
Overton: A Data System for Monitoring and Improving
Machine-Learned Products

Christopher Ré
Apple

Feng Niu
Apple

Pallavi Gudipati
Apple

Charles Srisuwananukorn
Apple

ABSTRACT
We describe a system called Overton, whose main design
goal is to support engineers in building, monitoring, and
improving production machine learning systems. Key chal-
lenges engineers face are monitoring fine-grained quality, di-
agnosing errors in sophisticated applications, and handling
contradictory or incomplete supervision data. Overton auto-
mates the life cycle of model construction, deployment, and
monitoring by providing a set of novel high-level, declar-
ative abstractions. Overton’s vision is to shift developers
to these higher-level tasks instead of lower-level machine
learning tasks. In fact, using Overton, engineers can build
deep-learning-based applications without writing any code
in frameworks like TensorFlow. For over a year, Overton
has been used in production to support multiple applica-
tions in both near-real-time applications and back-of-house
processing. In that time, Overton-based applications have
answered billions of queries in multiple languages and pro-
cessed trillions of records reducing errors 1.7 − 2.9× versus
production systems.

1. INTRODUCTION
In the life cycle of many production machine-learning ap-

plications, maintaining and improving deployed models is
the dominant factor in their total cost and effectiveness–
much greater than the cost of de novo model construction.
Yet, there is little tooling for model life-cycle support. For
such applications, a key task for supporting engineers is to
improve and maintain the quality in the face of changes to
the input distribution and new production features. This
work describes a new style of data management system called
Overton that provides abstractions to support the model
life cycle by helping build models, manage supervision, and
monitor application quality.

Overton is used in both near-real-time and backend pro-
duction applications. However, for concreteness, our run-
ning example is a product that answers factoid queries, such
as “how tall is the president of the united states?” In our ex-

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2020.
10th Annual Conference on Innovative Data Systems Research (CIDR ‘20)
January 12-15, 2020, Amsterdam, Netherlands.

perience, the engineers who maintain such machine learning
products face several challenges on which they spend the
bulk of their time.

• Fine-grained Quality Monitoring While overall im-
provements to quality scores are important, often the
week-to-week battle is improving fine-grained quality
for important subsets of the input data. An individ-
ual subset may be rare but are nonetheless impor-
tant, e.g., 0.1% of queries may correspond to a product
feature that appears in an advertisement and so has
an outsized importance. Traditional machine learning
approaches effectively optimize for aggregate quality.
As hundreds of such subsets are common in produc-
tion applications, this presents data management and
modeling challenges. An ideal system would monitor
these subsets and provide tools to improve these sub-
sets while maintaining overall quality.

• Support for Multi-component Pipelines Even sim-
ple machine learning products comprise myriad indi-
vidual tasks. Answering even a simple factoid query,
such as “how tall is the president of the united states?”
requires tackling many tasks including (1) find the
named entities (‘united states’, and ‘president’), (2)
find the database ids for named entities, (3) find the in-
tent of the question, e.g., the height of the topic entity,
(4) determine the topic entity, e.g., neither president
nor united states, but the person Donald J. Trump,
who is not explicitly mentioned, and (5) decide the ap-
propriate UI to render it on a particular device. Any
of these tasks can go wrong. Traditionally, systems
are constructed as pipelines, and so determining which
task is the culprit is challenging.

• Updating Supervision When new features are cre-
ated or quality bugs are identified, engineers provide
additional supervision. Traditionally, supervision is
provided by annotators (of varying skill levels), but
increasingly programmatic supervision is the dominant
form of supervision [10, 20], which includes labeling,
data augmentation, and creating synthetic data. For
both privacy and cost reasons, many applications are
constructed using programmatic supervision as a pri-
mary source. An ideal system can accept supervision
at multiple granularities and resolve conflicting super-
vision for those tasks.

There are other desiderata for such a system, but the com-
modity machine learning stack has evolved to support them:

building deployment models, hyperparameter tuning, and
simple model search are now well supported by commodity
packages including TensorFlow, containers, and (private or
public) cloud infrastructure.1 By combining these new sys-
tems, Overton is able to automate many of the traditional
modeling choices, including deep learning architecture, its
hyperparameters, and even which embeddings are used.

Overton provides the engineer with abstractions that al-
low them to build, maintain, and monitor their application
by manipulating data files–not custom code. Inspired by re-
lational systems, supervision (data) is managed separately
from the model (schema). Akin to traditional logical inde-
pendence, Overton’s schema provides model independence:
serving code does not change even when inputs, parame-
ters, or resources of the model change. The schema changes
very infrequently–many production services have not up-
dated their schema in over a year.

Overton takes as input a schema whose design goal is to
support rich applications from modeling to automatic de-
ployment. In more detail, the schema has two elements: (1)
data payloads similar to a relational schema, which describe
the input data, and (2) model tasks, which describe the tasks
that need to be accomplished. The schema defines the in-
put, output, and coarse-grained data flow of a deep learn-
ing model. Informally, the schema defines what the model
computes but not how the model computes it: Overton does
not prescribe architectural details of the underlying model
(e.g., Overton is free to embed sentences using an LSTM or
a Transformer) or hyperparameters, like hidden state size.
Additionally, sources of supervision are described as data–
not in the schema–so they are free to rapidly evolve.

As shown in Figure 1, given a schema and a data file,
Overton is responsible to instantiate and train a model,
combine supervision, select the model’s hyperparameters,
and produce a production-ready binary. Overton compiles
the schema into a (parameterized) TensorFlow or PyTorch
program, and performs an architecture and hyperparame-
ter search. A benefit of this compilation approach is that
Overton can use standard toolkits to monitor training (Ten-
sorBoard equivalents) and to meet service-level agreements
(Profilers). The models and metadata are written to an
S3-like data store that is accessible from the production in-
frastructure. This has enabled model retraining and deploy-
ment to be nearly automatic, allowing teams to ship prod-
ucts more quickly.

In retrospect, the following three choices of Overton were
the most important in meeting the above challenges.2

(1) Code-free Deep Learning In Overton-based sys-
tems, engineers focus exclusively on fine-grained monitoring
of their application quality and improving supervision–not
tweaking deep learning models. An Overton engineer does
not write any deep learning code in frameworks like Ten-
sorFlow. To support application quality improvement, we
use a technique, called model slicing [3]. The main idea is
to allow the developer to identify fine-grained subsets of the
input that are important to the product, e.g., queries about
nutrition or queries that require sophisticated disambigua-
tion. The system uses developer-defined slices as a guide to
increase representation capacity. Using this recently devel-
oped technique led to state-of-the-art results on natural lan-

1Overton builds on systems like Turi [1].
2Please see the Arxiv version for more discussion design de-
cisions and related work.

task 1 task 2

✔

✔

✖

✔

✖

✔

✔

✔

slice 4
slice 3
slice 2
slice 1

Supervision Data

Schema
Payloads + Tasks

Combine
Supervision

Train &
Tune Models

Create
Deployable Model(specified once)

Fine-grained
quality reports

Add/augment slices

Add labeling functions

Add synthetic examples

 Overton

 Actions

Figure 1: Schema and supervision data are input to Overton,
which outputs a deployable model. Engineers monitor and
improve the model via supervision data.

guage benchmarks including GLUE and SuperGLUE [26].3

(2) Multitask Learning Overton was built to natively
support multitask learning [2,21,23] so that all model tasks
are concurrently predicted. A key benefit is that Overton
can accept supervision at whatever granularity (for whatever
task) is available. Overton models often perform ancillary
tasks like part-of-speech tagging or typing. Intuitively, if a
representation has captured the semantics of a query, then
it should reliably perform these ancillary tasks. Typically,
ancillary tasks are also chosen either to be inexpensive to
supervise. Ancillary task also allow developers to gain con-
fidence in the model’s predictions and have proved to be
helpful for aids for debugging errors.

(3) Weak Supervision Applications have access to su-
pervision of varying quality and combining this contradic-
tory and incomplete supervision is a major challenge. Over-
ton uses techniques from Snorkel [20] and Google’s Snorkel
DryBell [10], which have studied how to combine supervision
in theory and in software. Here, we describe two novel ob-
servations from building production applications: (1) we de-
scribe the shift to applications which are constructed almost
entirely with weakly supervised data due to cost, privacy,
and cold-start issues, and (2) we observe that weak supervi-
sion may obviate the need for popular methods like transfer
learning from massive pretrained models, e.g., BERT [7]–on
some production workloads, which suggests that a deeper
trade-off study may be illuminating.

In summary, Overton represents a first-of-its-kind machine-
learning lifecycle management system that has a focus on
monitoring and improving application quality. A key idea
is to separate the model and data, which is enabled by a
code-free approach to deep learning. Overton repurposes
ideas from the database community and the machine learn-
ing community to help engineers in supporting the lifecycle
of machine learning toolkits. This design is informed by and
refined from use in production systems for over a year in
multiple machine-learned products.

2. AN OVERVIEW OF OVERTON
To describe the components of Overton, we continue our

running example of a factoid answering product. Given the
textual version of a query, e.g., “how tall is the president of
the united states”, the goal of the system is to appropriately
render the answer to the query. The main job of an engineer

3A blog post introduction to slicing is https://snorkel.org/
superglue.html.

Schema
{
 "payloads": {
 "tokens" {
 "type": "sequence",
 "max_length": 16
 },
 "query": {
 "type": "singleton",
 "base": ["tokens"]
 },
 "entities": {
 "type": "set",
 "range": "tokens"
 }
 },
 "tasks" : {
 "POS": {
 "payload": "tokens",
 "type": "multiclass"
 },
 "EntityType": {
 "payload": "tokens",
 "type": "bitvector"
 },
 "Intent": {
 "payload": "query",
 "type": "multiclass"
 },
 "IntentArg": {
 "payload": "entities",
 "type": "select"
 },
 }
}

Example Data Record

{
 "payloads": {
 "tokens": ["How", "tall", ...],
 "query": "How tall is the president of the
 united states",
 "entities": {
 0: {"id":"President_(title)",range:[4,5]},
 1: {"id":"United_States",range:[6,9]},
 2: {"id":"U.S._state",range:[8,9]},
 ...
 }
 },
 "tasks": {
 "POS": {
 "spacy": ["ADV", "ADJ", "VERB", ...]
 },
 "EntityType": {
 "eproj": [[], ..., ["location", "country"]]
 },
 "Intent": {
 "weak1": "President",
 "weak2": "Height",
 "crowd": "Height"
 },
 "IntentArg": {
 "weak1": 2,
 "weak2": 0,
 "crowd": 1
 },
 }
}

Model Tuning
{
 "tokens": {
 "embedding": [
 "GLOV-300",
 "BERT",
 "XLNet"
],
 "encoder": [
 "LSTM",
 "BERT",
 "XLNet"
],
 "size": [
 256, 768, 1024
]
 },
 "query": {
 "agg": [
 "max", "mean"
]
 },
 "entities": {
 "embedding": [
 "wiki-256",
 "combo-512",
],
 "attention": [
 "128x4", "256x8"
]
 }
}

(a) An example schema, data file, and tuning specification for
our running example. Colors group logical sections.

Data &
Resources

Payloads &
Encodings

Tasks &
Labels

Input
Data

Pre-trained
Embeddings

Pre-trained
Models

BiLSTM
h=1024

tokens

mean(tokens) +
BERT

query

attend(tokens) +
entity-emb

entities

POS
multiclass

IntentArg
select

EntityType
bitvector

Intent
multiclass

(sequence) (set) (singleton)

(b) A deep architecture that might be selected by Overton.
The red components are selected by Overton via model search;
the black boxes and connections are defined by the schema.

Figure 2: The inputs to Overton and a schematic view of a compiled model.

is to measure and improve the quality of the system across
many queries, and a key capability Overton needs to support
is to measure the quality in several fine-grained ways. This
quality is measured within Overton by evaluation on curated
test sets, which are fastidiously maintained and improved by
annotators and engineers. An engineer may be responsible
for improving performance on a specific subset of the data,
which they would like to monitor and improve.

There are two inputs to Overton (Figure 2a): The schema
(Section 2.1), which specifies the tasks, and a data file, which
is the primary way an engineer refines quality (Section 2.2).
Overton then compiles these inputs into a multitask deep
model (Figure 2b). We describe an engineer’s interaction
with Overton (Section 2.3) and discuss design decisions (Sec-
tion 2.4).

2.1 Overton’s Schema
An Overton schema has two components: the tasks, which

capture the tasks the model needs to accomplish, and pay-
loads, which represent sources of data, such as tokens or
entity embeddings. Every example in the data file conforms
to this schema. Overton uses a schema both as a guide to
compile a TensorFlow model and to describe its output for
downstream use.4 Although Overton supports more types
of tasks, we focus on classification tasks for simplicity. An
example schema and its corresponding data file are shown
in Figure 2a. The schema file also provides schema informa-
tion in a traditional database sense: it is used to define a
memory-mapped row-store for example.5

A key design decision is that the schema does not contain
information about hyperparameters like hidden state sizes.
This enables model independence: the same schema is used
in many downstream applications and even across different
languages. Indeed, the same schema is shared in multiple
locales and applications, only the supervision differs.

Payloads Conceptually, Overton embeds raw data into
a payload, which is then used as input to a task or to an-
other payload. Overton supports payloads that are single-
tons (e.g., a query), sequences (e.g. a query tokenized into
words or characters), and sets (e.g., a set of candidate en-

4Overton also supports PyTorch and CoreML backends. For
brevity, we describe only TensorFlow.
5Since all elements of an example are needed together, a row
store has clear IO advantages.

tities). Overton’s responsibility is to embed these payloads
into tensors of the correct size, e.g., a query is embedded to
some dimension d, while a sentence may be embedded into
an array of size m × d for some length m. The mapping
from inputs can be learned from scratch, pretrained, or fine-
tuned; this allows Overton to incorporate information from
a variety of different sources in a uniform way.

Payloads may refer directly to a data field in a record for
input, e.g., a field ‘tokens’ contains a tokenized version of the
query. Payloads may also refer to the contents of another
payload. For example, a query payload may aggregate the
representation of all tokens in the query. A second exam-
ple is that an entity payload may refer to its corresponding
span of text, e.g., the “The United States of America” entity
points to the span “united states” in the query. Payloads
may aggregate several sources of information by referring to
a combination of source data and other payloads. The pay-
loads simply indicate dataflow, Overton learns the semantics
of these references.6

Tasks Continuing our running example in Figure 2b, we
see four tasks that refer to three different payloads. For each
payload type, Overton defines a multiclass and a bitvector
classification task. In our example, we have a multiclass
model for the intent task: it assigns one label for each
query payload, e.g., the query is about “height”. In contrast,
in the EntityType task, fine-grained types for each token
are not modeled as exclusive, e.g., location and country are
not exclusive. Thus, the EntityType task takes the token
payloads as input, and emits a bitvector for each token as
output. Overton also supports a task of selecting one out of
a set, e.g., IntentArg selects one of the candidate entities.
This information allows Overton to compile the inference
code and the loss functions for each task and to build a
serving signature, which contains detailed information of the
types and can be consumed by model serving infrastructure.
At the level of TensorFlow, Overton takes the embedding of
the payload as input, and builds an output prediction and
loss function of the appropriate type.

The schema is changed infrequently, and many engineers
who use Overton simply select an existing schema. Applica-
tions are customized by providing supervision in a data file

6By default, combination is done with multi-headed atten-
tion. The method of aggregation is not specified in the
schema, and Overton is free to change it.

that conforms to the schema, described next.

2.2 Weak Supervision and Slices
The second main input to Overton is the data file. It

is specified as (conceptually) a single file: the file is meant
to be engineer readable and queryable (say using jq), and
each line is a single JSON record. For readability, we have
pretty-printed a data record in Figure 2a. Each payload is
described in the file (but may be null).

The supervision is described under each task, e.g., there
are three (conflicting) sources for the Intent task. A task
requires labels at the appropriate granularity (singleton, se-
quence, or set) and type (multiclass or bitvector). The la-
bels are tagged by the source that produced them: these
labels may be incomplete and even contradictory. Overton
models the sources of these labels, which may come from
human annotators or from engineer-defined heuristics, such
as data augmentation or heuristic labelers. Overton learns
the accuracy of these sources using ideas from the Snorkel
project [20]. In particular, it estimates the accuracy of these
sources and then uses these accuracies to compute a prob-
ability that each training point is correct [25]. Overton in-
corporates this information into the loss function for a task;
this also allows Overton to automatically handle common
issues like rebalancing classes.

Monitoring For monitoring, Overton allows engineers to
provide user-defined tags that are associated with individ-
ual data points. The system additionally defines default tags
including train, test, and dev to specify the portion of the
data that should be used for training, testing, and develop-
ment. Engineers are free to define their own subsets of data
via tags, e.g,. the date supervision was introduced, or by
what method. Overton allows per-tag monitoring, such as
the accuracy, precision and recall, or confusion matrices, as
appropriate. These tags are stored in a format that is com-
patible with Pandas. As a result, engineers can load these
tags and the underlying examples into other downstream
analysis tools for further analytics.

Slicing In addition to tags, Overton defines a mechanism
called slicing, that allows monitoring but also adds repre-
sentational capacity to the model. An engineer defines a
slice by tagging a subset of the data and indicating that
this tag is also a slice. Engineers typically define slices that
consist of a subset that is particular relevant for their job.
For example, they may define a slice because it contains re-
lated content, e.g., “nutrition-related queries” or because the
subset has an interesting product feature, e.g., “queries with
complex disambiguation”. The engineer interacts with Over-
ton by identifying these slices, and providing supervision for
examples in those slices.7 Overton reports the accuracy con-
ditioned on an example being in the slice. The main job of
the engineer is to diagnose what kind of supervision would
improve a slice, and refine the labels in that slice by correct-
ing labels or adding in new labels.

A slice also indicates to Overton that it should increase
its representation capacity (slightly) to learn a “per slice”
representation for a task.8 In this sense, a slice is akin to
defining a “micro-task” that performs the task just on the

7Downstream systems have been developed to manage the
slicing and programmatic supervision from the UI perspec-
tive that are managed by independent teams.
8We only describe its impact on systems architecture, the
machine learning details are described in Chen et al. [3].

subset defined by the slice. Intuitively, this slice should be
able to better predict as the data in a slice typically has
less variability than the overall data. At inference time,
Overton makes only one prediction per task, and so the first
challenge is that Overton needs to combine these overlap-
ping slice-specific predictions into a single prediction. A
second challenge is that slices heuristically (and so imper-
fectly) define subsets of data. To improve the coverage of
these slices, Overton learns a representation of when one is
“in the slice” which allows a slice to generalize to new exam-
ples. Per-slice performance is often valuable to an engineer,
even if it does not improve the overall quality, since their job
is to improve and monitor a particular slice. A production
system improved its performance on a slice of complex but
rare disambiguations by over 50 points of F1 using the same
training data.

2.3 A Day in the Life of an Overton Engineer
To help the reader understand the process of an engineer,

we describe two common use cases: improving an existing
feature, and the cold-start case. Overton’s key ideas are
changing where developers spend their time in this process.

Improving an Existing Feature A first common use
case is that an engineer wants to improve the performance of
an existing feature in their application. The developer itera-
tively examines logs of the existing application. To support
this use case, there are downstream tools that allow one to
quickly define and iterate on subsets of data. Engineers may
identify areas of the data that require more supervision from
annotators, conflicting information in the existing training
set, or the need to create new examples through weak su-
pervision or data augmentation. Over time, systems have
grown on top of Overton that support each of these opera-
tions with a more convenient UI. An engineer using Overton
may simply work entirely in these UIs.

Cold-start Use Case A second common use case is the
cold-start use case. In this case, a developer wants to launch
a new product feature. Here, there is no existing data, and
they may need to develop synthetic data. In both cases,
the identification and creation of the subset is done by tools
outside of Overton. These subsets become the aforemen-
tioned slices, and the different mechanisms are identified as
different sources. Overton supports this process by allowing
engineers to tag the lineage of these newly created queries,
measure their quality in a fine-grained way, and merge data
sources of different quality.

In previous iterations, engineers would modify loss func-
tions by hand or create new separate models for each case.
Overton engineers spend no time on these activities.

2.4 Major Design Decisions and Lessons
We briefly cover some of the design decisions in Overton.
Design for Weakly Supervised Code As described,

weakly supervised machine learning is often the dominant
source of supervision in many machine learning products.
Overton uses ideas from Snorkel [20] and Google’s Snorkel
Drybell [10] to model the quality of the supervision. The
design is simple: lineage is tracked for each source of infor-
mation. There are production systems with no traditional
supervised training data (but they do have such data for
validation). This is important in privacy-conscious applica-
tions.

Resourcing Error Reduction Amount of Weak Supervision

High 65% (2.9×) 80%
Medium 82% (5.6×) 96%
Medium 72% (3.6×) 98%

Low 40% (1.7×) 99%

Figure 3: For products at various resource levels, percentage
(and factor) fewer errors of Overton system makes compared
to previous system, and the percentage of weak supervision
of all supervision.

Modeling to Deployment In many production teams,
a deployment team is distinct from the modeling team, and
the deployment team tunes models for production. How-
ever, we noticed quality regressions as deployment teams
have an incomplete view of the potential modeling tradeoffs.
Thus, Overton was built to construct a deployable produc-
tion model. The runtime performance of the model is po-
tentially suboptimal, but it is well within production SLAs.
By encompassing more of the process, Overton has allowed
faster model turn-around times.

Model Independence and Zero-code Deep Learn-
ing A major design choice at the outset of the project was
that domain engineers should not be forced to write tradi-
tional deep learning modeling code. Two years ago, this was
a contentious decision as the zeitgeist was that new models
were frequently published, and this choice would hamstring
the developers. However, as the pace of new model build-
ing blocks has slowed, domain engineers no longer feel the
need to fine-tune individual components at the level of Ten-
sorFlow. Ludwig9 has taken this approach and garnered
adoption. Although developed separately, Overton’s schema
looks very similar to Ludwig’s programs and from conversa-
tions with the developers, shared similar motivations. Lud-
wig, however, focused on the one-off model building process,
not the management of the model lifecycle. Overton itself
only supports text processing, but we are prototyping image,
video, and multimodal applications.

3. EVALUATION
We elaborate on three items: (1) we describe how Over-

ton improves production systems; (2) we report on the use
of weak supervision in these systems; (3) we discuss our ex-
perience with pretraining.10

Overton Usage Overton has powered industry-grade sys-
tems for more than a year. Figure 3 shows the end-to-end
reduction in error of these systems: a high-resource system
with tens of engineers, a large budget, and large existing
training sets, and three other products with smaller teams.
Overton enables a small team to perform the same duties
that would traditionally be done by several, larger teams.
Here, multitask learning is critical: the combined system re-
duces error and improves product turn-around times. Sys-
tems that Overton models replace are typically deep models
and heuristics that are challenging to maintain, in our esti-
mation because there is no model independence.

Usage of Weak Supervision Weak supervision is the
dominant form of supervision in all applications. Even an-

9https://uber.github.io/ludwig/
10Due to sensitivity around production systems, we report
relative quality numbers and obfuscate some tasks.

notator labels (when used) are filtered and altered by pri-
vacy and programmatic quality control steps. Note that
validation is still done manually, but this requires orders of
magnitude less data than training.

Figure 4: Relative quality changes as data set size scales.

Figure 4a shows the impact of weak supervision on quality
versus weak supervision scale. We downsample the training
data and measure the test quality (F1 and accuracy) on 3
representative tasks: singleton, sequence, and set.11 For
each task, we use the 1x data’s model as the baseline and
plot the relative quality as a percentage of the baseline; e.g.,
if the baseline F1 is 0.8 and the subject F1 is 0.9, the rel-
ative quality is 0.9/0.8 = 1.125. In Figure 4a, we see that
increasing the amount of supervision consistently results in
improved quality across all tasks. Going from 30K examples
or so (1x) to 1M examples (32x) leads to a 12%+ bump in
two tasks and a 5% bump in one task.

Pre-trained Models and Weak Supervision A major
trend in the NLP community is to pre-train a large and com-
plex language model using raw text and then fine-tune it for
specific tasks [7]. One can easily integrate such pre-trained
models in Overton, and we were excited by our early results.
Of course, at some point, training data related to the task
is more important than massive pretraining. We wondered
how weak supervision and pretrained models would inter-
act. Practically, these pretrained models like BERT take
large amounts of memory and are much slower than standard
word embeddings. Nevertheless, motivated by such models’
stellar performance on several recent NLP benchmarks such
as GLUE [26], we evaluate their impact on production tasks
that are weakly supervised. For each of the aforementioned
training set sizes, we train two models: without-BERT:
production model with standard word embeddings but with-
out BERT, and with-BERT: production model with fine
tuning on the “BERT-Large, Uncased” pretrained model [7].

For each training set, we calculate the relative test qual-
ity change (percentage change in F1 or accuracy) of with-
BERT over without-BERT. In Figure 4b, almost all per-
centage changes are within a narrow 2% band of no-change
(i.e., 100%). This suggests that sometimes pre-trained lan-
guage models have a limited impact on downstream tasks–
when weak supervision is used. Pretrained models do have
higher quality at smaller training dataset sizes–the Set task
here shows an improvement at small scale, but this advan-
tage vanishes at larger (weak) training set sizes. This high-
lights a potentially interesting set of tradeoffs among weak
supervision, pretraining, and the complexity of models.

4. RELATED WORK
11We obfuscate tasks using their underlying payload type.

Overton builds on work in model life-cycle management,
weak supervision, and zero-code deep learning.

Model Management A host of recent data systems help
manage the model process, including MLFlow, which helps
with the model lifecycle and reporting [9]. Please see ex-
cellent tutorials such as Kumar et al. [13]. However, these
systems are complementary and do not focus on Overton’s
three design points: fine-grained monitoring, diagnosing the
workflow of updating supervision, and the production pro-
gramming lifecycle.

Weak Supervision A myriad of weak supervision tech-
niques have been used over the last few decades of machine
learning, notably external knowledge bases [4, 16, 24, 28],
heuristic patterns [11, 17], feature annotations [15, 27], and
noisy crowd labels [6, 12]. Data augmentation is another
major source of training data. One promising approach is
to learn augmentation policies, first described in Ratner et
al. [18], which can further automate this process. Google’s
AutoAugment [5] used learned augmentation policies to set
new state-of-the-art performance results in a variety of do-
mains, which has been a tremendously exciting direction.
Overton is inspired by this work and takes the next natural
step toward supervision management.

Zero-code Deep Learning The ideas above led natu-
rally to what we now recognize as zero-code deep learning,
a term we borrow from Ludwig. It is directly related to
previous work on multitask learning as a key building block
of software development [19] and inspired by Software 2.0
ideas articulated by Karpathy.12 The world of software en-
gineering for machine learning is fascinating and nascent.
In this spirit, Uber’s Ludwig shares a great deal with Over-
ton’s design. Ludwig is very sophisticated and has supported
complex tasks in vision and other domains. These meth-
ods were controversial two years ago, but seem to be gain-
ing acceptance among production engineers. For us, these
ideas began as an extension of joint inference and learning
in DeepDive [22].

Network Architecture Search Zero-code deep learn-
ing in Overton is enabled by some amount of architecture
search. The area of Neural Architecture Search (NAS) [8]
is booming: the goal of this area is to perform search (typ-
ically reinforcement learning but also increasingly random
search [14]). On a technical level, the search used in Over-
ton is a coarser-grained search than what is typically done in
NAS. In particular, Overton searches over relatively limited
large blocks, e.g., should we use an LSTM or CNN, not at
a fine-grained level of connections.

5. CONCLUSION AND FUTURE WORK
This paper presented Overton, a system to help engineers

manage the lifecycle of production machine learning sys-
tems. A key idea is to use a schema to separate the model
from the supervision data, which allows developers to focus
on supervision as their primary interaction method. A ma-
jor direction of on-going work are the systems that build on
Overton to aid in managing data augmentation, program-
matic supervision, and collaboration.

Acknowledgments This work was made possible by Pablo Mendes,
Seb Dery, and many others. We thank many teams in Siri Search,

12https://medium.com/@karpathy/
software-2-0-a64152b37c35.

Knowledge, and Platform and Turi for support and feedback. We
thank Mike Cafarella, Arun Kumar, Monica Lam, Megan Leszczynski,
Avner May, Alex Ratner, Paroma Varma, Ming-Chuan Wu, Sen Wu,
and Steve Young for feedback.

6. REFERENCES
[1] P. Agrawal, R. Arya, A. Bindal, S. Bhatia, A. Gagneja,

J. Godlewski, Y. Low, T. Muss, M. M. Paliwal, S. Raman,
V. Shah, B. Shen, L. Sugden, K. Zhao, and M. Wu. Data
platform for machine learning. In SIGMOD, 2019.

[2] R. Caruana. Multitask learning: A knowledge-based source of
inductive bias, 1993.

[3] V. S. Chen, S. Wu, A. Ratner, Z. Wang, and C. Ré. Slice-based
Learning: A Programming Model for Residual Learning in
Critical Data Slices. In NeurIPS, 2019.

[4] M. Craven and J. Kumlien. Constructing biological knowledge
bases by extracting information from text sources, 1999.

[5] E. D. Cubuk, B. Zoph, D. Mané, V. Vasudevan, and Q. V. Le.
Autoaugment: Learning augmentation policies from data.
CoRR, abs/1805.09501, 2018.

[6] A. P. Dawid and A. M. Skene. Maximum likelihood estimation
of observer error-rates using the em algorithm. Applied
statistics, pages 20–28, 1979.

[7] J. Devlin, M. Chang, K. Lee, and K. Toutanova. BERT:
pre-training of deep bidirectional transformers for language
understanding. In NAACL-HLT, pages 4171–4186, 2019.

[8] T. Elsken, J. H. Metzen, and F. Hutter. Neural architecture
search: A survey. J. Mach. Learn. Res., 20:55:1–55:21, 2019.

[9] M. Z. et al. Accelerating the machine learning lifecycle with
mlflow. IEEE Data Eng. Bull., 41(4):39–45, 2018.

[10] S. H. B. et al. Snorkel drybell: A case study in deploying weak
supervision at industrial scale. In SIGMOD, 2019.

[11] S. Gupta and C. D. Manning. Improved pattern learning for
bootstrapped entity extraction., 2014.

[12] D. R. Karger, S. Oh, and D. Shah. Iterative learning for
reliable crowdsourcing systems, 2011.

[13] A. Kumar, M. Boehm, and J. Yang. Data management in
machine learning: Challenges, techniques, and systems. In
SIGMOD, pages 1717–1722, 2017.

[14] L. Li and A. Talwalkar. Random search and reproducibility for
neural architecture search. In UAI, page 129, 2019.

[15] G. S. Mann and A. McCallum. Generalized expectation criteria
for semi-supervised learning with weakly labeled data. JMLR,
11(Feb):955–984, 2010.

[16] M. Mintz, S. Bills, R. Snow, and D. Jurafsky. Distant
supervision for relation extraction without labeled data, 2009.

[17] A. Ratner, S. Bach, H. Ehrenberg, J. Fries, S. Wu, and C. Ré.
Snorkel: Rapid training data creation with weak supervision,
2018.

[18] A. J. Ratner, H. R. Ehrenberg, Z. Hussain, J. Dunnmon, and
C. Ré. Learning to compose domain-specific transformations for
data augmentation. In NIPS, pages 3236–3246, 2017.

[19] A. J. Ratner, B. Hancock, and C. Ré. The role of massively
multi-task and weak supervision in software 2.0. In CIDR, 2019.

[20] A. J. Ratner, C. D. Sa, S. Wu, D. Selsam, and C. Ré. Data
programming: Creating large training sets, quickly. In NIPS,
pages 3567–3575, 2016.

[21] S. Ruder. An overview of multi-task learning in deep neural
networks. CoRR, abs/1706.05098, 2017.

[22] J. Shin, S. Wu, F. Wang, C. D. Sa, C. Zhang, and C. Ré.
Incremental knowledge base construction using deepdive.
PVLDB, 8(11):1310–1321, 2015.

[23] A. Søgaard and Y. Goldberg. Deep multi-task learning with low
level tasks supervised at lower layers, 2016.

[24] S. Takamatsu, I. Sato, and H. Nakagawa. Reducing wrong
labels in distant supervision for relation extraction, 2012.

[25] P. Varma, F. Sala, A. Ratner, and C. Ré. Learning dependency
structures for weak supervision models. In ICML, 2019.

[26] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R.
Bowman. GLUE: A multi-task benchmark and analysis
platform for natural language understanding. In
BlackboxNLP@EMNLP 2018, pages 353–355, 2018.

[27] O. F. Zaidan and J. Eisner. Modeling annotators: A generative
approach to learning from annotator rationales, 2008.

[28] C. Zhang, C. Ré, M. Cafarella, C. De Sa, A. Ratner, J. Shin,
F. Wang, and S. Wu. DeepDive: Declarative knowledge base
construction. Commun. ACM, 60(5):93–102, 2017.

