
Mach: A Pluggable Metrics Storage Engine
for the Age of Observability

Franco Solleza1, Andrew Crotty1,2, Suman Karumuri3, Nesime Tatbul4,5, Stan Zdonik1
1Brown University, 2CMU, 3Slack Technologies, 4Intel Labs, 5MIT

fsolleza@cs.brown.edu,andrewcr@cs.cmu.edu,skarumuri@slack-corp.com,tatbul@csail.mit.edu,sbz@cs.brown.edu

ABSTRACT

Observability is gaining traction as a key capability for under-
standing the internal behavior of large-scale system deployments.
Instrumenting these systems to report quantitative telemetry data
called metrics enables engineers to monitor and maintain services
that operate at an enormous scale so they can respond rapidly to
any issues that might arise. To be useful, metrics must be ingested,
stored, and queryable in real time, but many existing solutions
cannot keep up with the sheer volume of generated data.

This paper describesMach, a pluggable storage engine we are
building specifically to handle high-volume metrics data. Similar
to many popular libraries (e.g., Berkeley DB, LevelDB, RocksDB,
WiredTiger), Mach provides a simple API to store and retrieve
data. Mach’s lean, loosely coordinated architecture aggressively
leverages the characteristics of metrics data and observability work-
loads, yielding an order-of-magnitude improvement over existing
approaches—especially those marketed as “time series database
systems” (TSDBs). In fact, our preliminary results show that Mach
can achieve nearly 10× higher write throughput and 3× higher read
throughput compared to several widely used alternatives.

1 INTRODUCTION

On the afternoon of May 12, 2020, at 4:45pm PST, the cloud-based
business communication platform Slack experienced a total service
disruption [22]. For millions of users, this outage lasted for only
48 minutes, but the cascade of events that led to the outage actu-
ally began roughly eight hours earlier. The incident prompted an
“all hands on deck” response, with engineers from multiple teams
poring over petabytes of operational data available from Slack’s
internal monitoring infrastructure. Through swift action, they were
able to fully restore service by 5:33pm PST, but diagnosing and cor-
recting the root cause of the outage under immense time pressure
was not an easy task.

This incident is a prime example of the growing importance
of observability in large-scale system deployments. Observability
enables better understanding of the internal behavior of complex
systems in real time by collecting different types of telemetry data,
in particular quantitative measurements known as metrics. Metrics
are used in a variety of ways, including to populate dashboards,
generate alerts, and answer ad hoc analytical queries.

Figure 1 shows a subset of a metrics dataset from a server moni-
toring use case. Each row in the figure represents a sample, with
samples from the same source grouped together by color. Samples

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution, provided that you
attribute the original work to the authors and CIDR 2022. 12th Annual Conference on
Innovative Data Systems Research (CIDR ’22). January 9-12, 2022, Chaminade, USA.

Figure 1: Metrics from a server monitoring use case.

have three distinct parts: (1) the set of labels or tags identifying the
sample’s source; (2) a timestamp denoting when the source gen-
erated the sample; and (3) one or more numeric values capturing
quantitative measurements from the source, such as CPU utilization
and temperature.

Real-world use cases can produce huge volumes of metrics data
from millions or billions of distinct sources. For example, Slack
collects metrics from 4 billion unique sources per day at a rate of 12
million samples per second, generating up to 12 TB of compressed
data every day [20]. Unfortunately, many off-the-shelf systems
cannot scale to support these workloads, leading to a patchwork of
brittle, custom-built solutions [20, 21].

To address these shortcomings, we are building a pluggable
storage engine calledMach that specifically targets observability
use cases.Mach provides a simple API for users to store and retrieve
their data, similar to other popular libraries (e.g., Berkeley DB [24],
LevelDB [6], RocksDB [9], WiredTiger [14]). However, unlike these
storage engines, Mach has a lean, loosely coordinated architecture
that is specialized for the unique characteristics of metrics data
and observability workloads. These design decisions allowMach
to outperform several widely used alternatives, with nearly 10×
higher write throughput and 3× higher read throughput.

2 BACKGROUND

In this section, we discuss the common characteristics of observ-
ability workloads, unique aspects of the metrics data model, and
shortcomings of existing approaches.

2.1 Workload Characteristics

Metrics span two dimensions: (1) the time dimension, which con-
sists of individual samples from a data source that arrive over time;
and (2) the space dimension, which consists of samples from many
different data sources. Figure 2 visualizes the example server moni-
toring dataset in the time and space dimensions. Each dot represents
an individual sample (i.e., a row from Figure 1), and each row of
dots represents the samples from a single data source.



CIDR’22, January 9-12, 2022, Chaminade, USA Franco Solleza, Andrew Crotty, Suman Karumuri, Nesime Tatbul, Stan Zdonik

Figure 2: The time and space dimensions of metrics data.

Sources exhibit a variety of write patterns in the time dimension.
Some sources produce samples at regular intervals (rows 1, 3),
whereas others have bursty or random write patterns (row 5). The
space dimension also exhibits churn: sources can become inactive
(row 6), start up (rows 2, 4), or stop then restart (row 7).

The inclination for most systems is to consider scalability in the
time dimension, since large volumes of data can accumulate over
time. However, even if each source emits samples at a relatively
low frequency (e.g., once per second), having millions or billions
of active sources poses a scalability challenge in the space dimen-
sion. Metrics storage engines must therefore consider both of these
dimensions in their design.

Read queries are typically biased toward freshness. Analytical
queries that look far back in time (the blue box in Figure 2) are
much less frequent than queries that look at recent data across many
sources (the green box in Figure 2). For example, 95% of queries in
Slack’s monitoring infrastructure are for metrics data from the past
hour, and almost 98% of metrics queries are for metrics data less
than 4 hours old.

2.2 Data Model

As mentioned, samples in a metrics dataset consist of three parts:
(1) the set of labels or tags identifying the source; (2) a timestamp;
and (3) one or more data values. Metrics with a single value are
referred to as univariate, whereas metrics comprised of multiple
values are called multivariate.

Unfortunately, existing data models fail to neatly capture the
unique aspects of metrics data. For example, the relational model
cannot easily handle the variable number of labels and values. Stor-
ing each one individually would result in many sparsely populated
attributes, whereas storing them together as a complex type in a
single attribute would preclude common optimizations (e.g., colum-
nar compression). Another alternative is to create a new relation for
each data source. However, this approach does not scale beyond a
limited number of sources, and certain types of queries become un-
wieldy (e.g., retrieve all sources with the label name="CPU"). More-
over, all of these alternatives require online schema modifications
every time a new type of label or value must be added.

Other popular data models incorporate key assumptions that
make them similarly ill-suited for metrics data. For instance, nearly
all algorithms based on the time series data model assume samples
at evenly spaced points in time, but data sources in the observability
setting often produce samples at irregular intervals corresponding
to real-world events (e.g., an application crashing).

2.3 Existing Approaches

Embedded key-value stores (e.g., Berkeley DB [24], LevelDB [6],
RocksDB [9], WiredTiger [14]) are widely used for persisting data
in a variety of applications. However, these libraries are designed
to be general-purpose, and this flexibility imposes certain limita-
tions (e.g., write amplification, single-threaded writes) that limit
their ingestion throughput. Other popular embedded DBMSs (e.g.,
SQLite [10], DuckDB [27], TileDB [25]) suffer from similar limita-
tions that make them impractical for high-volume data ingestion
in an observability setting.

Many storage engines specialized for time series data (e.g., Go-
rilla [26]/Beringei [2], BTrDB [17], Timon [18], ByteSeries [28])
focus primarily on in-memory processing, whereasMach is heav-
ily optimized for persistent storage. On the other hand, most full-
fledged TSDBs (e.g., InfluxDB [4], ClickHouse [3], TimescaleDB [12],
VictoriaMetrics [13]) are geared toward analytical queries rather
than ingestion performance. Although TSDBs often provide rea-
sonably fast bulk loading, they are generally not designed for the
huge volume of small writes in observability workloads.

Prometheus [8] is the most widely adopted system for metrics
data and targets the same use case asMach. Prometheus optimizes
for ingest, as is evident in our preliminary results where it out-
performs InfluxDB and RocksDB. However, it does not support
multivariate data, incurring unnecessary overhead for many com-
mon workloads. As we discuss in Section 3.1, it also suffers from
coordination overheads unacceptable for metrics workloads. Hera-
cles [29] redesigns the Prometheus storage engine, gaining much
of its performance by operating largely in memory.

Thanos [11], M3 [7], and Monarch [15] are distributed metrics
and monitoring systems. They focus primarily on the distributed co-
ordination layer and rely on a lower-level storage engine under the
hood. For example, Thanos and M3 are designed to manage many
distributed Prometheus instances running in a cloud environment.

3 MACH

We are designingMach as a pluggable storage engine that specifi-
cally targets metrics data. In the following, we begin with a high-
level overview of Mach’s design and discuss what makes it different
from existing approaches. Then, we discuss Mach’s API, followed
by the corresponding write and read paths.

3.1 System Overview

An overview of Mach’s architecture appears in Figure 3. Users
interact with Mach through a simple API (Section 3.2) to store and
retrieve samples. As stated,Mach is specialized for the observability
setting, which requires a storage engine to efficiently handle both
massive write volume (i.e., ingestion) and low-latency reads (i.e.,
querying) in real time.

On the write side (Section 3.3), sources emit samples, routing
them through an intermediary (e.g., Kafka [5], Prometheus scrapers)
or inserting them directly via a protocol like HTTP. New samples
are appended to a buffer that, when full, is compressed and written
to persistent storage. Eventually, old or infrequently used segments
may be migrated to an OLAP system (e.g., ClickHouse [3]) for
analysis or remote storage (e.g., Amazon S3 Glacier [1]) for long-
term archival.



Mach: A Pluggable Metrics Storage Engine for the Age of Observability CIDR’22, January 9-12, 2022, Chaminade, USA

Figure 3:Mach’s high-level system architecture.

On the read side (Section 3.4), the system receives a variety of
concurrent queries for tasks like populating dashboards, alerting,
and ad-hoc analytics. These queries can leverage label and time
indexes constructed during ingestion to pinpoint the data sources
and time ranges of interest.

Existing storage engines used in observability workloads have
many working threads operating in a tightly coordinated fashion.
Mach’s architecture, on the other hand, takes a fundamentally
different approach based on loose coordination. More specifically,
Mach threads behave independently, keep their own state, and
have minimal coordination. We leverage this loosely coordinated
design in the following three key ways.

Multiple Independent Active Segments: Most storage engines
allow multiple writers for the same data source, coordinating via a
mutex and checking to make sure that samples are in order. Con-
sistent with other work [29], we find that mutex acquisition alone
comprises roughly 25% of write overhead in Prometheus. Even with
multiple writers, these engines eventually write to a single object,
and contention can occur at different levels.

In contrast,Mach uses multiple independent writer threads in
a loosely coordinated design. Each thread can write samples from
multiple sources, but each source is assigned to a single writer
thread. To avoid contention, threads maintain all necessary meta-
data internally and rely on minimal shared state. In this way,Mach
behaves like multiple independent storage engines, minimizing co-
ordination overhead in the write path. As shown in our preliminary
results (Section 4), this design allows Mach to scale far better than
alternatives.

Append-Mostly Fast Path: For flexibility, general-purpose storage
engines and TSDBs permit operations like updates and out-of-order
inserts. However, for metrics workloads, virtually all samples from
a single source are emitted and received in order. The overhead of
maintaining data structures like B+trees or LSM-trees is wasted in
a workload with millions of small, mostly in-order writes.

Instead, writer threads in Mach have a fast path tailored for
append-mostly writes. This fast path is comparable to simply ap-
pending to the end of a list and only possible because of Mach’s

loosely coordinated design. Without needing to worry about con-
current writers, appends incur no synchronization overhead. Fur-
thermore, this list-like behavior allowsMach to execute reads with-
out blocking writes via a low-overhead snapshotting mechanism
described in Section 3.4.
Thread-Level Elasticity:Workload burstiness is typically handled
in the application layer by scaling up the number of running storage
instances as demand increases. This approach adds unnecessary
complexity that muddles the actual application logic and often
results in poor resource utilization. In fact, systems like Thanos and
M3 were built partly to handle this problem.

The core issue is that individual instances of these systems can-
not scale in response to bursty workloads, since adding more writer
threads simply increases contention. Mach’s loose coordination
model completely avoids this problem because each thread behaves
like an independent storage engine. This approach allows Mach
to scale in response to workload changes by adding or reducing
writer threads without increasing write contention.

3.2 API

Similar to other popular storage engines,Mach has a simple API
to store and retrieve data. Specifically, Mach supports two basic
operators, push and get_range, as well as a register function for
specifying configuration parameters. The pseudocode in Figure 4
illustrates how an application might useMach.
register(config) registers a new data source with Mach. The
configuration describes the samples (e.g., the number of values)
and how Mach should handle them (e.g., the precision for the
compression scheme described in Section 3.3). register returns a
64-bit integer that uniquely identifies the source. Figure 4a shows
how an observability application would initializeMach.
push(id, ts, values) pushes a sample from the source identified
by id to Mach. ts is an unsigned 64-bit integer greater than the
previous timestamp pushed by this source, and values is an 𝑛-tuple
of floating-point values. Mach guarantees that a sample pushed
by a writer thread is immediately available for querying by any
calls to get_range that occur after the push completes. Mach also
ensures that samples are durable by periodically calling fsync to
flush them to persistent storage (see Section 3.3).

The pseudocode for writing samples toMachwith push appears
in Figure 4b. The application first initializes a writer using the
writer_id obtained in Figure 4a and then pushes the samples from
some input (e.g., a queue or scraper) to the writer.
get_range(min, max) returns an iterator over samples from the
specified source that fall within the time range between min and
max. get_range operates on a snapshot of samples from the source
taken as of the time the snapshot was requested. As mentioned,
Mach guarantees that all push calls completed prior to the snapshot
will be visible to get_range.

Figure 4c shows pseudocode for queryingMach. The application
begins by requesting a snapshot for the data source identified by
id. Calling get_range on the snapshot returns an iterator over
samples that fall within the specified time range. The application
can either reuse the snapshot object indefinitely for future queries
without incurring additional snapshot creation overhead or request
a new one to get an updated view of the data.



CIDR’22, January 9-12, 2022, Chaminade, USA Franco Solleza, Andrew Crotty, Suman Karumuri, Nesime Tatbul, Stan Zdonik

let db = DB::new(writers=10);
let id = db.register(config);
let writer_id = db.writer_id(id);

(a) API to initialize Mach with ten writers

and register a data source. The user speci-

fies characteristics of samples (e.g., number

of values) through the config argument.

let writer = db.writer(writer_id);
for (id, ts, values) in input {

writer.push(id, ts, values);
}

(b) API to initialize aMachwriter and push

samples intoMach from some input (e.g., a

queue or scraper). The application may del-

egate the writer to a separate writer thread.

let snap = db.snapshot(id);
for s in snap.get_range(min, max) {

// process s ...
}

(c) API to snapshot samples from a source

and query for a range of time. The applica-

tion may delegate the snapshot to a sepa-

rate query thread.

Figure 4: Pseudocode demonstrating the usage of Mach’s API.

3.3 Write Path

Given the massive volume of metrics data produced in observability
use cases, we have designed Mach to prioritize write performance.
As shown in Figure 5a,Mach manages loosely coordinated threads
in the write path using minimal global state. A concurrent global
hash table maps sources to their corresponding samples, and an
atomic counter distributes files to each writer thread. To add a new
source, Mach updates the global hash table and assigns the source
to the appropriate writer thread.

In the figure, the entry for data source𝑀 is color-coded to show
the different components of an entry in the global hash table. The
blue and green boxes represent the active segment and active block,
respectively, in the writer thread. These two components comprise
the write buffer for new samples.

The yellow and pink boxes are blocks of samples from 𝑀 that
the writer thread has already compressed and flushed to secondary
storage.Mach stores these blocks in the block index so that readers
can perform efficient time-based lookups.

The red arrows in Figure 5a show the flow of samples through the
append-mostly fast path after calling push. When source M pushes
a sample, the writer thread first looks up the necessary metadata
in a thread-local hash table 1○ and then appends the sample to
the active segment 2○. For rare cases when the application wants
to perform an out-of-order insert, Mach stores the samples in a
separate out-of-order buffer that is periodically merged with the
rest of the data.

Active Segment: The active segment is an in-memory buffer with
a parameterizable fixed size, which defaults to 256 samples. Mach
amortizes expensive operations (e.g., compression) in the write
path by operating on many samples at a time while still making
inserts immediately queryable after a push completes. Working
with batches of samples also enables many possible optimizations
(e.g., SIMD processing).

The active segment stores samples in a columnar fashion, with
the current number of samples maintained by an atomic counter.
When the active segment fills up, it becomes immutable. The writer
thread then takes a snapshot lock to block concurrent readers (see
Section 3.4) until it finishes compressing the active segment 3○.

Compression:Many TSDBs use some variation of the Gorilla [26]
compression scheme, providing little flexibility for use cases not
suited to that algorithm. Moreover, they typically compress samples
eagerly as soon as they arrive, which adds substantial overhead to
the write path.

Rather than compressing individual samples, Mach compresses
the entire active segment at once, which amortizes the cost over
many samples and enables better compression. Mach also has a
modular compression layer that can apply different compression
schemes on a case-by-case basis, even at the level of individual
columns. For example, CPU temperature readings that vary in a
relatively small fixed range might benefit from a more specialized
algorithm than measured CPU utilization.

One simple technique that we have found particularly useful in
practice involves converting floating-point values to fixed-point
integer representations based on a user-specified number of signifi-
cant digits. The resulting values from this strategy are significantly
more intuitive than other lossy compression algorithms that require
users to provide an error bound [23, 19].

Active Block: The active block 4○ is a fixed-size in-memory buffer
that corresponds to the OS page size (e.g., 4 KB). As the writer thread
adds compressed segments, the active block keeps track of the
remaining space using another atomic counter. If not enough space
remains in the active block to fit an entire compressed segment,
Mach breaks the segment into smaller pieces in an attempt to fill
up the block as much as possible and then flushes the block to the
corresponding file 5○.

Block Flushing: As mentioned, each writer thread maintains a
private file 6○ with a name drawn from the global atomic counter
shown in Figure 5a, as well as the current offset in the file (i.e.,
the number of blocks written). After flushing a block to the file,
a writer thread adds the block’s unique identifier, which consists
of the filename and offset, to the block index stored in the global
hash table 7○. Mach periodically calls fsync on files to ensure
persistence. By default, flushing occurs either after every ten blocks
or five seconds, whichever comes first.

When the file reaches a parameterizable size (e.g., 1 GB), Mach
performs a final fsync and then closes it. The thread then takes
the next available filename from the global counter.

3.4 Read Path

Figure 5b shows the read path, which also leveragesMach’s loosely
coordinated architecture. The read path begins with a snapshot
operation executed on the global state 1○.Mach looks up the id
of the data source in the global hash table and then executes a
snapshot operation, which returns an iterator over all samples up
until the time of snapshot creation. Importantly, this iterator does
not block concurrent writer threads.



Mach: A Pluggable Metrics Storage Engine for the Age of Observability CIDR’22, January 9-12, 2022, Chaminade, USA

(a) Write Path (b) Read Path

Figure 5: The read and write paths in Mach. (a) Write Path: When calling push for data source M, the write path progressively

moves data from an in-memory uncompressed active segment to an in-memory compressed active block, and finally to

persistent blocks on disk. The global state (i.e., DB instance in Figure 4a) holds a concurrent hash table that contains pointers to

these components. (b) Read Path: When a reader takes a snapshot, it looks up pointers to the active segment, active block, and

list of persistent blocks from the global state. It then loads the atomic counters of the active segment and active block, and

copies the head of the list of persistent blocks.

Snapshots:As described in Section 3.1, the intuition behindMach’s
snapshotting approach is similar to an append-only list. When a
writer thread appends a new sample to the end of its active segment,
all previous samples in the active segment are considered immutable.
To create a snapshot, the reader thread only needs to know the
current head and the number of samples in the active segment at
the time of the snapshot.

First, the reader thread takes the snapshot lock for the speci-
fied source, retrieves pointers to both the active segment 2○ and
active block 3○ from the global hash table, and then loads the cur-
rent values from the atomic counters for each. To complete the
snapshotting process, the reader thread then takes a pointer to the
head of the block index in the global hash table 4○ and releases the
snapshot lock.

In many existing systems, a reader will hold locks for the entire
duration of the query, which could include expensive disk I/O. In
contrast, the critical section of Mach’s snapshotting mechanism
is short and deterministic. Reads will never block writes in a non-
deterministic way; counterintuitively, writes can instead block reads
when compressing an active segment.

Identifying Blocks: The reader thread then traverses the active
segment, active block, and block index to identify all samples that
fall within the time range specified by the get_range operation.
The block index is currently implemented as a linked list where
each node contains several block identifiers. With a linked list, snap-
shotting is lightweight, since readers do not need to traverse a more
complex data structure. Additionally, querying recent samples (i.e.,
scanning forward from the head of the list) is very efficient, since
read queries are biased toward freshness. Although our experiments

show that the overhead of traversing the index is small relative
to overall query runtime, we plan to investigate alternative data
structures in the future.
Reading Blocks: After gathering all of the relevant block iden-
tifiers, Mach can then begin scanning these blocks. Since blocks
of samples from the same source are written sequentially in time
order, a scan involves fast sequential read operations from persis-
tent storage, followed by decompressing the blocks. If blocks are
needed by other queries, they will remain available in the OS page
cache until being evicted.

4 PRELIMINARY RESULTS

We implemented a prototype of Mach in Rust. Our preliminary
results show: (1) ourmultiple independent active segments scale bet-
ter than alternatives and can ingest up to 480M unbatched floating-
point values per second on a single node, which is nearly 10× higher
write throughput than the closest competitor for comparable uni-
variate workloads; (2) the append-only fast-path can maintain high
write throughput when scaling in the space dimension to as many
as 1M distinct sources; and (3) Mach provides up to 3× higher
read throughput on queries over two different time ranges. In the
following, we provide a detailed discussion of these results.

4.1 Setup

Environment: Our experiments were conducted on an Ubuntu
20.04 server with a 2.7 GHz Intel®Xeon®Gold 6150 CPU with 32
cores and hyper-threading, 380 GB RAM, and 3.2 TB Samsung SSDs.
Data: To evaluate the systems, we used server monitoring data
collected over three months from the machines managed by the



CIDR’22, January 9-12, 2022, Chaminade, USA Franco Solleza, Andrew Crotty, Suman Karumuri, Nesime Tatbul, Stan Zdonik

(a) Varying number of threads (b) Varying number of data sources

Figure 6: Ingestion Throughput

Figure 7: Read Throughput (note the difference in 𝑦-axis)

Department of Computer Science at Brown University. The dataset
contains 696 data sources, each with 18 metrics and an average of
32K samples, which provides a total of 11.5K univariate and 3.2K
multivariate data sources. In our experiments, each data source is
randomly chosen (with repetition) from either the univariate or
multivariate set.
Comparison Systems:We compareMach to Prometheus v.2.29,
InfluxDB tsm1, and RocksDB. For Prometheus and InfluxDB, we
extracted and benchmarked their respective storage engines to
avoid any overhead. We chose these systems because they persist
their data in a deterministic way and are representative of the
different types of storage engines that might be used to storemetrics
data. We excluded systems that rely on distributed execution (e.g.,
BTrDB [17], Druid [30]) or are primarily designed for in-memory
settings (e.g., Gorilla [26]/Beringei [2], Timon [18], Heracles [29]).

The experiments for Prometheus and InfluxDB were written
in Go, while all others were written in Rust. All experiments in
Section 4.2 flush data to persistent storage, and we disabled write-
ahead logging on all systems. For InfluxDB and RocksDB, our in-
gestion experiments write samples in batches of 1K, as we found
that writing single samples yielded extremely low throughput.
Note that, in contrast, Mach’s push operation allows the appli-
cation to write individual samples without having to worry about
batching. Additionally, we set RocksDB’s parallelism=64 and
max_background_jobs=64.

We report all results as the number of double-precision floating-
point values written or read per second (f64/sec).

4.2 Write Performance

Scaling with the Number of Writers: In this experiment, we
evaluated how well each system scales as the number of writer
threads increases. We split 10K sources over the specified number
of writer threads. A Zipfian skew of either 0.99 or 0.5 determines
the order in which data sources write samples for all systems ex-
cept Prometheus, as its pull-based approach makes write skew an
inappropriate characterization of its ingestion performance. We
aborted experiments that ran for longer than 15 minutes.

Figure 6a shows the write throughput of each system. Unsur-
prisingly, RocksDB exhibited the worst performance, as it was not
designed for this workload. InfluxDB outperformed RocksDB by
roughly 2–4×, and Prometheus outperformed both InfluxDB (almost
10×) and RocksDB (almost 30×). Of course,Mach significantly out-
performed all three of these systems. In particular, we observed that
Mach scales much better with the number of writer threads than
the comparison points due to its loosely coordinated architecture.

With multivariate data,Mach achieved substantial increases in
write throughput because the costs on the write path were amor-
tized over multiple values. We also noticed similar (though much
less substantial) improvements for RocksDB and InfluxDB. Since
Prometheus only supports univariate data, we include the same re-
sults from the previous experiment in the figure as an upper bound
of its performance.
Scaling with the Number of Data Sources: In this experiment,
we evaluated how well each system scales as the number of data
sources increases. We fixed the number of writer threads at 32 and
used a Zipfian skew of 0.99 for data source selection.

Figure 6b shows the results. In the univariate case, all systems
experienced a gradual decrease in write throughput due to accumu-
lating overheads (e.g., hash table lookups, CPU cache misses). How-
ever,Mach always maintained more than a 4× improvement over
Prometheus. At 1M distinct data sources,Mach achieved a write
throughput of 160M f64/sec, more than 2× the peak write through-
put achieved by Prometheus. In the multivariate case, Mach’s
write throughput stayed above 380M f64/sec, even for 1M distinct
sources. Both InfluxDB and RocksDB timed out.



Mach: A Pluggable Metrics Storage Engine for the Age of Observability CIDR’22, January 9-12, 2022, Chaminade, USA

To model settings with limited compute resources, we reran the
same experiment using only a single writer thread. Increasing the
number of sources from 10K to 100K resulted in a 35% decrease in
Mach’s write throughput (from 10M to 6.5M f64/sec) and a 46%
decrease in write throughput for Prometheus (from 4.9M to 2.7M
f64/sec). With 10K data sources, Mach’s write throughput was 2×
higher than Prometheus, increasing to 2.5× at 100K sources.

4.3 Read Performance

In this experiment, we tested read query performance with a vary-
ing number of reader threads. We evaluated two different time
ranges that reflect common analysis windows in observability set-
tings: the past 1 hour and the past 24 hours. We loaded 10K data
sources into InfluxDB, Prometheus, and Mach, and then we ex-
ecuted 100K get_range queries per thread. Since not all of the
systems batch lookups for multiple data sources, each reader thread
only queried a single data source at a time to maintain a consistent
baseline. Therefore, the results in Figure 7 are a lower bound on
performance for lookups over many data sources.

On the 1-hour workload, Prometheus andMach each had a read
throughput of about 200M f64/sec for univariate data. Both outper-
formed InfluxDB, which had a peak throughput of only 42M f64/sec.
Since Prometheus and Mach were designed for this workload (i.e.,
reading more recent data), these results are expected. Similar to
ingestion, querying multivariate data increased read throughput.
InfluxDB’s peak throughput was 56M f64/sec, whileMach’s was
about 700M f64/sec. Since these queries access very little of the
data, the overall query runtime for all systems was dominated by
fixed sources of overhead rather than data scanning. For example,
the snapshotting operation consumed the majority of execution
time in Mach.

On the 24-hour workload, InfluxDB at 1B f64/sec performed
close toMach, except with many concurrent querying threads. The
longer time range is advantageous for InfluxDB’s read-optimized
file format (TSM files). However, InfluxDB andMach treat multi-
variate data differently. Specifically, InfluxDB stores multivariate
data in a purely columnar format, whereas Mach stores column
chunks together similar to PAX [16]. This experiment shows the
benefits of Mach’s chunked storage approach when requesting
several columns, though we expect InfluxDB’s strategy to be better
when frequently querying only a small subset of the columns.

5 CONCLUSION & FUTUREWORK

This paper presented Mach, a new pluggable storage engine de-
signed to handle high-volume metrics data in an observability set-
ting. We described Mach’s loosely coordinated architecture that
allows it to fully leverage the unique characteristics of these work-
loads. Our preliminary results demonstrate that, compared to sev-
eral widely used alternatives, Mach can achieve nearly 10× higher
write throughput and 3× higher read throughput.

In the future, we plan to investigate several natural extensions
to Mach. Specifically, we believe that metrics workloads exhibit
similar characteristics to other observability data types: logs, events,
and traces [20, 21]. For example, integrating log data will require the
investigation of fundamental design considerations (e.g., trading off
compression speedwith size, enabling search over compressed data),

whereas supporting traces might necessitate the development of
entirely new data models (e.g., graph-based approaches to facilitate
root cause analysis). Our ultimate goal is to establish Mach as a
unifying storage engine for observability workloads.

Mach’s role as a storage engine also opens up opportunities
for research in the broader observability ecosystem, and we are
investigating several places in the observability stack where Mach
could add substantial value. For example, more full-featured sys-
tems could build higher-level operators (e.g., filtering, aggregation,
interpolation, windowing) on top of Mach’s low-level API. More
importantly, Mach’s excellent performance might even allow us to
completely rethink the design of the entire observability stack.

ACKNOWLEDGMENTS

Wewould like to thank Malte Schwarzkopf, Theo Benson, and Ugur
Cetintemel for their helpful feedback. This research was funded in
part by NSF grants IIS-1514491 and IIS-1526639.

REFERENCES

[1] Amazon S3 Glacier. https://aws.amazon.com/s3/glacier/.
[2] Beringei. https://github.com/facebookarchive/beringei.
[3] ClickHouse. https://clickhouse.com/.
[4] InfluxDB. https://www.influxdata.com/.
[5] Kafka. https://kafka.apache.org/.
[6] LevelDB. https://github.com/google/leveldb.
[7] M3. https://m3db.io/.
[8] Prometheus. https://prometheus.io/.
[9] RocksDB. http://rocksdb.org/.
[10] SQLite. https://www.sqlite.org/index.html.
[11] Thanos. https://thanos.io/.
[12] TimescaleDB. https://www.timescale.com/.
[13] VictoriaMetrics. https://victoriametrics.com.
[14] WiredTiger. http://source.wiredtiger.com/.
[15] C. Adams, L. Alonso, B. Atkin, J. Banning, S. Bhola, R. Buskens, M. Chen, X. Chen,

Y. Chung, Q. Jia, N. Sakharov, G. Talbot, N. Taylor, and A. Tart. Monarch: Google’s
Planet-Scale In-Memory Time Series Database. PVLDB, 13(12):3181–3194, 2020.

[16] A. Ailamaki, D. J. DeWitt, M. D. Hill, and M. Skounakis. Weaving Relations for
Cache Performance. In VLDB, pages 169–180, 2001.

[17] M. P. Andersen and D. E. Culler. BTrDB: Optimizing Storage System Design for
Timeseries Processing. In FAST, pages 39–52, 2016.

[18] W. Cao, Y. Gao, F. Li, S. Wang, B. Lin, K. Xu, X. Feng, Y.Wang, Z. Liu, and G. Zhang.
Timon: A Timestamped Event Database for Efficient Telemetry Data Processing
and Analytics. In SIGMOD, pages 739–753, 2020.

[19] A. Ilkhechi, A. Crotty, A. Galakatos, Y. Mao, G. Fan, X. Shi, and U. Çetintemel.
DeepSqueeze: Deep Semantic Compression for Tabular Data. In SIGMOD, pages
1733–1746, 2020.

[20] S. Karumuri, F. Solleza, S. Zdonik, and N. Tatbul. Towards Observability Data
Management at Scale. SIGMOD Rec., 49(4):18–23, 2020.

[21] S. Karumuri, F. Solleza, S. Zdonik, and N. Tatbul. Cloud Observability: A MELTing
Pot for Petabytes of Heterogenous Time Series. In CIDR, 2021.

[22] R. Katkov. All Hands on Deck: What does Slack do when Slack goes down?
https://slack.engineering/all-hands-on-deck/, 2020.

[23] P. Lindstrom. Fixed-Rate Compressed Floating-Point Arrays. TVCG, 20(12):2674–
2683, 2014.

[24] M. A. Olson, K. Bostic, and M. I. Seltzer. Berkeley DB. In USENIX ATC, pages
183–191, 1999.

[25] S. Papadopoulos, K. Datta, S. Madden, and T. G. Mattson. The TileDB Array Data
Storage Manager. PVLDB, 10(4):349–360, 2016.

[26] T. Pelkonen, S. Franklin, P. Cavallaro, Q. Huang, J. Meza, J. Teller, and K. Veer-
araghavan. Gorilla: A Fast, Scalable, In-Memory Time Series Database. PVLDB,
8(12):1816–1827, 2015.

[27] M. Raasveldt and H. Mühleisen. DuckDB: an Embeddable Analytical Database.
In SIGMOD, pages 1981–1984, 2019.

[28] X. Shi, Z. Feng, K. Li, Y. Zhou, H. Jin, Y. Jiang, B. He, Z. Ling, and X. Li. ByteSeries:
An In-Memory Time Series Database for Large-Scale Monitoring Systems. In
SoCC, pages 60–73, 2020.

[29] Z. Wang, J. Xue, and Z. Shao. Heracles: An Efficient Storage Model and Data
Flushing for Performance Monitoring Timeseries. PVLDB, 14(6):1080–1092, 2021.

[30] F. Yang, E. Tschetter, X. Léauté, N. Ray, G. Merlino, and D. Ganguli. Druid: A
Real-time Analytical Data Store. In SIGMOD, pages 157–168, 2014.

https://aws.amazon.com/s3/glacier/
https://github.com/facebookarchive/beringei
https://clickhouse.com/
https://www.influxdata.com/
https://kafka.apache.org/
https://github.com/google/leveldb
https://m3db.io/
https://prometheus.io/
http://rocksdb.org/
https://www.sqlite.org/index.html
https://thanos.io/
https://www.timescale.com/
https://victoriametrics.com
http://source.wiredtiger.com/
https://slack.engineering/all-hands-on-deck/

	Abstract
	1 Introduction
	2 Background
	2.1 Workload Characteristics
	2.2 Data Model
	2.3 Existing Approaches

	3 Mach
	3.1 System Overview
	3.2 API
	3.3 Write Path
	3.4 Read Path

	4 Preliminary Results
	4.1 Setup
	4.2 Write Performance
	4.3 Read Performance

	5 Conclusion & Future Work
	Acknowledgments

