
Exploiting Directly-Attached NVMe Arrays in DBMS

Gabriel Haas, Michael Haubenschild†, Viktor Leis
Friedrich-Schiller-Universität Jena Tableau Software†

{gabriel.haas,viktor.leis}@uni-jena.de mhaubenschild@tableau.com†

ABSTRACT
PCIe-attached solid-state drives offer high throughput and large
capacity at low cost. Modern servers can easily host 4 or 8 such
SSDs, resulting in an aggregated bandwidth that hitherto was only
achievable using DRAM. In this paper we study how to exploit such
Directly-Attached NVMe Arrays (DANA) in database systems. We
find that DANA presents new challenges that require rethinking the
way I/O operations are performed at both the database and operat-
ing system layer.

1. INTRODUCTION
The performance of database systems depends crucially on how

well these systems are optimized for the hardware they run on. For
example, after decades of rapidly-dropping DRAM prices, mini-
mizing the number of disk I/O operations became less important.
The database community reacted by redesigning and rethinking
the traditional architecture—resulting in novel designs like main-
memory database systems. This shows the importance of keeping
track of hardware trends, as these must be taken into account when
designing and developing high-performance database systems.

Figure 1 shows the capacity per dollar of main memory (DRAM)
and storage (disk and flash) since the year 2000. Two observations
are apparent from the figure. First, the growth of DRAM capac-
ity has slowed down considerably since about 2011. Second, flash
(i.e., NAND-based solid-state drive) capacity has grown faster than
DRAM and disk. At the end of 2019, flash is 5–10 times more ex-
pensive than disk, and 20–40 times cheaper than DRAM.

Flash has become attractive not only in terms of capacity but also
in terms of performance. Until recently, solid-state-drives (SSD)
were usually attached through the SATA interface, which has a
bandwidth of less than 0.6 GB/s. Modern solid-state drives, in con-
trast, are directly attached to PCIe (through M.2 or U.2 and the
NVMe interface) rather than SATA. PCIe unlocks the abundant
internal parallelism of SSDs, which internally consist of dozens
of flash chips. As a result, a single commodity SSD can access
over 3 GB/s using 4 PCIe 3.0 lanes. Current server CPUs have be-
tween 48 or 64 PCIe lanes; Thus, even after leaving some lanes
for networking, one can directly connect 8 SSDs—resulting in an

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2019.
9th Biennial Conference on Innovative Data Systems Research (CIDR ‘19)
January 13-16, 2019 , Asilomar, California, USA.

disk flash

DRAM

0.001

0.01

0.1

1

10

2000 2005 2010 2015 2020
year

G
B/

$
[lo

g
sc

al
e]

Figure 1: Historical disk, flash, and DRAM capacity per dollar.
data source: https://jcmit.net/memoryprice.htm

aggregated bandwidth of about 25 GB/s per socket. Amazon AWS,
for example, offers instances with 8 NVMe SSDs. We call such a
configuration of multiple high-performance PCIe SSDs Directly-
Attached NVMe Array (DANA).

To put a DANA bandwidth of 25 GB/s into perspective, let us
compare it with other technologies. Eight 1 TB high-speed SSDs
cost around $2000, which would also be enough to buy twenty
4 TB disks, three 128 GB modules of byte-addressable persistent
memory (“PMem”), or twelve 32 GB DRAM modules instead. All
of these alternatives can be connected to a single CPU socket. As
Table 3 shows, in terms of bandwidth, even 20 magnetic disks are
still 12 times slower than an eighth-way DANA. Persistent memory
(“Intel Optane DC Persistent Memory”) achieves slightly higher
read bandwidth, but is slower for sequential writes. Only DRAM
is still clearly faster than DANA. However, DRAM is 20 times
more expensive in terms of capacity, and the bandwidth gap be-
tween DRAM and flash bandwidth is about to disappear. The just-
launched AMD Rome platform supports PCIe 4.0, which doubles
the bandwidth per lane, and has 128 lanes per socket.

Table 1: What do $2000 buy?
based on commodity prices, PMem and DRAM performance from [17]

configuration capacity bandwidth random
read write reads

[TB] [GB/s] [M/s]

disk 20×4 TB 72.8 2 2 0.002
DANA 8×1 TB 7.3 25 20 4
PMem 3×128 GB 0.4 37 10 155
DRAM 12×32 GB 0.4 92 80 1,500

https://jcmit.net/memoryprice.htm

Because DANA is much faster than disk and much cheaper than
DRAM and PMem, it is the ideal storage technology for large
scan-oriented OLAP databases—as well as HTAP workloads for
which the transactional working set fits into main memory. This
has consequences for database system architecture. Data should
be stored primarily on flash, with DRAM being used as a cache
for frequently-accessed data items and transient query processing
structures like hash tables. Disk is mainly useful for backups and
for archival storage, and, at current prices, the role of PMem seems
unclear for scan-oriented workloads.

One important remaining question about DANA-backed database
systems is whether the promised performance is achievable in prac-
tice. After all, one major difference between DRAM/PMem versus
flash/disk is that the latter require I/O system calls. Before an I/O
request scheduled by the database system appears at the SSD, it
goes through many OS layers, including buffering, the file system,
RAID, and queuing. As we show in this paper, handling hundreds
of simultaneously-scheduled I/O requests and millions of I/O re-
quests per second is a major challenge.

The goal of this paper is to determine how to best exploit DANA
in database systems. One practical difficulty is that operating sys-
tems offer many different ways to execute I/O operations. To find
a good configuration, we perform an extensive experimental study
using 4 high-performance SSDs on Linux. Using a challenging but
realistic I/O workload, we quantify the impact of (1) OS buffer-
ing (page cache, O_DIRECT), (2) the I/O interface (pread/pwrite,
libaio, io_uring), (3) the file system (ext4, Btrfs, XFS, F2FS), and
(4) RAID (md, hardware RAID). In addition, we investigate SPDK,
a user-space I/O stack that bypasses the operating system com-
pletely by directly accessing the PCIe interface.

The rest of the paper is organized as follows. After discussing
related work in Section 2, we describe the hardware, workload, and
software setup for our experiments in Section 3. The core of the
paper is Section 4, which evaluates the OS I/O stack and SPDK.
Based on these experiments, we discuss the implications of DANA
for database system design in Section 5 and issue specific recom-
mendations. We summarize the paper and mention future work in
Section 6.

2. RELATED WORK
Optimizing database systems for flash is a topic that has been

studied for more than a decade [9, 4, 2, 13, 12, 7]. However, as
Figure 1 illustrates, in the past, flash was expensive and therefore
generally thought of as an additional layer in the storage hierarchy.
Since then, flash has replaced disk for most use cases, and modern
PCIe-attached NVMe SSDs are about 6 times faster in terms of
bandwidth than SATA-attached SSDs.

NAND flash has peculiar physical properties that are very dif-
ferent from magnetic disks. Recent work shows ways of exploiting
these properties to improve performance, predictability, and dura-
bility [3, 14, 15, 6]. Nevertheless, given the proliferation of large
data sets, we argue that more research on flash is required. In par-
ticular, we are not aware of any prior work that systematically eval-
uates arrays of high-performance flash devices or shows how to use
them effectively. As we show in this paper, a DANA is nothing like
a traditional storage device and requires new thinking about data
access.

This paper is part of the LeanStore [10] project. LeanStore
is a high-performance storage engine for modern hardware that
achieves (almost) zero-overhead buffer management. This work is
the first step to optimize LeanStore for DANA. Our findings are
also highly-relevant to other recently-proposed storage engines [8,
16, 1].

3. EXPERIMENTAL SETUP

3.1 Hardware
Unless otherwise noted, we use 4 high-end, consumer-grade

Samsung 970 EVO Plus 1TB SSDs, which are specified at 3,500 MB/s
read and 3,300 MB/s write throughput1. To connect the 4 M.2 SSDs
to our system, which has only 2 M.2 slots, we rely on the HighPoint
SSD7101A-1 controller:

The controller hosts the four SSDs and is itself connected using
16 PCIe 3.0 lanes. It either simply exposes the SSDs to the op-
erating system as separate devices or serves as a hardware RAID
controller. We validated that in the former mode, which we use for
most experiments, the controller does not add any overhead. Our
system has an Intel Core i9-9900K CPU with 8 cores (16 hyper-
threads) and 64 GB of RAM.

3.2 Workload
From a high-level point of view, database systems perform the

following classes of I/O operations:

• scan: The performance of table scans is determined by through-
put (rather than latency of any individual I/O operation). The
database system can (and should) asynchronously prefetch a
large number of pages.
• point read: For certain read operations, for example syn-

chronous index lookups, latency is crucial and prefetching is
not applicable.
• WAL: On transaction commit, database systems have to flush

the tail of the write-ahead-log (WAL) to persistent stor-
age. This is usually implemented using the write and
fdatasync system calls. Commits are latency-critical.
• background write: Database systems buffer writes in main

memory, and a background writer process continuously writes
out dirty pages at a steady pace. Latency does not matter as
long as the desired write rate is achieved.

Because we focus on I/O, we only access the data from SSD
without processing it. However, we did measure CPU utilization
to determine whether enough CPU cycles are available for actual
query processing. For the scan, we schedule requests in batches of
32 and a total of 128 I/O requests simultaneously. We measure the
latency of point reads by issuing a single read request at a time
without waiting in-between. For the background writer, we specify
a target write rate of 250 MB/s. The WAL writer also has a target
write rate of 250 MB/s, but performs an fdatasync operation
after every write. This configuration is summarized in Table 3.

In most experiments, we run the four workload I/O patterns si-
multaneously. Let us nevertheless mention the individual numbers
to establish upper bounds. At an I/O depth of 128, we measured a
1Only the 6-42 GB SLC write cache achieves 3,300 MB/s. The
steady write speed is 1,700 MB/s. See Section 4.8 for more details.

Table 2: The OS I/O stack. Entry #1 uses fdatasync for WAL, read/write system calls, OS buffering, and the ext4 file system. The
following entries disable these features one by one, arriving at unbuffered block device access using asynchronous system calls.

fs
yn

c
sy

nc
hr

on
ou

s
O

S
bu
ffe

r
fil

e
sy

st
em

RA
ID

 0

description Section I/O interface scan point bg. wr. WAL total I/O CPU
MB/s MB/s MB/s MB/s MB/s cycles/byte

1 baseline 4.1 pread/pwrite/sync 3,503 27 250 6 3,786 6.92
2 − fdatasync 4.2 pread/pwrite 5,055 39 250 250 5,595 10.52
3 + async. I/O 4.3 io_uring 3,439 118 252 251 4,059 7.61
4 + O_DIRECT 4.3 libaio 4,464 74 250 249 5,036 1.01
5 − file system 4.4 libaio 5,443 52 251 251 5,997 0.76

Table 3: Workload summary.

type I/O operation pattern I/O depth rate limit

scan read random 128 -
point read read random 1 -
bg. write write random 1 250 MB/s
WAL write+sync sequential 1 250 MB/s

maximum throughput of 6.8 GB/s for the scan. For the point reads,
we achieved up to 10,560 page reads per second (165 MB/s), and
for the synchronous WAL writes we measured 800 to 900 write op-
erations (followed by an fdatasync) per second (12-14 MB/s).
Running all four I/O classes simultaneously simulates an HTAP
workload.

3.3 Software Setup
We use Linux 5.2.2 and simulate the four I/O classes described

above by using the open-source I/O benchmarking tool fio in ver-
sion 3.15. Unless otherwise noted, we use a page size of 16 KB,
Linux’ md software RAID 0 implementation, and the ext4 file
system, as it is the default under Linux.

To limit the impact from internal state, the SSDs are blk-
discarded and freshly initialized after every run of the exper-
iment. To reduce other noise and the influence of temperature, the
SSDs are always given time to cool down between experiments.

4. A DEEP-DIVE INTO THE I/O STACK
The goal of this paper is to find out how to best use a DANA for

database workloads. To do this, we run the workload described in
the previous section using different OS I/O stack configurations—
measuring I/O performance and CPU utilization. We start with a
fully-featured setup, and gradually disable OS features to under-
stand their impact on performance.

4.1 The Traditional I/O Stack
We start with a configuration that mimics the traditional way

of how most disk-based database systems like PostgreSQL per-
form I/O by default. In addition to their own buffer pool, many
systems also rely on OS buffering. Furthermore, today most sys-
tems store data on a file system rather than directly managing the
block device. We thus use an OS cache of 10 GB and store both the
400 GB data file and the 100 GB WAL file on an ext4 file system.
Data is accessed using the pread and pwrite system calls from
separate threads (we use 128/1/1/1 threads for scan/point-read/bg.-
write/WAL). Although using 128 threads for the scan may seem
excessive, with pread this is necessary to get good throughput on
a modern SSD.

Entry #1 of Table 2 summarizes the results for the baseline con-
figuration. Only the background writer achieves its desired rate of
250 MB/s. The scan (3.5 GB/s) and the point reads (27 MB/s, mean
latency of 578 µs) fall below expectations. However, the biggest un-
derachiever is the WAL thread. It only manages to achieve 6 MB/s
(mean latency of 2.6 ms per WAL flush), which is much slower than
the desired rate of 250 MB/s. Even though a poor result is expected
in this setting, as typical write latency of NAND flash is already
around 1 ms [3], it is still surprising that we can only achieve a
fraction of that number.

4.2 Removing fdatasync From the Critical Path
The underwhelming results of the first experiment are caused by

the frequent fdatasync system calls. fdatasync is a highly-
invasive synchronization call (fsync even more so) that not only
limits the performance of commits, but also slows down the other
I/O types. One solution is to avoid frequent fdatasyncs in the
first place using a persistent memory buffer. Persistent memory or
NVDIMMs (flash-backed DRAM) are ideal for flushing the tail
of the log2, because they have very low latency and are accessed
directly using load/store CPU instructions rather than I/O system
calls. This reduces the commit latency from milliseconds to about
0.3 µs [17]. Only a small amount of persistent memory is necessary,
because after commit, the WAL data can be asynchronously writ-
ten back to flash. In effect, this approach transforms synchronous
log writes to asynchronous background writes—while improving
commit latency significantly.

To simulate this approach, we removed the fdatasync calls
from our workload without changing any other settings (this as-
sumes that the overhead of flushing to persistent memory is negli-
gible in comparison with the latency of NAND flash). As Table 2
shows, this small change has a significant positive effect, not only
on the WAL thread, but on the entire workload: The desired WAL
write rate of 250 MB/s is now achieved and point I/Os are faster by
44% despite scan performance is simultaneously increasing by the
same factor.

4.3 CPU Utilization and Asynchronous I/O
At this point, we achieve a total I/O bandwidth of 5.5 GB/s but

have very high CPU utilization. Measuring the system-wide CPU
utilization using perf, we found that on average more than 10 cy-
cles are necessary just to load one byte into the CPU. To access the
5.5 GB/s from our SSDs, our 8-core high-frequency CPU is fully
utilized.

This is a major problem because, as we mentioned in the intro-
duction, one would like to support 8 or 16 SSDs rather than just 4:
At 10 CPU cycles per byte, a hypothetical system with eight 3 GB/s

2Another low-latency alternative is to ship the WAL to another ma-
chine using RDMA [18].

0.0

0.2

0.4

0.6

0 2 4 6

throughput [GB/s]

m
e

a
n

 la
te

n
c
y
 [
m

s
]

0.0

0.5

1.0

1.5

0 2 4 6

throughput [GB/s]

la
te

n
c
y
 9

9
%

 [
m

s
]

Figure 2: Read latency vs. throughput for random reads.

SSDs would require 86 cores at 3 GHz. And this still ignores the
fact that there are also CPU cycles needed for query processing,
not just for fetching the data. To make DANA-based database sys-
tems competitive with in-memory systems on scans, it is therefore
crucial to reduce the CPU load by at least one order of magnitude.

To reduce CPU load, one promising approach is to use asyn-
chronous rather than blocking I/O system calls. So far, we imple-
mented the scan using 128 threads where each thread uses the
blocking pread system call. With asynchronous I/O, a single
thread can schedule all these I/O operations at once. Linux of-
fers two ways for doing this: libaio is the traditional interface
(since kernel 2.6), but does not support OS buffering. The very
recent io_uring approach (since kernel 5.1), on the other hand,
supports OS buffering, but is still under heavy development. We
generally found the performance of both approaches very simi-
lar for our workload, and therefore show numbers for whichever
method works in that particular configuration.

Entry #3 in Table 2 shows that enabling io_uring while still
using OS buffering does not improve CPU utilization substantially.
Scan performance actually decreases because a single scan thread
with an I/O depth of 128 cannot keep up. Entry #4 shows that, in
addition to using asynchronous I/O, one has to disable OS buffering
(and use O_DIRECT mode) to reduce CPU load to 1.01 cycles per
byte. At this point it becomes possible to utilize 8 SSDs, though it
would still require more than eight 3 GHz cores

4.4 File System
After we disable OS buffering, the next source of overhead is

the ext4 file system. As entry #5 in Table 2 shows, the impact
is significant. In comparison with ext4, direct block device access
increases scan throughput by 22% and decreases the CPU cycles
per byte by 33%.

The only part of the workload where disabling the file system
seemingly hurts performance are point reads, which decrease from
74 to 54 MB/s. In fact, the root cause for the increased point read
latency is not the file system: As the number of I/O requests in-
creases, reads will have higher latencies and it becomes more likely
that a read is stalled by other earlier I/O requests—causing longer
queuing delays. To see this effect in isolation, we varied the I/O
depth while measuring throughput and latency in a read-only ex-
periment. As Figure 2 shows, mean latency increases by 80 µs,
and 99th percentile latency increases even more by 300 µs. This
trade-off between latency and throughput is a challenge for HTAP
systems that concurrently run latency-critical point reads and large
scans.

Although ext4 is the most common file system on Linux, there
are a number of alternatives. Table 4 shows the results for several
other common file systems and compares them with direct block
device access (without a file system). For our workload, XFS (en-
try #4b), default file system in Red Hat, clearly performs best. It
has very little overhead in comparison to the configuration without

Table 4: File system impact. #5 is block device access.

file scan point write total I/O CPU
system MB/s MB/s MB/s MB/s cycl./byte

4 ext4 4,464 74 499 5,036 1.01
4b XFS 5,395 53 502 5,950 0.79
4c Btrfs 3,364 94 500 3,957 2.42
4d F2FS 4,786 67 504 5,358 0.99
5 block 5,443 52 502 5,997 0.76

0

5

10

15

4 16 64 256

th
ro

u
g

h
p

u
t

[G
B

/s
]

0

1

2

3

4 16 64 256

C
P

U
 [

c
y
c
le

s
/b

y
te

]

0

100

200

300

4 16 64 256

la
te

n
c
y
 [

u
s
]

page size log scale [KB]

Figure 3: Impact of page size for random reads.

a file system (entry #5) both in terms of total I/O and CPU uti-
lization. The other three file systems are significantly slower, with
Btrfs performing worst, even when mounted with disabled copy-
on-write. These results indicate that XFS, which has been designed
for high-performance multi-threaded use cases, is a very good fit
for DANA.

4.5 Page Size
So far, all experiments use a page size of 16 KB, which is the

default page size of LeanStore [10]. The page size impacts not just
point read latency, but also scan throughput because we use random
rather than sequential I/O to simulate the scan—exploiting the fact
that, in contrast to disks, SSDs are efficient at random access. This
simplifies the design of SSD-optimized database system because
it avoids the need to maintain the spatial locality of relations at
the storage level. Disk-based database systems, in contrast, have
to go to great lengths to cluster relations to get reasonable scan
performance.

To evaluate whether this random-access design can achieve good
throughput, we perform a read-only microbenchmark varying the
page size. The results are shown on the left-hand side of Fig-
ure 3. Using a page size of 4 KB results in a read throughput of
about 5 GB/s, which increases to 6 GB/s with the 16 KB setting
used so far. A page size of 64 KB achieves a throughput of more
than 11 GB/s, which is fairly close to the maximum throughput of
12 GB/s. These results indicate that for random scans, a page size
of at least 64 KB should be used. Furthermore, as the center plot
in Figure 3 shows, larger page sizes also significantly reduce CPU
utilization because most in-kernel overhead is per system call, not
per byte.

However, as the plot on the right-hand side of Figure 3 shows,
larger page sizes also have a downside, namely higher latencies. A
page size of 64 KB results in a 57% higher latency than with 16 KB
pages. Thus, HTAP systems face the tradeoff between latency and
throughput when deciding for a page size.

4.6 RAID
In all experiments so far, we used Linux’ RAID 0 implemen-

tation. RAID 0 does not improve reliability, because it simply in-
terleaves pages across devices, thereby exposing several SSDs as

Table 5: RAID impact. md is Linux software RAID, HW is
hardware RAID. #7 is interleaved block device access.

RAID scan point write total I/O CPU
MB/s MB/s MB/s MB/s cycl./byte

5 md 0 5,443 52 502 5,997 0.76
5b md 5 4,511 45 493 5,049 1.31
5c md 10 4,974 50 498 5,522 0.89
6 HW 0 5,553 56 502 6,111 1.66
6b HW 5 132 1 217 350 7.57
6c HW 10 4,107 44 510 4,661 0.48
7 no RAID 5,665 53 499 6,217 0.76

one logical device. For a DANA of 4, 8, or even 16 devices, the
probability of failure is non-negligible, and redundancy at the stor-
age level becomes crucial. For 4 devices, RAID levels 10 or 5 are
reasonable options, though both have downsides. RAID 10 has the
obvious disadvantage of losing half the capacity and write speed,
whereas RAID 5 has performance problems with random updates.

To determine the performance of different RAID levels and
implementations on our workload, we compare Linux’ software
RAID implementation (md) with the hardware RAID options of
our HighPoint SSD7101A-1 controller. The results for md, shown
in Table 5, are as expected. RAID 0 (entry #5) has very little over-
head in comparison with directly accessing the 4 block devices
(entry #7). RAID 5 and 10, in contrast, result in a slowdown in
terms of overall I/O throughput. These slowdowns are caused by
additional I/O requests necessary to implement the RAID. RAID
10 doubles the number of physical writes, causing interference with
scan performance. For RAID 5, the random background writes are
the major issue, because a single random update results in an ad-
ditional write of the parity page and two reads of the other pages
in the RAID stripe. These additional I/O requests and the CPU
cost of parity computation almost doubles CPU utilization on our
workload in comparison with RAID 0.

Hardware RAID performs significantly worse than software
RAID. The fact that the CPU utilization increases for RAID 0
(entry #6) in comparison with software RAID 0 (entry #5) may be
surprising, but shows that our controller, which is marketed as a
hardware RAID, in fact implements RAID using a proprietary ker-
nel module in software. Let us note that, to the best of our knowl-
edge, Highpoint is the only NVMe hardware RAID manufacturer.

To summarize, the performance results indicate that software
RAID is preferable to hardware RAID. However, neither RAID
level 10 nor level 5 are ideal for DANA. RAID 10 is not very eco-
nomical as it wastes half the capacity. RAID 5, on the other hand,
has high write and read amplification for random writes. Neverthe-
less, RAID 5 is a good option for those storage engines that avoid
in-place updates.

4.7 User-Space I/O With SPDK
Given the performance and CPU utilization issues of the OS’ I/O

stack, it may look attractive to bypass the kernel and perform I/O
directly from user space. This can be done using the Storage Perfor-
mance Development Kit (SPDK), a library that enables user-space
access to NVMe SSDs and promises high performance and scala-
bility. Instead of interrupts, SPDK relies on polling—one or more
dedicated I/O threads manage the NVMe devices by constantly
checking for events in a busy-waiting loop. Thus, SPDK replaces
system calls with user-space polling, and intra-kernel locking with
message passing.

Table 6: Random read latency in µs of SPDK, io_uring, libaio,
and pread on an Intel Optane Memory PCIe device.

page size [byte] latency [µs]

SPDK io_uring libaio pread

512 2.7 4.4 5.6 4.9
4,096 6.5 8.3 10.3 8.7

16,384 20.1 22.3 26.8 23.1

However, SPDK is not a panacea. Running our workload using
fio’s SPDK backend does not improve scan or point lookup per-
formance in comparison with the kernel-based I/O stack (i.e., per-
formance is very similar to entry #5 in Table 2). At the same time,
because fio uses 4 polling threads for our workload, CPU utiliza-
tion actually increases from 0.76 to 2.76 cycles/byte. This shows
that naively using SPDK can increase CPU load, and that SPDK is
not a simple drop-in replacement for the traditional I/O stack.

Nevertheless, there are ways of using SPDK in a beneficial
manner. In a read-only microbenchmark (using 16 KB random
reads), we were able to read over 7 GB/s, while using only 0.12
cycles/byte. To achieve such good CPU usage results, we have to
slow down the SPDK polling frequency. To still exploit full DANA
bandwidth, it is then necessary to handle large numbers of I/O
operations on every polling cycle. In practice, we can do this by
submitting and propagating completed I/O requests up the stack
in large batches. We found that, on our system, sleeping times of
50 µs between polling cycles, an I/O depth of 1024, and batch sizes
of 256 pages allow us to fully exploit our DANA with very low
CPU overhead. Obviously, this comes at the cost of very high per-
request latency. Thus, SPDK offers the potential of lowering CPU
utilization using strategically-placed sleep calls.

Ignoring CPU utilization, SPDK’s polling-based approach can
theoretically also be used to improve latency. However, because
the latency of standard TLC NAND flash is quite high (around
100 µs), SPDK’s latency advantage is only visible with high-cost,
low-latency NVMe devices. We therefore measured the random
read latency of an “Intel Optane Memory 16GB PCIe M.2” card,
which is based on persistent memory rather than NAND flash. Ta-
ble 6 shows that for small page sizes, SPDK offers up to 2 times
lower latencies than the kernel. However, for most NAND-based
devices, this benefit is negligible.

To summarize, SPDK’s polling-based approach shows potential
for either reducing CPU utilization or latency. However, how to
achieve both at the same time in a complex mixed workload is still
an open question, which we defer to future work.

4.8 SLC Cache and Garbage Collection
SSDs require complex logic to handle the physical characteris-

tics of flash memory (e.g., erase-before-write and wear out). Se-
mantically, this logic is hidden from the user by the flash translation
layer (FTL), but its performance effects are observable.

The experiments in Table 2 were run for short periods of time
to limit the influence of garbage collection. However, by running
the workload for longer durations, we can observe different behav-
ior. In particular, to absorb short write bursts, our Samsung SSD
employs a dynamically-managed Single-Level Cell (SLC) write
cache. Samsung’s marketing term for this is TurboWrite, which is
specified to be in the range of 6 to 42 GB for our 1 TB SSDs.

To show the impact of SLC, we implemented a similar workload
to entry #5 of Table 2 in a micro-benchmark and ran it with per-

0

2

4

6

0 25 50 75 100

th
ro

u
g

h
p

u
t

[G
B

/s
]

scan (100s)

0

2

4

6

0 1 2 3

scan (3 hrs)

0

3

6

9

0 25 50 75 100

time [s]9
9

th
 p

e
rc

e
n

til
e

 la
te

n
c
y
 [

m
s
]

point reads (100s)

0

3

6

9

0 1 2 3

time [h]

point reads (3 hrs)

Figure 4: Impact of SLC write cache and GC on throughput
and latency over time.

second statistics. For this experiment, we fill our RAID 0 array to
90% of its capacity. The benchmark then uses this range for reads
and writes, and the remaining 10% of space are kept free (over-
provisioning). The results on the left-hand side of Figure 4 show a
sudden performance drop in scan throughput and an increase in tail
read latency after 50 seconds. With a write speed of 500 MB/s, we
can calculate the amount of dynamically-allocated SLC cache to be
less than 25 GB for our four SSDs (≈6 GB each).

An even larger performance drop can be observed when the ex-
periment is run for several hours. On the right-hand side of Figure 4
we can see that after about 30 to 40 minutes, the SSDs are appar-
ently running out of over-provisioned space. This triggers garbage
collection, multiplying read latency and halving scan performance.
After a while, the SSDs manage to partially recover, but still contin-
ues with degraded performance. These effects are, of course, very
dependent on the specific SSD model. In Appendix A we execute
long-running experiments on enterprise SSDs and find that perfor-
mance is much more stable on them.

Finally, let us note that SSDs without proper cooling are also
prone to performance issues caused by thermal throttling. This is
not an issue for our setup, as the PCIe adapter card uses a fan to
keep the SSDs cool. We observed severe performance degradations
in SSD setups without fans or heat sinks.

5. IMPLICATIONS FOR DBMS DESIGN
In terms of its software interface, flash is quite similar to disk.

Both rely on block-wise access through system calls. Therefore,
from a software perspective, flash may just seem like a much faster
version of disk. Given that main-memory database systems cannot
exploit flash, one may wonder whether the traditional disk-based
database system architecture is suitable for DANA, or whether new
techniques are required. To answer this question, let us compare
PostgreSQL, a traditional disk-based system, with LeanStore, a
modern storage engine design.

5.1 PostgreSQL on DANA
To evaluate PostgreSQL, we use the TPC-C implementation of

OLTP-Bench [5]. As mentioned earlier, PostgreSQL performs I/O
using traditional blocking system calls and relies on OS buffering.
This corresponds to the slow baseline configuration in entry #1 of
Table 2. We use 40 worker threads, 300 warehouses (about 30 GB
of data), software RAID 0, and the XFS file system. We compare

Table 7: TPC-C performance with 40 worker threads and 300
warehouses (30 GB data).

buffer pool perf. read write
GB ktxn/s GB/s GB/s

PostgreSQL 16 9 0.2 0.07
50 10 0.1 0.05

LeanStore 16 130 0.9 1.4
50 410 0 0.8

the in-memory performance with an out-of-memory scenario where
only half the data fits into RAM. For the out-of-memory configura-
tion we restrict the available system memory to 16GB.

Surprisingly, as Table 7 shows, with PostgreSQL the perfor-
mance drop for going out-of-memory is fairly small. The peak
performance only drops by about 10% and only entails a slight in-
crease of I/O usage. This is caused by the fact that PostgreSQL is
effectively CPU bound even in this setting. The I/O statistics show
that, because of its inefficient CPU use, PostgreSQL is simply too
slow to be able to exploit the full potential of our high-performance
DANA.

These results indicate that traditional disk-based systems are not
a good fit for DANA, despite the fact that flash looks like a drop-in
replacement for disk.

5.2 LeanStore on DANA
The fact that disk-based systems are too slow and in-memory

systems are fundamentally unsuitable for exploiting DANA, means
that a new class of database systems is necessary. A number of
high-performance storage managers have recently been proposed [1,
8, 10, 16]. What these systems have in common is that they utilize
both DRAM and high-performance storage devices. Such caching-
based approaches are more economical than relying on a single
memory/storage technology [11].

Compared to PostgreSQL, LeanStore [10] achieves 41× higher
in-memory performance, and is still 14× faster for the out-of-
memory configuration. In the in-memory experiment only the WAL
is written to flash, and the out-of-memory setting results in WAL
writes, background writes, and latency-critical reads. The results
in Table 7 indicate that LeanStore is currently well optimized for
the usage of a single NVMe SSD, and is showing promising re-
sults for DANA. We ran LeanStore in a configuration similar to
#4 of Table 2, where it avoids fsyncs on the critical path, uses
O_DIRECT, and relies on asynchronous I/O with libaio.

5.3 Recommendations
Based on the experimental findings, let us state a number of rec-

ommendations for DANA storage engines:

• Flush operations like fdatasync must be moved off the
critical path by relying on persistent memory or NVDIMM
for logging.
• For scans, asynchronous I/O operations should be used.
• The OS buffer cache incurs a large CPU overhead and needs

to be replaced by lightweight user-space buffering.
• The database has to be stored on a scalable file system like

XFS, or directly on the block device.

6. SUMMARY AND FUTURE WORK
Arrays of 4, 8, or even 16 PCIe-attached solid-state drives of-

fer high capacity at low prices as well as a bandwidth that is

soon to be on par with DRAM. Although these properties make a
Directly-Attached NVMe Array (DANA) highly attractive for scan-
oriented OLAP workloads, exploiting the high bandwidth presents
major technical challenges. We found that disk-based database sys-
tems using the traditional I/O stack are not capable of utilizing a
DANA—mainly due to high CPU load. The high performance of
a DANA requires rethinking the way I/O operations are performed
through all database and operating system layers.

In the future, we will work on making LeanStore’s internal I/O
operations more scalable, optimize RAID for flash, and investigate
whether SPDK can fully replace the kernel’s I/O stack.

7. REFERENCES
[1] J. Arulraj, A. Pavlo, and K. T. Malladi. Multi-tier buffer

management and storage system design for non-volatile
memory. CoRR, 2019.

[2] M. Athanassoulis, A. Ailamaki, S. Chen, P. B. Gibbons, and
R. Stoica. Flash in a DBMS: where and how? IEEE Data
Eng. Bull., 33(4), 2010.

[3] M. Bjørling, J. Gonzalez, and P. Bonnet. LightNVM: The
Linux Open-Channel SSD subsystem. In FAST, 2017.

[4] M. Canim, G. A. Mihaila, B. Bhattacharjee, K. A. Ross, and
C. A. Lang. SSD bufferpool extensions for database systems.
PVLDB, 3(2), 2010.

[5] D. E. Difallah, A. Pavlo, C. Curino, and P. Cudré-Mauroux.
OLTP-Bench: An extensible testbed for benchmarking
relational databases. PVLDB, 7(4):277–288, 2013.

[6] J. Do, D. B. Lomet, and I. L. Picoli. Improving CPU I/O
performance via SSD controller FTL support for batched
writes. In DaMoN, 2019.

[7] J. Do, D. Zhang, J. M. Patel, D. J. DeWitt, J. F. Naughton,
and A. Halverson. Turbocharging DBMS buffer pool using
SSDs. In SIGMOD, 2011.

[8] H. Kimura. FOEDUS: OLTP engine for a thousand cores and
NVRAM. In SIGMOD, 2015.

[9] I. Koltsidas and S. Viglas. Flashing up the storage layer.
PVLDB, 1(1), 2008.

[10] V. Leis, M. Haubenschild, A. Kemper, and T. Neumann.
LeanStore: In-memory data management beyond main
memory. In ICDE, 2018.

[11] D. B. Lomet. Cost/performance in modern data stores: how
data caching systems succeed. In DaMoN, 2018.

[12] Y. Lv, B. Cui, B. He, and X. Chen. Operation-aware buffer
management in flash-based systems. In SIGMOD, 2011.

[13] S. T. On, Y. Li, B. He, M. Wu, Q. Luo, and J. Xu. FD-buffer:
a buffer manager for databases on flash disks. In CIKM,
2010.

[14] I. Petrov, A. Koch, S. Hardock, T. Vinçon, and C. Riegger.
Native storage techniques for data management. In ICDE,
2019.

[15] I. L. Picoli, P. Bonnet, and P. Tözün. LSM management on
computational storage. In DaMoN, 2019.

[16] A. van Renen, V. Leis, A. Kemper, T. Neumann, T. Hashida,
K. Oe, Y. Doi, L. Harada, and M. Sato. Managing
non-volatile memory in database systems. In SIGMOD,
2018.

[17] A. van Renen, L. Vogel, V. Leis, T. Neumann, and
A. Kemper. Persistent memory I/O primitives. In DaMoN,
2019.

[18] T. Wang, R. Johnson, and I. Pandis. Query fresh: Log
shipping on steroids. PVLDB, 11(4), 2017.

APPENDIX
A. ENTERPRISE SSDS

So far, all experiments in this paper were run on consumer hard-
ware. However, the Samsung consumer SSDs have shown sub-
optimal performance characteristics on HTAP workloads (Sec-
tion 4.8). In this section, we therefore run some additional bench-
marks on a server system with enterprise SSDs and compare the
results.

For the following experiments we use four 1.6 TB Huawei
ES3600P V5 SSDs with specified 3,500 MB/s read and 1,900 MB/s
write throughput. The SSDs are connected over U.2 to a server with
a 64-Core AMD EPYC 7702P processor. In the following, we will
denote this as the enterprise setup. The consumer-grade setup will
remain the same as described in Section 3 with four 1 TB Samsung
970 Evo Plus SSDs.

A.1 Microbenchmarks

Consumer SSD / 8 cores Enterprise SSD / 64 cores

0

5

10

15

4 16 64 256

th
ro

u
g

h
p

u
t

[G
B

/s
]

0

200

400

600

4 16 64 256

la
te

n
c
y
 [

u
s
]

page size log scale [KB]

Figure 5: Impact of page size on random reads.

First, we run some basic benchmarks to determine the key dif-
ferences between the SSDs. Figure 6 compares different aspects of
the impact of page size for random reads on the two systems. The
most interesting finding here is that our enterprise SSD can achieve
close to peak bandwidth with a smaller page size. While the con-
sumer SSD only achieves around half of its specified bandwidth at
16 KB page size, the enterprise SSD already comes close to 90%
of its peak bandwidth. Synchronous (queue depth 1) read latency is
slightly higher on the enterprise SSD than on the consumer SSD as
specified.

0.0

2.5

5.0

7.5

10.0

128 256 512 1024 2048 409616384 no
syncs

fdatasync frequency [writes/sync]

re
a

d
 t

h
ro

u
g

h
p

u
t

[G
B

/s
]

System

Consumer SSD
8 cores
Enterprise SSD
64 cores

Figure 6: Read throughput on HTAP workload relative to the
frequency of fdatasync operations.

Another big difference between the two SSDs is the latency of
flush operations. Depending on whether the SLC cache has been
exhausted or not, we measured the latency for fdatasync to be
between 1 ms to 3 ms on the consumer SSD. We found that flush
operations completely block all other I/O requests until the flush is
fully processed. This essentially means the whole SSD is blocked
for multiple milliseconds for every flush. The latency of enterprise
SSDs is orders of magnitude lower at around 20µs. Such a low
latency can only be achieved by battery backing the DRAM write

fs
yn

c
sy

nc
hr

on
ou

s
O

S
bu
ffe

r
fil

e
sy

st
em

RA
ID

 0
Table 8: Results for the HTAP workload as in Table 2 on the consumer setup. #1, #2, and #3 are identical. #4
and #5 run with four scan threads.

description Section I/O interface scan point bg. wr. WAL total I/O CPU
MB/s MB/s MB/s MB/s MB/s cycles/byte

1 baseline 4.1 pread/pwrite/sync 3,503 27 250 6 3,786 6.92
2 − fdatasync 4.2 pread/pwrite 5,055 39 250 250 5,595 10.52
3 + async. I/O 4.3 io_uring 3,439 118 252 251 4,059 7.61
4 + O_DIRECT 4.3 libaio 6,527 20 252 251 7,049 1.43
5 − file system 4.4 libaio 6,685 17 249 249 7,200 1.03

Table 9: Results for the HTAP workload as in Table 2 on the enterprise setup.

fs
yn

c
sy

nc
hr

on
ou

s
O

S
bu
ffe

r
fil

e
sy

st
em

RA
ID

 0

description Section I/O interface scan point bg. wr. WAL total I/O CPU
MB/s MB/s MB/s MB/s MB/s cycles/byte

1 baseline 4.1 pread/pwrite/sync 1,513 12 6 76 1,608 228.60
2 − fdatasync 4.2 pread/pwrite 1,474 12 13 250 1,749 209.23
3 + async. I/O 4.3 io_uring 565 16 37 159 778 262.26
4 + O_DIRECT 4.3 libaio 5,445 77 250 249 6,021 1.71
5 − file system 4.4 libaio 9,806 27 246 250 10,328 1.03

cache on the SSD to ensure persistency on power outage. Figure 6
shows the relation between the number of fdatasync operations,
e.g., one fdataync for every 128 writes, and simultaneously run-
ning scans. The consumer SSD throughput is clearly degraded by
frequent fdatasync operations, but its impact gets smaller the
rarer they occur. On the enterprise SSD there is no apparent effect.

A.2 HTAP Workload
Table 8 and Table 9 show the result for the same HTAP workload

as in Table 2. The difference is that here we use four scan threads
instead of one to achieve higher throughput. This is beneficial for
our server, because the 64 core CPU is running at a lower clock
rate and would not achieve full I/O bandwidth with a single thread.
With four scan threads and high queue depth both SSD arrays are
fully saturated. Table 8 shows that the consumer SSD was also not
fully utilized by the single scan thread.

Just moving the HTAP workload to an enterprise server setup
does not solve the issues. Table 9 shows that it actually makes
it worse for configurations #1, #2, and #3. The issue here is not
the SSD, but rather the higher synchronization overhead in the
page cache on the server CPU. Configuration #4 still being slightly
slower might also be caused by synchronization in the file system.
Finally, with #5 we get a very good result for throughput, close to
the peak bandwidth of the SSDs.

Lastly, we run the HTAP workload in configuration #5 for longer
periods on both systems. Figure 7 and Figure 8 show the results.
The enterprise setup has very stable performance and there is no
apparent sign of GC activity, probably due to large internal flash
over-provisioning.

0

3

6

9

0 25 50 75 100
th

ro
u

g
h

p
u

t
[G

B
/s

] (a) scan

0

1

2

3

4

5

0 25 50 75 100

la
te

n
c
y
 9

9
th

 [
m

s
]

Consumer SSD / 8 cores

Enterprise SSD / 64 cores

(b) point reads

0

3

6

9

0 25 50 75 100

time [s]m
e

d
ia

n
 la

te
n

c
y
 [
m

s
]

(c) fdatasync latency

Figure 7: Impact of SLC write caching over time.

0

3

6

9

0 1 2 3 4

th
ro

u
g

h
p

u
t
[G

B
/s

] (a) scan

0

3

6

9

0 1 2 3 4

la
te

n
c
y
 9

9
th

 [
m

s
]

Consumer SSD / 8 cores

Enterprise SSD / 64 cores

(b) point reads

0

5

10

15

20

0 1 2 3 4

time [h]m
e

d
ia

n
 la

te
n

c
y
 [
m

s
]

(c) fdatasync latency

Figure 8: Impact of GC over time.

