
Mosaic: A Sample-Based Database System for Open World
Query Processing

Laurel Orr, Samuel Ainsworth, Walter Cai,
Kevin Jamieson, Magda Balazinska, Dan Suciu

Paul G Allen School of Computer Science, University of Washington
{ljorr1, skainswo, walter, jamieson, magda, suciu}@cs.washington.edu

ABSTRACT
Data scientists have relied on samples to analyze popula-
tions of interest for decades. Recently, with the increase
in the number of public data repositories, sample data has
become easier to access. It has not, however, become eas-
ier to analyze. This sample data is arbitrarily biased with
an unknown sampling probability, meaning data scientists
must manually debias the sample with custom techniques
to avoid inaccurate results. In this vision paper, we propose
Mosaic, a database system that treats samples as first-class
citizens and allows users to ask questions over populations
represented by these samples. Answering queries over bi-
ased samples is non-trivial as there is no existing, standard
technique to answer population queries when the sampling
probability is unknown. In this paper, we show how our
envisioned system solves this problem by having a unique
sample-based data model with extensions to the SQL lan-
guage. We propose how to perform population query an-
swering using biased samples and give preliminary results
for one of our novel query answering techniques.

1. INTRODUCTION
At its core, data science’s goal is to answer questions about

populations of interest. As many population datasets are ei-
ther unaccessible (e.g., private medical data) or do not exist
(e.g., all people living today), data scientists must use sam-
ples to approximately answer questions over these popula-
tions. Historically, data scientists accessed samples mainly
by designing their own sampling scheme and manually col-
lecting the sample for processing.

However, in recent years, the number of public data repos-
itories has increased, e.g., Data.World, and government data
has become more available. These sources give data scien-
tists access to hundreds of samples, but they do not neces-
sarily indicate how the samples were collected. This is prob-
lematic because samples can be arbitrarily biased which, if
not corrected for, can lead to inaccurate analytical results.

Typically, samples are debiased using knowledge of how
the sample was collected (sampling mechanism), but as the
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mechanism is not always available to data scientists, they
are forced to develop alternative techniques to ensure accu-
rate sample analysis. These alternative debiasing techniques
vary across disciplines and are often customized to fit a spe-
cific type of data [50, 33, 18]. For example, in [33], the
authors use an iterative reweighting algorithm to reweight
a sample of individuals using known population aggregates.
In [18], the authors learn probabilities from a sample and
population aggregates and then use sampling to generate a
representative population for later analysis.

In all of these cases, the scientists manually implement
solutions hard-coded for a specific dataset in order to answer
queries about some population of data. They do not use a
database management system (DBMS) for query processing.
DBMSs are built to efficiently answer questions about data
and should be an ideal system for these data scientists, but
they are not being widely used by them.

One reason DBMSs have not been more broadly adopted
by the data science community is the closed world assump-
tion taken by traditional DBMSs. This assumption states
that any tuple not in the database does not exist. With
sample analytics, this assumption is not valid. Sample an-
alytics require the open world assumption where tuples not
in the database could still exist.

In this vision paper, we propose a novel DBMS that au-
tomatically assumes an open world and allows scientists to
query populations that do not fully exist in the database.
This is a new problem as this influx of publicly available,
arbitrarily biased data is recent, and we are not aware of
other prototype systems that tackle open world data debi-
asing. In recent prior work [42], we explored a first, specific
approach to this problem. In this paper, we paint a broader
vision based on our experience with our prototype.

The challenge in building an open world database is that
no general purpose solution exists to debias sample data
without knowing the sampling mechanism. We will need
to invent generalized techniques for debiasing. Further, an
open world DBMS will need to provide an interface for users
to ask questions over the debiased data.

In this paper, we describe our envisioned system, Mosaic,
named because it is built from a collection of samples (pieces
of the population). Mosaic builds on our prior work in [42]
and extends it in three main ways:

1. It treats samples as first-class citizens, allowing users
to define and ingest sample data.

2. It allows users to define and query populations of in-
terest through the use of population metadata (e.g.,
population aggregate data).



3. It gives users the ability to choose how“open” it can be
when answering queries (i.e. how much can it assume
tuples are missing from the data).

To achieve each open world feature, we make the following
technical contributions:

1. A sample-oriented data model with new keywords to
the SQL query language so users can add, query, and
modify samples and populations (Sec. 3).

2. Two open world query processing techniques utilizing
samples and population metadata (Sec. 4, Sec. 5).

2. MOTIVATING EXAMPLE
As a motivating example, inspired by [49], take a data

scientist who is using Yahoo! emails to estimate the number
of migrants in European countries. As there are no existing
debiasing systems, to correct for selection bias from Internet
usage varying by country, age, and gender, the data scientist
manually models the bias and uses maximum likelihood to fit
her model to reported, ground-truth migrant statistics from
Eurostat. After learning a corrected weight of each tuple,
she asks various queries on the reweighted email sample.

To show the ease and versatility if she instead used Mo-
saic, we show some example Mosaic queries below but ex-
plain the semantics of these queries in Sec. 3. We assume
Eurostat has information on the number of migrants per
country and the number of migrants per email provider, and
we leave out attribute declarations for space.

1 CREATE TEMPORARY TABLE Eurostat;
...Ingest Eurostat reports to Eurostat table

3 CREATE GLOBAL POPULATION EuropeMigrants;
4 CREATE METADATA EuropeMigrants_M1 AS
5 (SELECT country, reported_count
6 FROM Eurostat);
7 CREATE METADATA EuropeMigrants_M2 AS
8 (SELECT email, reported_count
9 FROM Eurostat);

10 CREATE SAMPLE YahooMigrants AS
11 (SELECT * FROM EuropeMigrants
12 WHERE email = Yahoo);

...Ingest Yahoo sample to YahooMigrants

15 SELECT SEMI-OPEN country, email, COUNT(*)
16 FROM EuropeMigrants
17 GROUP BY country, email;

-- UK, Yahoo, 20000
-- FR, Yahoo, 9000
-- ...

22 SELECT OPEN country, email, COUNT(*)
23 FROM EuropeMigrants
24 GROUP BY country, email;

-- UK, Yahoo, 20000
-- UK, AOL, 20
-- ...

At a high level, she creates a population of all European
migrants (line 3) and adds the Eurostat report as metadata
(lines 4-9). She then creates a sample relation representing
migrants with Yahoo! email (lines 10-12) and then directly
queries the population of all European migrants. Mosaic
automatically debiases the Yahoo! migrant sample using
the Eurostat metadata.

The first query (lines 15-17) shows the number of migrants
per country and email provider if Mosaic just performs
sample reweighting. As the sample has no information on
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Figure 1: Data model of Mosaic.

non-Yahoo! email users, the only email provider is Yahoo!.
The second query (lines 22-24) shows that Mosaic can also
use the metadata to generate entirely new, missing tuples,
such as migrants who use AOL email.

3. DATA MODEL
We now describe the data model and main user inter-

actions of Mosaic. At a high level, Mosaic defines two
different specialized relations to help users analyze samples.
In addition to these specialized relations, there is metadata
associated with these relations to aid in analysis. Lastly, we
define a new query construct to allow users to specify how
much freedom Mosaic has to reweight and create tuples
when answering queries.

Before diving into the model, we need to define a key con-
cept of sampling: the sampling mechanism. Given some ref-
erence global population being sampled, the sampling mech-
anism is the probability of an individual being included in
the sample, denoted PrS(t).

A standard approach for sample analysis is to reweight
the sample, meaning each tuple gets assigned a weight indi-
cating how many tuples in the population that sample tuple
represents. If the sampling mechanism is known, the stand
approach is to reweight the tuples by 1/PrS(t) [7].

3.1 Relations
There are three main types of relations in Mosaic: popu-

lation, sample, and auxiliary. We describe each relation and
give our proposed syntax for declaring each of them.

(1) (Global) Population Relation. A population re-
lation represents some set of tuples that could exists but are
not fully known to Mosaic. Populations are used for de-
scribing the set of tuples a scientist wants to query. When
declaring a population, the user can use the GLOBAL key-
word to enforce that this is the global population. The global
population (GP) is the population that contains all other
populations and samples and is used as a reference popula-
tion when defining other populations and samples. Its use
will become especially clear when doing sample reweighting
in Sec. 4, and for now, we assume the user defines only one
GP before defining other populations and samples.

A population is declared by

CREATE [GLOBAL] POPULATION <pop> (A1 type, . . .)
[AS (SELECT A1, . . . FROM <gl_pop> WHERE <pred>)];

where there can be an arbitrary number of attributes. If the
global keyword is not used, the population must be defined
with a SELECT statement over a global population.

(2) Sample Relation. A sample relation represents a set



of tuples that do exist in the GP and that Mosaic has access
to. A sample can have an associated sampling mechanism
defined over the GP, but it is not required.

A sample is declared by

CREATE SAMPLE <samp> (A1 type, A2 type, . . .) AS
(SELECT A1, A2, . . . FROM <gl_pop> [WHERE <pred>]
[USING MECHANISM <mechanism> PERCENT <perc>]);

where the mechanism is some probability of inclusion defined
over the GP, and the sample percent represents the size of
the sample.

Some example mechanisms are UNIFORM PERCENT 10
or STRATIFIED ON A1 PERCENT 20. The former states
that this sample is a 10 percent uniform sample, while the
later states that this is a stratified sample on attribute A1

where the sample contains 20 percent of the GP.
(3) Auxiliary Relation. Auxiliary relations are defined

outside of any global population. They act the same as rela-
tions in traditional databases. In Mosaic, they are primar-
ily used for preprocessing, importing, and modifying data
before ingesting it into Mosaic’s specialized relations. As
these relations are created using the same constructs as stan-
dard SQL, we leave them out.

3.2 Metadata
Mosaic uses specialized metadata for query processing.

For sample relations, the metadata is tuple weights, initial-
ized to be one for every tuple (the user can modify their
initial values if desired). These weights are updated by Mo-
saic’s query engine (Sec. 4.1) for query processing.

For population relations, the metadata is ground-truth
information about the population. For example, the meta-
data could be covariances of various attribute combina-
tions. While we envision a system the incorporates a va-
riety of metadata sources, in this paper, we focus on us-
ing aggregate values for one or two attributes; i.e., 1- or
2-dimensional histograms. These histograms (marginals)
are commonly released by corporations or governments to
provide statisticians with population information while pre-
serving anonymity (e.g., Data.Gov yearly reports). There
is nothing preventing our system, however, from supporting
higher-dimensional histograms.

When Mosaic answers queries over populations, it en-
sures these marginals are satisfied (Sec. 4).

The user specifies metadata via the command

CREATE METADATA <relation> AS
(SELECT Ai, [Aj], COUNT(*) FROM <aux_rel>
GROUP BY Ai, [Aj]);

The user can update the initial sample weights via a similar
command, but it is not required.

3.3 Queries
A core piece of Mosaic’s model is its query processing

over populations. The challenge with answering queries over
a population is that Mosaic does not have access to all the
population tuples.

To address this, Mosaic adds a level of visibility to
queries. The visibility of a query represents how Mosaic
can use the underlying samples. Motivated by the debias-
ing techniques discussed in Sec. 1, Mosaic supports three
main ways samples are accessed and used in analysis. (1)
Mosaic can answer queries using the samples directly with-
out any attempt at debiasing. This is equivalent to standard
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Figure 2: Proposed architecture of Mosaic.

data integration systems where the GP is treated as a global
database, and the samples are local views over this database.
(2) Mosaic can reweight the samples to answer queries.
Without the sampling mechanism, this is non-trivial. (3)
Mosaic can not only re-balance the samples but also infer
and create missing tuples (e.g., inferring the number of UK
migrants with AOL email). This allows Mosaic to debias
the sample and account for the fact that not all population
tuples exist in the database.

When issuing a query, the user can decide which of the
three visibility levels Mosaic should use. The visibility level
can be one of either CLOSED, SEMI-OPEN, or OPEN and ap-
pears after the SELECT. Closed means Mosaic can only use
samples (1), semi-open means it can reweight the samples
(2), and open means it can reweight the samples and gener-
ate missing tuples (3).

The choice between CLOSED and SEMI-OPEN or OPEN rep-
resents if the user wants to make the open or closed world
assumption. The choice between SEMI-OPEN and OPEN rep-
resents a trade-off between false-positive and false-negative
tuples. In this setting, false-positives are tuples that Mo-
saic returns as existing but are not (vice-versa for false-
negatives). Specifically, if n is the number of tuples existing
in the population but are not present in the sample, then
SEMI-OPEN will have n false negative tuples but zero false
positive. OPEN queries will potentially receive fewer false
negatives but more false positives than SEMI-OPEN. The
following table summarizes the trade-offs:

False Negative False Positive Assumption
CLOSED n 0 Closed
SEMI-OPEN n 0 Open
OPEN ≤ n ≥ 0 Open

The choice of query visibility level depends on the user’s ap-
plication and desired false positive and false negative rates.

We now describe how Mosaic processes queries using
metadata under the different levels of visibility.

4. QUERY EVALUATION
Fig. 2 shows the high level architecture of Mosaic (we

leave out auxiliary relations as they are standard SQL re-
lations). The two types of stored data are the sample data
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and metadata. The user can interact with Mosaic by either
querying a population or updating the metadata.

To simplify the discussion, we make three assumptions:

1. The population attributes are contained in the sample
attributes (i.e., we do not need to join samples).

2. When a population query gets issued, the query engine
receives a single, optimal sample to use (this can be
relaxed by unioning samples over shared attributes).

3. There is metadata, i.e., marginals, about the global
population or the query population.

As discussed in Sec. 3, Mosaic answers queries using one
of three different visibilities. As closed queries are the same
as answering queries using views in a LAV data integration
system, we refer the reader to [30, 25] for query answering
techniques and focus on semi-open and open queries. These
two types of queries require novel system components, and in
this section, we propose our solution that relies on marginals
to answer arbitrary queries.

4.1 Semi-Open Queries and Reweighting
Recall that semi-open queries allow Mosaic to perform

sample reweighting. The two important subcases to consider
are when the sampling mechanism is known versus unknown.

When the sampling mechanism is known, it is defined with
respect to the global population. This is important as it
guarantees that we can always approximately answer pop-
ulation queries. We use the known mechanism to reweight
the sample by the inverse of its inclusion probability. Then
we treat the population definition query as a view over this
reweighted sample and run the user’s query over this view.
Fig. 3 shows this process.

Research Question. The main research question for
semi-open queries is how to answer queries when the sam-
pling mechanism is unknown using marginals.

Proposed Solution. We addressed this problem par-
tially in prior work when building Themis, an open world
database system that automatically performs sample debi-
asing using population aggregates [42]. Themis merges two
techniques to answer simple count queries and group by
queries. One approach performs sample reweighting using
a technique called Iterative Proportional Fitting (IPF) [27,
13]. The other approach builds a Bayesian network to rep-
resent the population probability distribution.

Mosaic leverages the IPF technique presented in [42]
to answer arbitrary queries over samples. Specifically, we
reweight the sample so that the given marginals are satis-
fied.

If there is metadata over the query population, Mo-
saic uses IPF to directly reweight the sample to represent

that population (bottom dashed line in Fig. 3) and answers
queries over the reweighted sample. If there is only metadata
over the global population (left dashed line in Fig. 3), Mo-
saic reweights to represent the global population and then
treats the query population as a view. Note that the accu-
racy will likely be lower when reweighting to fit global pop-
ulation (left dashed line) than reweighting to fit the query
population directly (bottom dashed line) as biases that exist
in the query population may not be captured when learning
the global population.

4.2 Open Queries and Population Generation
Open queries over a population allow Mosaic to use a

sample and marginals to generate or infer missing tuples
(i.e., answer queries with fewer false negatives). We use the
term infer because some aggregate queries can be answered
without needing to materialize missing tuples.

At a high level, if we can learn the population probability
distribution, we can either answer queries over this distri-
bution directly or over data sampled from this distribution
that is representative of the population. For example, if we
model the probability distribution as a Bayesian network, we
can answer COUNT(*) queries using direct inference over the
network. However, for top-k or group by queries, we need
to materialize a sample.

Generating data to fit some joint distribution requires a
generative model [23] as it allows sampling from the distri-
bution. Explicitly defined generative models define a para-
metric specification for the likelihood which is then solved
for and sampled from. Implicitly defined generative models
provide some process for generating samples without spec-
ifying the likelihood. For example, Bayesian networks and
variational autoencoders [16] are explicitly defined models
while generative adversarial networks [24] are implicitly de-
fines ones.

The benefit of using an explicitly defined model is the po-
tential for aggregate queries to be answered without having
to materialize data; e.g., the Bayesian network COUNT(*)
example above. The downsides, however, are that the ex-
plicit distribution will makes some, possibly incorrect, as-
sumptions over the population. Bayesian networks, for ex-
ample, assume the population satisfies the independent as-
sumptions implied by the network. As we do not have access
to the population data, we have no way of verifying if the
model assumptions are accurate or not.

Therefore, in Mosaic, we propose to take the alternative
approach of using an implicitly defined generative model to
learn the population as this requires no distributional as-
sumptions. However, any generative model can be plugged
in and used to answer open queries as long as it can be
trained on sample data and marginals.

Research Question. The main challenge for learning
a generative model is how to train one without access to
the entire population. We only have a biased sample and
1-or 2-dimensional marginals, and we cannot just build a
generative model over the sample as it is not representative
of the population.

Proposed Solution. We propose to modify a Wasser-
stein generative adversarial network (WGAN) to use sample
and marginal data rather than the entire population. Our
motivation for modifying a WGAN is that the Wasserstein
distance can be calculated very efficiently on 1-dimensional
marginals (Sec. 5). We call our WGAN a marginal-
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constrained WGAN (M-WGAN) as it learns to sample pop-
ulation data that satisfies the marginals.

5. MARGINAL-CONSTRAINED WGANS
We now detail our proposed open query processing tech-

nique. We briefly review WGANs, describe our M-WGAN,
and give preliminary results.

5.1 WGAN Overview
Generative adversarial networks (GANs) are comprised of

two networks, a generator G and discriminator D, pitted
against each other in a game theoretic sense. The discrim-
inator attempts to distinguish between data from the true
distribution and samples from the generator. Meanwhile,
the generator takes as inputs random variables, typically
Gaussian or uniform, from some latent space and is tuned
to output samples that fool the discriminator. Upon suc-
cessfully training both networks, the generator will output
samples that closely match the true data distribution.

The Wasserstein or earth mover’s distance, denoted W,
quantifies the optimal transport plan of moving “mass” be-
tween two distributions [1]. A Wasserstein GAN is a frame-
work for training G to generate data that minimizes the
Wasserstein distance to the real distribution. Specifically,
if P represents the real distribution and Q represents the
generator distribution, WGANs solve

min
G
W(P,Q).

Although the discriminator does not appear in this formula-
tion, [5] explains how the discriminator is used to calculate
an upper bound on W.

The problem with using traditional WGANs is they are
trained with complete knowledge of P. We need to modify
WGANs so they can use the sample and marginals.

5.2 Marginal-constrained WGANs
We make two alterations to the standard WGAN. The first

is to modify the optimization function to handle multiple
marginals and a sample, and the second is to compute the
discriminator exactly. Our proposed network structure is
shown in Fig. 4. Before discussing our solution, we need to
define the assumptions of our WGAN model.

Manifold Hypothesis The population and sample live in
low dimensional Rr space but are embedded in higher-
dimensional Rd space with r � d [39].

Sample Coverage For every point in our population,
there is some point in our sample that is nearby.

The manifold hypothesis is a standard assumption made on
high dimensional data and, in conjunction with the sample
coverage assumption, means our sample informs us of the
manifold our population data lives on. In particular, sam-
ple coverage requires our sample to give us the necessary

structural information without needing to be distribution-
ally correct. A stratified sample, for example, meets this
criteria.

To more easily introduce our modifications, we first as-
sume we only have 1-dimensional marginals, and then we
extend our model to 2-dimensional ones. A subtle point is
that if the population marginals do not cover all d attributes
(dimensions) of the sample, the model has no way of learning
even the sample distribution of those attributes. Therefore,
we add marginals from the sample into the set of popula-
tion marginals for those uncovered attributes. We leave it as
future work to determine the optimal set of 2-dimensional
sample marginals to add in the 2-dimensional case.

1-dimensional marginals. Our first modification of the
standard WGAN is to the error function. For notation, de-
note our sample as S, and assume we have an index set I1

of the 1-dimensional marginals. For each i ∈ I1, Pi repre-
sents the distribution of attribute Ai of the population data
(likewise for Qi). Our loss function becomes

min
G

[∑
i∈I1

W(Pi, Qi) + λEx∼G[min
y∈S
‖x− y‖2]

]
where λ is a tuning parameter that trades off between

fitting the population marginals and respecting the structure
of the sample data. Note that G takes as input random
Gaussian variables of latent dimension ` where ` is treated
as another tuning parameter.

The second modification we make is to compute the
Wasserstein distance exactly [48] instead of using the dis-
criminator approach from [5]. This modification is crucial
to the practicality of our approach. Not only is computing
W efficient for 1-dimensional data, but it makes the dis-
criminator exact and avoids the need to train discriminator
networks (one per marginal).

2-dimensional marginals. As we no longer have only
1-dimensional marginals, we cannot compute the exact
Wasserstein distance efficiently as it requires solving a lin-
ear program for every step during training, which is pro-
hibitively slow[21, 15]. However, by using the sliced Wasser-
stein distance [15], we can randomly project the marginals
onto multiple one dimensional spaces and compute the
Wasserstein distance exactly for each projection.

Specifically, in addition to I1, let I2 be the index set of the
2-dimensional marginals such that for each {i, j} ∈ I2, Pi,j

represents the joint distribution of the attribute pair Ai and
Aj (likewise forQ). Further, assume we have a set of p linear
projections ω ∈ Ω randomly generated and normalized to be
on the unit sphere. Our loss function becomes

min
G

[
k∑

i∈I1

W(Pi, Qi) +
1

p

∑
{i,j}∈I2

∑
ω∈Ω

W(Pi,jω, Qi,jω)

(1)

+ λEx∼G[min
y∈S
‖x− y‖2]

]
where Pi,jω is the 2-dimensional marginal over Ai and Aj

projected by ω. Note that while this discussion has focused
on 2-dimensional marginals, the projection technique is ap-
plicable for arbitrarily higher-dimensional marginals.
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Figure 5: Population data with original biased sam-
ple (a) and M-WGAN generated sample (b).

5.3 Preliminary Results
We first evaluate just our M-WGAN1 approach on a syn-

thetic 2-dimensional population we can visualize. We then
evaluate IPF (Mosaic’s SEMI-OPEN evaluation technique)
and M-WGAN on the flights data from [17] by running var-
ious aggregate queries. We compare against a uniformly
reweighted sample which is the standard approximate query
processing technique when there is no knowledge of how the
sample was generated.

Synthetic Data. We generate a 2-dimensional spiral
population following the experiments from [9] and gener-
ate a biased sample from this population with 10,000 rows
(Fig. 5 (a)). After training our M-WGAN2, we use it to
generate a sample also with 10,000 rows (Fig. 5 (b)). Note
that the generated data more closely matches the marginals
while maintaining the spiral shape. Then, we uniformly
reweight both the generated sample and the biased sample
for query answering. We issue 100 random 2-dimensional
range queries (i.e., counting the number of tuples lying in a
bounding square box) for various box sizes. We repeat this
for 10 different generated samples and report the average
percent difference across the different samples.

Fig. 6 show box plots (X is average) of the average query
error for the 100 queries where the whiskers show the 3rd
and 97th percentiles. We repeat this as we increase the
size of our bounding box to cover a greater fraction of the
data. For example, a width coverage of 0.8 means the range
queries for 80 percent of the data on one dimension and 80
percent of the data on the other dimension. We see that we
always outperform the uniformly reweighted sample except
when the range is very narrow (asking for 1/100th of the
possible values). For this highly selective query, both meth-
ods achieve high query error as both are more likely to have
false negative tuples.

Flights Data. We use the flights data from
IDEBench [17], a real-world benchmark consisting of domes-
tic flights in the United States (continuous attributes have

1Code available at https://gitlab.cs.washington.edu/uwdb/
project mosaic db.
2We use 3 ReLU FC layers with 100 nodes each. We use
λ = 0.04, ` = 2, a batch size of 500, and apply batch nor-
malization after each layer. We use Pytorch’s Adam opti-
mizer with the default settings and an initial learning rate of
0.001 that decreases by a factor of 10 if a plateau is reached
during training.
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Figure 6: Average percent difference of uniform
reweighting versus M-WGAN for 2 dimensional
queries.

Flights Abbrv M-WGAN Dim
carrier C 14
taxi_out O 1
taxi_in I 1

elapsed_time E 1
distance D 1

Table 1: Flights and IMDB attributes.

been rounded to whole numbers), to explore the strengths
and weaknesses of our approach. In particular, we study
how IPF and M-WGAN perform when we query numeri-
cal attributes only compared to GROUP BY queries with a
single categorical group attribute. We use the attributes
shown in Table 1 and filter the data to just include flights
in 2015 or 2016 (426,411 rows total) for faster processing.
For M-WGAN training, we one-hot encode the categorical
variables and scale all attributes to be between 0 and 1. The
attributes’ encoded dimensionality (equivalent to the num-
ber of distinct values) is also shown in Table 1.

For our sample, we generate a biased 5 percent sample
(21,320 rows) of flights with an elapsed flight time of more
than 200 minutes with a 95 percent bias, meaning 95 per-
cent of the tuples have a long flight time. For our metadata,
we generate population marginals from the four attribute
pairs of (C, E), (O, E), (I, E), (D, E). As the numerical at-
tributes are already whole numbers, we do not need to build
histograms, and the marginals are just projections of the
population data.

Inspired by the queries from [17], we run the eight ag-
gregate queries shown in Table 2. To run the aggregate
queries over a weighted sample, we simple modify the aggre-
gate to be over a weight attribute (e.g. COUNT(*) becomes
SUM(weight)). To reduce the variance of the M-WGAN
approach, we generate 10 samples with the same number
of rows as the original sample and uniformly reweight the
generated sample to match the size of the population. We
return the groups appearing in all 10 answers, averaging the
aggregate value.

We add a softmax layer for the categorical variable and
train our M-WGAN similarly as above but with the latent
dimension ` being the same as the input dimensionality. As
our goal is an accurate representation of the data, we did
not feel it necessary to experiment with reducing `. During

https://gitlab.cs.washington.edu/uwdb/project_mosaic_db
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Id Query
1 SELECT AVG(D) FROM F WHERE E > 200
2 SELECT AVG(I) FROM F WHERE E < 200
3 SELECT AVG(E) FROM F WHERE D > 1000
4 SELECT AVG(O) FROM F WHERE D < 1000
5 SELECT C, AVG(D) FROM F WHERE E > 200 AND

C IN [‘WN’, ‘AA’]
6 SELECT C, AVG(I) FROM F WHERE E < 200 AND

C IN [‘WN’, ‘AA’]
7 SELECT C, AVG(E) FROM F WHERE D > 1000 AND

C IN [‘WN’, ‘AA’]
8 SELECT C, AVG(O) FROM F WHERE D < 1000 AND

C IN [‘US’, ‘F9’]

Table 2: The six SQL queries run in Fig. 7. We leave
out the GROUP BY clause and replace Flights with F
for space. ‘US’ and ‘F9’ stand for US Airways and
Frontier (less popular carriers) while ‘AA’ and ‘WN’
stand for American and Southwest (more popular
carriers).
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Figure 7: Average percent difference of uniform
reweighting (default AQP) versus IPF versus M-
WGAN for queries 1-4 (left) and queries 5-8 (right).
The y axis is on a different scale between the left and
right plots.

training, we leave the softmax output continuous and only
force the output to be binary for data generation.

We choose the model parameters by a small hyperparam-
eter grid search3, running the models for three epochs (each
epoch is one pass over the population marginals). We se-
lect the model receiving the lowest average query error from
running 200 random queries over the continuous attributes
with the same template as queries 1-4 where the attributes
and predicates are randomly generated. We then rerun the
chosen model with four different random initializations for
80 epochs and choose the one receiving the lowest error on
the same 200 queries. Our final parameters are λ = 1−7,
p = 1000, 5 layers with 50 nodes each, and a batch size of
500.

Fig. 7 (left) shows the average percent difference of the

3We search over the number of layers = 3, 5, 10, number of
hidden nodes = 50, 200, and λ = 0.000001, 0.0000001. When
the number of hidden nodes is 200 (50), we do not try 10
(3) layers.

first four aggregate queries using uniform reweighting, IPF,
and M-WGAN. These are the queries over continuous at-
tributes only. We see that all methods achieve an aver-
age error of less than 25 percent with M-WGAN having the
lowest max error of 7.5 percent. Averaged across all four
queries, M-WGAN gets the lowest query error compared to
IPF and Unif.

Surprisingly, M-WGAN receives the highest error on the
query with a predicate matching how the sample is biased.
IPF and Unif get almost no error for this query because the
sample accurately represents this predicate. This is because
M-WGAN is slightly over-fitting to the population marginals
and not generating as accurate a representation of the data
satisfying this predicate as is in the sample.

IPF and Unif receive higher errors on query 3 because long
distance flights are going to have longer flight times. As our
sample is biased towards long flight times, the flight time
is overestimated, even with a marginal over flight time and
distance.

This trend of M-WGAN receiving the lowest error on av-
erage for numerical queries is supported by the fact that on
the 200 random queries used for parameter selection, when
both the true answer and M-WGAN answer are not-empty
(161 queries total), all of our M-WGAN models achieve a
lower query error than Unif. IPF also achieves a lower error
than Unif. The not-empty filter is due to the fact that M-
WGANs struggles to capture light hitters (rare values) and
will often not generate these rare values. This is because
the error reduction in capturing the tail of a distribution
(i.e. light hitter values) is often not significant enough for
the GAN to generate those values.

Fig. 7 (right) shows the average percent difference of the
last four aggregate queries using uniform reweighting, IPF,
and M-WGAN. Note that Unif and IPF get an close to zero
error for query 5. For query 8, M-WGAN receives a large
error as it does not generate any flights with the carrier
‘US’. This is a result of the carriers attribute being cate-
gorical and having a skewed distribution in the data. Our
M-WGAN has to model an 18 dimensional space where the
14 one-hot encoded dimensions are sparse and not continu-
ous (i.e., a one-hot encoded attribute is either a 0 or a 1).
The M-WGAN takes a continuous input, the latent variable
`, and tries to generate data where 14 dimensions are binary
and the distribution is skewed. This means there is not a
significant reduction in error (Eq. 1) in generating the less
popular carriers and potentially an increase in error from
generating data falling between 0 and 1 for one of the bi-
nary dimensions, making it difficult to learn. We further
discuss this problem in Sec. 7.

These experiments have revealed that while our M-
WGAN approach is promising, there are still open questions
around how to make it more accurate for heterogeneous,
skewed data.

6. RELATED WORK
Our vision relates to five main areas of research: data

integration/exchange, approximate query processing, distri-
bution learning, sample selection bias correction, and social
science sample analysis. To the best of our knowledge, our
prior work [42] was the first system to attempt automatic
sample debiasing. Mosaic is the first database to truly treat
samples as first-class citizens in a declarative manner.

The database community has extensively researched data



integration query processing (closed query processing in Mo-
saic) [30, 25, 2, 28]. While data integration systems do
consider the difference between and the open and closed
world assumption when answering queries over views, they
do not reconstruct the global database. They are instead
concerned with generating global schemas and giving equiv-
alent or maximally contained answers. We go beyond data
integration by providing the SEMI-OPEN and OPEN query
constructs.

In a similar vein to Mosaic’s goal of supporting data
scientists is the work on open data integration and ex-
change [36] where the focus is on helping scientists to dis-
cover and integrate publicly available data sources without
apriori knowledge of what data is available. This work cen-
ters on finding relevant relations on the web [40] and schema
mapping [45]. We consider Mosaic to work in tandem with
these systems by providing scientists the tools to accurately
analyze the data discovered from these open data sources.

While not concerned with data integration is the work
of [10, 20] on open world probabilistic databases (PDB).
Like Mosaic, they also make an open world assumption
but focus on theoretically understanding how different open
world PDB semantics impact the precision and tractability
of different classes of queries.

Approximate query processing (AQP) [11, 37] explores
how to achieve interactive query response times by allowing
for approximate query results. Similar to Mosaic, many
AQP systems aim to accurately answer queries over sam-
ples for faster query processing [4, 3]. Further, some sys-
tems utilize past or known query answers to improve per-
formance [44, 22, 43]. The important distinction between
Mosaic and standard AQP is that AQP systems either as-
sume they have access to the entire population or assume
they have knowledge of the error from querying the sample.
Mosaic makes neither of these assumptions, making stan-
dard AQP techniques not applicable. However, if the user
had knowledge of the error or assumed the error was nor-
mally distributed [22], these AQP systems could be used for
SEMI-OPEN query processing in Mosaic.

While most AQP research assumes a closed world, the
work of [47, 41, 29] allow for tuples to be generated that
may not exist in the sample. Like Mosaic, [47] and [29]
also use generative models while [41] uses Maximum Entropy
to learn a general probability distribution. Note that all
systems assume access to the entire population, which does
not hold in Mosaic.

Most similar to Mosaic’s WGAN approach is [9] where
the authors learn the joint distribution of a mixture of Gaus-
sians from lower dimensional projections of data. Sliced
WGANs [15] also learn a distribution from 1-dimensional
projections of data. Further, [32] use GANs to learn a joint
distribution of images in two different domains by weight
sharing across two GANs, one for each domain. However,
all of these have the population so can take multiple projec-
tions. We only have marginals for specific attributes that
may not cover all the attributes of the population.

Although not concerned with ad-hoc query answering,
the research on sample selection bias correction in machine
learning tackles the problem of training and test data being
drawn from different distributions; i.e., the training data is
biased and not representative of the true population distri-
bution [12, 26, 8]. This work, however, assumes access to
a sample from the true distribution (test set) and is mainly

concerned with downstream tasks, such as classification or
regression. Mosaic solves the more general problem of de-
biasing samples for arbitrary queries using only population
metadata and could be used to help machine learning scien-
tists debias their samples.

Social science sample analysis, especially in demography
research, is one of the most common use cases of biased
sample analysis [38, 13, 50, 19, 18, 33, 46]. The samples are
from social media or United States’ surveys, e.g., the Amer-
ican Community Survey, and the aggregates for bias correc-
tion are census reports. While there are a few prepackaged
libraries that perform specific algorithms, like the Python
package IPFN, there is no general purpose technique or data
management system for these scientists. Note that demog-
raphy is not the only field that can benefit from Mosaic,
but it is one of our prime use cases and examples.

The database system most closely related to sample an-
alytics for data science is MauveDB [14]. It allows model-
based views over data to support users in building statistical
models or abstractions over their data. While the overarch-
ing goal of supporting data science matches that of Mosaic,
the underlying mechanisms and data model is different.

7. FUTURE WORK
We want to highlight that Mosaic is a visionary system,

and there remain numerous open challenges for Mosaic to
be fully realized. The following is a list of the more promi-
nent challenges with ideas on solving them.

Multiple Populations. A main area of future work
is to allow for multiple global populations. We not only
need to keep track of which populations define the sampling
mechanisms of which samples but also need to handle when
samples exist in multiple populations and have a different
sampling mechanism for each population. One possible so-
lution is to treat all populations as disjoint and replicate
any overlapping samples. However, we risk losing important
debiasing information by this assumption. We leave it as fu-
ture work to investigate ways of learning an optimal sample
reweighting scheme from multiple mechanisms.

Multiple Samples. In Sec. 4, we made the assumption
that the query engine receives a single sample for query an-
swering. While simple, this is likely suboptimal as different
samples represent different subsets of the population, and re-
lying on one will result in more missed tuples. One solution
is to union together all related samples and let IPF or the
neural network reweight the tuples accordingly. This might
present further problems if certain tuples become overly rep-
resented.

Data Integration. In Sec. 4, we also made the assump-
tion that the population attributes are contained in the sam-
ple attributes. With real-world data, this is not the case. To
relax this assumption, we will need to incorporate data inte-
gration query answering and schema mapping techniques to
handle the disparate sample attributes. It is an open ques-
tion whether standard data integration techniques hold or
if they will need to be enhanced to handle the open world
assumption of Mosaic.

Metadata. Another aspect of future work is to add a
greater variety of metadata. Our system already supports
higher dimensional aggregate data, but it is an interesting
direction to add metadata such as population constraints or
known correlations.

Open World Density Estimation. Our M-WGAN



approach is simply one solution to open query processing.
Based on [47] and [32], Mosaic’s open query answering may
be made more accurate by using more advanced sample gen-
eration approaches (e.g., [6]) or by learning multiple GANs
on meaningful subsets of the data. Our M-WGAN might
also be made more accurate with a modified loss term to
better ensure sample coverage. Further, it is an open ques-
tion whether alternative density estimation techniques, like
nonparamteric kernel density estimation [31], will be more
accurate or efficient.

Data Encoding. The last research question is that of
data representation. As mentioned in some of the (gener-
ative) model-based systems from Sec. 6 and in Sec. 5, it is
unclear how best to represent heterogenous (continuous and
categorical) data for query processing. The systems of [34,
41, 29] consider all possible attribute values when building
models or answering queries. For small domains, this works
well, but when the active domain gets large, these systems
break down. [47] takes a similar approach as Mosaic by en-
coding categorical variables as binary numbers. While this
reduces the dimensionality of one-hot encoding, it introduces
various relationships between attribute values that may not
exist. For example, suppose the three US states of CA, FL,
and NY were encoded in two bits as 11, 01, and 10, respec-
tively. This implies that the sum of FL and NY is equivalent
to CA, which is misleading. We think a promising approach
is that of [35] where they used a word2vec model to learn
contextualized encodings of values from the data.

8. CONCLUSION
Mosaic is a DBMS that treats samples as first-class cit-

izens and allows users to ask open world queries on biased
samples of data and get approximate results. We described
our proposed extensions to SQL to allow users to ask ques-
tions in a declarative manner and then discussed one possible
way of doing open world query processing through the use of
marginal data. In particular, we presented and gave prelim-
inary results for our novel technique of using a M-WGAN
to generate population data.

While we focused on the use case of known population
marginals (e.g. the census aggregate reports), the tech-
niques presented are applicable for arbitrary or approximate
marginals determined by the user. These marginals can rep-
resent any new distribution the user wants the sample to sat-
isfy; e.g., one where classes are rescaled for downstream clas-
sification or where sensitive attributes are balanced. Mo-
saic takes an important first step in building a system to
better support the needs of data scientists by inherently sup-
porting samples and the populations they represent.
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