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Figure 1: Overview of our system Vizier. The New York City Leading Causes of Death dataset was used. Vizier has four
main views: (A) The Vizier Notebook View, (B) The Vizier Caveat View, (C) The Vizier Spreadsheet View and (D) The
Vizier History View.

ABSTRACT
Notebook and spreadsheet systems are currently the de-
facto standard for data collection, preparation, and analysis.
However, these systems have been criticized for their lack of
reproducibility, versioning, and support for sharing. These
shortcomings are particularly detrimental for data curation
where data scientists iteratively build workflows to clean up
and integrate data as a prerequisite for analysis. We present
Vizier, an open-source tool that helps analysts to build and
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refine data pipelines. Vizier combines the flexibility of note-
books with the easy-to-use data manipulation interface of
spreadsheets. Combined with advanced provenance track-
ing for both data and computational steps this enables re-
producibility, versioning, and streamlined data exploration.
Unique to Vizier is that it exposes potential issues with data,
no matter whether they already exist in the input or are in-
troduced by the operations of a notebook. We refer to such
potential errors as data caveats. Caveats are propagated
alongside data using principled techniques from uncertain
data management. Vizier provides extensive user interface
support for caveats, e.g., exposing them as summaries in a
dedicated error view and highlighting cells with caveats in
spreadsheets.
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1. INTRODUCTION
Notebook tools like Jupyter have emerged as a popular

programming abstraction for data exploration and curation,
model-building, and rapid prototyping. Notebooks promise
re-use and reproducibility as well as interactive refinement
of code with immediate feedback to support iterative con-
struction of pipelines for data curation and analysis. How-
ever, a recent study by Pimentel et. al. [56] found only 4%
of notebooks sampled from GitHub to be reproducible, and
only 24% to be directly re-usable. These unfortunate statis-
tics stem from Jupyter’s heritage as a thin facade over a
read-evaluate-print-loop (REPL). Many existing notebooks,
like Jupyter, are not designed as a historical log — as one
would want for reproducibility and iterative exploration —
but rather as library managers for code snippets (i.e., cells).
Reproducibility, re-usability, and iterative pipeline construc-
tion require active effort from users to organize cells, keep
cells up to date, and manage inter-cell dependencies and cell
versions (e.g., using tools like git) [43].

As been observed repeatedly (e.g., [47]), data scientists
spend most of their time on the complex tasks of data cu-
ration and exploration. As a prerequisite for analysis, a
data scientist has to find the right datasets for their task
and then iteratively construct a pipeline of curation oper-
ations to clean and integrate the data. Typically, this is
not a linear process, but requires backtracking, e.g., to fix
a problem with a curation step that causes errors in later
stages of the pipeline. The lack of support for automatic
dependency tracking in existing tools is already detrimen-
tal, as problems with later stages introduced as a result of
changing an earlier stage might never be detected. How-
ever, dependency tracking alone is not sufficient to aid an
analyst in iterative refinement of a dataset. As the name
curation implies, data problems are often repaired one bit
at a time: In early stages of data exploration, data quality
is less of a concern than data structure and content, and
investing heavily in cleaning could be wasteful if the data
turns out to be inappropriate for the analyst’s needs. Sim-
ilarly, in the early stages of data preparation, it is often
necessary to take shortcuts like heuristic or manual repairs
that, although sufficient for the current dataset and analysis,
may not generalize. As progressively more critical decisions
are made based on the data, such deferred curation tasks
are typically revisited and addressed if necessary. However,
deferring cleaning tasks requires analysts to keep fastidious
notes, and to continuously track possible implications of the
heuristic choices they make during curation.

There is substantial work on detecting data errors (e.g.,
[1, 22]) and streamlining the cleaning process (e.g., [22, 26]).
However, effective use of error detection still requires upfront
cleaning effort, and with only rare exceptions (e.g., [10]) au-
tomatic curation obscures the potential implications of its
heuristic choices. Ideally a data exploration system would
supplement automatic error detection and curation with in-
frastructure for tracking errors that the data scientist does
not address immediately, and for highlighting the potential
implications of automatic data curation heuristics.
In short, we target four limitations of existing work:
• Reproducibility. The nature of most existing notebook
systems as wrappers around REPLs leads to non-reproducible
analysis and unintuitive and hard to track errors during it-
erative pipeline construction.

• Direct Manipulation. It is often necessary to manu-
ally manipulate data (e.g., to apply simple one-off repairs),
pulling users out of the notebook environment and limiting
the notebook’s ability to serve as a historical record.
• Versioning and Sharing. Existing notebook and spread-
sheet systems often lack versioning capabilities, forcing users
to rely on manual versioning using version control systems
like git and hosting platforms (git forges) like github.
• Uncertainty and Error Tracking. Existing systems do
not expose, track, or manage issues with data and deferred
curation tasks, nor their interactions with data transforma-
tions and analysts

In this paper, we present Vizier,1 a notebook-style data
exploration system designed from the ground up to encour-
age reproducibility, workflow and dataset re-use, and proper
error/uncertainty management. Vizier eschews REPLs in
favor of a more powerful state model: A versioned database
and workflow. This allows Vizier to act as a true workflow
manager [6], precluding out-of-order execution, a common
source of frustration2 and cause of non-reproducible work-
flows [56]. To aid reproducibility, Vizier maintains a full
version history for each notebook. We supplement Vizier’s
notebook interface with a tightly coupled“spreadsheet mode”
that allows reproducible direct manipulation of data. Vizier
facilitates debugging and re-usability of data and workflows
by tracking potential data errors through a principled form
of incompleteness annotations that we call caveats. Vizier
can propagate these annotations through operations of a
notebook based on a principled, yet lightweight, uncertainty
model called UA-DBs [27]. While some aspects of Vizier
such as automated dependency tracking for notebooks, ver-
sioning, and workflow provenance tracking are also supported
by other approaches, the combination of these features and
the support for caveats leads to a system that is more than
the sum of its components and provides unique capabilities
that to the best of our knowledge are not supported by any
other approach.

Many aspects of Vizier, including parts of its user inter-
face [28, 44], provenance models [4, 6], and caveats [66, 27],
were explored independently in prior work. In this paper,
we focus on the challenge of unifying these components into
a cohesive, notebook-style system for data exploration and
curation, and in particular on the practical implementation
of caveats and Vizier’s spreadsheet interface.

A Trail of Breadcrumbs. A common use of notebooks
is to incrementally build a workflow to ingest, curate, and
analyze a dataset. The notebook acts as a form of documen-
tation, automatically preserving a record of a user’s process
as she explores a dataset: A trail of breadcrumbs.

Example 1. Alice the data engineer is exploring a newly
acquired dataset in a notebook. She breaks her exploration
down into discrete steps — each performing an isolated load,
transformation, summarization, or visualization task. She
iterates on each task within a single cell, revising its code as
needed before moving to a new cell for the next step. As she
encounters errors, she revises earlier steps as needed.

Such breadcrumbing can be very powerful if performed

1 pip2 install vizier-webapi https://vizierdb.info
2https://twitter.com/jakevdp/status/935178916490223616
https://multithreaded.stitchfix.com/blog/2017/07/26/nodebook
https://github.com/jupyter/notebook/issues/3229

https://vizierdb.info
https://twitter.com/jakevdp/status/935178916490223616
https://multithreaded.stitchfix.com/blog/2017/07/26/nodebook
https://github.com/jupyter/notebook/issues/3229


correctly. Results produced from the notebook can be repro-
duced on new data; intermediate state resulting from earlier
cells can be re-used for different analyses; or the notebook
itself can be used as a prototype for a production system
like a dashboard or data curation pipeline. However, bread-
crumbing in a REPL-based notebook requires extreme dili-
gence from the user. She must manually divide tasks into
independent logical chunks. She must mentally track depen-
dencies between cells to ensure that revisions to earlier steps
do not break downstream cells. She must also explicitly de-
sign around cells with side effects like relational database
updates or file writes.

1.1 A Notebook-Style Workflow Manager
The fundamental challenge is that REPL-based notebooks

are stateful, and this state is managed independently of the
notebook by the REPL. Using a REPL to manage state
makes it difficult to preserve the linear order of execution
implied by the presentation of the notebook as an ordered
list of cells [43] for two main reasons. First, particularly in
the presence of native code (e.g., for popular libraries like
NumPy), it is difficult to rewind a REPL to an earlier state.
Thus, if an existing cell is edited, it will be executed on the
REPL’s current state, requiring the user to ensure that it
is operating on a consistent input state (e.g., by manually
ensuring that each cell is idempotent). Second, treating the
state as an opaque blob makes it difficult to automatically
invalidate and recompute dependencies of a modified cell.
Dependency tracking through REPL state is possible. How-
ever, such dependency tracking is often limited. For exam-
ple, Nodebook [68] tracks data dependencies across Python
cells and caches cell outputs, but makes the strong assump-
tion that all variables are immutable. Even worse, the user
is held responsible for enforcing this assumption.

Vizier addresses both problems through a simple, but ro-
bust, solution: isolating cells. In lieu of a REPL, cells ex-
ecute in independent interpreter contexts. Our approach
is similar to Koop’s [43] proposal of a dataflow notebook
where notebook cells can refer to specific outputs of spe-
cific cells, but without the need to manually manage inter-
cell dependencies and with strong isolation guarantees for
cells. Specifically, cells can communicate by consuming and
producing datasets. This well-defined API enables efficient
state snapshots, as well as dependency analysis across cell
types (e.g., a Scala cell may depend on an SQL cell’s out-
put). Whenever Alice updates a cell, Vizier automatically
re-executes all cells that directly or indirectly depend on the
updated cell.

In Vizier each change to a notebook cell or edit in a spread-
sheet creates, conceptually, a new version of the notebook
(and of the results of all cells of the notebook). Vizier main-
tains a full history of these versions. With Vizier, if Alice’s
notebook evolves in a non-productive direction, she can al-
ways backtrack to any previous version. Furthermore, any
version of a notebook and dataset has a unique URL that
she can share with collaborators.

1.2 Caveats
Automated cell dependency tracking in notebook systems

(e.g., [43]) is not new, but has historically focused on im-
proving execution performance (e.g., by parallelizing inde-
pendent cells) and aiding reproducibility and re-use. Vizier
employs novel fine-grained annotations called caveats de-

signed to help users to detect, document, and track the ef-
fects of heuristic assumptions and incompletely addressed
data errors. Concretely, a caveat is an annotation attached
to one or more cells or rows of a dataset (i.e., data elements),
consisting of: (i) A human-readable description of a short-
cut, error, or concern that could invalidate the annotated
data elements and (ii) A reference to the workflow cell where
the caveat was attached. Intuitively, a caveat indicates that
an element is potentially erroneous (i.e., uncertain).

The need for caveats arises, because decisions made dur-
ing error detection and cleaning typically are uncertain or
depend on assumptions about the data. That is true no
matter whether these decisions are made by the user or by
an automated data curation method. For example, data val-
ues may be incorrectly flagged as errors or automated data
cleaning techniques may chose an incorrect repair from a
space of possible repair options. A way to model this un-
certainty is to encode the space of possible repairs as an
incomplete or probabilistic database. For example, work by
Beskales et al. [10, 11] is based on this idea and applies prob-
abilistic query processing to propagate uncertainty through
operations. Probabilistic and incomplete data management
provide a principled foundation for dealing with the uncer-
tainty inherent in data or introduced by curation operations.
However, more lightweight methods for uncertain data man-
agement are needed to make this feasible in practice [27, 66].

Creating Caveats. Notebook systems used for data cu-
ration should be able to model and track the uncertainty
inherent in error detection and data cleaning. Curation may
involve both automated error detection and repair methods
as well as one-off heuristics applied by the user. Vizier sup-
ports caveat creation for both types of transformations.

We emphasize that caveats are orthogonal to any specific
error detection or cleaning schemes. A wide range of such
tools can be can be wrapped to expose their heuristic as-
sumptions and any resulting uncertainty to Vizier, integrat-
ing them into the Vizier ecosystem. Vizier then automat-
ically tracks caveats and handles other advanced features
such as versioning and cell dependency tracking. In our
experience, extending methods to expose caveats is often
quite straight-forward (e.g., see [66] for several examples),
and Vizier already supports a range of caveat-enabled data
cleaning and error detection operations (see Figure 2 for a
list of currently supported cell types). Similarly, Vizier’s
data load operation also relies on caveats as a non-invasive
and robust (data errors do not block the notebook) way to
communicate records that fail to load correctly. To support
one-off curation transformations, Vizier also allows users to
create caveats manually through its spreadsheet interface or
programmatically via Python, Scala, or SQL cells.

Example 2. Alice is analyzing a dataset of price lists
from her company’s suppliers. However, several suppliers
manually enter data for the price field. As a result, her
dataset includes many non-integer values like ’21 USD’ or
’$19.00’. Alice knows that all of her company’s suppliers
are based in the United States and always quote prices in dol-
lars. She quickly adds to her data preparation script a new
step that uses a regular expression (e.g., s/[^0-9.\-]+//g) to
remove all non-digit characters from the price field.

Heuristic transformations are significantly easier and faster
to deploy than more general solutions. In some cases (like
the above example) enumerating and addressing all possible



corner cases is simply not feasible, and a heuristic transfor-
mation is the only option. Unfortunately, heuristics tailored
to one dataset or analysis may not generalize to other data
or to other questions. Thus, neither the data preparation
scripts implementing those heuristics, nor the resulting pre-
pared data can be safely re-used in the future.

Example 3. Months later, Alice’s company has grown
significantly and her colleague Bob revisits Alice’s analysis
on new data. The company now sources parts from suppli-
ers across the world and Alice’s original assumption that all
prices are in US Dollars is no longer valid. Bob would like
to leverage Alice’s existing data preparation script in his new
analysis. However, to do so safely, he needs to (i) under-
stand all of the heuristic assumptions Alice made, (ii) eval-
uate which are still applicable, and (iii) update parts of the
script based on assumptions that are invalid for his analysis.

Current best practices suggest documenting heuristic data
transformations out-of-band. For example, Alice might note
her assumption that “all prices are in US Dollars” in a RE-
ADME file attached to the dataset, or in a comment in her
data preparation script. However, even when such docu-
mentation exists, it can get lost in a pile of similar notes,
many of which may not be relevant to a specific user ask-
ing a specific question. Moreover, the documentation is not
directly associated with the individual data values that it
refers to. Out-of-band documentation makes it difficult for
a user making changes to understand how the assumptions
affect their code and data. Using Vizier, Alice can ensure
that her assumptions are documented and will transition
when her workflow is re-used in the future.

Example 4. As Alice creates her data preparation script,
she ensures that it marks cells affected by her regular ex-
pression data cleaning step with a caveat indicating her as-
sumption. Later, when Bob re-uses Alice’s script, any prices
containing non-digit characters will be marked by caveats.

Automatic Propagation of Data Caveats. Document-
ing errors and uncertainty is important. However, for com-
plex workflows the user needs to understand how caveats
for one dataset affect data produced by cells that directly
or indirectly depend on this dataset. Vizier supports this
functionality by automatically propagating caveats through
data transformations based on uncertain data management
principles. Formally, we may think of a data value anno-
tated with a caveat as representing a labeled null (the cor-
rect value is unknown) complemented with a guess for the
unknown value (the annotated data value). Then a dataset
with caveats can be thought of as an approximation of an
incomplete database [39] where the values encode one pos-
sible world and the caveats encode an under-approximation
of the certain values in the incomplete database: any row
not marked with a caveat is a certain answer. Wherever
possible, Vizier preserves this property when propagating
caveats. We note that unlike traditional incomplete (or
probabilistic) databases, we can not assume that users will
be able to (or have the time) to completely and precisely
characterize the uncertainty in their data and workflows.
Thus, precisely characterizing the set of certain answers is
in general not possible. We apply our conservative approx-
imation from [27] to propagate caveats. For certain cell
types no techniques for propagating incompleteness in this

fashion are known. Thus, Vizier propagates caveats based
on fine-grained provenance (data-dependencies) when sup-
ported (e.g., for SQL queries) or based on coarse-grained
provenance when fine-grained provenance is not supported
for a cell type (e.g., a Python cell). The rationale is that
a value is most likely affected by caveats associated with
values it depends on3.

Caveats in Vizier’s UI. Vizier highlights caveatted values
in the spreadsheet view of a dataset [44] to indicate that
more attention is required. Caveat propagation is done on
an as-needed basis, and only caveats applied to values or
records that could affect the output are propagated. Vizier
features an error view that shows a dataset-specific summary
of all caveats affecting the dataset (Section 4). Vizier can
also generate caveat reports for any result value, summarize
caveats affecting the value or its component elements.

Example 5. When Bob repurposes Alice’s data prepara-
tion script, Vizier produces a list of caveats affecting his
data. Bob can choose to immediately address these, or con-
tinue filtering and refining the data. When he is ready,
Vizier generates a report summarizing which caveats could
affect the final dataset he produces for his analysis. When
drilling down to investigate individual values affected by Al-
ice’s heuristics, Bob may find that values with other cur-
rencies, e.g, ’21 Euro’ have been incorrectly translated into
USD. Bob can then modify Alice’s workflow to fix this prob-
lem. For example, he could write code to check for other
currency names and apply appropriate exchange rates.

1.3 Overview and Contributions
Concretely, this paper makes the following contributions.

(i) We outline the design of Vizier, a notebook-style work-
flow system (Section Section 2); (ii) We explore the chal-
lenges of integrating spreadsheet and notebook (Section Sec-
tion 3) interfaces; and (iii) We introduce caveats, a practical
implementation of uncertainty annotations [27] (Section 4),
and discuss their implementation in Vizier.

2. THE VIZIER NOTEBOOK
Vizier is an interactive code notebook similar to Jupyter4

or Apache Zeppelin5. An analytics workflow is broken down
into individual steps called cells. Workflow cells are dis-
played in order, with each cell shown with code (e.g., Python
or SQL) implementing the step, and any outputs (e.g., con-
sole output, data visualizations, or datasets) produced by
this code. Each cell sees the effects of all preceding (up-
stream) cells, and can create effects visible to subsequent
(downstream) cells. The user may edit, add, or delete any
cell in the notebook, which triggers re-execution of all de-
pendent cells appearing below it in the notebook.

Vizier workflows allow different cell types to be mixed
within the same notebook. Figure 2 lists the cell types
presently supported by Vizier. Classical notebook cell types
like Python, SQL, and Markdown are all supported. Vizier
additionally supports cells that use point-and-click interfaces
to streamline (1) Common notebook tasks like data ingest/-
export and visualization; (2) Spreadsheet-style dataset ma-

3Of course, this is not guaranteed to be the case, e.g., if a
missing value with caveats should have been included.
4https://jupyter.org/
5https://zeppelin.apache.org/

https://jupyter.org/
https://zeppelin.apache.org/


Category Cell Type Examples API

Script Python, Scala Workflow

Query SQL Dataflow

Documentation Markdown n/a

Point/Click Plot, Load Data, Export Data Workflow

Spreadsheet
DML/DDL

Add/Delete/Move Row, Ad-
d/Delete/Move/Rename Col-
umn, Edit Cell, Sort, Filter

Dataflow

Cleaning Infer Types, Repair Key, Im-
pute, Repair Sequence, Merge
Columns, Geocode

Dataflow

Figure 2: Cell Types in Vizier

nipulation (Section 3); and (3) Data curation and cleaning
(Section 4).

2.1 Cells and Workflow State
Dataflow in a typical workflow system (e.g., VisTrails [59,

6, 25]) is explicit. Steps in the workflow define outputs that
are explicitly bound to the inputs expected by subsequent
steps. Conversely, data flow in a notebook is implicit: each
cell manipulates a global, shared state. For example, in
Jupyter, this state is the internal state of the REPL inter-
preter itself (variables, allocated objects, etc. . . ). Jupyter
cells are executed in the context of this interpreter, result-
ing in a new state visible to subsequently executed cells.

In designing the state model for Vizier, we considered four
requirements. Of these, only one is satisfied by an opaque,
REPL-based state model.

1. Enforcing in-order execution: We needed a state
representation that could be correctly, efficiently check-
pointed to allow replay from any point in the notebook.
A typical REPL’s state is a complex graph of mutable
objects that can be checkpointed completely or effi-
ciently, but not both simultaneously.

2. Workflow-style execution: We needed a state rep-
resentation that permits at least coarse-grained depen-
dency analysis between cells. Operations in a REPL
can have arbitrary side effects, making dependency
analysis challenging.

3. Fine-grained provenance: To support provenance-
based features of Vizier like caveats, we wanted a state
representation that supported declarative state trans-
formations. A typical REPL for an imperative lan-
guage like Python makes such analysis challenging.

4. Big data support: We needed a state representation
that could manage large, structured datasets. This
criterion is met by Python REPLs, which offer limited
support for large, in-memory datasets through libraries
like NumPy and Pandas.

A versioned relational database satisfies all four criteria, pro-
viding efficient checkpointing, instrumentable and declara-
tive updates, as well as natural parallelism for scalability.
Thus, relational tables provide the foundation for Vizier’s
state model: A notebook’s state is a set of named relational
tables called datasets6.

6Support for primitive values and BLOB state is in progress.
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Figure 3: Workflow vs Dataflow State Interactions

Cells access, manipulate, create, or destroy datasets through
one of two instrumented APIs, illustrated in Figure 3. As
we discuss below, the behavior of some cell types can be ex-
pressed declaratively, making fine-grained instrumentation
for provenance and caveat tracking at the level of individual
data values possible. Implementations of such dataflow cells
access datasets through a functional API that allows new
datasets to be defined as SQL views over existing datasets,
i.e., datasets are treated as immutable from the viewpoint
of the code using the API. For example, the dataflow cell
in Figure 3 is translated into a SQL view definition that
redefines the dataset named R in terms of the dataset S

and the previous version of R. Other cell types admit only
coarse-grained instrumentation. These workflow cells are
supported through language-specific read/write APIs that
allow datasets to be queried and replaced. For example, the
workflow cell in Figure 3 reads from datasets R and S to
create a new version of the dataset R.

Workflow Cells. The workflow API, illustrated in Fig-
ure 3.a, targets cells where only collecting coarse-grained
provenance information is presently feasible. This includes
Python and Scala cells, which implement Turing-complete
languages; as well as cells like Load Dataset that manipu-
late entire datasets. To discourage out-of-band communi-
cation between cells (which hinders reproducibility), as well
as to avoid remote code execution attacks when Vizier is
run in a public setting, workflow cells are executed in an
isolated environment. Vizier presently supports execution
in an fresh interpreter instance (for efficiency) or a docker
container (for safety). Vizier’s workflow API is designed ac-
cordingly, providing three operations: Read dataset (copy a
named dataset from Vizier to the isolated execution envi-
ronment), Checkpoint dataset (copy an updated version of a
dataset back to Vizier), and Create dataset (allocate a new
dataset in Vizier). A more efficient asynchronous, paged ver-
sion of the read operation is also available, and the Create
dataset operation can optionally initialize a dataset from
a URL, S3 Bucket, or Google Sheet to avoid unnecessary
copies.

Dataflow Cells. The dataflow cell API, illustrated in
Figure 3.b is aimed at cell types that implement declarative
dataset transformations. Dataflow cells are compiled down
to equivalent SQL queries. Updated versions of the state are
defined as views based on these queries. We emphasize that
most dataflow cells do not require the user to write SQL.
SQL is the language used by the implementation of such
a cell to communicate with Vizier. For example, spread-
sheet operation cells created as a consequence of edits in the
spreadsheet and interactively configured cleaning operations
are both dataflow cells.

2.2 Version Model
In addition to versioning state, Vizier also versions the

notebook itself, through a branching version history illus-
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Figure 4: Vizier’s layered data model consists of Notebook,
Cell, and State versions.

trated in Figure 4. This version graph tracks three types of
objects: Notebooks, Cells, and Datasets.

Notebook Versions. A single version of the notebook is
an immutable sequence of references to the immutable cells
that specify a workflow. Every edit a user makes to a note-
book, whether adding a new cell, editing an existing cell, or
deleting a cell creates a new notebook version, preserving
a full, reproducible history of the notebook. Following the
workflow provenance model from [17], we record for each
notebook version the operation performed to create the ver-
sion, and the previous, parent version of the notebook. The
result is a version graph, a tree-like structure that shows the
notebook’s evolution over time. Under typical usage, edits
are applied to a leaf of the tree to create chains of edits.

Editing a prior version of the notebook creates a branch
in the version history. Vizier requires users to explicitly
name branches when they are created; This explicit branch
management makes it easier for users to follow the intent
of a notebook’s creator. Internally however, each notebook
version is identified by a 2-tuple consisting of a randomly
generated, unique branch identifier and a monotonically in-
creasing notebook version number.

Cell Versions. A cell version is an immutable specification
of one step of a notebook workflow. In its simplest form, the
cell version stores the cell’s type, as well as any parameters
of the cell. This can include simple parameters like the table
and columns to plot for a Plot cell, scripts like those used in
the SQL, Scala, and Python cells, as well as references to files
like those uploaded into the Load Dataset cell. In short, the
cell configuration contains everything required to determin-
istically re-execute the cell7. A cell version is identified by
an identifier derived from a hash of its parameters.

Alongside the cell version, Vizier also stores a cache of re-
sults derived from executing the cell. Unlike the immutable
cell version itself, this cache is mutable, and is updated ev-
ery time the cell is executed. The cell cache specifically
includes: (i) Outputs for presentation to the user, including
console output and HTML-formatted data plots; (ii) Coarse-
grained (workflow) provenance information, including a list
of datasets the cell read from and wrote to; and (iii) A ref-
erence to each dataset version produced by the cell.

Dataset Versions. A dataset is presented to the user
as a mutable relational table identified by a human read-
able name. Internally however, a dataset version is an im-
mutable Spark dataframe identified by a randomly gener-
ated, globally unique identifier. Keeping dataset versions
immutable makes it possible to quickly recover notebook
state in between cells and to safely share state across note-

7Of course, we assume here that the computation of the
cell itself is deterministic. For cells with non-deterministic
computation , e.g., random number generators, we cannot
guarantee that multiple execution of the same cell yield the
same result.
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Figure 5: Vizier System Components

book branches. To preserve the illusion of mutability, Vizier
maintains a scope that maps human-readable dataset names
to the appropriate identifiers. When a cell is executed, it re-
ceives a scope that maps dataset names to dataset version
identifiers. To create or modify a dataset, a cell first ini-
tializes a new dataset version: uploading a new dataframe
(workflow cells) or creating a Spark view (dataflow cells).
The scope entry for the corresponding dataset is updated
accordingly, and passed to the next cell. The result is the
illusion of mutability, but with state checkpoints between
each cell. Of course, it may be more efficient to compute
deltas between versions instead taking full copies or even to
trade computation for storage (recompute the dataset when
required). For instance, such ideas have been applied in
Nectar [36] and DataHub [14]. We leave such optimization
to future work.

2.3 Dependency Models
As illustrated in Figure 6, Vizier manages two graphs of

dependencies: one at the dataflow and one at the workflow
level. Workflow dependencies form a coarse-grained view
of which cells depend on which other cells, and are used
to manage cell execution order. When a cell is executed,
dataset accesses are instrumented to compute a read set
that records the user-facing names of datasets accessed by
the cell and a write map that records user-facing names of
dataset versions created by the cell with the new version’s
identifier (or NULL if the cell deleted the dataset). For each
dataset in a cell’s read set, Vizier creates a workflow edge to
the most recent cell to modify that dataset (i.e., the last cell
with that dataset in its write set). For example, in Figure 6,
the Python cell creates a new version of dataset R that is
read by both the Merge and Insert Row cells. Thus both of
the latter cells depend on the former.

Dataflow dependencies provide a fine-grained view of how
a dataset version was derived and are used primarily for
propagating caveats. For dataflow cells, Vizier simply stores
the SQL query used to generate the dataset version. For
example, dataset version S1 is derived from both dataset
versions R1 and S0. For workflow cells like the Python cell,
exact derivation information is not available. Instead, Vizier
creates coarse-grained provenance records based on the cell’s
read and write sets: dataset versions emitted by the cell are
linked to every dataset version the cell read from.

2.4 Execution Model
Figure 5 overviews the Vizier system, including the its two

core components: The workflow manager and the dataflow
manager. The workflow manager is a simplified version of



the VisTrails [6] workflow system, and is responsible for
managing cells, inter-cell dependencies, scheduling workflow
cell execution, and the version history. The dataflow man-
ager is implemented using the Mimir incomplete database [66,
27, 44], and is responsible for fine-grained provenance, data
loading, Vizier’s“lens”[66] data curation operators (the clean-
ing cell types supported by Vizier), and functionality re-
quired to support caveats. Mimir, in turn, is implemented
as a query-rewriting front-end over Apache Spark, which
handles query evaluation. At the other end of the Vizier
stack is a user interface that provides a range of modalities
for interacting with and analyzing the workflow.

2.4.1 The Workflow Manager
The workflow manager is responsible for managing cells,

inter-cell dependencies, scheduling workflow cell execution,
and the version history. It exposes a REST API that allows
clients like Vizier’s user interface to query state and manipu-
late notebooks. Clients can create or delete notebooks; add,
update, or delete cells; or create new notebook branches.
The workflow manager tracks notebook and cell versions, as
well as a dependency graph between cells.

The workflow manager executes cells asynchronously. As
a workflow cell is added or updated, it is scheduled for
execution through either a lightweight worker process, or
through a celery distributed task queue8 if one is config-
ured. Both execution engines establish a connection to the
dataflow manager through which the cell can access existing
datasets or upload new dataset versions. When a dataflow
cell is added or updated, the workflow manager allocates a
new, globally unique view identifier and synchronously cre-
ates the view in the dataflow manager.

Execution Scheduling. Anytime a cell is added, up-
dated, or deleted, its transitive dependencies must be re-
executed as well. The challenge is that, at least for work-
flow cells, dependencies are not inferred statically — they
are observed from execution traces. We require cell exe-
cution to be deterministic: If a cell’s dependencies are un-
changed, the cell does not need re-execution. When a cell
does need re-execution, we pessimistically assume all down-
stream datasets could be affected until execution completes.
Scheduling and execution strategies are presented in simpli-
fied forms in Algorithms 1 and 2, respectively. When the
notebook cell at index i changes, Algorithm 1 marks it as
dirty and marks all downstream cells as waiting (i.e., po-
tentially dirty).

Algorithm 1 schedule_updates(N, i)

Require: N : A notebook; i: Index of updated cell.
N[i].state ← dirty

for j ∈ i + 1 . . . len(N) do
N[j].state ← waiting

The asynchronous evaluation engine, summarized in Algo-
rithm 2 waits until one or more cells are marked dirty and
executes the first cell so marked. The algorithm then marks
any cells that read from a dataset touched by the executed
cell as dirty. waiting cells upstream of the first remaining
dirty cell (if any) are now guaranteed to be unchanged, and
can be safely marked as ready. Although not presently sup-
ported by Vizier, we note that this naive algorithm can be

8http://www.celeryproject.org/

optimized when cell dependencies can be derived statically
(e.g., in the case of dataflow cells).

Algorithm 2 async_eval(N)

Require: N : A notebook
loop
D ← { i | N[i].state = dirty } . Find dirty cells
if D 6= ∅ then

i← min(D); eval(N[i]) . Eval first dirty cell
for j ∈ 1 . . . i do . Mark cells up-to-date
N[j].state← ready

for j ∈ i + 1 . . . len(N) do . Mark dependencies
if reads(N[j]) ∩ writes(N[i]) 6= ∅ then
N[j].state← dirty

2.4.2 The Dataflow Manager
The dataflow manager is responsible for storing and medi-

ating access to datset versions, for propagating caveats, and
for fine-grained provenance analysis. It exposes an API to
the workflow manager and the cell execution engine that al-
lows (i) new dataset versions to be uploaded or linked from
URLs, (ii) new dataset versions to be defined declaratively
as views, (iii) existing dataset versions to be queried, and
(iv) the caveats of existing dataset versions to be analyzed.

Creating Datasets. A new literal dataset version may
be created from scratch, either by uploading a data file or
by providing a remote URL. Datasets from uploaded files
and remote URLs (e.g., HTTP/S, google sheets, JDBC) are
cached in, depending on configuration, the local filesystem,
an S3 bucket, or HDFS. If the source is a flat file (e.g., an
HTTPS link to a CSV file), the file is cached as-is. If not
(e.g., a google sheet), the source is cached as an Apache
parquet file. The dataflow manager saves the URL of the
cached copy and returns a unique version identifier to the
caller. If a URL already references a local resource, like a file
in a configured S3 bucket, the URL is used directly. When
a dataset is created from scratch, the caller may optionally
create virtual provenance links to other existing datasets as
described above.

Alternatively, a declarative dataset version may be created
as a view in one of three ways. The caller provides: (i) a
standard SQL view definition, (ii) a script in an imperative,
DDL/DML-style language called Vizual [28] used to imple-
ment spreadsheet operations, or (iii) a lens definition [66]
used to implement cleaning cells. We discuss Vizual further
in Section 3 and lenses further in Section 4. Regardless of
how the views are specified, the dataflow manager records
the corresponding view definition in an intermediate rep-
resentation based on Relational Algebra [51] and returns a
unique identifier to the caller.

Dataset Access. The dataflow layer is built on Apache
Spark [67] for scalability. Literal datasets are stored by the
dataflow manager as URLs. The dataflow manager selects
a Spark data loader (e.g., CSV, parquet) appropriate for
the URL and creates a Spark dataframe. Queries and views
defined over these dataframes are compiled from Vizier’s in-
termediate representation to Spark’s intermediate query rep-
resentation, and optimized and executed directly in Spark.
During this translation, queries are instrumented through a
lightweight rewriting scheme [66, 27] that marks caveatted
cells and rows as discussed in Section 4.

http://www.celeryproject.org/
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Figure 6: Workflow and Dataflow dependency tracking

Avoiding Spark’s Data Store. The attentive reader
may note that Spark already provides a datastore that can
be used to save and query named datasets and views. The
decision to re-implement this functionality in the dataflow
layer is driven by one major factor: supporting Vizier’s in-
termediate query representation. Keeping a separate inter-
mediate representation permits the dataflow manager to im-
plement caveats through lightweight query re-writing, rather
than by modifying Spark directly. This reduces the effort
required to maintain Vizier for new versions of Spark, and
adds a layer of portability. For example, Spark’s scalabil-
ity comes with a high startup cost [63]. Portability allows
the dataflow engine to execute queries, in whole or in part,
internally through lighter-weight operator implementations
when it is advantageous to do so.

Analyzing Caveats. When a dataset version is accessed,
the dataflow manager marks data elements (i.e., cells and
rows) that have a caveat applied. To avoid impacting data
access latencies, these markings simply indicate the presence
or absence of a caveat, but not the associated message or
metadata. Thus, the dataflow manager exposes an interface
that allows callers to retrieve the specific caveats affecting
a given cell, row, column, or dataset on an as-needed basis.
We discuss caveat handling in more detail in Section 4.

2.4.3 The User Interface
Most user interactions happen through a user interface

(UI) written in React/Javascript. The Vizier UI consists of
four main views: (i) The Notebook view links datasets and
visualizations to the steps taken to generate them, (ii) The
Spreadsheet view provides a direct manipulation interface
for datasets, (iii) The Caveat view provides dataset-specific
summaries of caveats, and (iv) The History view lays out
how the current notebook was derived.

Notebook View. Vizier’s notebook serves as a trail of
breadcrumbs: It presents datasets and visualizations created
by the current notebook, as well as the sequence of steps
needed to create them. Figure 7a shows an example of two
cells in a notebook: A SQL script cell followed by a Plot
cell. When a notebook is first opened, the upper part of each
cell shows the cell’s script (in the case of Script cells), or a
short textual summary of the cell (for all other cell types).
Clicking on a summarized cell, or adding a new cell displays
a form that configures the cell’s behavior (e.g., Figure 7b).

The lower part of each cell displays status information.
While the cell is running (i.e., in a dirty or waiting state),
the status area shows information about execution progress
(Figure 8). When the cell completes, the status area can
be used to show: (i) Console output (i.e., from script cells),
(ii) HTML data visualizations generated by the cell (e.g.,
from the Plot cell or Python plotting libraries like Bokeh),
or (iii) A tabular view of any dataset version as it would
appear immediately after the cell. When a dataset is dis-
played (Figure 7a), caveatted cells are highlighted in red.

Users may manually switch the status view to display any
available output or any dataset version at that point in the
notebook. This allows users to, for example, debug a cell by
simultaneously viewing before and after dataset versions.

Spreadsheet View. Although data curation tasks can of-
ten be scripted, there are numerous situations where a man-
ual override is more efficient. Practical examples include:
(i) Cleaning tasks requiring manual data validation (e.g.,
personally contacting a cab driver to confirm the $1000 tip
that the dataset claims that they received), (ii) Subjective
data entry tasks (e.g., “tagging” user study transcripts), (iii)
One-off repairs requiring human attention (e.g., standardiz-
ing notation in a free-entry text field from a survey), or (iv)
Transient “what-if” exploration (e.g., how is an analysis af-
fected when outliers are removed). Manual overrides are
often performed in a text editor or through a spreadsheet.

In Vizier, manual data overrides are supported through
a spreadsheet-style interface, illustrated in Figure 9. Open-
ing a dataset version in this spreadsheet view displays the
dataset as a relational table. Users may modify the con-
tents of cells; insert, reorder, rename, or delete columns and
rows; or apply simple data transformations like sorting. We
note that in addition to allowing manual data overrides, the
spreadsheet interface can be simpler and more accessible to
novice users.

To facilitate Vizier’s role in creating a trail of breadcrumbs
for analysts, edits made in the spreadsheet view are reflected
in the notebook. Vizier creates a cell for each spreadsheet
interaction (Figure 2) using special cell types that each cor-
respond to specific operations in Vizual, a DDL/DML lan-
guage we developed for this purpose [28]. For instance, there
are cell types for adding or deleting columns from a dataset.
For each user interaction with the spreadsheet, a correspond-
ing Vizual cell is created. As spreadsheet edits are typically
lightweight and likely to occur in rapid succession, the note-
book view collapses all such operations into a single Vizual
cell that stores a script of Vizual operations.

After a Vizual command has been created in response to a
spreadsheet action, the spreadsheet view must be refreshed.
However, the normal cell execution workflow is too heavy-
weight to allow this refresh to happen at interactive speeds.
To make value updates “feel” instantaneous, refreshes are
asynchronous; While the spreadsheet view is being updated
the client uses a placeholder value, typically the value the
user typed in. Following the caveat metaphor, placeholder
values are highlighted in red until the refresh completes.

Caveat View. As described above, caveats are a form of
documentation that can be attached to individual data val-
ues or records. Both the Notebook and Spreadsheet views
allow users to look up caveats for individual elements. How-
ever, on large datasets it is useful to see a summary of all
caveats affecting the dataset. The Vizier UI provides one
caveat tab for each dataset present at the end of the note-
book. When a caveat tab is opened, the dataflow manager
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Figure 7: The Vizier Notebook View

Figure 8: A Cell Being Executed

is queried (see Section 4) to generate a list of all caveats
affecting the specified dataset as illustrated in Figure 10.
Each caveat is displayed with a human-readable description
of the error, for example as an input datum that could not be
properly cast to the type of the column. As discussed in Sec-
tion 4, the caveat list is a summary, with caveats organized
into groups based on the type of error. The interface also
allows caveats to be acknowledged by clicking on the caveat
and then clicking “Acknowledge.” An acknowledged caveat
is still displayed in the caveat list, but otherwise ignored.
For example, Vizier will not highlight cells that depend on
it.

History View. As noted above, Vizier maintains a branch-
ing notebook history. The history view shown in Figure 11
displays the history of the current branch: the sequence of
edits that led to the currently displayed version of the note-
book. Any prior version of the notebook may be opened in
a read-only form. If the user wishes to edit a prior version
of the notebook, they can create a new branch from that
version.

3. SPREADSHEET OPERATIONS
Spreadsheet edits like value updates or row/column in-

sertions must be reflected in the notebook. Vizier supports
a range of cell types based on a language for spreadsheet-
style operations (e.g., delete a row or delete a column) called
Vizual [28] that models user actions on a spreadsheet. In
this section, we explore three challenges we had to overcome
to implement DML/DDL operation cells in Vizier: (i) Data
Types in Spreadsheets, (ii) Declarative Updates, and (iii)
Row Identity.

3.1 Spreadsheet Data Types
The lightweight interface offered by typical spreadsheets

has two impedance mismatches with the more strongly typed
relational data model used by Vizier’s datasets. First, types
in a spreadsheet are assigned on a per-value basis, but on a

per-column basis in a typical relational table. A spreadsheet
allows users to enter arbitrary text into a column of integers.
Because Vizier’s history makes undoing a mistake trivial,
Vizier assumes the user’s action is intentional: column types
are escalated (e.g., int to float to string) to allow the
newly entered value to be represented as-is.

The second impedance mismatch pertains to NULL values.
Spreadsheets do not distinguish between empty strings and
missing values (i.e., a relational NULL). Thus, when a user
replaces a value with the empty string, the user’s intention
is ambiguous. To resolve this ambiguity, Vizier relies on the
type of the column: If the column is string-typed, an empty
value is treated as the empty string. Otherwise, an empty
value is treated as NULL.

3.2 Reenactment for Declarative Updates
Through the spreadsheet interface, users can create, re-

name, reorder, or delete rows and columns, or alter data —
a standard set of DDL and DML operations for spreadsheets.
These operations can not be applied in-place without sacri-
ficing the immutability of versions. To preserve versioning
and avoid unnecessary data copies, Vizier builds on a tech-
nique called reenactment [53, 3], which translates sequences
of DML operations into equivalent queries. We emphasize
that our use of the SQL code examples shown in this sec-
tion are produced automatically as part of the translation of
Vizual into SQL queries. Users will not need to write SQL
queries to express spreadsheet operations. The user’ actions
in the spreadsheet are automatically added as Vizual cells to
the notebook and these Vizual operations are automatically
translated into equivalent SQL DDL/DML expressions [28].

Example 6. Consider a table EMP and the SQL:

UPDATE EMP SET pay=pay *1.1 WHERE type = 1;
INSERT INTO EMP(name , pay , type)

VALUES (’Bob’, 100000 , 2);

Using reenactment, the version of the table after these oper-
ations are applied can be equivalently obtained by evaluating
the following query over the initial EMP table.

SELECT name , type ,
(CASE type WHEN 1 THEN 1.1* pay

ELSE pay END) AS pay
FROM EMP UNION ALL
SELECT ’Bob’ AS name , 100000 AS pay , 2 AS type;



Figure 9: The Vizier Spreadsheet View

Figure 10: The Vizier Caveat View

Figure 11: The Vizier History View

Vizier translates primitive cell operations into equivalent
queries, resulting in each table version being defined (declar-
atively) as a view. We refer the interested reader to [53] for
an introduction to reenactment, with a further discussion of
its applicability to spreadsheets in [28].

Vizual [28], and by extension our primitive cell types,
also cover DDL operations like column renaming, reorder-
ing, and creation. We implemented these through a simi-
lar view-based approach, adopting transformations similar
to the ones from the Prism Workbench [23] and [37]. For
example, column creation is analogous to projecting on the
full schema of the table plus an additional column initialized
with the new column’s default value (or NULL).

3.3 Associating Updates with Data
Identifying update targets for Vizual cell operations pre-

sented a challenge. In SQL DML, update operations specify
target rows by a predicate. By contrast, spreadsheet users
specify the target of an update by explicitly modifying a
cell at a certain position in the spreadsheet, e.g., overwrit-
ing the value of the cell in the second column of the 3rd
row. To deal with such updates and to be able to repre-
sent unordered relational data as a spreadsheet we need to
maintain a mapping between rows and their positions in the
spreadsheet. Since we record both the position of a row and

a unique stable identifier for it, we can ensure that a Vizual
operation always applies to the same cell even when, e.g.,
rows/columns are deleted or added. However, when source
data changes — for example when a new cell is added ear-
lier in the notebook — determining how to reapply the user’s
update is more challenging. Ideally, we would like to use row
identifiers that are stable through such changes.

For derived data, Vizier uses a row identity model based
on GProM’s [3] encoding of provenance. Derived rows, such
as those produced by declaratively specified table updates,
are identified as follows: (1) Rows in the output of a pro-
jection or selection use the identifier of the source row that
produced them; (2) Rows in the output of a UNION ALL are
identified by the identifier of the source row and an identi-
fier marking which side of the union the row came from9; (3)
Rows in the output of a cross product or join are identified
by combining identifiers from the source rows that produced
them into a single identifier; and (4) Rows in the output of
an aggregate are identified by each row’s group-by attribute
values.

What remains is the base case: datasets loaded into Vizier
or created through the workflow API. We considered three
approaches for identifying rows in raw data: order-, hash-,
and key-based. None of these approaches is ideal: If rows
are identified by position, changes to the source data (e.g.,
uploading a new version) may change row identities. Worse,
identifiers are re-used, potentially re-targeting spreadsheet
operations in unintended ways. Using hashing preserves row
identity through re-ordering, but risks collisions on duplicate
data, and is sensitive to changes in column values. Using
keys addresses both concerns, but requires users to manually
specify a key column, assuming one exists in the first place.
Our prototype implementation combines the first two ap-

9To preserve associativity and commutativity during opti-
mization, union-handedness is recorded during parsing



proaches: deriving identifiers from both sequence and hash
code. Such row-identifiers are stable under appends. While
techniques for creating identifiers that are stable under up-
dates has been studied extensively for XML databases (e.g.,
ORDPATH [55]) and recently also for spreadsheet views of
relational databases [7], the main challenge we face in Vizier
is how to retain row identity when a new version of a dataset
is loaded into Vizier. In this scenario we only have access to
two (identifier-free) snapshots of the dataset and no further
information on how they relate to each other.

4. MANAGING CAVEATS
Vizier’s central feature is support for annotations on groups

of cells or rows called caveats. As introduced above, caveats
consist of a human-readable description of a concern about
the row or value, and a reference to the cell where the caveat
was applied. More concretely, a caveat applied to a cell in-
dicates that the cell value is potentially suspect or uncertain
— typically because it is an outlier or its validity is tied to a
heuristic assumption made during data preparation. Simi-
larly, caveats applied to rows (resp., excluded rows) indicate
the presence (resp., absence) of a row in a dataset is similarly
suspect. In each case, if the heuristic is inappropriate (e.g.,
because a dataset is re-used for a new analysis) or the outlier
indeed indicates an error, the analysis must be revisited.

Vizier propagates caveats based on data-dependencies: Is
it possible to change the derived value by changing the caveat-
ted values? If so, the derived value is likewise tied to the
heuristic choice or outlier and likewise suspect if the heuris-
tic/outlier turns out to be wrong. Caveats were originally
introduced as uncertain values in [66]. We later formalized
propagation of row caveats in [27] and proposed a minimal-
overhead rewrite-based implementation. For dataflow cells
that utilize only query features that are supported by these
approaches, we use these techniques to provide the following
strong guarantee: If all invalid (uncertain) data values in the
input are marked by a caveat, all outputs not marked by a
caveat are guaranteed to be valid (certain). Here, we focus
on the practical challenges of realizing caveats in Vizier10

Example 7. Consider a simpler version of our running
example where Alice uses Vizier’s default (caveat-enabled)
string parsing operation, as described below. This operation
replaces unparseable numbers with NULL. Bob applies Alice’s
script to his data and begins exploring with a query:

SELECT id, avg(cost) FROM parts GROUP BY id;

4.1 Applying Data Caveats
Vizier’s dataflow layer exposes a new scalar function to an-

notate data with caveats: caveat(id, value, message). This
function is meant to be used inline in SQL queries writ-
ten by the user (a SQL cell) or produced by dataflow cells.
caveat takes as input a value to annotate and a message de-
scribing the caveat. A unique identifier (e.g., derived from
the row id) is used for book-keeping purposes, and omitted
from examples for conciseness. Rows (as well as excluded
rows) are annotated when the caveatted value is accessed in
a WHERE clause that evaluates to true. Vizier also provides
a manual annotation cell. The workflow dataset API also

10As before, the SQL code shown here is for strictly pedagog-
ical purposes or the result of automated processed in Vizier;
Managing caveats does not require the user to write SQL.

supports passing a list of caveats to apply when a dataset
is uploaded. Additionally, several existing Vizier cells make
use of caveats to encode heuristic choices about a dataset or
to communicate heuristic recovery from errors. We now use
two of Vizier’s cell types to illustrate how caveats are used
to annotate data.

Instrumenting String Parsing. Many file formats lack
type information (e.g., CSV), or have minimal type systems
(e.g., JSON). Thus extracting native representations from
strings is a common task. For example consider the query:

SELECT CAST(cost as int) AS cost , . . . FROM parts;

Vizier rewrites CAST to emit a NULL annotated with a caveat
when a string can not be safely parsed:

CASE WHEN CAST(cost as int) IS NULL
THEN caveat(NULL , cost || ’ is not an int’)
ELSE CAST(cost as int) END

If the cast fails, it is replaced by a null value caveatted with a
message indicating that the invalid string could not be cast.

Instrumenting CSV Parsing. CSV files are subject
to data errors like un-escaped commas or newlines, blank
lines, or comment lines. Purely rewrite-based annotations
are not possible, as no dataframe exists during CSV parsing.
Instead, Vizier adopts an instrumented version of Spark’s
CSV parser that emits an additional field that is NULL on lines
that successfully parse and contains error-related metadata
otherwise. Caveats are applied in a post-processing step.

SELECT * FROM parts_raw WHERE
CASE WHEN _error_msg IS NOT NULL
THEN caveat(true , _error_msg) ELSE true END;

This use of the WHERE clause seems un-intuitive at first, but is
a deliberate decision rooted in caveats’ origin in incomplete
databases. Due to the parse error, we are not certain that
the row is valid. Here caveat(true, ...) captures that the
choice to include the row (i.e., WHERE true) is in question.

4.2 Propagating Caveats
Unlike general annotation management systems like Mon-

drian [31] or DBNotes [12] which let the user decide how an-
notations propagate, we propagate annotations based on the
uncertainty semantics of caveats for operations supported
by our approach [27, 66]. However, Vizier applies a fur-
ther refinement: a caveat is only propagated if changing the
caveatted value could affect the output. For operations not
supported by these techniques we use provenance informa-
tion at the finest granularity available to determine how to
propagate caveats.

Example 8. Consider the expression A = 1 OR B = 2. It’s
results depends on two input values A and B. If we know cer-
tainly that A = 1 ( there are no caveats associated with the
value), then the result will be true, regardless of the value
of B. Even if the current value of B is changed or incorrect,
it can not affect the result of the expression and the caveat
is not propagated. Conversely, if A = 1 had a caveat, then
an error in B could affect the expression if there was also an
error in A and the caveat is propagated.

4.3 Implementing Data Caveats
To minimize overhead during data access and query pro-

cessing, Vizier splits propagation of caveats into two parts.



A light-weight instrumentation method is used to rewrite
queries to track the presence (resp., absence) of caveats on
individual data values or records. As noted above, such el-
ements are highlighted when they are displayed to the user.
When needed, Vizier can undertake the more expensive task
of deriving the full set of caveats associated with a given data
value, row, or dataset.

4.3.1 Instrumenting Queries
Even just determining whether a data value or row is af-

fected by a caveat is analogous to determining certain an-
swers for a query applied to an incomplete database [39] (i.e.,
CoNP-complete for relatively simple types of queries [27]).
Thus, Vizier adopts a conservative approximation: All rows
or cells that depend on a caveatted value are guaranteed
to be marked. It is theoretically possible, although rare in
practice [27] for the algorithm to unnecessarily mark cells
or rows. Specifically, queries are rewritten recursively using
an extension of the scheme detailed in [27] to add Boolean-
valued attributes that indicate whether a column, or the
entire row depends on a caveatted value.

Example 9. Consider Bob’s parts query, instrumented
as above to cast cost to an integer and assume no other oper-
ations that create caveats have been applied. Let parts_uncast
be the dataset before the cast operation and parts be the
dataset after the operation. Recall the Bob’s query is:

WITH parts AS (/* as string parsing , above */)
SELECT id, avg(cost) FROM parts GROUP BY id;

This query would be instrumented and optimized into:

WITH parts AS (
SELECT CAST(cost as int) AS cost , id, ...,

(CAST(cost as int) IS NULL
OR _caveat_cost) AS _caveat_cost

FROM parts_uncast)
SELECT id, avg(cost),

exists(_caveat_cost) AS _caveat_avg ,
FROM parts GROUP BY id;

A new _caveat_cost column is introduced, marking rows of
the input affected by caveats. Caveat columns guaranteed to
be false are optimized out, as is the caveat function itself.

4.3.2 Computing Caveat Details
When the full set of caveats for a cell, row, or entire

dataset is required, Vizier’s dataflow layer employs a two-
phase evaluation strategy: (i) A quick static analysis is
enough to present a summary to users, and (ii) a dynamic
analysis that refines the static analysis’ summary.

Static Analysis. The initial phase as explained above sim-
ply determines which fields and rows are affected by caveats.
At this point, the user can request more detailed information
through the Vizier user interface. In the spreadsheet view,
clicking on a field or row-header opens up a pop-up listing
caveats on the field or row. Vizier also provides a dedicated
view to list caveats on any dataset and its rows, fields, or
columns. As before, we adopt a conservative approximation
— it is possible, though rare, for a caveat to be displayed in
this list unnecessarily.

The first step of generating the caveat details views is
to statically analyze the query. This analysis produces a
CaveatSet query, which computes the id and message pa-
rameters for every relevant call to the caveat function.

Example 10. Bob now asks for caveats affecting the av-
erage price of part 12345. The caveat function is used exactly
once, so we obtain a single CaveatSet:

SELECT cost || ’ is not an int’ AS message ,
ROWID AS id

FROM parts_uncast WHERE id = ’12345’

To generate the CaveatSets of a query, the query is first
refined through selection and projection to produce the spe-
cific field(s) or row(s) being analyzed. Selection pushdown
and dead-column elimination are used to push filters as close
to the query leaves as possible. For each selection, projec-
tion, or aggregation in which a caveat appears, we construct
a query to compute parameters for every call to caveat.

Dynamic Analysis. Unioned together, the CaveatSets
for a query compute the full list of caveats affecting the tar-
get. Even in simple data pipelines with small datasets, there
may be thousands of potential caveats and dealing with
these caveats can easily overwhelm the user. Thus, exposing
caveats at the right level of abstraction in the right context
is paramount. When a CaveatSet contains more than three
caveats, we select one representative example by LIMITing
the query and present it alongside a count(DISTINCT id) of
the results.

4.4 Cells with Coarse-Grained Provenance
Propagating caveats through queries is sufficient for the

declaratively specified datasets created by SQL cells, most
point-and-click cells, and Vizual cells (spreadsheet opera-
tions). However, certain cell types like Python cells produce
datasets for which fine-grained provenance is not available.
In such cases, we take a conservative approach and rely on
the cached read-sets for the cell. When the cell writes to
a table, we register a coarse-grained dependency from each
of the datasets the cell has read from to the table being
updated.

5. EXPERIMENTS
In this section, we evaluate Vizier’s incremental caveat

construction process. Concretely, we evaluate whether: (1)
instrumenting workloads to detect the presence of caveats on
result fields or rows adds minimal overhead, and (2) incre-
mentally constructed caveats can be sufficiently responsive.

All experiments were performed on a 12-core 2.50GHz In-
tel(R) Xeon(R) E5-2640 with 198GB RAM, running Ubuntu
16, OpenJDK 1.8.0 22, Scala 2.11.11, and Spark 2.4. To
minimize noise from the HTTP stack, we report timing num-
bers as seen by Mimir with a warm cache. All datasets were
loaded through Vizier and cached locally in Parquet format.

Dataset Rows Cols Caveats CaveatSets
Shootings 2.9K 43 121 51
Graffiti 985K 15 47 28

Figure 12: Datasets Evaluated

We base our experiments on the experiments of [27], using
the two real world datasets summarized in Figure 12. For
each dataset, we enable four caveat-generating operators:
header detection, type inference, error-aware CSV parser,
and missing value repair. We then pose a single 2-column
group-by aggregate query mirroring the non-aggregate query
used by [27]. We measure the time taken to run the query
both with and without instrumentation, the time taken for
static analysis, and for CaveatSet expansion.



Figures 13 and 14 show a timeline of the query and caveat
generation process.11 Raw (uninstrumented) query execu-
tion time is shown for comparison. Instrumentation for
caveat tracking is minimal, adding at worst 30% to an al-
ready fast-running query. Through parallel execution, the
majority of caveats are rendered in seconds. We note the
high overhead of queries in Spark, and are exploring a hy-
brid distributed+local engine to accelerate small interactive
queries.
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Figure 13: Materializing caveats for Shootings
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Figure 14: Materializing caveats for Graffiti

6. RELATED WORK
Our work has connections to error detection and data

cleaning, notebook systems, dataset versioning, provenance
in workflows and databases, uncertain data management,
and spreadsheet interfaces for databases. We discuss each
of these areas in the following.

Error Detection, Data Curation and Cleaning. Au-
tomated data curation and cleaning tools help users to pre-
pare their data for analysis by detecting and potentially re-
pairing errors [1, 22]. These tools employ techniques such as
constraint-based data cleaning [26], transformation scripts
aka wrangling [41], entity resolution [33, 21] and data fu-
sion [15], and many others. While great progress has been
made, error detection and repair are typically heuristic in
nature, since there is insufficient information to determine
which data values are erroneous let alone what repair is cor-
rect. Vizier enhances existing data cleaning and curation
techniques by exposing the uncertainty in their decisions as
data caveats and tracks the effect of caveats on further cu-
ration and analysis steps using a principled, yet efficient so-
lution for incomplete data management [66, 27]. Thus, our
solution enhances existing techniques with new functionality
instead of replacing them. Based on our experience, wrap-
ping existing techniques to expose uncertainty is often sur-
prisingly straight-forward. We expect to extend Vizier with
many additional error detection and cleaning techniques in
the future.

Notebook Systems. Notebook systems like Jupyter and
Zeppelin have received praise for their interactivity, for pro-
viding immediate feedback through interleaving code and
results, and for integrating documentation with source code.

11Plots generated with Vizier using Bokeh.

However, these systems have also been widely criticized for
their lack of collaboration features, versioning, and repro-
ducibility [56]. We are not the first to observe that treating
a notebook as a dataflow graph can lead to improved repro-
ducibility and a more consistent user experience because it
allows dependent cells to be updated automatically and re-
solves the non-determinism introduced by executing cells in
a certain order in REPL-based notebooks. Koop et al. [43]
discusses how the lack of data-dependency tracking among
cells in a notebook affects the correctness and reproducibil-
ity of Jupyter notebooks. The proposed solution to these
problems is a Jupyter kernel that attaches unique identi-
fiers to cells in a notebook. Cells can reference the output
of other cells using these identifiers. Based on these inter-
cell data-dependencies, the system automatically refreshes
dependent cells when a cell re-executed. NiW [19] converts
notebooks into workflows to enable provenance tracking and
reproducibility. Nodebook [68] automatically tracks depen-
dencies across cells in a Jupyter notebook and caches out-
puts of cells to ensure reproducibility and enable automated
refresh of dependent cells for notebooks that use Python ex-
clusively. Like these approaches Vizier notebooks are also
data-centric, i.e., they represent a dataflow graph. How-
ever, in contrast to NiW and Nodebook, Vizier natively sup-
ports many different programming languages. Since cells
communicate by consuming and producing datasets using
Vizier’s dataset API, adding support for new languages and
cell types is straightforward.

Versioning and Provenance. Another problem with
notebook systems is their lack of versioning capabilities. For
reproducibility and collaboration, it is essential to keep track
of both versions of the datasets produced and consumed by
notebooks as well as versions of the notebook itself. Version-
ing is closely related to data provenance which tracks the
creation process of data keeping track of both dependencies
among data items and the processes and actors involved in
the creation process. The W3C PROV standard [49] has
been proposed as an application-independent way of rep-
resenting provenance information. Provenance in workflow
systems has been studied intensively in the past [19, 16,
25, 59, 24, 29, 59, 17, 6]. So-called retrospective prove-
nance, the data and control-dependencies of a workflow ex-
ecution, can be used to reproduce a result and understand
how it was derived. Koop [42] and [17] propose to track
the provenance of how a workflow evolves over time in ad-
dition to tracking the provenance of its executions. Niu
et al. [53] use a similar model to enable “provenance-aware
data workspaces” which allow analysts to non-destructively
change their workflows and update their data. In the context
of dataset versioning, prior work has investigated optimized
storage for versioned datasets [65, 13, 48]. Bhattacherjee
et al. [14] study the trade-off between storage versus recre-
ation cost for versioned datasets. The version graphs used in
this work essentially track coarse-grained provenance. The
Nectar system [36] automatically caches intermediate re-
sults of distributed dataflow computations also trading stor-
age versus computational cost. Similarly, metadata man-
agement systems like Ground and Apache Atlas (https://
atlas.apache.org/) manage coarse-grained provenance for da-
tasets in a data lake. In contrast to workflow provenance
which is often coarse-grained, i.e., at the level of datasets,
database provenance is typically more fine-grained, e.g., at
the level of rows [20, 38, 3, 4, 34, 60, 50]. Many systems

https://atlas.apache.org/
https://atlas.apache.org/


capture database provenance by annotating data and prop-
agating these annotations during query processing. Vizier’s
version and provenance management techniques integrate
several lines of prior work by the authors including track-
ing the provenance of workflow versions [58, 52], provenance
tracking for updates and reenactment [4, 53], and using
provenance-based techniques for tracking uncertainty anno-
tations [66, 27]. The result is a system that is more than
the sum of it components and to the best of our knowledge
is the first system to support all of these features.

Uncertain Data. Vizier’s cavets are a practical applica-
tion of uncertain data management. Incomplete [35, 18, 62,
40], inconsistent [30, 9, 18], and probabilistic databases [61,
54, 64, 2, 57] have been studied for several decades. How-
ever, even simple types of queries become intractable when
evaluated over uncertain data. While approximation tech-
niques have been proposed (e.g., [35, 54, 32]), these tech-
niques are often still not efficient enough, ignore useful, al-
beit uncertain, data, or do not support complex queries.
In [27] we formalized uncertainty-annotated databases (UA-
DBs), a light-weight model for uncertain data where rows
are annotated as either certain or uncertain. In [66] we intro-
duced Lenses which are uncertain versions of data curation
and cleaning operators that represent the uncertainty inher-
ent in a curation step using an attribute-level version of the
UA-DB model. Data cavets in Vizier generalize this idea to
support non-relational operations and to enrich such anno-
tations with additional information to record more details
about data errors.

Data Spreadsheets. Approaches like DataSpread and
others [8, 46, 5] utilize spreadsheet interfaces as front-ends
for databases. Vizier stands out through its seamless inte-
gration of spreadsheets and notebooks [28]. Like other ap-
proaches that improve the usability of databases [45], Vizier
provides a simple user interface that can be used effectively
by both experts and non-experts and does not require any
background in relational data processing to be understood.
Furthermore, we argue in [28] that the spreadsheets and
notebook interfaces complement each other well for data cu-
ration and exploration tasks. For example, spreadsheets are
suited well for handling rare exceptions by manually updat-
ing cells and are convenient for certain schema-level oper-
ations (e.g., creating or deleting columns) while notebooks
are more suited for complex workflows and bulk operations
(e.g., automated data repair). Integrating the spreadsheet
paradigm which heavily emphasizes updates, e.g., a user
overwrites the value of a cell, with Viziers functional, data-
flow model of notebook workflows would have been chal-
lenging if not for our prior work on reenactment [4, 3, 4, 53].
Reenactment enables us to translates updates into queries
(side-effect free functions).

7. CONCLUSIONS AND FUTURE WORK
In this paper, we discuss the design and implementation

of Vizier, a novel system for data curation and exploration.
Vizier’s UI is a combination of a spreadsheet and a note-
book interface. In contrast to other library-manager style
notebook systems (i.e., wrappers around REPLs), Vizier is
a manager for versioned workflows. Vizier supports iterative
notebook construction through automated data-dependency

tracking and debugging through the automated detection
and propagation of caveats. In future work, we will investi-
gate (fine-grained) propagation of caveats for new cell types,
e.g., displaying caveats in plots, and explore trade-offs be-
tween performance overhead and accuracy when propagat-
ing caveats through cells with turing-complete languages.
Furthermore, we plan to develop caching and incremental
maintenance techniques for datasets in Vizier workflows to
speed-up reexecution of cells in response to an update to a
notebook. Finally, to support very large datasets, we will
investigate how to incorporate sampling into Vizier.
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