
Hist-Tree: Those Who Ignore It Are Doomed to Learn
Andrew Crotty
Brown University

crottyan@cs.brown.edu

ABSTRACT
Learned indexes have provided a new perspective on the
well-studied problem of indexing. Despite early skepticism,
recent results have shown significant improvements over tra-
ditional data structures. While some have attributed these
improvements to an ability to adapt to patterns in the data,
we believe that the main advantage of learned indexes comes
instead from implicit assumptions (e.g., data sortedness)
that are not fully leveraged by the comparison points.

In this paper, we show that, simply by incorporating these
same basic assumptions, we can design a traditional data
structure capable of outperforming learned alternatives. To
make our case, we propose a new index called a histogram
tree (Hist-Tree), which takes advantage of the sortedness
and range of the data. We also present an optimized com-
pact layout based on the read-only assumption made by
many learned indexes. Our experiments demonstrate that,
in terms of lookup latency, Hist-Tree can beat three state-
of-the-art learned indexes, including RMI, PGM-index, and
RadixSpline, by as much as 1.8–2.7×.

1. INTRODUCTION
Learned indexes are based on the simple premise that all

indexes can be viewed as models. This new way of looking at
the well-studied problem of indexing has created significant
buzz and sparked an entire line of follow-up work [8, 4, 7,
16, 11, 5], as well as investigations into other learned system
components [12]. While early critiques [17, 2] attempted
to demonstrate that learned indexes could not outperform
carefully tuned versions of traditional data structures, recent
results [15] definitively show that learned approaches can
beat many well-known indexes (e.g., B-trees, ART [14]).

However, we believe that all of these studies unknowingly
placed traditional indexes at an unfair disadvantage. Specifi-
cally, learned indexes make several implicit assumptions that
are not leveraged by any of the comparison points. For ex-
ample, many learned indexes assume sorted data, whereas
off-the-shelf B-trees make no such assumption; that is, since
B-trees can also handle unsorted data, they will incur un-
necessary overhead (e.g., redundant pointers) when the data
is actually sorted.

Other assumptions commonly made by learned indexes
include the minimum and maximum data values (i.e., the

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2021.
11th Annual Conference on Innovative Data Systems Research (CIDR ‘21)
January 10-13, 2021, Chaminade, USA.

range) and that the data will never be updated (i.e., a read-
only workload), both of which provide significant advantages
over traditional data structures that do not make these as-
sumptions. In fact, we posit that the reported improvements
over traditional indexes come almost entirely from leverag-
ing these implicit assumptions rather than any unique ability
to learn and adapt to patterns in the data.

The goal of this paper is to show that a traditional data
structure can actually outperform a learned index simply
by taking advantage of these same basic assumptions. To
make our case, we developed a new index called a histogram
tree (Hist-Tree) that leverages two very simple proper-
ties of the data: (1) sortedness and (2) the range. Addi-
tionally, since many state-of-the-art learned indexes (e.g.,
RMI [13], RadixSpline [11]) assume a read-only workload,
we also present a compact Hist-Tree layout optimized for
this property. Our experiments show that Hist-Tree can
achieve lookup latency reductions of up to 1.8–2.7× over
three state-of-the-art learned indexes, including RMI, PGM-
index, and RadixSpline.

2. BACKGROUND
In the following, we provide the relevant background on

learned indexes, including a discussion of their precise defi-
nition, specification of the problem addressed in this work,
and summary of existing approaches.

2.1 Learned Index Definition
What exactly qualifies as a learned index? The original

paper [13] argues that all indexes can be viewed as models.
While technically accurate, this definition is overly broad
and does not reflect common usage, where invoking the
term “learned” usually implies some form of black-box ML
at work. Yet, simply declaring that learned indexes incor-
porate ML techniques is similarly vague and unhelpful.

One widely touted feature of learned indexes is their abil-
ity to adapt to patterns, such as by partitioning the data
into (approximately) linear segments [8, 4, 7]. However,
traditional indexes also adapt to patterns in much the same
way. For example, B-trees will end up using a dispropor-
tionate number of nodes to cover denser regions of the data,
effectively making them sensitive to the underlying distribu-
tion. Adaptivity alone, then, is not a sufficient criterion for
classifying a data structure as learned.

Instead, we conclude that the defining characteristic of
learned indexes is the use of some form of explicit curve fit-
ting to model data distributions. More precisely, learned
indexes attempt to model a curve (i.e., function) that maps
an input key to an associated value, such as a position in a
sorted array, and then materialize the result as a concrete
data structure. For instance, the previously mentioned ap-
proaches that identify linear segments might store the slope
and intercept of each segment in the node of a tree.



Index CDF Updatable Open-Source

RMI [13] Multiple X
FITing-Tree [8] PLA X

ALEX [4] PLA X X
PGM-index [7] PLA X X

RadixSpline [11] Spline Fitting X

Table 1: Summary of existing learned indexes.

2.2 Problem Specification
In a general sense, a learned index can replace any tradi-

tional data structure. This paper specifically explores the
problem of search on sorted data, which is the focus of
most existing learned index work [13, 8, 4, 7, 11], and we
leave other topics (e.g., hashing, set membership, multidi-
mensional indexing [16, 5]) for future investigation.

The task involves locating a value in a sorted array given a
lookup key, where we must return the position corresponding
to the first occurrence of a key equal to (or greater than) the
specified key. Stated more formally, the goal is to identify
the position i of the greatest lower bound (i.e., infimum) of
an ordered subset S of a dataset D, such that all elements
of S are greater than or equal to the lookup key k.

Learned indexes tackle this search problem by approxi-
mating the CDF of D so that evaluating the CDF at k will
yield an estimate of i. Existing approaches employ different
methods for modeling the CDF, which we discuss next.

2.3 Existing Approaches
Table 1 summarizes (in order of first publication) existing

learned indexes that tackle the problem of search on sorted
data. For each learned index, we note: (1) the curve fitting
techniques used to model the CDF; (2) support for updates;
and (3) availability of an open-source implementation.

The original learned index paper [13] proposed the recur-
sive model index (RMI). The key idea is to organize multiple
models into a hierarchical structure, where each model se-
lects another model in the subsequent layer until reaching
a leaf that predicts the final position. Since then, several
formal [10, 15, 6] and informal [17, 2, 18] benchmarking
studies have compared the performance of learned indexes
to traditional data structures.

To address the read-only limitation of RMI, subsequent
learned indexes, including FITing-Tree [8], ALEX [4], and
PGM-index [7], added support for updates. All of these
approaches use some variation of piecewise linear approxi-
mation (PLA), modeling a data distribution as a series of
approximately linear segments.

The recently proposed RadixSpline [11] takes essentially
the same approach, fitting a linear spline to the CDF. Spline
knots are stored in an auxiliary radix table to accelerate
searches over the segments. Like RMI, RadixSpline also as-
sumes a read-only workload.

3. HIST-TREE
This section describes the design of Hist-Tree, our pro-

posed traditional data structure that incorporates some of
the common implicit assumptions made by learned indexes.

3.1 Overview
We begin with a high-level overview using the example

that appears in Figure 1, which is based on a dataset of 200

normally distributed keys in the range [0, 1000). Figure 1a
shows the keys plotted against positions in the array, as well
as histograms depicting the PDF and CDF of the keys.

The corresponding Hist-Tree for this dataset is shown
in Figure 1b. As the name suggests, a Hist-Tree is a tree
data structure where each node represents a histogram that
partitions a data range into a fixed number of equal-width
bins. For instance, the root node in the example partitions
the full key range into four bins, with 20 keys falling into
the first bin. Then, the child node of the first bin further
partitions that subrange into four smaller bins. Bins with a
child node are shown as white, whereas terminal bins (i.e.,
bins with a count below a chosen threshold) are shaded gray.
In Figure 1b, for example, note that all terminal bins have
counts less than the specified threshold of 16.

To perform a lookup, we simply descend the tree by cal-
culating the appropriate bin at each node and following the
corresponding pointer to the child node until reaching a ter-
minal bin. Along the way, we maintain a running sum of the
counts from all bins less than (i.e., to the left of) every cal-
culated bin. The result is a range no larger than the chosen
threshold, which is then supplied to any search algorithm
(e.g., linear, binary) to locate the key’s exact position.

Finally, Figure 1c shows a compact Hist-Tree layout that
flattens the tree into an efficient lookup table for read-only
workloads. In the figure, each row of the table represents a
node from the Hist-Tree shown in Figure 1b. While the
color scheme remains the same, notice that the values have
changed: each white bin now stores the offset of the row rep-
resenting its child node, and gray bins store the cumulative
sum of all counts up to that bin. For example, row 0 rep-
resents the root node, storing offsets to each of its children
(i.e., rows 1, 2, and 6) and the position of the smallest key
that falls into the fourth bin (i.e., 187).

3.2 Physical Layout
While conceptually a tree data structure, the Hist-Tree

nodes are physically organized into two arrays of 32-bit in-
tegers, which prevents fragmentation and reduces the over-
head of child pointers. The first array contains inner nodes
(i.e., nodes where at least one bin has a child), and the sec-
ond contains leaf nodes (i.e., nodes with only terminal bins).
For instance, the root node in Figure 1b would be stored in
the inner node array as eight consecutive elements, which
consist of four histogram bin counts followed by four child
pointers. A flag set in the high-order bit of a child pointer
denotes either a terminal bin or leaf node. In the example,
we would set this flag for the first and fourth child pointers
of the root node. On the other hand, the child of the first
bin would consist of four elements in the leaf node array to
store the histogram bin counts. Note that, although nodes
in the example have only four bins for ease of illustration,
using a larger number of bins in practice will limit the depth
of the tree and usually improve lookup performance.

Additionally, we ensure that the range covered by each
histogram is always a power of two, allowing us to use cheap
bit shifts for bin calculation rather than more expensive divi-
sion instructions. We must therefore round up the key range
to the next largest power of two, which is 1024 in the exam-
ple. While this rounding potentially leads to some wasted
space in the root node, the overhead is negligible, since any
bins that cover beyond the data range will remain as empty
terminal bins.



200 400 600 800
Keys

0

50

100

150

200

Po
si

ti
on

Data

0 200 400 600 800 1000
Keys

0

10

20

30

40

50

Fr
eq

ue
nc

y

PDF

0 200 400 600 800 1000
Keys

0

50

100

150

200

Fr
eq

ue
nc

y

CDF

(a) Example dataset

20 94 73 13

1 4 7 8 15 16 28 35 21 15 26 11

5 2 3 6 6 7 9 6 9 11 8 7 5 3 7 6 5 10 5 6

(b) Hist-Tree

0 1 2 6 187

1 0 1 5 12

2 20 3 4 5

3 35 40 42 45

4 51 57 64 73

5 79 88 99 107

6 7 135 8 176

7 114 119 122 129

8 150 155 165 170

(c) Compact Hist-Tree

Figure 1: An example dataset with the corresponding basic and compact Hist-Tree.

3.3 Lookup
A lookup involves descending a Hist-Tree to identify a

bounded search range in the sorted array for the specified
key. Figure 2 shows the pseudocode to perform a lookup of
key in a given Hist-Tree ht.

We start with an initial check that returns immediately
if key is outside the range covered by ht (lines 7–8). After
initializing some variables (lines 11–14), the algorithm then
proceeds by iteratively descending ht until reaching a ter-
minal bin or leaf node, at which point we return pos (lines
24–25). We test the flag bit in the child pointer to decide
whether to terminate the descent on the following iteration
and assign the appropriate child (i.e., inner or leaf node) to
next (lines 28–31). For each visited node, we compute bin

by performing a logical right shift on key of width bits and
add the counts from lower bins to pos (lines 19–21). Each
iteration ends by updating key based on bin and reducing
width accordingly (lines 34–35).

As a concrete example, looking up the key 567 in the Hist-
Tree from Figure 1b would proceed as follows. At the root
node, we first calculate the bin by dividing the key by the
bin width (567/256 = 2). Then, we compute the sum of all
smaller bins (20+94 = 114) before moving to the child node
and updating the key (567− 256 ∗ 2 = 55). We again divide
by the new bin width to choose the correct bin (55/64 = 0),
update the running sum (114 + 0 = 0), and adjust the key
(55 − 64 ∗ 0 = 55). At the leaf node, we perform one last
bin calculation (55/16 = 3) before returning the final sum
of the counts (114 + 5 + 3 + 7 = 129).

As mentioned, the lookup function returns a bounded
search range no larger than the set terminal bin threshold.
In our experiments (Section 4), we vary this threshold from
eight up to several thousand, which influences the choice of
accompanying search algorithm.

1 # define BINS 4
2 # define FLAG (1 << 31)
3

4 size_t lookup(ht_t *ht, uint64_t key)
5 {
6 //ensure key is within range
7 if (key < ht->min) return 0;
8 if (key > ht->max) return ht->len;
9

10 //initialize variables
11 uint32_t next, *node = ht->node;
12 int width = ht->width, done = 0;
13 size_t i, bin, pos = 0;
14 key -= ht->min;
15

16 //descend tree
17 do {
18 //calculate bin and update running sum
19 bin = key >> width;
20 for (i = 0; i < bin; i++)
21 pos += node[i];
22

23 //return when done set
24 if (done)
25 return pos;
26

27 //set done, next, and node based on flag
28 done = node[BINS + bin] & FLAG;
29 next = node[BINS + bin] & ~FLAG;
30 node = done ? ht->leaf + next * BINS
31 : ht->node + next * BINS * 2;
32

33 //adjust key and width
34 key -= bin << width;
35 width -= log2(BINS);
36 } while (1);
37 }

Figure 2: Hist-Tree lookup function



3.4 Insert & Delete
Both inserting and deleting a key are conceptually simi-

lar to performing a lookup. Thus, we can follow the same
basic algorithm from Figure 2, with the added step of up-
dating (i.e., incrementing or decrementing) the count of the
calculated bin in each node.

Additionally, we must also ensure that the updated count
satisfies the terminal bin threshold. For deletions, we simply
remove the node if the count no longer exceeds the thresh-
old, whereas insertions may require us to scan the covered
subrange in order to build the histogram for a new child
node. However, the subrange will only be as large as the
terminal bin threshold, and we can even leverage the run-
ning sum to get the exact starting position. Finally, for both
insertions and deletions, we may also need to switch nodes
between the inner and leaf node arrays.

While updating a Hist-Tree is relatively efficient, we
have not considered the overhead associated with updating
the actual data. Since learned indexes require that the data
must be stored in a densely packed sorted array, we would
almost always need to shift array elements in order to insert
or delete individual keys. As previously mentioned, many
traditional indexes do not require sorted data, which makes
updates much less expensive (e.g., new values can simply be
appended to the end of the array).

3.5 Bulk Loading
Indexes are often constructed over an entire dataset rather

than through individual insertions. Consequently, many tra-
ditional indexes like B-trees have efficient algorithms for
bulk loading, and recent learned index work [11, 15] has
also noted the importance of this functionality. Hist-Tree
can similarly perform efficient bulk loading of data from a
sorted array, which we describe in the following.

Based on the specified terminal bin threshold, we first cal-
culate the maximum possible height of the tree by assuming
a worst-case dense subrange and create one temporary node
in each layer. Then, we construct the Hist-Tree in a sin-
gle pass over the sorted array, updating the histogram bin
counts of the node in the bottom layer. When we reach a
key that falls outside the range covered by that node, we
recursively add the counts to each node’s parent and decide
whether to keep the node based on the total count. If the
total count is below the specified threshold, we mark the
corresponding bin in the parent as terminal (e.g., the last
bin of the root node in Figure 1b). Otherwise, we retain the
temporary node for the final Hist-Tree.

3.6 Compact Layout
Although competitive, Hist-Tree still cannot fully match

the performance of some learned indexes in all cases. As
stated, we believe this performance difference comes pri-
marily from the implicit assumption of a read-only work-
load, which provides a significant advantage over traditional
indexes that can handle arbitrary updates after initial con-
struction. We therefore present an optimized compact lay-
out for Hist-Tree that offers much better lookup perfor-
mance by leveraging the same read-only assumption.

Figure 1c shows the compact version of the Hist-Tree
from Figure 1b. A compact Hist-Tree is essentially a
lookup table, where bins from the Hist-Tree are mapped to
an array of 32-bit integers via a depth-first pre-order traver-
sal. Although each node is visually represented as a row in

1 # define BINS 4
2 # define FLAG (1 << 31)
3

4 size_t lookup(cht_t *cht, uint64_t key)
5 {
6 //ensure key is within range
7 if (key < cht->min) return 0;
8 if (key > cht->max) return cht->len;
9

10 //initialize variables
11 uint32_t next, *ptr = cht->root;
12 int width = cht->width;
13 size_t bin;
14 key -= cht->min;
15

16 //follow pointers in table
17 do {
18 //calculate bin and set next
19 bin = key >> width;
20 next = ptr[bin];
21

22 //return when flag set
23 if (next & FLAG)
24 return next & ~FLAG;
25

26 //adjust ptr, key, and width
27 ptr += next;
28 key -= bin << width;
29 width -= log2(BINS);
30 } while (1);
31 }

Figure 3: Compact Hist-Tree lookup function

the figure, the physical layout is actually flattened, similar
to the inner and leaf node arrays. Notice that white bins
now store offsets to the rows representing child nodes, and
terminal gray bins store the cumulative sum of all previous
bins, again with a flag set in the high-order bit.

The lookup function for a compact Hist-Tree appears
in Figure 3. The pseudocode has many similarities with
Figure 2, including range checks for key (lines 7–8), variable
initialization (lines 11–14), bin calculation (line 19), and up-
dates at the end of each iteration (lines 28–29). The overall
algorithm, though, is now much simpler, since we must only
follow the pointers in the lookup table (lines 20 and 27).
Moreover, we no longer need to maintain a running sum of
histogram bin counts, instead returning only the final posi-
tion stored in a terminal bin (lines 23–24).

Continuing the previous example, looking up the key 567
in the compact Hist-Tree of Figure 1c would proceed as
follows. We again begin at the root node, stored in row 0,
and index into bin 2 (567/256 = 2), which tells us to move to
row 6. We update the key (567−256∗2 = 55) and calculate
the new bin as 0 (55/64 = 0), which now tells us to move to
row 7. Finally, we index into bin 3 (55/16 = 3) and, since it
is terminal, return the stored position (129).

4. EVALUATION
To evaluate Hist-Tree, we used the Search On Sorted

Data (SOSD) benchmark [10], which has recently appeared
in other learned index publications [11, 15]. The benchmark
consists of four real-world datasets, each with a different
data distribution. In our experiments, all datasets use the
base size of 200M keys, and we report the average lookup
latency over 1M keys chosen uniformly at random.



0

100

200

300

Ti
m

e 
(n

s)

amzn

0

200

400

Ti
m

e 
(n

s)

face

0

100

200

300

Ti
m

e 
(n

s)

osm

0

100

200

300

Ti
m

e 
(n

s)

wiki

BS STX ART RMI PGM RS HT CHT

Figure 4: Lowest lookup latency achieved by each comparison point.

We implemented Hist-Tree in C and our benchmark
suite in C++, borrowing several index implementations and
tuning suggestions from the open-source SOSD codebase [1].
We compiled the code with gcc/g++-9.3.0 and ran on the
same c5.4xlarge EC2 instance, which has an Intel Xeon
Platinum 8124M CPU (3.0GHz, 26MB LLC), used for pre-
viously reported SOSD results [10, 11]. Our comparison
points fall into three index categories:

• None: As a baseline, we used binary search with no
index. However, in future work, we plan to add com-
parisons to other methods, such as interpolation search
and the more recent SIP/TIP [21].

• Traditional: For existing traditional indexes, we in-
cluded a widely used in-memory B-tree (stx-btree [3])
and ART [14]. As in other work [15], we vary index
size by only indexing a subset of keys. In the future, we
also plan to compare against other indexes, including
CSS-Tree [19], CSB+-Tree [20], and FAST [9].

• Learned: We chose three state-of-the-art learned in-
dexes: RMI [13], PGM-index [7], and RadixSpline [11].
All of these indexes, which appeared in another re-
cent study [15], have publicly available implementa-
tions tuned by the original authors.

4.1 Lookup Latency
Since many learned indexes advertise superior lookup per-

formance as their primary selling point, we begin by consid-
ering only the results for the configuration of each index that
yielded the lowest lookup latency. Later, we discuss the in-
fluence of other factors (i.e., index size and build time) on
lookup performance.

Figure 4 shows the lowest lookup latency achieved by each
comparison point. As expected, binary search (BS) exhibits
the worst performance, with the B-tree (STX) improving on
BS by about 1.5× in all cases. ART outperforms STX by
roughly another 1.2× on all datasets except wiki, where it
is over 2.3× faster than STX.

Overall, Hist-Tree (HT) performs similarly to ART and
between 17–47% slower than PGM-index (PGM). However,
on the face dataset, the updatable HT outperforms the
read-only RadixSpline (RS).

Across the board, we observe a 2–3× improvement when
transitioning from the updatable HT to the optimized com-
pact layout (CHT), suggesting that the assumption of a
read-only workload is one of the most important factors that
explains the performance of state-of-the-art learned indexes.
In fact, CHT beats RMI by 1.1–1.8×, PGM by 1.7–2.5×,

and RS by 1.2–2.7×. This result clearly substantiates our
assertion that, by leveraging all of the same assumptions
as learned indexes, a traditional data structure can offer
equivalent—or better—performance.

4.2 Index Size
Another important consideration is the total size of an

index, as they can often grow quite large. Figure 5 shows
the relationship between index size and lookup latency. Note
that BS appears as a flat horizontal line at the reported
lookup latency, as it does not use an index.

Except for the smallest RMI sizes, every index outper-
forms BS on all datasets. STX, ART, and HT all achieve
the best lookup performance at intermediate sizes. For ex-
ample, STX always has the lowest lookup latency at a size
of 58MB paired with a binary search on a bounded search
range of 64 elements. The one exception is wiki, where ART
performs very well at the largest size.

On the other hand, CHT almost always performs best at
the largest index size, with performance degrading as in-
dex size decreases. Intuitively, smaller terminal bin thresh-
olds will require more nodes and thus increase index size,
which in turn impacts lookup latency. However, as the re-
sults show, the relationship between index size and lookup
latency is highly dependent on the underlying data distribu-
tion. In many cases, we can even reduce HT and CHT sizes
by multiple orders of magnitude while observing only minor
increases in lookup latency.

In most cases, the learned indexes follow a similar pat-
tern to CHT, exhibiting the best performance at or near the
largest index size. Interestingly, their performance converges
as index size decreases, suggesting that model differences be-
come less important as the returned search ranges increase.

4.3 Build Time
Finally, Figure 6 shows lookup performance relative to

index construction time. Again, BS does not use an index
and appears as a flat horizontal line.

The STX and ART configurations with the best perfor-
mance require significantly less time to build than the other
indexes, since they can skip keys during construction. RMI
almost always has the longest build time, taking significantly
longer than the comparison points on face and wiki.

HT and CHT have similar build times (i.e., same order
of magnitude) to RMI for amzn and osm. However, on face

and wiki, the build times are more than 3.7× and 19× faster
than RMI, respectively, which is similar to PGM and RS.
Additionally, we note that converting from HT to CHT in-
curs only negligible overhead.



10 1 101 103

Size (MB)

100

200

300

Lo
ok

up
 (

ns
)

amzn

10 1 101 103

Size (MB)

200

400

Lo
ok

up
 (

ns
)

face

10 1 101 103

Size (MB)

200

400

Lo
ok

up
 (

ns
)

osm

10 1 101 103

Size (MB)

100

200

300

Lo
ok

up
 (

ns
)

wiki

BS STX ART RMI PGM RS HT CHT

Figure 5: Index size vs. lookup latency

10 1 101

Build (s)

100

200

300

Lo
ok

up
 (

ns
)

amzn

10 1 101

Build (s)

200

400

Lo
ok

up
 (

ns
)

face

10 1 101

Build (s)

200

400

Lo
ok

up
 (

ns
)

osm

10 1 101

Build (s)

100

200

300

Lo
ok

up
 (

ns
)

wiki

BS STX ART RMI PGM RS HT CHT

Figure 6: Build time vs. lookup latency

5. CONCLUSION & FUTURE WORK
This paper made the case that the main advantage of

learned indexes comes from leveraging certain implicit as-
sumptions, including the sortedness and range of the data.
We incorporated these same assumptions into the design of
our proposed traditional index, Hist-Tree, and also pre-
sented an optimized compact layout to match the read-only
nature of some learned indexes. Our results show that, in
terms of lookup latency, Hist-Tree can outperform three
state-of-the-art learned indexes by as much as 1.8–2.7×.

While we have demonstrated the importance of these im-
plicit assumptions, the performance of Hist-Tree requires
further investigation. As an immediate next step, we plan
to extend our experimental analysis to test larger data sizes,
skewed workloads, and concurrent lookups. We also plan to
examine how other indexes (e.g., B-trees) could be adapted
to take advantage of the same assumptions built into Hist-
Tree, as well how data structures for other use cases refer-
enced in the original learned index paper [13] (e.g., hashing,
set membership) might similarly benefit.

6. ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their

helpful feedback. This work received support from the AWS
Cloud Credits for Research Program.

7. REFERENCES
[1] SOSD. https://github.com/learnedsystems/SOSD.

[2] P. Bailis, K. S. Tai, P. Thaker, and M. Zaharia. Don’t Throw Out
Your Algorithms Book Just Yet: Classical Data Structures That
Can Outperform Learned Indexes.
https://dawn.cs.stanford.edu/2018/01/11/index-baselines/, 2018.

[3] T. Bingmann. STX B-tree. https://panthema.net/2007/stx-btree/.

[4] J. Ding, U. F. Minhas, J. Yu, C. Wang, J. Do, Y. Li, H. Zhang,
B. Chandramouli, J. Gehrke, D. Kossmann, D. B. Lomet, and
T. Kraska. ALEX: An Updatable Adaptive Learned Index. In
SIGMOD, pages 969–984, 2020.

[5] J. Ding, V. Nathan, M. Alizadeh, and T. Kraska. Tsunami: A
Learned Multi-Dimensional Index for Correlated Data and Skewed
Workloads. PVLDB, 14(2):74–86, 2020.

[6] P. Ferragina, F. Lillo, and G. Vinciguerra. Why Are Learned
Indexes So Effective? In ICML, volume 119, pages 3123–3132, 2020.

[7] P. Ferragina and G. Vinciguerra. The PGM-index: a fully-dynamic
compressed learned index with provable worst-case bounds. PVLDB,
13(8):1162–1175, 2020.

[8] A. Galakatos, M. Markovitch, C. Binnig, R. Fonseca, and
T. Kraska. FITing-Tree: A Data-aware Index Structure. In
SIGMOD, pages 1189–1206, 2019.

[9] C. Kim, J. Chhugani, N. Satish, E. Sedlar, A. D. Nguyen,
T. Kaldewey, V. W. Lee, S. A. Brandt, and P. Dubey. FAST: Fast
Architecture Sensitive Tree Search on Modern CPUs and GPUs. In
SIGMOD, pages 339–350, 2010.

[10] A. Kipf, R. Marcus, A. van Renen, M. Stoian, A. Kemper,
T. Kraska, and T. Neumann. SOSD: A Benchmark for Learned
Indexes. NeurIPS Workshop on Machine Learning for Systems, 2019.

[11] A. Kipf, R. Marcus, A. van Renen, M. Stoian, A. Kemper,
T. Kraska, and T. Neumann. RadixSpline: A Single-Pass Learned
Index. In aiDM@SIGMOD, pages 5:1–5:5, 2020.

[12] T. Kraska, M. Alizadeh, A. Beutel, E. H. Chi, A. Kristo, G. Leclerc,
S. Madden, H. Mao, and V. Nathan. SageDB: A Learned Database
System. In CIDR, 2019.

[13] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis. The
Case for Learned Index Structures. In SIGMOD, pages 489–504,
2018.

[14] V. Leis, A. Kemper, and T. Neumann. The Adaptive Radix Tree:
ARTful Indexing for Main-Memory Databases. In ICDE, pages
38–49, 2013.

[15] R. Marcus, A. Kipf, A. van Renen, M. Stoian, S. Misra, A. Kemper,
T. Neumann, and T. Kraska. Benchmarking Learned Indexes.
PVLDB, 14(1):1–13, 2020.

[16] V. Nathan, J. Ding, M. Alizadeh, and T. Kraska. Learning
Multi-Dimensional Indexes. In SIGMOD, pages 985–1000, 2020.

[17] T. Neumann. The Case for B-Tree Index Structures.
http://databasearchitects.blogspot.com/2017/12/
the-case-for-b-tree-index-structures.html, 2017.

[18] T. Neumann. Why use learning when you can fit?
http://databasearchitects.blogspot.com/2019/05/
why-use-learning-when-you-can-fit.html, 2019.

[19] J. Rao and K. A. Ross. Cache Conscious Indexing for
Decision-Support in Main Memory. In VLDB, pages 78–89, 1999.

[20] J. Rao and K. A. Ross. Making B+-Trees Cache Conscious in Main
Memory. In SIGMOD, pages 475–486, 2000.

[21] P. V. Sandt, Y. Chronis, and J. M. Patel. Efficiently Searching
In-Memory Sorted Arrays: Revenge of the Interpolation Search? In
SIGMOD, pages 36–53, 2019.

https://github.com/learnedsystems/SOSD
https://dawn.cs.stanford.edu/2018/01/11/index-baselines/
https://panthema.net/2007/stx-btree/
http://databasearchitects.blogspot.com/2017/12/the-case-for-b-tree-index-structures.html
http://databasearchitects.blogspot.com/2017/12/the-case-for-b-tree-index-structures.html
http://databasearchitects.blogspot.com/2019/05/why-use-learning-when-you-can-fit.html
http://databasearchitects.blogspot.com/2019/05/why-use-learning-when-you-can-fit.html

	Introduction
	Background
	Learned Index Definition
	Problem Specification
	Existing Approaches

	Hist-Tree
	Overview
	Physical Layout
	Lookup
	Insert & Delete
	Bulk Loading
	Compact Layout

	Evaluation
	Lookup Latency
	Index Size
	Build Time

	Conclusion & Future Work
	Acknowledgments
	References

