In order to make the UDF code visible, one could manually
rewrite the generated code. However, this is fundamentally dif-
ferent for different frameworks and makes the compilation process
highly dependent on the compilation framework version, as each
change in the code generation would require changes in the man-
ual code rewriting. The design of the compilation step follows the
goal of abstracting as much as possible from the used framework.
Therefore, we solve this issue using a rather technical trick. For
the compilation, we configure the compilation frameworks to keep
intermediate states of the compiled code. This way, we get access to
the object files in the Executable and Linkable Format (ELF) before
they are linked together to a shared library. ELF is a standard format
for shared libraries, objects or executables and has a fixed structure
in its header and data segments, being a flexible representation for
code and data. As part of the ELF format, symbol tables are used
to maintain symbolic references, e.g. functions, to the respective
part in the code segment. Function symbols are visible outside of
a library or executable when they belong to the dynamic symbol
table, having global visibility and default binding properties. Using
ELF manipulation tools like LIEF6 we manipulate the visibility and
binding of the function symbol that belongs to the UDF accordingly
and repeat the last compilation step to produce the shared library.
Consequently, we chose to accept duplicate work in favor of ab-
straction from the compilation framework, so we do not change a
framework’s compilation behaviour to manipulate the generated
files in between, but simply repeat the last linking step.

In the compilation step, we also make the first step to solve
challenge C3. When the UDF is created, the user needs to specify
input and output data types of the function. This is not a restriction,
as this metadata is also available in a later integration into a full-
fledged database system, where a user needs to specify the types
in a CREATE FUNCTION query. Using this metadata we annotate
the UDF code when necessary, like in the case of Numba. Addition-
ally, supporting external modules as described in challenge C2 is a
property of the compilation framework and therefore automatically
provided, except for the Numba framework which only supports
the Numpy library as an import. In order to achieve safety as stated
in challenge C4, we maintain a banlist of modules and scan the UDF
code before the compilation for the items of the banlist. This way,
we avoid that users can execute statements potentially dangerous
for the system or the underlying environment, e.g. by using the os
or the sys module.

The compilation process is performed using a Python script
consisting of calling the framework, modifying symbol visibility and
re-running the last compilation step. As this script is not changed
during database runtime and consists of Python code, it can be
compiled using the compilation script itself to produce a shared
library containing the compilation logic and dynamically linked
with the database engine. As a result, calling library functions is
faster than invoking a Python script out of the database engine.

3.3 Dynamic loading and initialisation
After compilation, the library containing the UDF must be stored
at a well-defined place that is accessible for the system. While this
can be easily achieved in single-server database systems, we argue

6https://github.com/lief-project/LIEF

https://github.com/dbis-ilm/Compiled_UDF_engine
https://docs.python.org/3.6/c-api/
https://github.com/lief-project/LIEF

CIDR’22, January 9-12, 2022, Chaminade, USA Steffen Kläbe, Bobby DeSantis, Stefan Hagedorn, and Kai-Uwe Sattler

1 t y p ed e f vo id (* f p l a c e h o l d e r) (vo id) ;
2 t y p ed e f vo id (* WrapperFunc) (f p l a c e h o l d e r ,

char * * , char * *) ;
3 / / For every paramete r combina t ion
4 t y p ed e f doub le (* d l d) (long , doub le) ;
5 vo id func_38 (f p l a c e h o l d e r f , char * * params ,

char * * out) {
6 l ong * p0 = (long *) ¶ms [0] ;
7 doub le * p1 = (doub le *) ¶ms [1] ;
8 * ((doub le *) out) = ((d l d) f) (* p0 , * p1) ; }

Listing 1: Example of the wrapping code

that even for distributed database systems this is not a limitation
due to the presence of cloud storage in the cloud environment or
shared storage like HDFS in the case of on-premise cluster solutions.
In the next step, the library is now dynamically loaded into the
running database application using dlopen/dlsym7. The loading
step is thereby driven by the goal to avoid as much effort as possible
in the later execution, especially expensive branching.

Cython, Nuitka and Numba’s object mode are based on Python’s
PyObjects, which are the type abstraction of Python’s C-API and
can contain arbitrary types. For these frameworks, we initialise
input and output conversion functions based on the UDF signature
and store them as function pointers to avoid branching during
execution. The actual UDF’s signature may however consist of
arbitrary parameter type combinations. As this is not known during
the compilation of the database engine, we define a placeholder
function type and generate a wrapper function and a function
definition for every possible UDF signature. In practical cases, the
number of possible UDF parameters must be reasonably limited.
The wrapper is correctly set according to the UDF signature during
the loading step and therefore introduces branching only once. As
shown in an example function for a UDF that takes a long and a
double parameter and returns a double in Listing 1, this wrapper
casts the generic input parameters as well as the actual UDF and
calls the UDF. The result is then stored at the given buffer location,
which is a part of the result vector. By storing the wrapper code as
a function pointer, we avoid branching during the UDF execution
while also solving the typing challenge C3.

Besides the UDF, we also load the symbol for the library’s initiali-
sation function if required by the compilation framework. Again for
Cython, Nuitka and Numba’s object mode, we initialise the module
in the Python enviroment afterwards potentially using Python’s
multi-phase initialisation8. Note that this might happen after the
Python interpreter was initialised during the engine startup, de-
pending on a system’s behaviour to use the Python interpreter,
i.e. long-running vs. starting a (sub-)interpreter per query. This
initialisation enables access to the module’s internal data structures
and helper functions, being the equivalent of Python’s import
statement.

3.4 UDF execution
As described in Section 3.1, our prototype engine follows the Vol-
cano iterator model in a vector-at-a-time fashion and has a colum-
nar storage layout. Consequently, each UDF operator receives a
7https://linux.die.net/man/3/dlsym
8https://www.python.org/dev/peps/pep-0489/

set of vectors (one for each column) from the child operator in the
query tree. Keeping these vectors unchanged, the operator adds
a result vector for the UDF output to the intermediate result. If
required by the used compilation framework, the UDF input values
are converted to Py_Object elements using the respective input
conversion functions. The compiled UDF is called using the wrap-
per function and the results are converted back using the output
conversion functions if necessary. These three steps are performed
in a vectorized fashion. Note that there is no branching in this step,
as function pointers were correctly set during the dynamic loading
and initialisation as described in Section 3.3.

Another important aspect of an execution engine is NULL han-
dling. In our approach, we basically have two options where to
perform NULL handling: in the database engine or in the UDF code.
The engine-internal handling would require to only execute the
UDF on non-NULL values. In the vectorized variant, one would
therefore need to track the offsets inside the vectors to be able to
put results into the right position again after UDF execution. Per-
forming the NULL handling in the UDF on the other hand simply
requires the input conversions to produce Py_None as Python’s
NULL indicator. In our engine prototype, we decided for the second
option to perform NULL handling in the UDF, as this offers more
flexibility to the user to handle NULLs. One could imagine use cases
where UDFs explicitly need to handle cases where some parameters
are NULL, which would not be possible to support when UDF calls
are skipped by the engine-internal NULL handling.

4 VECTORIZATION
The performance of the UDF execution is highly dependent on
the way the UDF code is written. In commercial systems, user-
written UDF code is likely to get wrapped into a code template. This
way, customised error checking mechanisms, type conversion and
interpretation for complex types and vector iteration mechanisms
can be achieved. One can think about a user function that is called
from a main function in different ways. If the user code is written
in a tuple-at-a-time fashion, the user function is called for each
element of the vector, introducing significant call overhead. If the
user code is written in a vector-at-a-time fashion, the user function
is only called once, significantly increasing speed. During our design
we found the call overhead inside the Python code as one of themost
limiting factor for performance. Using a vectorized UDF that pre-
allocates the result vector and uses list comprehension (potentially
zipping multiple input vectors before) showed the best performance.

In the current project state UDF vectorization is enabled man-
ually by the user by (1) rewriting the UDF code to the vectorized
version and (2) indicating vectorization using a prefix in the UDF
naming. In order to further extend usability and reach the trans-
parency goal C1, we aim at an automatic UDF rewriting mechanism
in the future that embeds the UDF code into a vectorization tem-
plate.

5 PARALLELISATION
Using UDF compilation as described in the Section 3 is intended
to increase single-core performance of the UDF execution in a
vectorized, interpreted query engine. However, today’s analytical
database systems are typically massively parallel processing (MPP)

https://linux.die.net/man/3/dlsym
https://www.python.org/dev/peps/pep-0489/

Accelerating Python UDFs in VectorizedQuery Execution CIDR’22, January 9-12, 2022, Chaminade, USA

Figure 3: Overview over the UDF engine pool

systems to benefit from the increasing number of cores per socket
and the possibility to scale systems in cluster environments. In
this Section we want to describe possibilities to also scale the UDF
execution, which is orthogonal to the compilation approach.

We assume a MPP system that runs multiple workers to execute
query plans or subplans in parallel on independent data partitions.
When integrating our compiled UDF approach in such a system,
the frameworks that still use the Python environment (Cython, Nu-
itka, Numba object mode) would share the Python interpreter. As
described in Section 2, this case would lead to high contention
due to the GIL issue. Consequently, enabling parallelisation in
Python leads to mitigating the GIL issue. Instead of using spe-
cial transactional memory, we designed UDF engines that run as
processes separately from the actual database workers as sketched
in Figure 3 (Note: workers might be either processes or threads,
but UDF engines are separate processes). These UDF engines start
their own Python environments, which are therefore isolated by
the process semantics. Database workers and UDF engines can be
scaled independently and are connected over point-to-point socket
connections. On the database engine side, these connections are
maintained in a connection pool and requests (i.e. UDF execution
requests) are dispatched over a scheduling strategy. For now, we
use a simple round robin assignment strategy to assign requests
to UDF engines. As vector sizes are fixed, this simple strategy al-
ready provides a balanced utilization of the UDF engines. Even
when data is skewed, the unbalanced load in the database workers
would be balanced among the UDF engines. After execution, results
are sent back to the database workers over the socket connection.
This “remote UDF” approach is again a tradeoff, as it introduces
inter-process communication and data transfer while enabling par-
allel execution in the Python environment. As a side effect, moving
the Python execution to separate processes offers possibilities to
improve the security of running Python, e.g. by running the UDF
engines in containers. Sandboxing Python execution is a complex
problem and the reason for Python UDFs being only available as a
beta version or requiring administrator rights e.g. in Postgres9. It
is therefore not the scope of this paper.

6 EVALUATION
In the evaluation, we compare the code generated by the integrated
frameworks as well as the impact of compilation, vectorization
and parallelisation. The evaluation was performed on a machine

9https://www.postgresql.org/docs/13/plpython.html

Figure 4: Compilation framework comparison in prototype
engine

consisting of a Intel(R) Core(TM) i7-8565U CPU @ 1.80GHz and
24 GB RAM.We designed a set of experiments to represent different
use cases:

• Mod: A simple modulo UDF, representing a mathematical
operation.

• Avg_word_len: Splitting a string and computing the aver-
age word length, representing a string analytics function
that consumes the whole string.

• Roberta: Using the Roberta ONNX model [8] to analyse the
sentiment of texts.

The experiments were performed on the TPC-H [2] partsupp table
at SF10 and the IMDB movie review dataset [9]. In the first ex-
periment we compare the behaviour of the integrated compilation
frameworks using the prototype query engine. In this experiment,
we manually write wrapped UDF code as explained in Section 4
in order to simulate the behaviour after database system integra-
tion. Figure 4 shows the results for the described experiments with
the runtime being normalized against the native Python operator
runtime, which acts as the reference. Build runtime including com-
pilation is in a similar order of magnitude for each experiment,
however taking a different part of the overall runtime depending
on the execution runtime. For the modulo experiment we can ob-
serve a performance benefit for all compilation frameworks, with
Numba being the best one as it produces native C code in this
example equivalent to the lower baseline. It reaches stack level
(4) in Figure 2 and runs around 20 times faster than the reference.
For string analytics in the avg_word_len example, we can again
see a performance benefit for all frameworks. However, Numba is
slower than Nuitka and Cython here as it falls back to the Python
object mode to handle strings. In the Roberta example, Numba is
not applicable as the UDF uses an imported module. As the com-
pilation frameworks obviously cannot influence the module code
and the ONNX runtime environment, which is responsible for the
major part of the runtime in this example, compilation does not
lead to a significant benefit here. As we aim at a solution that is
transparently applicable for all use cases, Numba is not an option.
Nuitka and Cython both reach stack level (2) of Figure 2 and showed
similar performance in all cases leading to a speedup of around 2

https://www.postgresql.org/docs/13/plpython.html

CIDR’22, January 9-12, 2022, Chaminade, USA Steffen Kläbe, Bobby DeSantis, Stefan Hagedorn, and Kai-Uwe Sattler

Figure 5: Actian Vector results

in mathematical operations and string analytics, while Cython has
significantly lower compilation effort.

Based on the first experiment, we integrated the UDF approach
using Cython as the compilation framework into the Actian Vector
database system at version 6.1. In the second experiment we there-
fore operate on stack level (2) of Figure 2 and evaluate end-to-end
query performance using combinations of compilation, vectoriza-
tion and parallelisation. The queries thereby consist of a scan, the
UDF and the aggregation of the result to reduce the result size. The
runtime results are shown in Figure 5, again normalized against
the reference runtime, which is the interpreted, non-vectorized
and non-parallelised version. We can observe that compilation has
a significant benefit compared to the respective interpreted vari-
ants, with compilation expectedly being only slightly better than
interpretation in the Roberta example, as major part of the runtime
takes place in the ONNX runtime environment. Vectorization also
leads to performance gains in nearly every case except the com-
piled variants, as the Cython framework seems to have problems
to produce efficient code for list comprehension. Cython provides
an advanced Python dialect, offering more efficient compilation
for specially annotated code constructs. This could be exploited in
the future by automatically rewriting the user defined python code
into the Cython dialect in order to produce faster compiled code.
However, Roberta especially benefits from vectorization, as the
ONNX model needs to be loaded only once per vector instead once
per tuple. Parallelisation using a parallelisation degree of 4 remote
UDF engine processes additionally increases performance in our
experiments except the Roberta example, as this experiment relies
on the scalability of the ONNX runtime. Overall we can derive the
following key findings from our evaluation:

• Only stack level (2) of Figure 2 is reachable when transpar-
ently supporting arbitrary python code.

• Compilation together with parallelisation leads to the best
performance in most experiments with speedups between 2
and 3 compared to the Python execution.

• Compilation does not have an impact on functions that rely
on external modules.

• Parallelisation using external UDF processes introduces over-
head of inter-process data exchange, but leads to a speedup
during execution by mitigating the GIL issue.

• Vectorization leads to performance gains by reducing Python
call overhead.

Consequently, these features are a good choice for a broad range of
use cases like user-specific calculations, scoring functions, analytics
or ML pre- or post-processing steps.

7 CONCLUSION
User-defined Python functions are easy-to-use extensions to data-
base engines and provide support for modern analytical tasks. Mo-
tivated by the fact that the execution of Python code suffers from
bad performance and scalability, we explored the design space of ac-
celerating Python UDFs in vectorized query engines. We evaluated
the impact of vectorization, parallelisation and compilation, with
the latter being realized by different existing compilation frame-
works. We show how UDFs can be compiled just-in-time during
database runtime, dynamically loaded and used in query execution
and implemented this feature as an open-source prototype engine.
Furthermore we presented an approach to mitigate Python’s GIL
issue using separate UDF engine processes to enable parallel UDF
execution. In our evaluation, we integrated the Cython compilation
framework into the Actian Vector database system and evaluated
end-to-end query performance for representative use cases. We
thereby achieved significant speedups for different use cases with
compilation and parallelisation used together. With transparency as
a main design goal, the presented approaches are easy-to-use and
work for arbitrary Python code constructs. In the future, we aim at
evaluating automatic code rewriting to exploit compilation frame-
work specific characteristics and annotations. Machine learning
workloads still rely on the performance of external runtime envi-
ronments, which could be mitigated by a more native integration
of ML models.

REFERENCES
[1] S. Behnel et al. Cython: The Best of Both Worlds. Computing in Science &

Engineering, 13, 2011.
[2] P. A. Boncz, T. Neumann, and O. Erling. TPC-H Analyzed: Hidden Messages and

Lessons Learned from an Influential Benchmark. In TPCTC, volume 8391, pages
61–76. 2014.

[3] C. Duta, D. Hirn, and T. Grust. Compiling PL/SQL away. In CIDR, 2020.
[4] G. Graefe. Volcano— An Extensible and Parallel Query Evaluation System. IEEE

Trans. on Knowl. and Data Eng., 6(1):120–135, 1994.
[5] S. Gupta and K. Ramachandra. Procedural Extensions of SQL: Understanding

their usage in the wild. PVLDB, 14(8):14, 2021.
[6] S. Kläbe and S. Hagedorn. Applying machine learning models to scalable

dataframes with grizzly. In BTW, pages 195–214, 2021.
[7] S. K. Lam, A. Pitrou, and S. Seibert. Numba: A LLVM-Based Python JIT Compiler.

In LLVM, 2015.

Accelerating Python UDFs in VectorizedQuery Execution CIDR’22, January 9-12, 2022, Chaminade, USA

[8] Y. Liu et al. RoBERTa: A Robustly Optimized BERT Pretraining Approach, 2019.
_eprint: 1907.11692.

[9] A. L. Maas and others. Learning Word Vectors for Sentiment Analysis. In
ACL-HLT, pages 142–150, 2011.

[10] R. Meier and A. Rigo. A way forward in parallelising dynamic languages. In
ICOOOLPS, pages 1–4, Uppsala, Sweden, 2014.

[11] R. Meier, A. Rigo, and T. R. Gross. Virtual machine design for parallel dynamic
programming languages. PACMPL, 2:1–25, 2018.

[12] R. Odaira, J. G. Castanos, and H. Tomari. Eliminating global interpreter locks in
ruby through hardware transactional memory. In PPoPP, pages 131–142, Orlando,
Florida, USA, 2014.

[13] M. Raasveldt and H. Mühleisen. Vectorized UDFs in Column-Stores. In SSDBM,
pages 1–12, 2016.

[14] M. E. Schüle et al. Freedom for the SQL-Lambda: Just-in-Time-Compiling User-
Injected Functions in PostgreSQL. In SSDBM, 2020.

[15] L. Spiegelberg et al. Tuplex: Data Science in Python at Native Code Speed. In
SIGMOD, pages 1718–1731, 2021.

	Abstract
	1 Introduction
	2 Related work
	3 Compilation
	3.1 Engine design
	3.2 UDF compilation
	3.3 Dynamic loading and initialisation
	3.4 UDF execution

	4 Vectorization
	5 Parallelisation
	6 Evaluation
	7 Conclusion
	References

