
Runtime Encoding Execution in AnalyticDB: EfficientQuery
Executor for Cloud Database

Qiaoyi Ding
qiaoyi.dingqy@alibaba-inc.com

Alibaba Group
Hangzhou, China

The performance of analytical processing is the key concern of
cloud database customers. With the help of proper tuning on the
datamodel according to the characteristics of the workload, it is able
to maximize the performance of the Query Executor (QE). However,
based on the observations from Alibaba AnalyticDB [4], a columnar
OLAP database system which is designed for high-concurrency,
low-latency and real-time queries, and serves a diversity of work-
loads for thousands of cloud customers, cloud customers prefer
more flexible data types of VARCHAR to fixed length VARCHAR(n),
and BIGINT to store small numbers. Statistics shows that over 90%
BIGINT values can be represented within 4 bytes. VARCHAR used for
aggregation, join or sorting are usually enumeration or fixed-length
serial numbers. Apparently, using wide data types makes the system
easy to expand with the growth of their business, but it consumes
more memory and involves higher computational overhead. How
to achieve high query performance under such circumstances has
become a new challenge to the QE.

Recent researchers have studied the compression execution, which
directly utilizes the raw compressed data or other auxiliary data
built by the storage layer to speed up scanning and filtering [1–
3]. However, to further accelerate higher-level operators such as
sorting, aggregation or join, it requires the compression schemes
to be computational-friendly to these operators and relies on the
feasible delayed decompression mechanism. To achieve those, the
storage and execution engines should be redesigned to collaborate
closely. For cloud databases which are possibly built over the open
store storage, the opportunities are more limited.

In this paper, we propose Runtime Encoding Execution con-
cept to accelerate queries by operating directly on the data encoded
during the runtime in the QE layer. It decouples from the storage
layer, so the limitations due to the data model or compression abil-
ity are no longer existed. and it is capable to deal with intermediate
results so that higher-level operators can have a chance to be ac-
celerated as well. The key principle is we only apply runtime
encoding when the benefit gained from the computation
surpasses the coding overhead, which requires the encoding
schemes to have the following features:

• light-weighted encoding and decoding.
• fit operator’s feature: The encoded data is better to be order
preserved for sorting, or unique for join and aggregation.

• less memory consumption or more cache friendly.
• computation saving.
• facilitate the apply of a faster operating algorithms.

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution, provided that you
attribute the original work to the authors and CIDR 2022. 12th Annual Conference on
Innovative Data Systems Research (CIDR ’22). January 9-12, 2022, Chaminade, USA.

We designed three kinds of runtime encoding schemes which
conform to the principle and features. The Compression Encod-
ing Scheme is used for single key compression to gain better
temporal locality and conditionally to save computation by only
computing identical values for once. It includes Delta Encoding,
Roaring Bitmaps, Run-length Encoding and Dictionary. Iden-
tity Encoding Scheme andOrder Preserving Encoding Scheme
are used to serialize multiple keys into a binary string in a certain
layout to alleviate the cache miss problem in multiple keys com-
putation cases for hashing and sorting. The serialized binary can
bring extra benefits by reducing computation and applying faster
algorithms. For example, either the comparison or hashing function
is called only once for a 8-byte encoded value instead of 4 times
for the original 4 SMALLINT keys, and it is possible to sort using
RadixSort on the order-preserved binary string. Note that both the
schemes can apply to null-able and variable-lengthed keys. While
orders can be preserved using the Order Preserving Encoding Scheme
for complex sorting cases with a mixed of DESC, ASC, NULL FIRST
and NULL LAST ordering.

According to the ratio of the keys’ number computed by sorting,
aggregation and join per query in a day based on the AnalyticDB’s
workloads. Over 90.35% of the queries compute over 1 to 3 keys,
which are able to gain benefits from our designed schemes. The
results of simple experiments on the TPCH benchmark are listed in
Table 1. It shows 65.42% and 51.52% improvements for the aggrega-
tion on variable length string andmultiple grouping keys separately.
While for the sorting queries, 61.37% and 82.83% improvements are
produced because RadixSort is applied after the encoding, and a
50.18% enhancement is attained for the prefix based sorting in the
third case due to fewer fallbacks when comparing the same prefix.

Table 1: Experiments on TPCH benchmark

Key(s) Description Orig. Opt.

E2E improvement of aggregation quires on TPCH1T

l_shipstruct 4∼11 bytes VARCHAR 10.7s 3.7s
l_linenumber, l_shipdate INTEGER (small), date 16.5s 8.0s

CPU wall time improvement of sorting queries on TPCH10G

l_shipmode 3∼7 bytes VARCHAR 32.1s 12.4s
l_returnflag, l_suppkey 1 byte VARCHAR, INTEGER 2.98m 30.7s
l_returnflag, l_comment 1 byte, 10∼43 bytes VARCHAR 5.32m 2.65m

REFERENCES
[1] 2021. Apache HBase. https://hbase.apache.org.
[2] 2021. Apache Hudi. https://hudi.apache.org.
[3] 2021. Apache Iceberg. https://iceberg.apache.org.
[4] Feifei Li. 2019. Cloud-native database systems at Alibaba: Opportunities and

challenges. Proceedings of the VLDB Endowment 12, 12 (2019), 2263–2272.

https://hbase.apache.org
https://hudi.apache.org
https://iceberg.apache.org

	References

