
Screening Native ML Pipelines with “ArgusEyes”

Sebastian Schelter∗ Stefan Grafberger∗ Shubha Guha∗
Olivier Sprangers∗ Bojan Karlaš† Ce Zhang†

∗AIRLab, University of Amsterdam †ETH Zürich
[s.schelter,s.grafberger,s.guha,o.sprangers]@uva.nl [karlasb,ce.zhang]@inf.ethz.ch

Software systems that learn from data are being deployed in
increasing numbers in industrial and institutional scenarios.
Developing these machine learning (ML) applications im-
poses additional challenges beyond those of traditional soft-
ware systems. The behavior of such applications very much
depends on their input data, and they are based on systems
and libraries from a relatively young data science ecosystem,
which is rapidly evolving all the time. Experience shows that
it is difficult to ensure that such ML applications are imple-
mented correctly [Polyzotis et al. 2018, Stoyanovich et al.
2020], and as a consequence, data scientists building these
applications require fundamental system support.

Correctness challenges in ML pipelines. Data scientists and
ML engineers often unintentionally violate sound experimen-
tation practices for ML, such as the strict isolation of train
and test data, which can lead to non-reliable experimenta-
tion outcomes. Furthermore, there is a dire need to enforce
legal and ethical compliance in decision making with ML,
which introduces several technical challenges. For example,
in order to determine whether a model works equally well
for different groups [Stoyanovich et al. 2020], one needs to
compute group fairness metrics for different subsets of the
data, which is difficult, as sensitive attributes which identify
groups may not directly be used by the model. For enforcing
privacy rights (such as the ‘right to be forgotten’ [Schelter
2020]), we must identify which models actually consumed
the user’s data for model training, in order to retrain them
without this data. Data scientists also require support for
uncovering erroneous data, e.g., to identify samples which
are dirty or mislabeled. Most of the listed issues are typ-
ically addressed manually in an ad-hoc way, due to a lack
of system support for detecting particular issues. Further-
more, specialised solutions assume single-table input data
and are often incompatible with the rest of the data science
ecosystem.

Provenance is all you need. We find that we can automate
the detection of many common correctness issues in ML
pipelines with access to (i) the materialised artifacts of a

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2022.
12th Annual Conference on Innovative Data Systems Research (CIDR ‘22)
January 10-13, 2022, Chaminade, USA.

pipeline (its input relations, and its outputs, e.g., the fea-
ture matrices, labels and predictions of a classifier) as well as
(ii) their why-provenance (e.g., the information which input
records were used to compute a particular output). This al-
lows us to design lightweight screening techniques with low
invasiveness for natively written ML pipelines, which com-
bine code from different libraries from the rapidly evolving
data science ecosystem.

def load_data(…):
 input1 = pd.read_csv(…)
 input1 = input1[input1[‘attr’] > 10]
 input2 = pd.read_csv(…)
 return input1.join(input2, …)

def featurise(…):
 return ColumnTransformer(
 [(‘categorical’), …, …)
 (‘numerical’), …, …)])

all_data = load_(data)
train = all_data[all_data[‘date’] < …]
test = all_data[all_data[‘date’] >= …]
y_train = label_binarize(train[‘label’])
y_test = label_binarize(test[‘label’])

Pipeline = Pipeline([
 (‘features’, featurise(…)),
 (‘learner’, KerasClassifier(…))])

model = pipeline.fit(train, y_train)
quality = model.score(test, y_test)

input1

σattr>10

input2

⋈id=fk_id

1-hot

πattr

σdate<… σdate>=…

scale

πval

concat

FitClassifier

Score Xtrain

ytrain

D1

D2

Xtest

ytest

id attr label date

fk_id val

πlabel

binarize 1-hot

πattr

scale

concat

πlabel

binarize

πval

0, 1, 0, …, 0.23
1, 0, 0, …, 0.11[]

0, 0, 1, …, 0.46
0, 1, 0, …, 0.17[]

{(1,1)}
 …
{(1,...)}

{(2,1)}
 ...
{(2,...)}

0
1[]

1
0[] {(1,1), (2,3)}

{(1,5), (2,7)}

{(1,1), (2,3)}
{(1,5), (2,7)}

{(1,4), (2,7)}
{(1,3), (2,1)}

{(1,4), (2,7)}
{(1,3), (2,1)}

User-defined ML pipeline Extracted DAG representation Materialised artifacts with their provenance1 2 3

Pipeline screening with ArgusEyes. Based on these insights,
we present our ArgusEyes prototype, which operates on a
natively written ML pipeline in Python, extracts intermedi-
ate results and provenance (in the form of provenance poly-
nomials) with mlinspect [Grafberger et al. 2021], and infers
the semantics of their artifacts based on predefined “tem-
plates”(e.g., for a classification task). Our prototype enables
the automatic detection of common issues w.r.t. best prac-
tices in ML, and the computation of metadata such as group
fairness metrics, record usage the by the model, or data val-
uation with Shapley values. Our prototype handles clas-
sification pipelines natively written in pandas/sklearn and
keras, stores their artifacts and run data, and can be easily
hooked into continuous integration workflows. ArgusEyes
is available at https://github.com/schelterlabs/arguseyes.
This work was supported by Ahold Delhaize. All content represents the opinion
of the authors, which is not necessarily shared or endorsed by their respective
employers and/or sponsors.

1. REFERENCES
[Grafberger et al. 2021] Stefan Grafberger et al.

Lightweight Inspection of Data Preprocessing in Native
Machine Learning Pipelines. CIDR (2021).

[Polyzotis et al. 2018] Neoklis Polyzotis et al. Data
lifecycle challenges in production machine learning: a
survey. SIGMOD Record 47, 2 (2018).

[Schelter 2020] Sebastian Schelter. “Amnesia”-A Selection
of Machine Learning Models That Can Forget User
Data Very Fast. CIDR (2020).

[Stoyanovich et al. 2020] Julia Stoyanovich et al.
Responsible data management. PVLDB (2020).

