
White-Box OLAP Performance Modeling for the Cloud
Maximilian Kuschewski

maximilian.kuschewski@uni-jena.de
Uni Augsburg, LMU, TUM

Viktor Leis
viktor.leis@uni-jena.de

Friedrich-Schiller-Universität Jena

ABSTRACT
Public cloud providers offer hundreds of heterogeneous hardware
instances. For cloud-based analytical query processing systems,
this presents a major challenge: depending on the hardware con-
figuration chosen, performance and cost may differ by orders of
magnitude. We explore this relationship by building a white-box
model that takes the workload, hardware, and cost into account to
determine the optimal instance configuration. We argue that such
an approach can guide the evolution of cloud-native OLAP systems.

1 INTRODUCTION
Public cloud providers offer a large number of hardware instances
that can be rented, started, and stopped on demand within sec-
onds. Consequently, selecting the hardware that database systems
run on represents an additional degree of freedom when building
systems, adding features, and planning queries. We need a way
to explore this new degree of freedom and how it can be used to
optimize query execution. However, we believe black-box models
are unsuited for this task because they provide little insight and
model specific systems. Instead, we propose using white-box mod-
els that explicitly describe the relationship between workloads and
the cloud instances they are executed on.

We have designed such a white-box model with a focus on OLAP
workloads. An interactive tool for exploring the model predictions
is available online [1, 2]. Given some abstract description of an
OLAP workload, our model predicts the monetary workload cost
for the execution on available cloud instances. This cost also serves
as the optimization objective, as execution time may be (almost)
arbitrarliy small due to on-demand hardware scaling. Our model
includes multi-layer instance-local caching and materialization, as
well as the imperfect scaling and network data exchange required
for describing distributed processing.

2 USE CASES
There are multiple use cases for our model.

Cost Optimality As A Benchmark For New Systems. We
do not model performance bottlenecks and weaknesses of existing
database systems, and assume that all available hardware resources
can be fully exploited. Of course, this means that building a new
cloud-native query processing engine that performs as well as our
model is challenging. However, we only rely on well-understood
database concepts like caching, distributed query processing, and
hybrid hash join-like operators. Thus, the hurdles are mainly a
matter of engineering and systems building. We believe that, during

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution and repro-
duction in any medium as well allowing derivative works, provided that you attribute
the original work to the author(s) and CIDR 2021.
CIDR ’21, January 10–13, 2021, Chaminade, USA

0

.2

.4

.6

.8

1

2016 2017 2018 2019 2020

N
o

rm
a

liz
e

d
 W

o
rk

lo
a

d
 C

o
st

NVMe SSDs
100Gbit 
network hi

gh
 

ne
t

ba
la

nc
ed

hi
gh

CP
U

c5n
c5n

c5

i3
c5

c4 d2 c3 c4

Figure 1: Cheapest cloud instance type for three different
workloads over 5 years as predicted by our model

system design and development, our cost optimality model is a
useful benchmark against which a new system can be compared.

Evidence-BasedPerformance Feature Prioritization.By dis-
abling features like multi-layer caching or distributed processing
in the model, system architects can quantify how large the perfor-
mance and cost benefit of these features is. This enables evidence-
based decisions about prioritizing performance optimizations.

Hardware/Software Co-Evolution. The available hardware
in the cloud is not static but changes over time. Our model allows
reacting to new hardware opportunities by recomputing the model
with the new hardware data. We can illustrate this idea by ap-
plying our model to hardware configurations and prices from the
past 5 years. Figure 1 retroactively shows how the costs for three
different workloads (CPU-bound, balanced, and network-bound)
according to the model. Since 2015, there have been two major
relevant changes in the EC2 hardware landscape. The first was the
introduction of fast NVMe SSDs in mid 2017. This had a significant
effect on the balanced workload, which moved from an instance
with 20 disks (d2) to an instance with 8 NVMe SSDs (i3) – almost
halving workload cost. The second major change was the introduc-
tion of 100 Gbit network instances at the end of 2018, which had
even larger consequences: the cost of the network-bound workload
dropped to a quarter of the initial cost (and even the balanced work-
load switched away from i3 to c5n). The CPU-bound workload, in
contrast, did not see large gains in our 5-year period – which we
find surprising given the rising number of CPU cores in commodity
servers. This historical example illustrates how our model can be
used to react to changes in the hardware landscape by quantifying
the savings from using new hardware. This can then be compared
with the engineering cost required to exploit the novel hardware.

REFERENCES
[1] 2020. https://github.com/maxi-k/costoptimal-model.
[2] 2020. https://maxi-k.shinyapps.io/costoptimal/.

https://github.com/maxi-k/costoptimal-model
https://maxi-k.shinyapps.io/costoptimal/

	Abstract
	1 Introduction
	2 Use Cases
	References

