
A Progress Report on DBOS:
A Database-oriented Operating System

Qian Li1∗, Peter Kraft1∗, Kostis Kaffes1∗, Athinagoras Skiadopoulos1, Deeptaanshu Kumar3,
Jason Li2, Michael Cafarella2, Goetz Graefe4, Jeremy Kepner2, Christos Kozyrakis1,

Michael Stonebraker2, Lalith Suresh5, Matei Zaharia1
1Stanford, 2MIT, 3CMU, 4Google, 5VMware

Abstract
Over the last year, a group of us at MIT, Stanford, CMU, Google, and
VMware have been designing and implementing a new Operating
System (OS) stack for modern hyperscale datacenter environments.
This new stack leverages a set of multi-core, multi-node distributed
DBMSs near the bottom of the stack tomanage a cluster of machines
on a public or private cloud. In this paper, we briefly review the
rationale for a new OS, present our resulting architecture, and
review our progress to date. The meat of our paper is a presentation
of the main lessons thus far from this project. Many of these have
to do with missing capabilities in multi-node DBMSs that form the
guts of our proposal. Finally, we present future research directions
in database-oriented operating systems.

1 Why a New OS?
Current OSs like Linux are based on the UNIX design from the
1970s. Back then, hardware resources consisted of a uniprocessor
with limited main memory and disk. In the intervening 40 years, re-
sources under OS management have increased by five or six orders
of magnitude. The MIT Supercloud [5], for example, has approxi-
mately 10,000 cores and a hundred terabytes of main memory in
total. OS state (files, tasks, messages, etc.) has increased in size by
the same scale factor. Hence, today’s massive scale systems are very
different from what Linux was designed for.

Over the past year, we have worked on designing a new OS
stack for distributed environments called DBOS. We chose to base
our stack on DBMS technology as it is known to provide the scale,
performance, and reliability required in large-scale systems. For
example, increasing network speeds have made fast disaggregated
memory a reality [16, 29] as specialized machines host large mem-
ory pools used by multiple users and applications. Traditional OSes
offer little support for these pools of shared memory, but battle-
tested relational DB semantics are a good way to expose them: the
DBMS engine can use the underlying hardware to achieve high
performance and scalability while offering a better and more in-
tuitive programming model for users. Furthermore, monitoring
and debugging large distributed clusters with OSs like UNIX/Linux
is notoriously difficult; DBOS aims to simplify these operations
greatly using DBMS-based logging and provenance tracking.

*These authors contributed equally to this paper.

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution, provided that you
attribute the original work to the authors and CIDR 2022. 12th Annual Conference on
Innovative Data Systems Research (CIDR ’22). January 9-12, 2022, Chaminade, USA.

Using a DBMS offers many advantages on the software engineer-
ing side as well. Many system software experts have come to realize
that transactions and high availability are a good idea [11, 14, 30].
Such constructs come built into modern DBMSs. If a DBMS is
central to the OS stack, these features can be implemented once
and then used by everybody. More importantly, making a DBMS
central to the OS stack allows novel capabilities to be easily im-
plemented. Our community has been building cloud systems and
implementing new features by layering software either below ex-
isting OSes (e.g., hypervisors [3, 10]) or above them (e.g., Borg and
Kubernetes [12]). These designs are hard to implement and main-
tain because developers need to take careful account of interactions
between various layers belonging to different stakeholders with
potentially conflicting goals. They also often introduce limitations
due to incompatibility. By contrast, our DBOS architecture is easy
to modify and new cross-stack features can readily be added. For
example, we will show how to implement object-level provenance
across all layers of the stack.

These issues have motivated us to build a new OS, whose design
we briefly summarize in the next section. We have oriented our
design toward cloud computing and our first goal is to support a
cluster of cloud machines. We discuss our motivation and vision in
more detail in [13] and [32].

2 The DBOS Stack

Figure 1 shows the DBOS stack pictorially. At the top level are
standard applications that run protected from the rest of the stack
as in current systems. One level down are OS utilities such as ls,
chdir, etc. that are currently supported by traditional code in C or
C++. In our proposal, these are almost entirely written as stored
procedures and user-defined functions, mostly in SQL. OS services
such as the file system, interprocess messaging, and scheduling
are similarly supported in SQL. At level 2 is a logically centralized,
physically distributed polystore system. The polystore system con-
sists of high-performance DBMSs with characteristics suitable for
different use cases (e.g., OLTP and OLAP) that all implement SQL.
For example, DBOS stores frequently updated system state in a
high-performance distributed OLTP DBMS, while processes histor-
ical data in a columnar OLAP DBMS for faster analytical queries.
The polystore interface provides a universal common SQL interface
so that the complexity is transparent to upper levels. Finally, at level
1 is a microkernel with the minimal required facilities needed to run
the DBMS. Mostly, this is raw device support, interrupt handlers,
and basic communication between nodes.

DBOS centralizes system state and user data in a uniform data
model as database tables and executes all operations on state as
DBMS transactions, invoked from otherwise stateless processes.

CIDR’22, January 9-12, 2022, Chaminade, USA

Polystore System: Distributed DBMSs

Microkernel Services

File System Scheduler IPC Other OS
Services

User ApplicationsLevel 4

Level 3

Level 2

Level 1

Figure 1: The DBOS stack.

While the idea of managing state in a DBMS has been applied
in specific contexts like file system metadata access [11, 27] and
cluster managers [33], we propose a new extreme. We believe that
all levels of the system stack, from high-level applications down to
core services like schedulers, file systems, and monitoring, should
manage their state centrally in a distributed transactional DBMS.

This proposal requires a drastic rethinking of how to build a
cloud operating system and the applications that run on top of it. A
developer must choose schemas, indexes, appropriate transaction
isolation levels, and partition keys for tables that store state and
implement DBMS stored procedures and SQL queries over these
tables for application workflows, analysis, and reporting.

3 Progress To Date
In the past year, we have written a first DBOS prototype entirely
in user-space code, running on the MIT Supercloud and in Google
Cloud, using VoltDB [9] as the OLTP DBMS in level 2 of our stack
(Figure 1). At level 3, our prototype includes a scheduler, a file
system, and a messaging system, all implemented in SQL. We have
also written a few Linux utilities at level 3, such as ls and ls -r (list
all files and folders in a directory recursively), to demonstrate their
performance on DBOS. Our VLDB paper [32] discusses preliminary
results from this prototype.

Recently, we have added a serverless environment to support end-
to-end applications at level 4, which is described in Section 4. We
have also implemented a provenance system that can capture usage
information from all layers of the DBOS prototype, also described
in Section 4. This required adding a data warehouse DBMS in level
2 of our stack, making DBOS a polystore system.

4 Lessons from the First Year
In this section, we present a collection of observations and lessons
from our experience so far. In general, we are very optimistic about
the potential and success of database-oriented operating systems.

4.1 Newer SQL DBMSs are fast enough for DBOS

Early on, we made the decision that absolutely everything goes
in the DBMS. There was grumbling that there must be things that
cannot be made fast enough or cannot be general enough. So far,
we have found no insurmountable obstacles. In part, this is because
fast manipulation of OS state is basically an OLTP problem. VoltDB
is ideally suited for this problem, as it is architected for very high
performance on short OLTP tasks. There was also grumbling that
VoltDB limitations (we present in following sections) would doom

the project. However, the feeling among the team is that competitive
performance demands something as fast as VoltDB, and we would
not trade its limitations for significantly poorer performance.

To demonstrate the performance of VoltDB, in Figure 2, we
present the latency and scalability of a FIFO scheduler implemented
as a stored procedure:

select ID, NumTasks from Worker
where NumTasks < MaxCap limit 1;

if ID not None:
update Worker set NumTasks = NumTasks + 1

where ID = ID;

This stored procedure first queries the DBMS for a worker that
can run an additional task. If one is found, it increments NumTasks
for that worker. The scheduler executes the procedure on a ran-
domly chosen partition, iterating until it succeeds. Our prototype
is synthetic: it schedules tasks but does not execute them, thus we
measure only the scheduling latency. It assumes that all tasks are
identical and that any worker can execute a fixed number of tasks
(its maximum capacity) simultaneously.

We conducted two experiments: 1) Measure the median and tail
scheduling latencies as we vary the system load, and 2) Measure
the maximum throughput with an increasing number of VoltDB
partitions. Our experiments used forty parallel schedulers on two
VoltDB servers and two client machines to generate load, all on MIT
Supercloud [5]. All clients and servers have 40-core dual-socket
Intel® Xeon® Gold 6248 2.5GHz CPUs, and Mellanox ConnectX-4
25Gbps NIC.

0 1 2
Throughput (×106 TPS)

101

102

103

104

L
at

en
cy

(u
s) Median

P99

(a) Latencies v.s. load

0 20 40
Partitions

0

1

2

×
10

6
T

P
S

(b) Throughput v.s. #partitions

Figure 2: Performance of the distributed FIFO scheduler.

We first measured how latency changes as we increase through-
put with a fixed number of table partitions. As we show in Figure 2a,
with forty table partitions on two servers we can schedule as many
as one million tasks per second with sub-millisecond tail latency,
and as many as two million tasks per second with sub-millisecond
median latency. Therefore, our simple two-server system could sat-
urate more than 200K cores with 100 ms tasks (a normal estimate
for serverless task durations [31]) without incurring a scheduling
overhead of more than 1%, easily outperforming most existing dis-
tributed schedulers (e.g., a Spark [37] cluster with tens of thousands
of nodes can only launch a thousand tasks per second).

We next measured how maximum throughput changes as we
increase the number of table partitions. As we show in Figure 2b,
throughput scales near-linearly with the number of parallel parti-
tions. This indicates that we can support higher scheduling through-
put by adding partitions and database servers to the system.

A Progress Report on DBOS: A Database-oriented Operating System CIDR’22, January 9-12, 2022, Chaminade, USA

4.2 Making everything a stored procedure works well

In VoltDB, conversational SQL is compiled into a “one-shot” stored
procedure and all recurring tasks are stored procedures. We have
decided to implement all of level 3 in DBOS as stored procedures.
This means that OS functionality such as file system and scheduling
operations are implemented as stored procedures, while user appli-
cations may be composed of many stored procedures. As described
in the next section, users can implement complex workflows by
declaring directed acyclic graphs of stored procedures in our SE.
For example, a shopping cart application can have different stored
procedures for placing the order, billing, and shipping in a manner
similar to a microservices environment. So far, we have not found
any show-stoppers to this approach. Stored procedures naturally
provide encapsulation and isolation. Making everything a stored
procedure dramatically simplifies DBOS, since VoltDB manages
the stored procedure library and executes all stored procedures
transactionally, simplifying task execution and failure recovery.

The only drawback of the stored-procedure-centric approach is
that application developers are constrained by the programming
model of the underlying DBMS. For example, VoltDB (and many
DBMSs) only supports stored procedures written in Java. Thus,
users currently need to implement the non-SQL components of
their applications in Java. This constraint makes it hard to use
popular frameworks and libraries better suited for other languages
such as Tensorflow and PyTorch. We do not view the programming
model as a fundamental limitation as we aspire to provide bindings
that will allow users to invoke non-Java code from the VoltDB JVM.

4.3 Our serverless environment is surprisingly fast

An important part of the future of cloud programming is clearly
serverless environments (SE) such as AWS Lambda [1] or Open-
Whisk [2]. Using SE, one divides a computation into subtasks that
form an execution graph. These subtasks are executed when ready
and consume resources only for the duration of the subtask. In
DBOS, we have written our own SE, where subtasks are stored pro-
cedures in VoltDB. In other words, we leverage the DBMS wherever
possible, and we are committed to “eating our own dog food.” Our
SE can be faster than both Amazon Lambda and OpenWhisk on
data-centric tasks as we can co-locate compute and data, avoiding
unnecessary data movements.

The serverless model is a great match for DBOS’s characteristics
as it allows us to make the architectural decision to avoid sophis-
ticated memory management. A subtask requests its maximum
memory requirement at its start, and the stored procedure is not
executed until sufficient real memory is available. When a stored
procedure finishes, all memory is released. This decision simplifies
memory management and task scheduling complexity. As expected,
the graph of subtasks for a specific computation is also stored in
the database.

4.4 SQL is highly advantageous when requirements change

We have changed the DBOS schema multiple times either because
of poor performance or because of new requirements. In every
case, recoding the SQL in stored procedures and changing the
stored tables was easy and quick. This should be contrasted with
traditional systems, where change is difficult, tedious, and error-
prone. For instance, in DBOS, new data fields can be easily added

by extending the table schema without updating myriads of data
structures and interfaces in the code. One of the unforeseen benefits
of DBOS is the programmer productivity of SQL in both system
evolution and initial system design. For example, as also discussed
in [33], making even a small change to the widely used Spark
or Kubernetes schedulers is a Herculean task due to ad-hoc data
structures and complex code. On the contrary, we were able to
implement least-loaded and locality-aware schedulers simply by
changing a couple of lines of SQL code [32], dramatically lowering
the barrier for policy exploration and experimentation.

4.5 Do everything just once

Modern distributed DBMSs support serializable transactions, repli-
cation, and failover to a backup when a failure occurs. Our design
puts all OS state into tables, so all OS facilities can use database
transaction and high availability features. As such transactions and
high availability can be implemented just once inside the DBMS
and then used by all OS services as well as user-level tasks. This
should be contrasted with current systems that must implement
and re-implement such features in various subsystems as needed,
often relying on ad-hoc solutions.

4.6 Work around the limitations of the DBMS

When we began the project, there was considerable discussion of
the limitations of VoltDB, our chosen OLTP DBMS, along with
suggestions that we abandon our “everything in the DBMS” mantra.
One issue was the lack of triggers in VoltDB. Since interprocess
communication entails the sender adding a row to a Message table
and the receiver reading and then deleting the row, our implemen-
tation suffers from the absence of triggers. However, even when
replacing triggers with receiver polling, IPC is still competitively
fast compared to widely used gRPC [32].

DBOS also suffers from some aspects of the VoltDB stored pro-
cedure (SP) model. In VoltDB, stored procedures are executed as a
single transaction within a single partition that runs to completion.
This means SPs are isolated from each other, and there is no con-
currency, which may cause head-of-line blocking if an SP occupies
a partition for a long time.

In addition, it is effectively impossible for one stored procedure
to call another one as a subroutine because the outer SP will stall
the VoltDB partition which it is associated with while the inner SP
runs, presumably on another partition.

Moreover, there are no nested transactions in VoltDB, so ap-
propriate transactional behavior of nested SPs is not supported.
As a result, one important programming tool (subroutines) is not
available to DBOS. However, while an SP cannot be invoked from
an SP, it is possible to invoke an SP that takes in the output of other
SPs as its input. Therefore, DBOS provides a programming model
where users submit graphs of subtasks and each subtask is exe-
cuted on its parents’ outputs, an interface common in distributed
systems [17, 18, 26].

4.7 DBOS had to become a polystore

A few months ago we realized that storing all OS state in tables
would allow a powerful and sophisticated provenance system to be
constructed. All we needed was to capture all changes to system

CIDR’22, January 9-12, 2022, Chaminade, USA

tables in a log (also a DB table) and then support SQL provenance
queries to the log table.

In theory, this is straightforward; however, a historical prove-
nance database is gigantic and ill-suited to a main memory OLTP
DBMS such as VoltDB. Obviously, the requirements for high per-
formance modification of system tables are very different than
supporting historical provenance queries. As a result, we added a
parallel data warehouse DBMS to level 2 (Figure 1) to support prove-
nance tables. In our case, we chose to run Vertica [8], though other
parallel column stores could also be used. Hence, we needed to
capture all writes and optionally all reads in VoltDB and spool them
transactionally to Vertica. This makes DBOS a polystore system,
and our future improvements are discussed in Section 4.8.

Our preliminary experiments [20] show that capturing all object
level reads and writes and streaming them into Vertica does not
impact system performance until the transaction rate gets high
(greater than 50K transactions per second). Even at higher levels,
performance degradation is quite modest.

As noted in [20], we described a collection of 10 provenance
queries that capture many tasks that security analysts wish to do.
These are all readily coded in SQL and execute in small numbers of
seconds on very large provenance data tables.

Many of our desired provenance queries require transitive clo-
sure. One such query is to find all possible data leakage paths from
a given user to somebody else. However, transitive closure is not
supported in Vertica, so we had to code the iteration manually (e.g.,
set the recursion depth in Vertica). Our industrial partners indicate
that approximate transitive closure is usually good enough. For ex-
ample, most data leakage paths are of length one (from perpetrator
directly to accomplice). The full transitive closure is not required
in most circumstances, and indefinite iteration can be avoided.

We plan to test whether a graph DBMS (e.g. Neo4J, RedisGraph)
would be beneficial in provenance queries. A similar exercise five
years ago yielded negative results, but hope springs eternal.

4.8 Better polystore support would be very helpful

DBOS needs an OLTP DBMS for storing OS state, a warehouse
DBMS for provenance, and spooling data between the two. Al-
though VoltDB supports “change data capture”, that only deals with
writes, and a different mechanism is needed to capture reads. Also,
there are multiple mechanisms to do spooling (JDBC, bulk loader,
Kafka, ...). In general, implementing provenance has been a “heavy
lift” task. DBOS would appreciate much better polystore support in
commercial DBMSs.

As mentioned in [20], we envision a general polystore system in
a future DBOS system. In real production applications, users may
want to store their data in diverse types of data stores, and execute
provenance in different DBMSs. What we desire is automatic object
capture on reads and writes at various granularities (event, file,
block, record), configurable on a table-by-table basis, and cross-
DBMS logging and query optimizations.

Figure 3 demonstrates how a social network application could
potentially use such a polystore system. Both application data and
system state would be stored in DBOS. First, the online query path is
handled by the OLTP DBMS, while read/write provenance capture
happened asynchronously in the background, exporting user data
to an OLAP DBMS and social graph interactions to a graph DBMS.

Social Network App

DBOS Polystore Interface

OLTP DBOLAP DB Graph DB

”Post a reply to X’s friend Y,
then read others’ replies.”

” Which post was affected by
a compromised user Z? ”

Online Query Provenance Query Provenance Capture

Figure 3: A use case for a general polystore system.

Then, a monitoring system may issue a provenance query to find
potentially compromised posts, which is handled jointly by the
OLAP and graph DBMSs. Note that the DBOS polystore interface
would hide all the complexity from the user application.
4.9 Tuning a multi-core, multi-node DBMS is hard

Our team contains highly skilled programmers and substantial
DBMS expertise. Even so, we needed help from the vendor for
both VoltDB and Vertica to optimize performance in our environ-
ment. Both systems have a myriad of tuning knobs and exhibit
non-intuitive behavior, and we have spent many, many hours try-
ing to improve performance and scalability. Moreover, sometimes
the issue was caused by machine configuration that was indirectly
connected to DBMSs, which makes tuning even harder. In Sec-
tion 4.13 we have two examples for our tuning experience. As a
result, we are a huge fan of self-tuning efforts, such as [35, 38] to
make this activity easier.
4.10 DBOS would probably benefit from a different tradeoff

concerning multi-partition transactions

The VoltDB architecture makes single-partition transactions blind-
ingly fast, but at the cost of slowmulti-partition transactions. DBOS
benefits greatly from fast single-partition transactions, but may
sometimes require multi-partition transactions; for example, send-
ing a message to multiple receivers or making a scheduling decision
based on the state of multiple partitions. We believe that if schemas
are designed carefully, 99-99.9% of DBOS transactions will be single-
partition, but the slowness of the remainder is problematic.

The most important issue with VoltDB multi-partition trans-
actions is that they obtain a global DBMS lock blocking all par-
titions, not just those needed for the transaction. As a result, a
small percentage of multi-partition transactions can dramatically
reduce cluster performance; in one of our experiments 0.1% multi-
partition transactions decreased overall throughput by 50%. We
would happily accept a concurrency control scheme that reduced
single-partition performance by 10-20% but eliminated this global
lock. In our opinion, exploring the tradeoff between multi-partition
and single partition performance in distributed databases would be
a worthwhile research topic.
4.11 Multi-tenant support would be very, very helpful

Obviously, the world is moving toward cloud deployment. Guar-
anteeing security and isolation is essential in a multi-tenant cloud

A Progress Report on DBOS: A Database-oriented Operating System CIDR’22, January 9-12, 2022, Chaminade, USA

environment. Modern DBMSs have already provided some levels
of support for security and integrity constraints. For example, au-
thentication to invoke a stored procedure is supported in VoltDB.

However, DBOS has issues that require even stronger multi-
tenant support as we need to run untrusted SPs submitted by multi-
ple users. For example, in VoltDB a stored procedure is linked into
the VoltDB runtime. As such, a malicious SP can potentially hack
into the execution engine, access its entire memory footprint, and
decode data records for which it may not be authorized. If SE users
share a single DBMS instance, then serious multi-tenancy support
will be required.
4.12 Auto-scaling would be very, very helpful

Although VoltDB supports elastic scaling to resize a cluster, it has
no capabilities to automatically adjust the size of a cluster as re-
quirements change, and resizing may affect the performance of
ongoing transactions. In DBOS, we fully expect the resources de-
voted to our DBMSs to require automatic adjustment as the load
changes or the mix between provenance queries and operations
changes. Snowflake [36] has led the way with dynamic adjustment
of resources, and everybody is going to need such capabilities.

Furthermore, VoltDB partitions data by the partitioning column
value, which may cause hotspot issue if a few partition values are
more frequently visited. Sincemany real-world OLTPworkloads are
skewed and highly variable [34], we expect the data (re-)partitioning
and placement to be handled automatically/dynamically by the
DBMS for better load balancing.
4.13 Scale matters

One lesson we learned early on is that testing DBOS at small scale
is very different from testing at large scale. Invariably, things that
work fine in the small fail for unforeseen reasons at scale. For
example, when we tested on a single machine, VoltDB can support
millions of transactions per second (TPS). However, we once noticed
that VoltDB stopped scaling above 200K TPS while being accessed
remotely in a cluster. This was caused by an underlying physical
machine configuration that restricted network processing to a single
core. Similarly, we had a Vertica scaling issue which was caused
by a single “planned concurrency” configuration parameter. The
benchmark had decent performance on a single node, but only
revealed the issue while testing at a large cluster. Hence, it is crucial
to design and test for scale.

Our experiments have so far assumed that the OLTP state of the
system and the applications fits in main memory. However, this
might not be the case for specific workloads, e.g., video analytics,
or at very large scale. Larger-than-memory working sets would
currently be handled by using traditional OS mechanisms such
as paging. In the future, we plan to handle this case ourselves
by spilling state pro-actively to disk and making more informed
decisions about which data to evict.

5 The Future of DBOS
In this sectionwe present several research problemswe are presently
working on.
5.1 Pervasive monitoring

Traditional systems software uses a piecemeal approach to logging
and monitoring where products like Splunk [7] and Prometheus [6]

capture different information. In DBOS, however, object-level prove-
nance automatically captures OS state, unifying the efforts of these
disparate systems and allowing DBOS to act as a single monitor
of OS state. We envision using machine learning (ML) to identify
undesirable OS states and to identify corrective actions. We expect
to have a complete system along these lines in 2022. The same un-
derlying mechanisms will be used for application level monitoring.

5.2 Heterogeneous hardware support

Modern datacenters use heterogeneous hardware such as GPUs,
TPUs, FPGAs, as well as multiple types of memory and storage.
Currently, OSs and distributed platforms have limited, if any, sup-
port for such devices. Therefore, a computation has to specifically
invoke such hardware, after figuring out the availability and how
to move data in and out. DBOS can do better than that by exploit-
ing the potential opportunity of hardware fungibility, i.e., leverag-
ing heterogeneous hardware to run the same program based on
cost/performance trade-off [28] or data location. Since DBOS stores
all state in the DBMS, it can effectively make the optimal decision.

At the present time, all stored procedures execute on CPU hard-
ware; however, this is not an architectural requirement. We envi-
sion multiple kinds of SPs, one per kind of specialized processor. Of
course, this would require substantial extensions to the SP model.
Specifically, code in languages other than Java would be required.
In addition, the SP would have to be decoupled from a VoltDB par-
tition to avoid blocking the partition. More elegantly, VoltDB could
be made to understand partitions that were not associated with
stored data. We expect to figure out the best way to support SPs on
non-CPU devices.

5.3 Security

Guaranteeing security is essential in a multi-tenant cloud envi-
ronment. Fortunately, modern DBMSs provide strong support for
security and integrity constraints, and are therefore a natural point
to enforce them. For example, authentication for the entire system
can be done at once using DBMS facilities. Different protection do-
mains, such as file protection, can be implemented using database
views [15, 24]; each user or entity acts on a restricted view of the
state tables. A centralized extensible security system such as this
will hopefully be better at avoiding configuration errors and leaks
than the sprawl of configuration tools used today [21]. Moreover,
the abundance of structured monitoring data available in DBOS
will facilitate modern analytics-based security approaches [4].

As discussed in Section 4.11, DBOS also requires a strong secu-
rity and isolation guarantee since it needs to run untrusted pro-
grams from multiple tenants. We are evaluating different sandbox-
ing mechanisms to improve security of underlying DBMSs.

5.4 Self-adaptivity

“Everything in the DBMS” and “everything is a stored procedure”
unlock opportunities for DBOS to be self-adaptive. In particular,
our method makes integrating modern machine learning (ML)
and reinforcement learning (RL) techniques into a distributed sys-
tem/application easier as the required data is likely available in the
DBMS along with built-in support for the necessary graph analytics
and machine learning algorithms. Learning parameters can be more
effective than using heuristic [22]; for example, DBMS knobs can be

CIDR’22, January 9-12, 2022, Chaminade, USA

automatically tuned as workloads change [35, 38]. RL can even be
used to learn a system component in DBOS such as a scheduler [23],
index structures [19], or device placement policy [25].

6 Conclusion
In this paper, we presented our progress on DBOS, a database-
oriented datacenter operating system. We presented the design of
DBOS, current progress, lessons learned from the past year, and
new research directions both for implementing systems software
on top of a DBMS and for improving DBMSs to better support
this systems software use case. We believe that database-oriented
designs like DBOS will make cloud applications and systems easier
to build, maintain, extend, and scale.

References
[1] 2021. Amazon Lambda. https://aws.amazon.com/lambda/.
[2] 2021. Apache OpenWhisk. https://openwhisk.apache.org/.
[3] 2021. gVisor. https://gvisor.dev/.
[4] 2021. Lacework. https://www.lacework.com/.
[5] 2021. MIT Supercloud. https://supercloud.mit.edu/.
[6] 2021. Prometheus -Monitoring system& time series database. https://prometheus.

io/.
[7] 2021. Splunk. https://www.splunk.com/.
[8] 2021. Vertica. https://www.vertica.com/.
[9] 2021. VoltDB. https://www.voltdb.com/.
[10] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony Liguori, Rolf

Neugebauer, Phil Piwonka, and Diana-Maria Popa. 2020. Firecracker: Lightweight
Virtualization for Serverless Applications. In 17th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 20). USENIX Association, Santa
Clara, CA, 419–434. https://www.usenix.org/conference/nsdi20/presentation/
agache

[11] Abutalib Aghayev, Sage Weil, Michael Kuchnik, Mark Nelson, Gregory R. Ganger,
and George Amvrosiadis. 2019. File Systems Unfit as Distributed Storage Back-
ends: Lessons from 10 Years of Ceph Evolution. In Proceedings of the 27th
ACM Symposium on Operating Systems Principles (Huntsville, Ontario, Canada)
(SOSP ’19). Association for Computing Machinery, New York, NY, USA, 353–369.
https://doi.org/10.1145/3341301.3359656

[12] Brendan Burns, Brian Grant, David Oppenheimer, Eric Brewer, and John Wilkes.
2016. Borg, Omega, and Kubernetes: Lessons learned from three container-
management systems over a decade. Queue 14, 1 (2016), 70–93.

[13] Michael Cafarella, David DeWitt, Vijay Gadepally, Jeremy Kepner, Christos
Kozyrakis, Tim Kraska, Michael Stonebraker, and Matei Zaharia. 2020. DBOS: A
Proposal for a Data-Centric Operating System. arXiv:2007.11112 [cs.OS]

[14] James C Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost,
Jeffrey John Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser,
Peter Hochschild, et al. 2013. Spanner: Google’s globally distributed database.
ACM Transactions on Computer Systems (TOCS) 31, 3 (2013), 1–22.

[15] D. E. Denning, S. G. Akl, M. Heckman, T. F. Lunt, M. Morgenstern, P. G. Neumann,
and R. R. Schell. 1987. Views for Multilevel Database Security. IEEE Transactions
on Software Engineering SE-13, 2 (1987), 129–140. https://doi.org/10.1109/TSE.
1987.232889

[16] Aleksandar Dragojević, Dushyanth Narayanan, Miguel Castro, and OrionHodson.
2014. FaRM: Fast Remote Memory. In 11th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 14). USENIX Association, Seattle, WA, 401–
414. https://www.usenix.org/conference/nsdi14/technical-sessions/dragojevi{ć}

[17] Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li, Shuvo Chatterjee, Christos
Kozyrakis, Matei Zaharia, and Keith Winstein. 2019. From Laptop to Lambda:
Outsourcing Everyday Jobs to Thousands of Transient Functional Containers. In
2019 USENIX Annual Technical Conference (USENIX ATC 19). USENIX Association,
Renton, WA, 475–488. https://www.usenix.org/conference/atc19/presentation/
fouladi

[18] Jon Gjengset, Malte Schwarzkopf, Jonathan Behrens, Lara Timbó Araújo, Mar-
tin Ek, Eddie Kohler, M. Frans Kaashoek, and Robert Morris. 2018. Noria:
dynamic, partially-stateful data-flow for high-performance web applications.
In 13th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 18). USENIX Association, Carlsbad, CA, 213–231. https://www.usenix.
org/conference/osdi18/presentation/gjengset

[19] Tim Kraska, Alex Beutel, Ed H Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018.
The case for learned index structures. In Proceedings of the 2018 International
Conference on Management of Data. 489–504.

[20] Deeptaanshu Kumar, Qian Li, Jason Li, Peter Kraft, Athinagoras Skiadopoulos,
Lalith Suresh,Michael Cafarella, andMichael Stonebraker. 2021. Data Governance
in a Database Operating System (DBOS). Poly’21 workshop (2021).

[21] T. F. Lunt, D. E. Denning, R. R. Schell, M. Heckman, and W. R. Shockley. 1990.
The SeaView security model. IEEE Transactions on Software Engineering 16, 6
(1990), 593–607. https://doi.org/10.1109/32.55088

[22] Hongzi Mao, Parimarjan Negi, Akshay Narayan, Hanrui Wang, Jiacheng Yang,
Haonan Wang, Ryan Marcus, ravichandra addanki, Mehrdad Khani Shirkoohi,
Songtao He, Vikram Nathan, Frank Cangialosi, Shaileshh Venkatakrishnan,
Wei-Hung Weng, Song Han, Tim Kraska, and Dr.Mohammad Alizadeh. 2019.
Park: An Open Platform for Learning-Augmented Computer Systems. In Ad-
vances in Neural Information Processing Systems, H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.), Vol. 32. Curran
Associates, Inc., 2494–2506. https://proceedings.neurips.cc/paper/2019/file/
f69e505b08403ad2298b9f262659929a-Paper.pdf

[23] Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja Venkatakrishnan, Zili Meng,
and Mohammad Alizadeh. 2019. Learning scheduling algorithms for data pro-
cessing clusters. In Proceedings of the ACM Special Interest Group on Data Com-
munication. 270–288.

[24] Alana Marzoev, Lara Timbó Araújo, Malte Schwarzkopf, Samyukta Yagati, Eddie
Kohler, Robert Morris, M Frans Kaashoek, and Sam Madden. 2019. Towards
multiverse databases. In Proceedings of the Workshop on Hot Topics in Operating
Systems. 88–95.

[25] Azalia Mirhoseini, Anna Goldie, Hieu Pham, Benoit Steiner, Quoc V Le, and Jeff
Dean. 2018. Hierarchical planning for device placement. (2018).

[26] Derek G. Murray, Malte Schwarzkopf, Christopher Smowton, Steven Smith,
Anil Madhavapeddy, and Steven Hand. 2011. CIEL: A Universal Execution
Engine for Distributed Data-Flow Computing. In 8th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 11). USENIX Associa-
tion, Boston, MA. https://www.usenix.org/conference/nsdi11/ciel-universal-
execution-engine-distributed-data-flow-computing

[27] Salman Niazi, Mahmoud Ismail, Seif Haridi, Jim Dowling, Steffen Grohsschmiedt,
and Mikael Ronström. 2017. HopsFS: Scaling Hierarchical File System Meta-
data Using NewSQL Databases. In 15th USENIX Conference on File and Storage
Technologies (FAST 17). USENIX Association, Santa Clara, CA, 89–104. https:
//www.usenix.org/conference/fast17/technical-sessions/presentation/niazi

[28] Francisco Romero, Qian Li, Neeraja J Yadwadkar, and Christos Kozyrakis. 2021.
INFaaS: Automated Model-less Inference Serving. In 2021 USENIX Annual Tech-
nical Conference (USENIX ATC 21). 397–411.

[29] Zhenyuan Ruan, Malte Schwarzkopf, Marcos K. Aguilera, and Adam Belay. 2020.
AIFM: High-Performance, Application-Integrated Far Memory. In 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 20). USENIX
Association, 315–332. https://www.usenix.org/conference/osdi20/presentation/
ruan

[30] Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-Malek, and John Wilkes.
2013. Omega: flexible, scalable schedulers for large compute clusters. In SIGOPS
European Conference on Computer Systems (EuroSys). Prague, Czech Republic, 351–
364. http://eurosys2013.tudos.org/wp-content/uploads/2013/paper/Schwarzkopf.
pdf

[31] Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri, Gohar Chaudhry, Paul Batum,
Jason Cooke, Eduardo Laureano, Colby Tresness, Mark Russinovich, and Ricardo
Bianchini. 2020. Serverless in the Wild: Characterizing and Optimizing the
Serverless Workload at a Large Cloud Provider. In 2020 USENIX Annual Technical
Conference (USENIX ATC 20). USENIX Association, 205–218. https://www.usenix.
org/conference/atc20/presentation/shahrad

[32] Athinagoras Skiadopoulos, Qian Li, Peter Kraft, Kostis Kaffes, Daniel Hong, Shana
Mathew, David Bestor, Michael Cafarella, Vijay Gadepally, Goetz Graefe, Jeremy
Kepner, Christos Kozyrakis, Tim Kraska, Michael Stonebraker, Lalith Suresh, and
Matei Zaharia. 2022. DBOS: A DBMS-oriented Operating System. To appear at
VLDB’22 (2022).

[33] Lalith Suresh, João Loff, Faria Kalim, Sangeetha Abdu Jyothi, Nina Narodytska,
Leonid Ryzhyk, Sahan Gamage, Brian Oki, Pranshu Jain, and Michael Gasch. 2020.
Building Scalable and Flexible Cluster Managers Using Declarative Programming.
In 14th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 20). USENIX Association, 827–844. https://www.usenix.org/conference/
osdi20/presentation/suresh

[34] Rebecca Taft, Essam Mansour, Marco Serafini, Jennie Duggan, Aaron J Elmore,
Ashraf Aboulnaga, Andrew Pavlo, and Michael Stonebraker. 2014. E-store: Fine-
grained elastic partitioning for distributed transaction processing systems. Pro-
ceedings of the VLDB Endowment 8, 3 (2014), 245–256.

[35] Dana Van Aken, Dongsheng Yang, Sebastien Brillard, Ari Fiorino, Bohan Zhang,
Christian Bilien, and Andrew Pavlo. 2021. An inquiry into machine learning-
based automatic configuration tuning services on real-world database manage-
ment systems. Proceedings of the VLDB Endowment 14, 7 (2021), 1241–1253.

[36] Midhul Vuppalapati, Justin Miron, Rachit Agarwal, Dan Truong, Ashish Mo-
tivala, and Thierry Cruanes. 2020. Building An Elastic Query Engine on Dis-
aggregated Storage. In 17th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 20). USENIX Association, Santa Clara, CA, 449–462.
https://www.usenix.org/conference/nsdi20/presentation/vuppalapati

https://aws.amazon.com/lambda/
https://openwhisk.apache.org/
https://gvisor.dev/
https://www.lacework.com/
https://supercloud.mit.edu/
https://prometheus.io/
https://prometheus.io/
https://www.splunk.com/
https://www.vertica.com/
https://www.voltdb.com/
https://www.usenix.org/conference/nsdi20/presentation/agache
https://www.usenix.org/conference/nsdi20/presentation/agache
https://doi.org/10.1145/3341301.3359656
https://arxiv.org/abs/2007.11112
https://doi.org/10.1109/TSE.1987.232889
https://doi.org/10.1109/TSE.1987.232889
https://www.usenix.org/conference/nsdi14/technical-sessions/dragojevi{�}
https://www.usenix.org/conference/atc19/presentation/fouladi
https://www.usenix.org/conference/atc19/presentation/fouladi
https://www.usenix.org/conference/osdi18/presentation/gjengset
https://www.usenix.org/conference/osdi18/presentation/gjengset
https://doi.org/10.1109/32.55088
https://proceedings.neurips.cc/paper/2019/file/f69e505b08403ad2298b9f262659929a-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/f69e505b08403ad2298b9f262659929a-Paper.pdf
https://www.usenix.org/conference/nsdi11/ciel-universal-execution-engine-distributed-data-flow-computing
https://www.usenix.org/conference/nsdi11/ciel-universal-execution-engine-distributed-data-flow-computing
https://www.usenix.org/conference/fast17/technical-sessions/presentation/niazi
https://www.usenix.org/conference/fast17/technical-sessions/presentation/niazi
https://www.usenix.org/conference/osdi20/presentation/ruan
https://www.usenix.org/conference/osdi20/presentation/ruan
http://eurosys2013.tudos.org/wp-content/uploads/2013/paper/Schwarzkopf.pdf
http://eurosys2013.tudos.org/wp-content/uploads/2013/paper/Schwarzkopf.pdf
https://www.usenix.org/conference/atc20/presentation/shahrad
https://www.usenix.org/conference/atc20/presentation/shahrad
https://www.usenix.org/conference/osdi20/presentation/suresh
https://www.usenix.org/conference/osdi20/presentation/suresh
https://www.usenix.org/conference/nsdi20/presentation/vuppalapati

A Progress Report on DBOS: A Database-oriented Operating System CIDR’22, January 9-12, 2022, Chaminade, USA

[37] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauly, Michael J. Franklin, Scott Shenker, and Ion Stoica. 2012. Re-
silient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster
Computing. In Presented as part of the 9th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 12). USENIX, San Jose, CA, 15–28. https:

//www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia
[38] Ji Zhang, Yu Liu, Ke Zhou, Guoliang Li, Zhili Xiao, Bin Cheng, Jiashu Xing,

Yangtao Wang, Tianheng Cheng, Li Liu, et al. 2019. An end-to-end automatic
cloud database tuning system using deep reinforcement learning. In Proceedings
of the 2019 International Conference on Management of Data. 415–432.

https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia

	Abstract
	1 Why a New OS?
	2 The DBOS Stack
	3 Progress To Date
	4 Lessons from the First Year
	4.1 Newer SQL DBMSs are fast enough for DBOS
	4.2 Making everything a stored procedure works well
	4.3 Our serverless environment is surprisingly fast
	4.4 SQL is highly advantageous when requirements change
	4.5 Do everything just once
	4.6 Work around the limitations of the DBMS
	4.7 DBOS had to become a polystore
	4.8 Better polystore support would be very helpful
	4.9 Tuning a multi-core, multi-node DBMS is hard
	4.10 DBOS would probably benefit from a different tradeoff concerning multi-partition transactions
	4.11 Multi-tenant support would be very, very helpful
	4.12 Auto-scaling would be very, very helpful
	4.13 Scale matters

	5 The Future of DBOS
	5.1 Pervasive monitoring
	5.2 Heterogeneous hardware support
	5.3 Security
	5.4 Self-adaptivity

	6 Conclusion
	References

