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ABSTRACT
Cognitive Databases is a new approach for enabling Arti�cial Intel-
ligence (AI) capabilities as standard features within relational data-
base systems. Relations are texti�ed and the text is used to build a
Word Embedding (WE) model that captures the latent relationships
between database tokens of various data types. For each database
token, the model includes a low dimensional vector (say, 200) that
encodes the token’s relationships with other tokens. The vectors
are used in the existing SQL query infrastructure via UDFs. Queries
use the model vectors to express semantic similarity/dissimilarity,
inductive reasoning, analogies and seamlessly utilize knowledge
from external sources such as Wikipedia and PubMed.

WE enables novel capabilities such as the controlled disclosure of
database information in a variety of ways. The degree of disclosure
may depend on the sensitivity of the information and the recipient’s
need to know, e.g., test results may be considered sensitive and
should be only be openly disclosed to divisions concerned with
them. Disclosure may be viewed as a new kind of controlled sharing
of information for cooperation and integration purposes.

There are some challenges in integrating WE methods into the
database engine, necessitating new techniques. There are also in-
teresting theoretical problems concerning the WE coding power.
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1 INTRODUCTION
Traditionally, relational databases have been used to analyze enter-
prise datasets that comprise mostly of well-quali�ed typed entities
(e.g., character(n), decimal, �oat, or timestamp). However, over the
years, relational databases have been increasingly used to store and
process free-formed unstructured text data (e.g., customer reviews).
It is intuitively clear that databases with such unstructured text
entities have a signi�cant amount of latent semantic information.
However, columns that contain di�erent types of data, e.g., strings,
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numerical values, images, dates, etc., possess signi�cant latent in-
formation in the form of inter- and intra-column relationships. The
usual way to utilize this information is using SQL and extensions,
such as text extensions, or User De�ned Functions (UDFs) to handle
exotic data types. However, these extensions are rather limited in
their smarts. Speci�cally, SQL queries rely on value-based analytics
to detect patterns. In addition, the relational data model neglects
many inter- or intra-column relationships. Thus, traditional SQL
queries lack a holistic view of the underlying relations, and thus
are unable to extract and exploit semantic relationships that are
collectively generated by tokens in a database.

A Cognitive Databases [1, 2] is a novel relational database sys-
tem, which uses word embedding techniques [6, 8, 9, 11] to extract
latent knowledge from a database table or a collection of tables. The
generated word-embedding model captures inter- and intra-column
semantic relationships between database tokens of di�erent types.
For each database token (value, �eld, object), the model includes
a vector that encodes contextual semantic relationships. A cog-
nitive database seamlessly integrates the model into the existing
SQL query processing infrastructure and uses it to enable a new
class of SQL-based analytics queries called Cognitive Intelligence
(CI) queries. CI queries use the model vectors to enable complex
semantic queries over relational data such as semantic similarity or
dissimilarity, inductive reasoning queries such as analogies or se-
mantic clustering, and predictive queries using entities not present
in a database but only in corpora on which the model is co-trained.

There are interesting implications of word embedding based
modeling for enabling selective information dissemination for rela-
tional data. We illustrate how the word-embedding approach can
enable a cognitive database to: (1) reveal various degrees of infor-
mation, (2) invoke semantic CI queries over encrypted data, and (3)
provide limited disclosure via semantic encoding of the underlying
database schema and data.

2 COGNITIVE DATABASE DESIGN
In the database context, vectors may be produced by either learning
on text transformed and extracted from the database itself and/or
using external text sources, such as Wikipedia. Training a word-
embedding model from a relational database requires two stages.
The �rst stage, texti�cation, takes a relational table with di�erent
SQL types as input and returns an unstructured but meaningful
text corpus consisting of a set of sentences. This transformation
allows us to generate a multi-modal embedding model with uniform
semantic representation of di�erent SQL types. In addition to text
tokens, our current implementation supports numeric values and
images (we assume that the database being queried contains a
VARCHAR column storing links to the images). We use di�erent



strategies for converting a non-text relational data to text: e.g.,
values in a numeric column are �rst clustered using a standard
clustering approach (e.g., K-Means), and then replaced by a text
token that represents the corresponding cluster. For images, one
approach classi�es images into classes using a pre-trained model
and then represents each image by a string token that represents
its class. Alternatively, one can �rst extract text features from an
image using o�-the-shelf image services, such as IBM Watson Visual
Recognition Service [5], and then use the extracted features to train
the embedding model.

Usually, to focus learning, the relevant portion of a table to be
learned is de�ned by using a relational view. We use an unsuper-
vised training approach based on the Word2Vec (W2V) [7] imple-
mentation to build the word embedding model from the generated
text corpus (other training approaches perform similarly). The text
corpus is organized as a set of English-like sentences, separated by
stop words (e.g., newline). Each sentence correspond to a row in the
relational view and is used as a neighborhood context during the
training of the word embedding model. Hence, the inferred semantic
meaning of the relational entities re�ect the collective relationships
de�ned by the associated relational view (generated by relational
operations such SELECT, PROJECT, and JOIN.)

Our training implementation builds on the standard W2V im-
plementation, but it varies from the that approach in a number of
important aspects: (1) A sentence generated from a relational row
is generally not in any natural language such as English. Therefore,
the underlying assumption from word2Vec that the in�uence of any
word on a nearby word decreases as the word distance increases, is
not applicable. In our implementation, every token has the same
in�uence on the nearby tokens in the context. (2) Another conse-
quence is that unlike an English sentence, the last word is equally
related to the �rst word as to its other neighbors. To enable such
relationships for the last word, the �rst word can be viewed as its
immediate neighbor). (3) For relational data, we provide special
consideration to primary keys, which are unique (and therefore
usually have a limited number of appearances which hinders learn-
ing). First, the standard W2V discards less frequent words from
learning. In our implementation, every token, irrespective of its
frequency, is assigned a vector. Second, irrespective of the distance,
a primary key is considered a neighbor of every other word in a
sentence and included in the neighborhood window for each word.
Also, the neighborhood extends via foreign key occurrences (of a
key value) to the row in which that value is key. (4) Finally, our
implementation is designed to enable incremental training, i.e., the
training system takes as input a pre-trained model and a new set of
generated sentences, and returns an updated model. This capability
is critical as a database may be updated regularly and one can not
rebuild the model from scratch every time. External information
may be incorporated in two basic modes: (a) by providing text
that augments the database-derived text for training, and (b) by
providing external pre-trained models derived from the external
information. The use of pre-trained models is an example of trans-
fer learning, where a model trained on an external knowledge base
can be used either for querying purposes or as a basis of forming
a new model. This of course necessitates management of models

as well as models’ identi�cation when used within user-de�ned
functions (UDFs).

3 COGNITIVE INTELLIGENCE QUERIES
A cognitive relational database is an extension of the underlying
relational database, and thus supports all existing standard rela-
tional database features. In addition, a cognitive relational database
supports a new class of business intelligence (BI) queries called Cog-
nitive Intelligence (CI) queries. The CI queries extract information
from a relational database based, in part, on the contextual semantic
relationships among database entities, encoded as meaning vectors.
At runtime, the SQL query execution engine uses various UDFs that
access the trained vectors from the system table, as needed, and
answers CI queries. Similarly to other relational queries, CI queries
take relations as input and return a relation as output. CI queries
augment the capabilities of the traditional relational BI queries and
use all standard existing SQL operators.

Our current implementation is built on the Apache Spark 2.2.0 in-
frastructure. The implementation supports, via UDFs, four types of
CI SQL queries: similarity queries, inductive reasoning, prediction,
and cognitive OLAP. These queries can be executed over databases
with multiple data types: we currently support text, numeric, and
image data. The similarity queries compare two relational variables
based on similarity or dissimilarity between the input variables.
Each relational variable can be either a set or sequence of tokens.
In case of sequences, computation of the similarity value in some
UDFs takes the ordering of tokens into account where the closest
the token to the beginning of the sequence, the higher the weight.
The similarity value is then used to classify and group related data.
The inductive reasoning queries exploit latent semantic information
in the database to reason from part to whole, or from particular to
general [12, 13]. We support di�erent types of inductive reasoning
queries: analogies, semantic clustering, analogy sequences, clus-
tered analogies, and odd-man-out. Given a token from an external
data corpus (which is not present in a database), the predictive CI
query can identify database tokens that are similar, or dissimilar, to
the external token by using the externally trained model. Finally,
cognitive OLAP allows SQL aggregation functions such as MAX(),
MIN() or AVG() over a set that is identi�ed by contextual similarity
computations.

To demonstrate the capabilities of Cognitive Databases, consider
a semantic clustering CI query on a relational multi-modal database
(Figure 1): the original database lists national parks with string
tokens representing image �le names, e.g.,
n00015388_18458.jpeg. We �rst create a training table using text
features extracted from the images by using the Watson VRS sys-
tem. The training table is then used to build a multi-modal word
embedding model that captures relationships between text and
image features. This model is then used to answer CI queries that
use both text and image variables. For example, the goal of query
shown in Figure 1 is to identify all images that are similar to every
image in the set of user chosen images. Such images share one or
more features with the input set of images. For this query, we select
images of a lion, a vulture, and a shark as the input set and use the
combinedAvgSim() UDF to identify images that are similar to all
these three images. Although the input images display animals from
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SELECT	X.imageName,
combinedAvgSim(X.imagename,	
’n00015388_18458.jpeg’,	
’n01316422_255.jpeg’,	
’n01315581_997.jpeg’)	AS	SimScore
FROM	ImageDataTable X	WHERE
(X.imagename <>	’n00015388_18458.jpeg’)	AND	
(X.imagename <>	’n00015388_19237.jpeg’)	AND
(X.imagename <>	’n00015388_18797.jpeg’)	AND	
(combinedAvgSim(X.imagename,	
’n00015388_18458.jpeg’,	
’n01316422_255.jpeg’,	
’n01315581_997.jpeg’)	>	0.75)	
ORDER	BY	SimScore DESC

n00015388_18458 n01316422_255 n01315581_997

n01604330_12473
andean_condor,	condor
sloth_bear

n01316422_1684
glutton_wolverine

n01324431_7056
andean_condor,	tayra

Find	all	images	whose	similarity	to	user	
chosen	images	of	[lion,	vulture,	shark]	
using		combinedAvgSim UDF	is	greater	
than	0.75.	Exclude	the	input	images	and	
sort	the	result	in	descending	order	of	
their	similarity	score.

Input

Output

Figure 1: Inductive reasoning CI query for semantic clustering of images

three di�erent classes, they share one common feature: all three
animals are carnivorous. The UDF computes the average vector of
the three input images and then selects those images whose vectors
are similar to the computed average vector with similarity score
higher than 0.75. Figure 1 shows the top three image results: an-
dean condor, glutton wolverine, and tyra. Although these animals
are from di�erent classes, they all are carnivores, a feature that is
shared with the animals from the input set.

To further illustrate CI capabilities, consider a query to �nd all
images of animals whose classD similarity score (in ImageDataT-
able) to the concept of Hypercarnivore of Wikipedia, which does not
appear in the database, exceeds 0.50. Exclude animal images that
are already tagged as carnivore, herbivore, omnivore or scavenger.
The query is presented in Figure 2. The query uses a UDF called
proximityAvgExtKB(). See [1] for further details.

4 CONTROLLED DISCLOSURE VIA WORD
EMBEDDING

We now outline interesting implications of using word embedding
models for querying relational databases. We will use the process
illustrated in Figures 3 and 4 as a running example.

Consider a single relational database relation Rwith �ve columns:
A, B, C, D and E. Further, assume its �rst column, A, contains the pri-
mary key, a string that is unique for each relation tuple (record, row).
In disclosing R to a recipient we identify the following Disclosure
Steps:

(1) Deciding which columns should be completely eliminated,
say due to a very high degree of sensitivity. In our example,
we decide to eliminate column E.

(2) Deciding the content of which columns should be encrypted
prior to producing word vectors. In our example, we decide
that column D should be encrypted. This keeps equality

between equal entries in di�erent tuples (rows) for this col-
umn, but severs identifying these values in other columns
(inter-column severance) as well as hides the true nature
of the content within an encrypted column. Denote the
modi�ed relation R as R’.

(3) Vector construction based on texitifying R’. This step asso-
ciates a vector with each token in relation R’, see Figure 3.
Each row of the table Vectors depicts the 200 entries of
the vector associated with the database token in the Token
column.

(4) Deciding which columns of R’ are to be disclosed to the re-
cipient(s). In our example, we decide to disclose all columns,
A, B, C, and (the encrypted version of) D. Denote by R’’
the relation obtained by restricting R’ to the columns to
be disclosed (i.e., in our example, R’ =R’’).

(5) Deciding which R’’ columns, that are to be disclosed to re-
cipient(s), should be encrypted prior to disclosure. Assume
that, in our example, we decide to encrypt column B prior
to disclosure. Recall that the Associated Vectors were
produced prior to encrypting column B. The vector associ-
ated with any encrypted value in column B is the one that
was associated with the pre-encrypted value. For example,
in Figure 4, The vector of e200301 is the one associated with
C72H95ClN 14O14. We shall refer to the end-result relation
as Rf, see Figure 4.

(6) Disclosing Rf and the collection of pairs (w, v) in Associated
Vectors where w is a token occurring in the disclosed
columns of Rf and v is the associated vector.

4.1 Degrees of Disclosure
The end result of the outlined disclosure process is that the recipient
is presented with a relation (Rf in our example) and with each token,
its associated vector, see Figure 4. The important point to note is
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SELECT	X.imagename,	proximityAvgExtKB
(’CONCEPT_Hypercarnivore’,	X.classD)	
AS	SimScore
FROM	ImageDataTable X	WHERE
…….
…….
…….
(	(stringPresent(X.classD,	’scavenger’)	==	0)	AND
(proximityAvgForExtKB
(’CONCEPT_Hypercarnivore’,X.classD)	>	0.5)		
ORDER	BY	SimScore DESC

Find	all	images	of	animals	whose	
classD similarity	score	to	the	Concept	
of	‘‘Hypercarnivore"	of	Wikipedia	
using	proximityAvgExtKB UDF	is	
greater	than	0.5.	Exclude	images	that	
are	already	tagged	as	carnivore,	
herbivore,	omnivore	or	scavenger.	Sort	
the	results	in	descending	order	of	their	
similarity	score.

Output

n01316422_10446
[hyena,	spotted_hyena]

n01321579_5386
[hyena,	spotted_hyena]

n01316422_10406
[hyena,	spotted_hyena]

n01317541_6440
[hyena,	water_dog_dog,	
spotted_hyena]

n02075612_2316
[hyena,	pouched_mammal,
spotted_hyena,	bear_cub]

Figure 2: A CI query using an external concept

A B C D E

#12 C72H95ClN14O14 12 Ocean Ave. NY 56%

#57 C27H32F2N8 2 Marine Ave. CA 66%

#63 C24H31NO 13 Houston St. NY 40%

… … … … ….

Relation R

Eliminate column E, Encrypt Column D

A B C D

#12 C72H95ClN14O14 12 Ocean Ave. e100099

#57 C27H32F2N8 2 Marine Ave. e298009

#63 C24H31NO 13 Houston St. e100099

… … … …

Relation R’ = 
Relation R’’

Form Vectors, say using word2vec

Token v1 v2 v3 v4 v5 …. v199 v200

#12 -12.06 1.23 1.34 -2.0 -15.55 0.01 2.03

C72H95ClN14O14 45.2 1.11 1.33 -1.0 -2.9 2.3 3.5

….

e100099 -11.05 -10.02 2.22 -2.7 0.04 12.12 0.54

Vectors

Figure 3: Producing word vectors from a modi�ed relation, Disclosure Steps 1-4

that the recipient obtains signi�cant additional information beyond
the mere content of Rf. The vectors, in fact, encode knowledge
not present in Rf, i.e., knowledge accessible through the vectors,
say using CI queries. For example, column D is encrypted just prior
to disclosure. However, the vectors that are associated with the
encrypted tokens in column D were produced prior to performing
encryption. Therefore, these vectors embed knowledge regarding
these pre-encrypted tokens and their co-occurrences with other
tokens. This knowledge is no longer available in Rf in isolation (i.e.,
without vectors). This way, a �ne line is drawn in that although
the precise identity of these encrypted columns is not disclosed,
knowledge about their nature and associations is disclosed indi-
rectly through their vectors. On the other hand, decoding vectors

and associating them to original relational tokens appears to be
a daunting task (the precise hardness is an open problem). There-
fore, indirect information disclosure via vectors provides a level
of information hiding that may be appropriate to many real-life
situations.

Let us consider another example over the same four columns
relation R to illustrate the interplay between exposed and hidden
information. Suppose this time our table is describing employees,
column A is the employee badge number and column C records em-
ployees’ addresses. This time, in the �nal stage of forming Rf, we
encrypt column C instead of column B (that describes expertise). Let
Rf’ denote the �nal disclosed relation in this case. We observe that
while forming vectors, column C was not encrypted (i.e., clear-text).
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A B C D

#12 C72H95ClN14O14 12 Ocean Ave. e100099

#57 C27H32F2N8 2 Marine Ave. e298009

#63 C24H31NO 13 Houston St. e100099

… … … …

Relation R’’

Encrypt column B

Relation Rf

A B C D

#12 e200301 12 Ocean Ave. e100099

#57 e200328 2 Marine Ave. e298009

#63 e200554 13 Houston St. e100099

… … … …

Token v1 v2 v3 v4 v5 …. v199 v200

#12 -12.06 1.23 1.34 -2.0 -15.55 0.01 2.03

e200301 45.2 1.11 1.33 -1.0 -2.9 2.3 3.5

….

e100099 -11.05 -10.02 2.22 -2.7 0.04 12.12 0.54

Associated
Vectors

Both Rf and 
Associated Vectors 
are disclosed

Figure 4: Producing word vectors from a modi�ed relation, Disclosure Steps 5-6

If two employee addresses are identical, this is easy to detect in the
supplied information (although the addresses themselves cannot
be easily discerned) as these addresses are identically encrypted. If
two addresses are close (say, same town and street, di�erent num-
ber), this information will likely be exposed in that the vectors of
these two addresses are likely to be close (i.e., high cosine similar-
ity). In this way, information may be hidden but partially exposed
to a certain degree. Note that the street address information will
also a�ect closeness of the employee’s, say Joe Smith’s, (badge)
column A value associated vector to other employees (badge) col-
umn A vectors values (as well as closeness to vectors for tokens in
other relation columns). Therefore, if one is interested in employees
close (according to some facets) to Joe Smith, this street address
information, that is encrypted in Rf’, will likely a�ect querying
results.

The Disclosure Steps outlined above introduce a sequence of mea-
sures of information hiding: eliminating columns, encrypting prior
to vector construction, eliminating a column prior to disclosure,
and encrypting a disclosed columns prior to disclosure. However,
there are measures that reduce information hiding. One such mea-
sure that increases information exposure is the use of external data
sources, e.g., Wikipedia. During training, we can mix the text ob-
tained by texitifying the relation with text derived from external
source(s). This way, the vectors of database tokens may encode
closeness to terms (tokens) that do not even appear in the database,
thereby exposing additional information. For example, suppose that
relation R deals with medical drugs. The word toxic may not appear
in R. However, column B contains chemical formulas. Certain com-
pounds may be identi�ed by an external source as toxic. Training
on both R and the external text source may reveal closeness of a
token of a column, say B (or A) vector, to the vector of toxic even
though toxic does not appear in R at all.

4.2 Querying using Encrypted Tokens
As shown in Figures 3 and 4, a token used in forming the word
embedding model can be the encrypted version of the original
(cleat-text) data. This raises the question of what limitations are
imposed by encryption on querying. As CI queries use string to-
kens to access the associated vectors, they can operate on either
clear-text or encrypted versions of the tokens. Therefore, even if the
source database is entirely encrypted, the generated word embed-
ding model will be able to capture relationships between the tokens
as if they were in the clear-text (unencrypted) format. However,
there are some important limitations on querying:

(1) Usually when the SQL queries are composed, the encrypted
token names (e.g., e10099) are not known. Therefore, some
manual editing may be required prior to query execution.

(2) Encrypted columns cannot be compared to, or equated
with, non-encrypted values in the query.

Lastly, we mention the phenomenon of phantom connections.
Given a disclosed relation and associated vectors table, one can
textify the relation and produce new vectors for the tokens thus
presented. Then, one can compare closeness ranking of the sup-
plied vectors versus the closeness between newly generated vectors.
These closeness di�erences hint at sources of closeness that were
eliminated in the disclosed relation, for example a column that was
used originally in learning vectors and has been eliminated prior to
disclosure. This underlines the fact that information hiding in this
scheme is soft and is designed to make obtaining additional infor-
mation from the disclosed information harder, but not impossible.

4.3 Disclosing Information by Disclosing an
equivalent Synthetic-Text

Learning a model (vectors) on text obtained from various internal
and external sources is a key idea in expanding the expressive
power of SQL to use terms not explicitly mentioned in the source
data. This sub-section deals with providing an information source
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with neither explicitly providing the underlying table or database
in any form, nor explicitly providing vectors per tokens. The idea
is to provide a synthetic text generator that essentially produces a
continuous stream of text upon demand (e.g., "provide the next 1000
words") with the concurrence statistics of the disclosed information
source. The tokens (words) that are generated are the ones from
the underlying information source. As in the case of controlled
disclosure, discussed above, one may drop certain columns and
encrypt others prior to preparing the data structure that enables
synthetic text generation. This enables further control over the
disclosed content.

Logically, the main data structure that enables synthetic text
generation includes records of the form:

(token1, token2, ..., tokenk , tokenout , prob)

The meaning is that if the last k tokens to be generated are token1,
...,tokenk then with probability prob the token to be generated is
tokenout . Conceptually, such records enable synthetic text genera-
tion after starting the text with an authentic sequence out of the
original text. E�cient implementation techniques of this idea are
presented in [3]. We note that the larger k is, the more precise the
captured statistics is. This provides another control level on (a) the
preciseness of disclosed information, and (b) the computational
cost of generating the synthetic-generation enabling data structure.

5 SYSTEM CHALLENGES
Cognitive Databases present new system requirements, these in-
clude:

(1) E�ciently training models at a large scale. This involves
e�cient texti�cation and model learning with a variety of
machine learning techniques.

(2) When new tokens are introduced, for reasonably large
databases, their vectors will have little in�uence on exist-
ing vectors. However, for query processing, new tokens
need be associated with vectors. This raises the need for
incrementally and quickly learning new vectors.

(3) Managing a vast collection of models, both internal and
external.

(4) E�ciently performing UDFs. This is challenging as many
UDFs process a large collection of vectors. New algorithm
as well as hardware acceleration may be necessary. See
work in this area in [4].

(5) Designing and integrating AI-oriented UDFs into the query
compilation and optimization process.

(6) Automatically executing versions of the same query with
di�erent parameters (e.g., executing a query with two dif-
ferent cosine distance bounds, choosing the ’better’ one).

6 CONCLUSIONS AND FUTUREWORK
In this paper, we brie�y reviewed the concept of Cognitive Databases,
a novel relational database system, which uses unsupervised word-
embedding models to capture and exploit latent information in
relational data. We view Cognitive Databases as a precursor to a
new generation of relational databases that seamlessly integrate AI
capabilities into the database data manipulation capabilities, in a
uniform, dynamic and generic fashion. This should be contrasted
with the practice in which targeted learning is performed over

database-stored data in a separate system aiming at achieving a spe-
ci�c task. We discussed how the embedding approach can be used
for controlling data access by enabling various degrees of informa-
tion disclosure over relational tables. While our suggested methods
are preliminary, we hope they will spur further exploration and
analysis into this developing area.

A potentially important property of word embedding is its en-
abling the encoding of source databases. Consider a scenario where
a word embedding model with encrypted tokens is being used for
supporting CI queries. We conjecture that given just a word em-
bedding model with encrypted tokens and vectors of real-valued
numbers, it is not practically possible to deduce the schema and data
of the source data used to create the model (the source data can be
a database table or unstructured text corpus, or both). The precise
encoding power of word embedding techniques is an interesting
open problem. We hope this paper will encourage researchers to
investigate and explore the theory underlying word-embedding
(and other neural networks [10] based encoding schemes) for use
in relational databases.
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